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A B S T R A C T   

Seagrass meadows are monitored in the frame of several environmental programs worldwide, including the 
Water Framework Directive (WFD), to evaluate the ecological status of European coastal and transitional water 
bodies. The large size, spatial complexity, and interannual variability of seagrass ecosystems significantly 
challenge field monitoring. In this study, a multi-mission satellite time-series was used to estimate long-term 
changes in seagrass status in a macrotidal system dominated by Zostera noltei, at Bourgneuf Bay (French 
Atlantic coast). Metrics of seagrass extent and density were obtained from Earth Observation (EO) using vali
dated and inter-calibrated Landsat, SPOT and Sentinel2 data from 1985 to 2020. The information provided by 
satellite data made it possible to compute and compare several seagrass indicators currently in use in several 
European countries (France, Portugal and UK) within the WFD. Both the seagrass extent and meadow-averaged 
density displayed increasing trends since 1985. A time-series of merged observations from various satellites 
revealed a high degree of interannual variability in seagrass extent, with abrupt losses (up to 50% within one 
year) alternating with periods of slow recovery (typically 4–6 years). The seagrass meadow which was in a 
moderate status (sensu the WFD) in the 1980s, achieved an overall recurrent good or high status since the mid- 
1990s. Altogether, the methods and results presented here demonstrated that EO is a reliable source of infor
mation for mapping and assessing the status of intertidal seagrass, complementing in situ measurements by 
providing long-term, spatial view and standardized observation framework. We recommend the systematic use of 
EO time-series in complement to traditional field measurements in seagrass monitoring programs such as the 
WFD.   

1. Introduction 

Seagrass meadows provide a wide range of ecosystem functions but 
are sensitive to the combination of direct anthropogenic impacts such as 
mechanical damage due to land reclamation, construction building, boat 
mooring and anchoring, alteration of sediment dynamics due to 
dredging and coastal engineering (Orth et al., 2006; Walker and 
McComb, 1992), together with indirect pressures resulting from global 
warming and sea-level rise (Valle et al., 2013). In addition, the global 
decline of natural vegetation reported for coastal watersheds, growing 
urbanization, as well as massive agricultural and industrial land use are 
responsible for pollution, land erosion, run-off, and seaward export of 
nutrients and contaminants causing eutrophication, degradation of 

water quality and transparency, enhanced sedimentation and hydro- 
morphological changes, eventually impacting coastal ecosystems 
(Green et al., 2021; Short and Wyllie-Echeverria, 1996; Unsworth et al., 
2019). Their recognized ecosystem value has motivated many studies to 
follow seagrass changes worldwide (de los Santos et al., 2019; Green 
et al., 2021; Kuo and Lin, 2010; Murphy et al., 2021; Shelton et al., 
2017). While seagrass ecosystems at global scale have shown a 
decreasing trend since the 19th century (Green et al., 2021; Waycott 
et al., 2009), a reverse tendency has been reported since the 2000s in 
several European sites (de los Santos et al., 2019). Some authors 
attributed the regionally observed and recent expansions to local im
provements in water quality, habitat remediation, or changes in coastal 
topography (Barillé et al., 2010; Bertelli et al., 2018; Calleja et al., 2017; 
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de los Santos et al., 2019; Román et al., 2020). Providing a consistent 
analysis of seagrass temporal changes is however very challenging due 
to large data gaps and spatiotemporal limitations in seagrass records 
(Unsworth et al., 2019), and the estimated trends vary among seagrass 
species, sites and time periods (de los Santos et al., 2019; Dunic et al., 
2021; Green et al., 2021). 

Concerned by the overall degradation of water quality, the European 
Union (EU) created a very ambitious program, the Water Framework 
Directive (WFD, 2000/60/EC), to monitor and evaluate the ecological 
status of inland, transitional (TWB), and coastal (CWB) water bodies up 
to 1 nautical mile. However, evaluating the ecological status of 111,062 
water bodies using exclusively field observations turned out to be 
extremely challenging, and the status of many sites has still not been 
assessed (Papathanasopoulou et al., 2019). Amongst many ecological 
parameters, seagrass habitats have been chosen as WFD indicator due to 
their high sensitivity to natural and anthropogenic pressures. In partic
ular, intertidal seagrass has been selected as a Biological Quality Element 
for the assessment of TWB and CWB ecological status (Foden, 2007). 
Three metrics are routinely included in the calculation of an Ecological 
Quality Ratio (EQR) used to determine a water body’s quality status: (1) 
taxonomic composition (seagrass species richness); (2) bed extent (total 
surface occupied by the meadow); and (3) density (either seagrass shoots 
per square meter or seagrass percent cover) (Foden, 2007). However, 
even though intertidal seagrass beds are partially emerged during low 
tide, they are not easily accessible, and assessing their areal extent with 
conventional field sampling is very challenging, especially over 
meadows >1 km2. Seagrass beds have complex shapes, with irregular 
boundaries, successions of patches and bare areas. Methods deploying 
GPS have been successfully used to delimit both intertidal and shallow 
subtidal seagrass beds (Young et al., 2012; Young et al., 2015) but are 
limited as scale increases. The great interannual variability of seagrass 
beds also require very regular field surveys (at least every year or every 
two years), which remains a very time-consuming exercise. 

The synoptic capacity of Earth Observation (EO) can overcome these 
constraints. Satellite remote-sensing has a significant though underex
ploited potential to map many types of coastal environments, including 
seagrass beds (Klemas, 2013; Kovacs et al., 2018; Phinn et al., 2008; 
Roelfsema et al., 2014; Traganos and Reinartz, 2018a; Traganos and 
Reinartz, 2018b; Zoffoli et al., 2020). Since almost five decades, satellite 
missions such as Landsat and SPOT have acquired data at high spatial 
resolution (pixel size ≤ 30 m) over the whole planet. Today, we can 
benefit from satellite time-series to obtain a long-term view of coastal 
habitats’ condition and to retrospectively document their evolution and 
dynamics (Knudby et al., 2010). Furthermore, not only seagrass beds but 
adjacent habitats can be taken into consideration due to the synopticity 
of satellite observation, providing a holistic view of coastal ecosystems 
that is fundamental for effective management (El Mahrad et al., 2020). 

There are plenty of examples of coastal studies demonstrating the use
fulness of satellite imagery to document urban expansion (Chai and Li, 
2018), land reclamation (Xu et al., 2021) river plumes evolution (de 
Rudorff et al., 2011), as well as temporal changes in coral reefs (Pal
andro et al., 2008), mangroves (Aljahdali et al., 2021), benthic macro
algae (Lõugas et al., 2020), and inter- and subtidal seagrass meadows 
(Barillé et al., 2010; Calleja et al., 2017; Dekker et al., 2005; El-Hacen 
et al., 2020; Hossain et al., 2015; León-Pérez et al., 2019; Lyons et al., 
2013; McKenzie et al., 2020; Santos et al., 2020; Sousa et al., 2019). 

