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Abstract

Approximating solutions of non-linear parametrized physical problems by interpolation
presents a major challenge in terms of accuracy. In fact, pointwise interpolation of such
solutions is rarely efficient and generally leads to incorrect predictions. To overcome this
issue, instead of interpolating solutions directly by a straight forward approach, reduced
order models (ROMs) can be efficiently used. To this end, the ITSGM (Interpolation On
a Tangent Space of the Grassmann Manifold) is an efficient technique used to interpolate
parameterized POD (Proper Orthogonal Decomposition) bases. The temporal dynamics
is afterwards determined by the Galerkin projection of the predicted basis onto the high
fidelity model. However, such interpolated ROMs based on ITSGM/Galerkin are intrusive,
given the fact that their construction requires access to the equations of the underlying
high fidelity model. In the present paper a non-intrusive approach (Galerkin free) for the
construction of reduced order models is proposed. This method, referred to as Bi-CITSGM
(Bi-Calibrated ITSGM) consists of two major steps. First, the untrained spatial and tem-
poral bases are predicted by the ITSGM method and the POD eigenvalues by spline cubic.
Then, two orthogonal matrices, determined as analytical solutions of two optimization prob-
lems, are introduced in order to calibrate the interpolated bases with their corresponding
eigenvalues. Results on the flow problem past a circular cylinder where the parameter of
interpolation is the Reynolds number, show that for new untrained Reynolds number val-
ues, the developed approach produces sufficiently accurate solutions in a real-computational
time.
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1. Introduction

Parametrized physical problems arise in many practical engineering design and analysis
problems such as aerospace engineering [1, 2], biomedical engineering [3], flow control [4]
etc. The numerical computational cost of these applications can be exorbitant. Particularly,
for applications requiring multiple resolutions of the high fidelity model over the parame-
ter space, using a fine spatial mesh and small time-steps. For complex non-linear physical
phenomena, even with modern computers, these numerical computations still remain time-
consuming. Besides numerical computations, experiments can be carried out. Nevertheless,
these last remain expensive as well. In order to computationally tackle these challenging
cost issues, reduced order models, allowing to represent the solutions in a much lower di-
mensional subspace that contain the mean features of the original system, can be used.
Such techniques lead to significant computational cost savings, especially in applications
requiring multiple evaluations of the solution over the parameter space [5, 6, 7].

The Proper Orthogonal decomposition (POD) method is the most used method for reduc-
ing problems dimensionality. Starting from a set of available snapshot solutions at different
instants, the POD method aims at constructing a subspace (represented by a set of basis
functions) where each snapshot solution can be accurately represented. The most striking
property of POD is its optimality [8]. This means that the POD basis is the lowest rank pos-
sible basis that captures the quasi-totality of the information initially contained in the set of
snapshots. It is simply formed by considering the modes carrying high energy contributions.
Once the truncated POD basis is available, the temporal dynamics can be determined by
solving a low order system obtained from the Galerkin projection of this basis onto the
high fidelity model[9]. Nevertheless, a POD basis is optimal only for the solution snapshots
considered for its construction. Consequently, using this basis to predict the ROM for a
different parameter value often results in solutions lacking accuracy.

To overcome this issue, it is possible to use the ITSGM (Interpolation on Tangent spaces
of the Grassmann Manifold) method based on the tools of differential geometry. This pow-
erful method was firstly introduced by Amsallem et al. [10] in the context of aeroelasticity
and applied successfully in sub-optimal control of transfer phenomena [11, 12]. Consider an
ensemble of distinct trained parameters for which a set of POD spatial bases of the same di-
mension is available. These bases can be seen as representatives of points on the Grassmann
manifold which can be connected by geodesic paths (second order ordinary differential equa-
tions). By choosing a reference point3, one can notice that the geodesic paths connecting
this last to the other sampling points can be distinguished only by their initial velocities.
Given that these velocities belong to the tangent space at the reference point which is a
flat space, they can be easily interpolated for a new untrained parameter value in order to
predict the corresponding untrained spatial basis and then construct the interpolated ROM
via the Galerkin projection. Eventhough its effectiveness, this approach and others based on
Galerkin projection suffer from intrusiveness, thus the necessity to access to the underlying
mathematical problem.

This provided us a key motivation for the development of an alternative non intrusive re-
duced order model technique. In the context of non intrusive model reduction, Xiao et al.
[13, 14] suggest an approach using a two-level RBF interpolation to study the two dimen-
sional flow around a cylinder when the Reynolds number varies. Another approach