To date, seagrass monitoring under the WFD is only based on data 
collected during field campaigns and/or combined with aerial photo
graphs (Auby et al., 2018; Neto et al., 2013; UKTAG, 2014). Moreover, 
with a minimum requirement of a single survey every 6 years (Wilkes 
et al., 2017), the WFD sampling strategy is not adapted to accurately 
describe interannual variations in temporally dynamic seagrass beds. 
Interestingly, EO has the potential to fill up data gaps in these ecosys
tems and complement field measurements, in particular since the advent 
of the Sentinel2 (S2) mission (2015 – present), which acquires images at 
both high spatial (10 m) and temporal (≤5 days) resolutions (Kohlus 
et al., 2020). 

The objective of the present study is to take advantage of 36-year 
time-series of satellite observations (1985–2020) to document the 
interannual variability and temporal trends of an intertidal seagrass 
meadow over an Atlantic temperate coastal area (Bourgneuf Bay, 
France). First, the consistency of combining three multispectral satellite 
missions (Landsat, SPOT and S2) with different resolutions was 
demonstrated. Second, the meadow total extent was determined using 
20 m satellite-derived maps of seagrass percent cover (SPC), a metric 
which allowed us to identify the densest and most resilient seagrass 
areas within the whole meadow. Finally, the seagrass ecological status 
was evaluated using satellite data, adapting the methods routinely 
applied by three different Member States (MS), namely France, Portugal 
and UK, in the frame of the WFD seagrass monitoring. The method 
proposed here, based on remote sensing, seeks to evaluate the evolution 
of meadow surfaces in the long term and understand how it can provide 
information on the health status of coastal ecosystems. 

2. Material and methods 

2.1. Study area 

The intertidal seagrass bed analyzed in this study is one of the French 
meadows selected for the WFD monitoring of the seagrass indicator 
(Auby et al., 2018). The meadow is dominated by Zostera noltei and 
localized in the French Atlantic coast (47◦N, 2◦05′W), south to the Loire 
Estuary (Fig. 1). Some small isolated stands of Zostera marina can be also 
found close to oyster-farming sites (Barillé et al., 2010). The intertidal 

Fig. 1. Study area. Bourgneuf Bay (France) in the Atlantic coast (a) and the intertidal seagrass meadow adjacent to Noirmoutier island (b).  
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area presents a high tidal range (6 m during spring tides) and the sea
grass meadow is fully emerged during low tide. The bay is a semi- 
enclosed system, protected from waves by the Noirmoutier island in 
the south, with a highly turbid water column (suspended particulate 
matter can exceed 300 g m− 3; Gernez et al., 2014) and a strong accu
mulation of fine fraction sediments on the seabed (Sanchez, 2008). In 
this temperate latitude, Z. noltei presents a seasonal cycle with a late 
summer maximum and a minimal coverage (if not a total disappearance) 
of above-ground biomass in winter (Zoffoli et al., 2020). 

2.2. Satellite data and processing 

2.2.1. Creation of a consistent database 
Three satellite datasets were compiled to create a consistent time- 

series of seagrass maps from 1985 to 2020 in Bourgneuf Bay 
(Table 1). The first dataset was obtained from Landsat5 and 7 
(1985–2020), the second from Satellite Pour l’Observation de la Terre 
(SPOT1-5) (1988–2013), and the third from Sentinel2 (S2, 2015–2020). 
As S2 was specifically designed to improve and ensure consistency and 
continuity with the SPOT mission (Hagolle et al., 2015), the SPOT and 
S2 data were grouped together. SPOT and S2 provide images at high 
spatial resolution (pixel size is 10 or 20 m depending on the satellite). 
The SPOT and S2 time-series were used as the core component of the 
long-term analysis of the seagrass dynamics because this resolution 
makes it possible to quantitatively describe the seagrass meadow spatial 
structure (Zoffoli et al., 2020). Due to its lower spatial resolution of 30 
m, the Landsat imagery was not primarily used in spatial analyses. 
However, the Landsat time-series was useful to check the consistency of 
the SPOT and S2 atmospheric correction, and to fill the gaps in the SPOT 
and S2 time-series because of its long duration and processing stability. 

2.2.2. Satellite images selection 
Several constraints were applied to ensure an optimal satellite 

observation of intertidal seagrass meadows (Zoffoli et al., 2020). First, 
the images had to be acquired during low tide so that the meadow was 
fully emerged. Here, the tidal information provided by the Service 
Hydrographique et Océanographique de la Marine (SHOM) was used as a 
reference (water height < 3 m at the nearest harbor of L’Herbaudière). 
Second, the images had to be acquired during the annual peak of the 
meadow’s development to limit the influence of seasonal variability 
(Zoffoli et al., 2020). An analysis of the full Landsat archive allowed us 
to determine that the optimal temporal window corresponding to the 
seagrass maximum development occurred between 24/Jul and 15/Oct 
(see Appendix A for more details). Last, only cloud-free images were 
selected. A total number of 45 Landsat, SPOT, and S2 images were 
eventually available from 1985 to 2020 (Table 1). 

2.2.3. Processing of SPOT and S2 images 
SPOT images were downloaded from the SPOT World Heritage 

(https://www.theia-land.fr/). S2 images were downloaded from the 
Copernicus Open Access Hub (https://scihub.copernicus.eu/). Both SPOT 
and S2 images were downloaded as top-of-atmosphere (TOA) reflectance 
data. The same atmospheric correction was applied for SPOT and S2 using 
the Simplified Model for Atmospheric Correction (SMAC; Rahman and 
Dedieu, 1994; available at https://labo.obs-mip.fr/multitemp/) to 
compute the bottom-of-atmosphere reflectance (R). A summer average of 

the aerosol optical thickness (AOT) over the site equal to 0.1 was used. 
The normalized difference vegetation index (NDVI; Tucker, 1979) 

was used to detect the seagrass meadows. The NDVI is computed from the 
relative difference between the reflectance in the near-infrared (NIR) and 
the red spectral regions (Eq. (1)). It has been widely used for vegetation 
remote sensing in many contexts, including intertidal primary producers 
(Barillé et al., 2010; Brito et al., 2013; Méléder et al., 2020; Valle et al., 
2015; van der Wal et al., 2010). As the spectral resolutions of SPOT (NIR 
band at 840 nm, and red band at 645 nm) and S2 (NIR and red bands at 
respectively 842 and 665 nm) are not the same, the NDVISPOT was reca
librated to NDVIS2 to avoid sensor bias (Zoffoli et al., 2020). Similarly, all 
SPOT and S2 NDVI images were resampled to the same spatial resolution 
(20 m), using the nearest neighbour resampling method. 

NDVI =
RNIR − RRed

RNIR + RRed
(1) 

A radiometric mask (0.129 ≤ NDVI < 0.8) was applied to remove 
flooded areas and drifted macroalgae, and to select only emerged seagrass 
(Barillé et al., 2010; Zoffoli et al., 2020). The above-ground seagrass percent 
cover (SPC) was then computed from the NDVI using a relationship spe
cifically calibrated and validated for intertidal meadows of Z. noltei located 
along the European Atlantic coast (Eq. (2); from Zoffoli et al., 2020). 

SPC = 172.06∙NDVI − 22.18 (2) 

Terrestrial areas and those corresponding to rocky shores or below 
the bathymetric line of + 2 m were masked to select only the seagrass 
meadow. 

2.2.4. Processing of Landsat images 
Landsat images were downloaded from the United States Geological 

Survey (USGS) portal (EROS science processing architecture on demand 
interface - ESPA), https://espa.cr.usgs.gov/) as ground surface NDVI 
product. The NDVILandsat was recalibrated to NDVIS2 (Zoffoli et al., 
2020) and SPC was computed similarly as for SPOT and S2 (Eq. (2)). Due 
to its long-term stability, the Landsat dataset was used to assess the 
consistency of the SPOT/S2 time-series. The comparison was performed 
over 4 types of targets commonly found in temperate intertidal areas: 
sandy beach, bare sediment adjacent to the seagrass meadow, macro
algae, and seagrass (see Appendix B for more details). The reason for 
selecting different intertidal targets was to cover a wide range of NDVI 
values, from low values represented by sandy beach and bare sediment, 
to the highest values represented by macroalgae, then, providing a 
comparison for the largest dynamic range of the index. Only for satellite 
intercomparison purposes, SPOT and S2 has been resampled to 30 m 
pixel size to be compatible with Landsat spatial resolution. The final 36- 
year long merged time-series was composed by 29 satellite images 
(SPOT, S2 and Landsat) acquired from 1985 to 2020 (Table B1), with a 
maximum gap of 3 years between each image. 

2.3. Seagrass percent cover and density metrics 

A large diversity of seagrass indicators has been developed to eval
uate the ecological status of TWB and CWB in all European countries 
(Marbà et al., 2013). As suggested by Papathanasopoulou et al. (2019), 
remote sensing has the potential to harmonize the diverse national 
methods because several seagrass metrics, including bed extent and 
density, can be consistently computed from satellite-derived maps of 
seagrass percent cover. The estimation of the meadow total surface is 
generally computed as the extent of all areas with SPC ≥ 20%. This 
threshold has been empirically selected to distinguish seagrass from bare 
sediment (Dolch et al., 2017; Valle et al., 2015) and/or biofilms of 
benthic microalgae (Barillé et al., 2010). The same threshold is also 
applied to airborne images to reduce measurement uncertainties (Reise 
and Kohlus, 2008). As the detection accuracy improves with seagrass 
density, two additional metrics corresponding to the areas of dense and 
very dense seagrass cover (respectively corresponding to SPC ≥ 50%, 

Table 1 
Summary of SPOT/S2 and Landsat low-tide data available during the seasonal 
maximum development of Z. noltei.   

SPOT/S2 images Landsat images 

Time period 1988–2020 1985–2020 
Number of images 20 25 
Original pixel size (m) 10 or 20 30 
Atmospheric correction SMAC Landsat 5–7: LEDAPS  
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and SPC ≥ 80%) were recently proposed to improve the robustness of 
satellite-derived interannual analysis (Calleja et al., 2017; Zoffoli et al., 
2020). In summary, the following seagrass metrics were computed from 
the merged time-series: total extent (SPC ≥ 20%), and area of sparse 
(20% ≤ SPC < 50%), dense (50% ≤ SPC < 80%) and very dense cover 
(80% ≤ SPC). Surfaces of the different SPC categories were estimated 
based on a map reprojection to the RGF 93 / Lambert-93 (EPSG: 2154) 
coordinate reference system. In addition, the meadow-averaged seagrass 
density was estimated from all pixels with SPC ≥ 20%. 

The rate of change (μ) was estimated for the seagrass surface and for 
the meadow-averaged density (Waycott et al., 2009): 

μ = 100∙
(

ln(A2) − ln(A1)

t2 − t1

)

(3)  

where A2 and A1 correspond to the seagrass surface (or density) values at 
times t2 and t1 respectively. 

2.4. Seagrass EQR and ecological status under the WFD 

The intertidal seagrass Ecological Quality Ratio (EQR) was computed 
from 1985 to 2020 following methods currently applied within the WFD. 
The computation of the EQR differs within Member States. Here, we 
applied to the satellite dataset the method used in France (EQRFR, Auby 
et al., 2018), in Portugal (EQRPT, Neto et al., 2013), and in the United 
Kingdom (EQRUK, UKTAG, 2014). Independently of the method, the 
EQR always integrates three structural metrics: seagrass total surface 
(E), density (D, usually indexed by SPC; Dolch et al., 2013; Foden, 2007; 
UKTAG, 2014), and taxonomy (T). The metrics E and D were estimated 
from satellite data. For the metric T, we considered the maximum 
invariant value during the 36-year period due to the permanent presence 
of Z. noltei and Z. marina reported in the site (Gruet, 1976; Bargain, 
2012). To estimate each metric, the WFD also considers a reference that 
theoretically corresponds to the maximal potential of each metric during 
undisturbed pristine conditions or during minimal disturbance. In 
practice, the reference is considered as the year with the largest exten
sion or densest meadow (Foden and Brazier, 2007). We considered 2002 
and 2020 as years of reference for the metrics E and D, respectively, as 
they presented the highest values. Finally, the seagrass ecological status 
was computed from the EQR (Table 2). 

2.4.1. France’s method 
For each individual year, the relative loss in seagrass density was 

computed with respect to the reference (and similarly for E) using: 

ΔD(%) = 100∙
|Dref − D|

Dref
(4)  

where the suffix “ref” corresponds to the metric for the year of reference. 
The relative deviations of seagrass density and extent were then used 

to compute the density (EQRD) and extent (EQRE) ecological quality ratios 
using scaling factors (Table 3) (Auby et al., 2018). In the case of the EQRT, 
the French method considers a value of 1 if no changes were observed in 
the taxonomic composition of the seagrass meadow. Finally, the EQRFR 
was estimated as the average of the D, E and T ecological quality ratios: 

EQRFR =
(EQRD + EQRE + EQRT)

3
(5)  

2.4.2. UK’s method 
As in France, the UK method (UKTAG, 2014) is based on the relative 

deviation from the reference for the density and extent metrics (Eq. (4)). 
However, it considers different intervals of percent of loss and another 
additional and more sophisticated method to rescale Δ into 0 – 1 values 
(UKTAG, 2014). In the case of EQRT, UK’s method attributes a value of 
0.9 if no changes were detected. The final EQRUK was also computed as 
the average of EQRD, EQRE and EQDT. 

2.4.3. Portugal’s method 
The Portuguese method (Neto et al., 2013) differs from the two other 

ones. For each metric, the EQR is computed as the ratio of the value of 
the considered year to the reference. The final EQR was computed using 
different weights for the metrics D, E and T: 

EQRPT =

(
D

Dref

)

∙0.5+
(

E
Eref

)

∙0.3+
(

T
Tref

)

∙0.2 (6)  

2.5. Statistical analysis 

2.5.1. Matchups, datasets comparison and trend analysis 
The performance of the SMAC atmospheric correction was analyzed 

using field reflectance measurements collected in 2009, 2018, and 2019 
over different intertidal targets in Bourgneuf Bay. Match-ups were per
formed for individual bands along the visible and NIR regions, and for NDVI, 
and evaluated in terms of root mean square difference (RSMD, Eq. (7)), 
unbiased absolute percent difference (UAPD, Eq. (8)) and by fitting to a 
linear model. 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
xmodelled,i − xinsitu,i

)2

N − 1

√
√
√
√ (7)  

UAPD = 2∙
⃒
⃒xmodelled,i − xinsitu,i

⃒
⃒

(
xmodelled,i + xinsitu,i

)∙100 (8)  

where xmodelled,i and xinsitu,i corresponded to modeled or observed data 
respectively, and N corresponded to the sample size. 

Satellite intercomparison was performed on NDVI values extracted over 
four different target types: sandy beach, intertidal sediment, seagrass, and 
macroalgae. SPOT and S2 samples were compared with Landsat and a 
linear model was adjusted and compared its slope with the slope of the y =

x relationship through a covariance analysis (ANCOVA). Differences be
tween the two datasets were computed through UAPD and RMSD. 

The stability of the NDVI time-series was evaluated over the most 
stable targets, namely macroalgae and sediment, using the coefficient of 
variation (CV; Eq. (9)). 

CV(%) =
σ
x
∙100 (9)  

where x and σ are the mean and standard deviation respectively. 
The long-term trends were analyzed by linear regression. Any change 

from a slope equal to zero was tested with ANCOVA. The trends were 

Table 2 
Ecological Quality Ratios (EQR) intervals used to define the ecological status 
based on seagrass indicator, according to each Member State (Neto et al., 2018).  

EQRFR EQRUK EQRPT Ecological status 

1 ≥ EQR > 0.8 1 ≥ EQR > 0.8 1 ≥ EQR > 0.8 High 
0.8 ≥ EQR > 0.645 0.8 ≥ EQR > 0.607 0.8 ≥ EQR > 0.60 Good 
0.645 ≥ EQR > 0.4 0.607 ≥ EQR > 0.4 0.60 ≥ EQR > 0.4 Moderated 
0.4 ≥ EQR > 0.2 0.4 ≥ EQR > 0.2 0.4 ≥ EQR > 0.2 Poor 
0.2 ≥ EQR ≥ 0 0.2 ≥ EQR ≥ 0 0.2 ≥ EQR ≥ 0 Bad  

Table 3 
Scaling factors used to compute the EQRE and EQRD 
from the relative deviation to the reference (Auby et al., 
2018).  

ΔD or ΔE (%) EQRDorEQRE  

0–10 1–0.80 
11–17 0.79–0.66 
18–30 0.65–0.50 
31–50 0.49–0.30 
51–100 0.295–0  
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separately computed from the SPOT/S2 and merged datasets, and 
compared through ANCOVA analyses. All statistical analyses were per
formed using the MATLAB software. 

The differences between EQR estimated from the three methods 
(French, British and Portuguese) were compared with a non-parametric 
repeated measures Friedman test and a posteriori pairwise Wilcoxon rank 
test. Ecological status categories (high, good, moderated, poor, bad) were 
reclassified to 5, 4, 3, 2, 1 and compared with the same statistical tests. 

2.5.2. Analysis of seagrass spatial structure 
The seagrass ecological status was computed using spatially-averaged 

metrics of the whole meadow. While such proxies are useful for time- 
series analysis, they do not allow study of the changes in the meadow’s 
spatial distribution. More evolved spatial statistics such as landscape 
metrics have proved useful to provide a spatialized picture of the tem
poral changes in benthic ecosystems (Godet et al., 2011; Lyons et al., 
2013; Santos et al., 2016). Here, as a first attempt to characterize the 
landscape dynamics of the meadow, we performed a frequency analysis 
of the dense seagrass patches. Using the SPOT and S2 time-series we 
computed a frequency map where each pixel corresponds to the number 
of occurrences of SPC ≥ 50% from 1988 to 2020. Due to its coarser spatial 
resolution (30 m), Landsat data were not used for this spatial analysis. 

3. Results 

3.1. In situ validation and time-series consistency 

The satellite-derived surface reflectance was compared with in situ 
measurements to assess the accuracy of satellite observations. The 
SPOT/S2 and in situ reflectance measurements were correlated in the 
visible and NIR regions, with a slight underestimation in the visible 
bands and an overestimation in the NIR bands (R2 = 0.94, p-value <
0.05, RMSD = 0.008, and mean UAPD of 17.2%; Fig. 2a). These dif
ferences did not impact the NDVI, for which the comparison between in 
situ and satellite measurements was very close to the 1:1 line (R2 = 0.88, 
p-value < 0.05, RMSD = 0.088 and mean UAPD of 16.1%; Fig. 2b). 

The comparison of SPOT/S2 and Landsat NDVI demonstrated the 
consistency of the merged satellite datasets over seagrass beds as well as 
over other common types of intertidal habitats (R2 = 0.94, p-value < 0.05, 
RMSD = 0.062 and mean UAPD of 14.6%; Fig. 3). A linear relationship was 
obtained between SPOT/S2 and Landsat, with a slope not significantly 
different from 1 (p-value > 0.05) and a small intercept (NDVISPOT/S2 =

1.036∙NDVILandsat + 0.029). The bias due to the non-negligible intercept 
was corrected by adding an offset of 0.029 to NDVILandsat. 

The stability of the satellite time-series was assessed over areas covered 
by dense and permanent macroalgae, or corresponding to bare sediment. 
The NDVI was stable over macroalgae (CV was 4.8% for SPOT/S2 and 6.5% 
for Landsat) and sediment (CV of 12.3% and 8.1% for SPOT/S2 and 
Landsat respectively). Due to the temporal stability of the NDVI time-series 
over these two independent references (non-significant linear fit, with p- 
value > 0.05; comparison of datasets through ANCOVA analyses with p- 
value > 0.05), we assumed that our analysis of temporal changes in sea
grass was neither biased by instrumental nor processing issues. 

Pairwise comparisons of the temporal trend in seagrass extent esti
mated from the SPOT/S2 and from the SPOT/S2 + Landsat merged-time 
series did not show any significant differences (ANCOVA analyses with 
p-values > 0.05). Overall, these results demonstrated the temporal 
consistency of the various satellite datasets. Using Landsat to fill gaps in 
the SPOT/S2 time-series did not bias temporal trends. 

3.2. Changes in seagrass extent and density 

The merged time-series covered 36-years of seagrass variation in 
Bourgneuf Bay. A satellite image was almost available every year from 
1985 to 2020, and the longest gap in the series was 3 years (from 1998 to 
2001). Since S2 launch in 2015, the series was uninterrupted. The 
changes in cover were characterized by complex spatial patterns and a 

Fig. 2. In situ validation of the SMAC atmospheric correction for SPOT (2009) and S2 (2018 and 2019) for (a) reflectance (Rsatellite) in the visible and NIR regions, and 
(b) NDVI. Dotted lines correspond to 1:1 slope while black lines correspond to the linear regression. 

Fig. 3. Comparison of the SPOT/S2 and Landsat NDVI. The comparison was 
performed over four common types of intertidal targets: beach (diamonds), 
sediment (circles), seagrass (triangles) and macroalgae (squares). Dotted line 
corresponds to 1:1 slope while black line corresponds to the linear regression. 
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Fig. 4. Time-series of intertidal Z. noltei-dominated seagrass beds Bourgneuf Bay derived from Landsat, SPOT and S2 observations from 1985 to 2020. The maps 
show the seagrass percent cover (SPC). Pixels with SPC < 20% were masked. 
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very high interannual variability (Fig. 4). Overall, the seagrass extent 
increased since 1985 (significant linear fit with p-values < 0.05, and 
positive slope statistically different from zero,y = 8.62∙x − 16844, R2 =

0.37). The satellite observation made it possible to assess the temporal 
variability over different classes of seagrass cover (Fig. 5). Interestingly, 
the temporal dynamics varied with the level of cover: the extent of the 
whole meadow (corresponding to SPC ≥ 20%) and of the dense meadow 
(SPC ≥ 50%) increased, but the area of sparse cover (20% ≤ SPC ≤ 50%) 
did not present any significant trend. The long-term increase in seagrass 
extent can therefore be mostly attributed to the expansion of the densest 
seagrass patches. From 1985 to 2020, the mean rate of change was 2.4 
and 9.3% yr− 1 for the whole and dense meadow, respectively. 

The changes were neither spatially nor temporally homogeneous, 
and the seagrass showed fluctuating patchy patterns over the years 
(Figs. 4 and 5). The 1980s and early 1990s corresponded to the lowest 
extension and a dominance of sparse cover. Over this period, the extent 
of the whole and dense meadow was always lower than 400 and 100 ha 
respectively. Since the mid-1990s, an increase in both seagrass extent 
and density has been occurring, and the extent of the whole and dense 
meadow exceeded a few times 700 and 250 ha, respectively. While an 
overall expansion has been observed over the last 25 years, several 
events of decline occurred in 2003, 2008/2010 and 2015. The losses 

were both very rapid and severe, and as much as 50% of the seagrass 
extension could be lost in only one year (Fig. 5). The losses were 
generally followed by periods of recovery. The pace of recuperation was 
however slower than the rate of loss, and the meadow generally 
recovered in about 3–6 years (in 1995–1998, 2004–2006, 2011–2013, 
and 2015–2020). The maximum extent of the whole meadow occurred 
in 2002 (769 ha), whereas the maximum extent of the dense meadow 
was in 2020 (327 ha). During the last four years (2017–2020), an un
precedented situation was observed during which the meadow dis
played a dominance of the densest classes, i.e., >50% of the seagrass 
extent corresponded to SPC ≥ 50% (Fig. 5). 

The temporal changes in the meadow-averaged density (in terms of 
seagrass percent cover) were similar to that of the seagrass extent (Fig. 6). 
An increasing trend was observed from 1985 to 2020 (significant linear fit 
with p-value < 0.05, and positive slope statistically different from zero; 
y = 0.51∙x − 978.2, R2 = 0.53), with an overall rate of change of 1.3% 
yr− 1. The mean density was lower than 31% during the beginning of the 
series in the 1980s, and higher than 52% during the three last years 
(2018–2020). The mean density was correlated to the extent of the dense 
seagrass meadow (linear fit, R2 =0.85, p-value < 0.05), and the periods of 
decline and recovery were synchronous for the extent and density metrics. 

3.3. Analysis of spatial changes 

Using a frequency analysis, we identified the most resilient seagrass 
clusters, corresponding to the areas where a dense cover (SPC ≥ 50%) 
was observed during at least 50% of the years from 1988 to 2020 
(Fig. 7). The main kernels were identified in the northwestern and 
central parts of the meadow, representing about 40% of the seagrass 
total extent. The northwestern patch was quite small and fragmented, 
whereas the central kernels were larger and more continuous. No kernel 
areas were identified in the southeastern part of the meadow. In 
Bourgneuf Bay, the seagrass meadow occurs between the + 2 and + 4 
isobaths. The lower boundary of the more frequently dense areas cor
responded to the contour of the + 2.75 m bathymetric line. 

3.4. Seagrass ecological status 

The seagrass ecological status varied from moderate to high all over 
the 1985–2020 time-series. An increasing trend was observed, with 
years of decline alternating with periods of recovery, as previously 
described for the seagrass extent and mean density (Fig. 8). The meadow 

Fig. 5. Satellite-derived time-series of seagrass extent in Bourgneuf Bay from 1985 to 2020, for three classes of seagrass percent cover (SPC): 20% ≤ SPC < 50%, 50% 
≤ SPC < 80% and SPC ≥ 80%. The seagrass extent was computed during the late summer seasonal maximum. The * mark indicates the cases when no satellite image 
was available during the optimal temporal window and for which the seagrass extent would be subjected to a seasonal bias (Appendix A). 

Fig. 6. Satellite-derived time series of the meadow-averaged seagrass density in 
Bourgneuf Bay from 1985 to 2020. The mean percent cover was computed from 
all pixels with SPC ≥ 20%. The vertical error bars show confidence interval at 
5% (x ± 1.96∙σ/

̅̅̅̅
N

√
). 
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was in a moderate status in the 1980s. Since the mid-1990s, the meadow 
was mostly in a good or high status, with the exception of few years. 
Even during periods of decline, the seagrass status did not fall below 
moderate. Satellite observations made it possible to quantitatively 
compare the metrics of three countries along 36 years. There was an 
overall agreement between the patterns displayed by the three methods. 
However, there were significant differences between the three methods, 
both for EQR (Friedman test, p-value < 0.05) and ecological status 
(Friedman test, p-value < 0.05). The status using the French method was 
the lowest, whereas the status using the Portuguese method was the 
highest. Status from the three methods matched in approximately 50% 
of the years. From 1985 to 2020, the FR and UK ecological status did not 
show significant differences (p-value = 0.6); but the UK and PT, as well 
as the FR and PT status showed significant differences (pairwise Wil
coxon, p-value < 0.05 in both cases). 

4. Discussion 

4.1. Recommendations for seagrass monitoring programs 

In France, the 12 intertidal meadows of Z. noltei monitored within the 
WFD (Auby et al., 2018) are all large enough to be observed with S2. 
However, a limited number of sites (only 2 over 12) has been investi
gated using satellite images (Barillé et al., 2010; Froidefond et al., 2012; 
Zoffoli et al., 2020). By documenting seagrass dynamics in one of the 
WFD French sites, the present study aims to demonstrate the advantages 
of using EO for monitoring seagrass status. The systematic use of EO in 
complement to field surveys would make it possible to more accurately 
document the status of intertidal seagrass meadows as a result of 
observation improvements in terms of number of sites, spatial coverage 
and resolution, temporal frequency length of time-series, and seagrass 
metric consistency. First, EO can provide an historical baseline of sea
grass indicators in the absence of in situ data (Knudby et al., 2010; León- 
Pérez et al., 2019), and provide updated information on seagrass status 
in many sites worldwide (Unsworth et al., 2019). In Europe, EO long- 
term and updated time-series could also help to select the year used as 
reference for the computation of the EQR within the WFD. Second, EO 
monitoring can be a cost-effective option to complement field data and 
overcome uncertainties related to the representativeness of sampling 
location or to the replication effort. Factors related to the spatial scale of 
sampling are indeed a major source of uncertainty in field assessments of 
ecological status, and it is recommended to prioritize large spatial 
replication over temporal replication (Mascaró et al., 2013). Seagrass 

density estimation based solely on field measurements depends on 
sampling strategies, and the number of replicates required to avoid 
undersampling of large seagrass meadows can be considerable and 
highly cost-effort demanding. Third, EO provides high-frequency ob
servations. The highly dynamic nature of seagrass ecosystems calls for 
frequent monitoring. While the requirements of the WFD can be ach
ieved with a single survey every ~ 6 years (Wilkes et al., 2017), EO 
makes it possible to acquire ~ yearly seagrass data thus significantly 
improving water quality monitoring within the WFD (Brito et al., 2020). 
In order to assess the influence of the temporal resolution, we reproc
essed the EO time-series with a 6-year interval. The decadal increasing 
trend was still detectable, but the interannual variability was missed, 
and several maxima and minima were lost. Moreover, satellite obser
vations can be incorporated into automatic processing chains to rapidly 
compute the seagrass status within hours after image acquisition, 
providing a broad spatial view of the ecosystem and allowing near real 
time seagrass monitoring. Fourth, EO makes it possible to quantitatively 
compare several metrics currently in use by EU Member States for sea
grass monitoring. Marbà et al. (2013) identified 49 seagrass indicators 
used in 42 monitoring programs. This diversity is due in differences in 
measurement approaches and sampling strategies, EQR definition, and 
criteria to select the year of reference (Mascaró et al., 2013; Neto et al., 
2018). Providing a consistent, Pan-European estimation of seagrass 
status require challenging intercalibration exercises (Foden, 2007; Neto 
et al., 2018). EO could help addressing such issue by providing a stan
dardized, robust and harmonized framework for seagrass measurements 
(Papathanasopoulou et al., 2019). Importantly, the uncertainties asso
ciated to satellite estimations of the seagrass percent cover showed a 
negligible impact on the ecological status (Appendix C). Our preliminary 
assessment of the WFD seagrass metrics used in 3 different EU countries 
showed that the EQR method used in Portugal provided a higher esti
mation of the seagrass ecological status. In comparison, the EQRs used in 
France and UK were more conservative, did not show statistical differ
ence of the ecological status, and are therefore comparable. 

Satellite-based estimations, however, have inherent limitations. Field 
measurements are essential to validate satellite data, and to monitor sea
grass colonization in new places, especially in areas with scattered seagrass 
plants (SPC between 5 and 20%) where satellite observations are subjected 
to some uncertainties (Barillé et al., 2010). Low coverage areas are 
particularly important for seagrass restoring programs and for the 
modelling of seagrass expansion (Matheson et al., 2017). Furthermore, 
several seagrass parameters cannot be measured by remote-sensing, and 
require field sampling: e.g., species identification, genetic diversity, above- 

Fig. 7. Frequency of occurrence (in %) of dense seagrass cover (SPC ≥ 50%) derived from the SPOT/S2 dataset from 1988 to 2020.  
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Fig. 8. Satellite-derived time series of seagrass ecological quality ratio (EQR) and ecological status (sensu the WFD) in Bourgneuf Bay from 1985 to 2020, using the 
French (a), British (b) and Portuguese (c) methods. 
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and below-ground biomass, presence of seed banks and epiphytic micro
algae biomass. Finally, small seagrass meadows can remain undetected by 
remote-sensing due to limitation in spatial resolution. Commercial satel
lites with very high spatial resolution, as well as airborne or unmanned 
aerial vehicles (UAV) images still remain a viable option for small 
meadows where the pixel size offered by Landsat (30 m) or S2 (10 m) is too 
coarse, or for sites where the acquisition time is not adapted to the tidal 
constraints (Adolph et al., 2017; Duffy et al., 2018; Sousa et al., 2019; 
Zoffoli et al., 2020). Further research is also required for upscaling site- 
specific and/or species-specific radiometric methods to large-scale 
studies. While the SPC algorithm used in the present study to compute 
seagrass cover was calibrated in several macrotidal seagrass meadows 
dominated by Z. noltei along the European Atlantic coast and validated in 
Bourgneuf Bay (Zoffoli et al., 2020), the method needs to be validated in 
other sites prior to a broader application. Machine learning classification 
algorithms and Object-based Image Analysis (OBIA), have been tested to 
map intertidal seagrass. Martin (2020) showed that Random Forest pro
vided the best results and that classifications were not improved by 
including variables obtained from OBIA. Machine learning methods can be 
adapted to map intertidal vegetation exploiting the 10 bands of S2 (Oiry 
and Barillé, 2020), but are likely less efficient with the reduced number of 
spectral bands of SPOT and Landsat. Ideally, seagrass mapping should 
combine new technologies (e.g., UAV, satellites) with traditional in situ 
approaches (Unsworth et al., 2019). Despite some limitations, the advent 
of the S2 mission opens new perspectives, with high revisit time that in
creases the probabilities of having exploitable images and a mission life
time predicted to be at least 15 years from 2015 that will permit seagrass 
time-series to be initiated or continued in time, at no-cost, and in many 
places of the world (Drusch et al., 2012; Traganos and Reinartz, 2018b). 

4.2. Seagrass temporal variability in Bourgneuf Bay 

In a climate-changing world, documenting long-term changes in 
seagrass density and spatial extent is relevant for ecosystems and 
biodiversity studies (El-Hacen et al., 2020) and for carbon budget 
modelling (McKenzie et al., 2020). In Bourgneuf Bay, an increase in 
seagrass extent has been previously documented from 1991 to 2005 
(Barillé et al., 2010). The present study confirmed the recovery, 
expansion and overall good status of the seagrass meadow over the last 
36 years. While seagrass have been globally declining (Dunic et al., 
2021; Orth et al., 2006; Waycott et al., 2009; Xu et al., 2021) and 
experiencing catastrophic losses since the 19th century due to human 
impacts (Green et al., 2021), an increasing trend occurred in several 
European seagrass meadows in the 2000s (Calleja et al., 2017; de los 
Santos et al., 2019; Godet et al., 2008; Reise and Kohlus, 2008; Sousa 
et al., 2019). The net gain in seagrass area observed in Bourgneuf Bay 
since 1985 (2.7% yr− 1) is comparable with previously reported rates of 
change for Z. noltei in other European sites over the last two decades (de 
los Santos et al., 2019; Sousa et al., 2019). Several factors have been 
mentioned as responsible for this expansion. In the Wadden Sea, it was 
attributed to a higher sediment stability caused by a reduction in the 
number of storms since 1995 (Reise and Kohlus, 2008). De los Santos 
et al. (2019) suggested that the 2000s reversal trend in Z. noltei and 
Z. marina might be related to improvements in water quality and 
reduction of eutrophication rates, while a natural adjustment of the 
intertidal seagrass to past human impacts (namely large-scale dredging 
activities) was pointed out in Sousa et al. (2019). Román et al. (2020) 
also mentioned the reduction of shellfish harvesting among the regional 
factors responsible for a local seagrass increase. In this study, the highest 
seagrass density was observed in 2020, and coincides with a stop of 
shellfish harvesting due to a national lockdown in response to Covid-19 
pandemic. However, the causality remains to be established. The iden
tification of anthropogenic and environmental factors driving seagrass 
temporal variability in Bourgneuf Bay is out of scope of the present 
study, and will be investigated in future works. 

Beside an overall increase, the seagrass time-series in Bourgneuf Bay 

exhibited a high-degree of interannual variability. Temporal fluctuations 
or “wax and wane” dynamics in extension and density metrics are frequent 
in seagrass ecosystems (e.g., Calleja et al., 2017; Philippart and Dijkema, 
1995; Reise and Kohlus, 2008; Valle et al., 2013; van Katwijk et al., 2006). 
The phases of decline and recovery displayed different dynamics. While the 
declines were generally abrupt, the recovering process was slower and 
progressive, suggesting a situation of hysteresis (Dolch et al., 2013; Neto 
et al., 2013), even for a fast-recovering Zostera species (Duarte et al. 2006; 
Godet et al., 2008; Matheson et al., 2017). Similarly, a study of decadal 
changes in Santander Bay (Spanish Atlantic coast) documented an overall 
increase in seagrass extent from 1984 to 2015, with episodic declines in 
2003 and 2014–2015 (Calleja et al., 2017). The timing of the seagrass losses 
observed in northern Spain matched several declining events in Bourgneuf 
Bay, suggesting the possible influence of large-scale environmental factors 
on intertidal seagrass meadows. In particular, an extreme summer heat 
wave in 2003 was pointed out as the cause of a massive death event in 
several seagrass beds in Europe, including sites dominated by Z. noltei 
(Reusch et al., 2005; Ehlers et al., 2008; Zipperle et al., 2009). 

In addition to long-term view, satellite images provided information 
of the seagrass bed spatial structure, such as the identification of large 
persistent spatial kernels. The resilience of such areas has been explained 
by a combination of sexual and clonal reproduction in other intertidal 
beds (Dolch et al., 2013). Their broad size could explain the recovering 
success of the seagrass meadow in Bourgneuf Bay. The rate of survival is 
generally higher in larger than smaller patches due to wave attenuation 
and resistance to sediment deposition (Inglis, 2000). Perennial seagrass 
kernels likely correspond to the location of flat and stable areas, coin
ciding with spatial patterns previously documented in other intertidal 
meadows (Dolch et al., 2013; Reise and Kohlus, 2008; Valle et al., 2013). 
On the contrary, intermittent seagrass patches likely correspond to high 
energy areas where seagrass recruitment capacity is impacted by wave 
erosion, or to areas impacted by sediment deposition (Fonseca and Ken
worthy, 1987). Spatial analysis of seascape dynamics such as habitat 
losses and fragmentation could be useful to improve the management of 
seagrass meadows (Santos et al., 2016) by establishing priorities for site 
protection, assisting in restoration projects, identifying the best spots to 
perform reintroduction activities (Matheson et al., 2017), designing 
conservation policies and planning territorial organization (e.g., per
missions for oyster-farming activities around the meadow). 

4.3. Consistency of satellite time-series 

In the present study, the estimation of seagrass percent cover (SPC) 
and of subsequent metrics and indicators was based on satellite NDVI. It 
was therefore primordial to verify that the NDVI time-series was 
temporally stable and unbiased. While the combination of several sat
ellite missions allowed us to increase the number of available observa
tions, notably before the S2 era, cautious selection and processing steps 
were required to insure the temporal consistency of the multi-mission 
time-series (Maritorena and Siegel, 2005). Image selection was essen
tial to avoid biases caused by seasonal and tidal variability (Zoffoli et al., 
2020). The similar characteristics of Landsat, SPOT and S2 in terms of 
acquisition time, spectral and spatial resolutions favored the creation of 
an inter-calibrated NDVI time-series (Barnes et al., 2014). The differ
ences in the position and width of the sensor’s spectral bands were 
corrected to be compatible with S2 spectral response (Zoffoli et al., 
2020). Despite the recalibration of the Landsat-derived NDVI, a 
remaining offset between NDVILandsat and NDVISPOT/S2 persisted. While 
the temporal lag was reduced to a minimum for the matchup exercise, 
variation in atmospheric composition, sun elevation, viewing angles and 
environmental factors such as soil humidity or microphytobenthos could 
explain the differences between the satellite measurements. The sys
tematic underestimation of Landsat compared to SPOT and S2, however, 
suggested that difference in atmospheric correction was the main source 
of discrepancy and the reason why we applied an offset correction to 
NDVILandsat to achieve full consistency. The same atmospheric correction 
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(SMAC) was applied to SPOT and S2, and validated with an accuracy of 
approximately 16% in terms of NDVI. Though the LEDAPS atmospheric 
correction routinely performed for the Landsat dataset has been exten
sively validated over large continental areas, it might not be optimal for 
coastal zones (Nazeer et al., 2014). While cautious in situ validation, 
intercalibration and offset correction allowed us to consistently create a 
merged Landsat, SPOT and S2 time-series to analyze seagrass long-term 
changes in our study site, future work should address the challenge of re- 
processing historical datasets to construct global continuous satellite 
records (Barnes et al., 2014; Fisher and Mustard, 2007). 

5. Conclusions 

In Bourgneuf Bay, the intertidal Z. noltei-dominated seagrass 
meadow has been in good or high status since the mid-1990s. Both the 
seagrass extent and meadow-averaged density showed an increasing 
trend from 1985 to 2020, superimposed over significant interannual 
fluctuations. The analysis of the meadow spatial distribution revealed 
different levels of fragmentation, with the existence of quasi-perennial 
seagrass kernels potentially coinciding with bathymetric optimum. By 
documenting the spatiotemporal dynamics of an intertidal seagrass in 
the frame of the WFD, this study aimed at demonstrating the efficiency 
of EO for seagrass monitoring in terms of temporal coverage, spatial 
resolution, and metric consistency. 
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Appendix A 

Characterization of seasonal variability 

To perform consistent interannual analysis, only images acquired during the seasonal maximum of the seagrass development were used. A 
composite seasonal cycle was obtained using all Landsat5, 7 and 8 images acquired from 1984–2019, during low-tide and cloud-free conditions over 
Bourgneuf Bay. A dataset of 238 images was downloaded from the ESPA/USGS service as NDVI product (NDVILandsat). For each year, summer images 
were used to manually select the position of the densest seagrass pixels (8–20 pixels). The same pixels were extracted for the rest of the corresponding 
year. All data from 1984–2019 were combined in a single composite year from which weekly NDVI averages were calculated. A Gaussian function was 
fitted (f(t) = a∙e(− ((t− b)/c)2

), R2 = 0.90, p-value < 0.05), and used to determine the timing and temporal window of the seasonal maximum. The period 
of seagrass maximum, which was defined as the dates when NDVI remained within 5% of the maximum, was from 9/Aug–2/Oct ± 3.5 days (Fig. A1). 
We expanded the time boundaries for image acquisition to 26/Jul–15/Oct, allowing the inclusion of 5 additional years of data. However, we identified 
those 5 particular years as they would be subject to a temporal bias. 

Fig. A1. Z. noltei seasonal cycle estimated from weekly NDVI averages from 1984–2019, in Bourgneuf Bay.  
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Appendix B 

Long merged time-series: analysis of consistency 

The SPOT/S2 and Landsat datasets (Table B1) were compared over four common types of intertidal landscapes: seagrass, bare sediment, sandy 
beach and macroalgae. Between 10- and 20-pixel samples were randomly extracted over each type of target. The extracted seagrass samples corre
sponded to the highest NDVI over the meadow. The sediment pixels were extracted over intertidal channels or close to the shoreline, where seagrass do 
not growth. The sand pixels were extracted along the beach in the southern side of the Noirmoutier Island. The macroalgae pixels were extracted over a 
permanently dense cover of macroalgae occupying an intertidal rocky shore in Bourgneuf Bay, north to the seagrass meadow. 

Appendix C 

Assessing the influence of satellite measurement uncertainties on the estimation of indicator and status 

In a previous work, the accuracy of the satellite measurement of seagrass percent cover was estimated to 14% using an extensive in situ validation 
dataset (Zoffoli et al., 2020). A random noise of 14% was therefore added to the E and D metrics to assess the influence of satellite measurement 
uncertainties on seagrass status (Fig. C1). Overall, the seagrass ecological status was robust to the addition of random uncertainties with only 3 or 4 
years of difference in the ecological status. 

Table B1 
Details of the 29-image merged time-series (from SPOT, S2 and Landsat satellites) acquired over Bourgneuf Bay and used to evaluate interannual variability and 
trends. * marks indicate the dates that exceeded the maximum period of seagrass growth.  

Year Satellite Day 

1985 Landsat5 13 Sep. 
1986 Landsat5 2 Oct. 
1987 Landsat5 26 Jul.* 
1988 SPOT1 15 Oct.* 
1990 Landsat5 4 Sep. 
1991 SPOT2 28 Aug. 
1993 SPOT2 20 Aug. 
1995 Landsat5 11 Oct.* 
1996 SPOT2 16 Sep. 
1997 SPOT1 7 Sep. 
1998 SPOT1 21 Sep. 
2001 Landsat5 2 Sep. 
2002 SPOT5 24 Sep. 
2003 SPOT5 26 Sep. 
2004 Landsat7 17 Sep. 
2005 SPOT5 18 Sep. 
2006 Landsat5 23 Sep. 
2008 Landsat5 28 Sep. 
2009 SPOT5 8 Sep. 
2010 SPOT5 12 Sep. 
2011 SPOT5 2 Oct. 
2012 SPOT4 28 Sep. 
2013 SPOT5 5 Oct.* 
2015 S2A 30 Sep. 
2016 S2A 22 Aug. 
2017 S2A 6 Oct.* 
2018 S2A 14 Sep. 
2019 S2A 16 Sep. 
2020 S2B 5 Sep.  
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Fig. C1. Satellite-derived time series of seagrass ecological quality ratio (EQR) and ecological status (sensu the WFD) in Bourgneuf Bay from 1985–2020, using the 
French (a), British (b) and Portuguese (c) methods. White squares correspond to original data, while black dots refer to NDVI data with ± 14% of random 
uncertainties. 
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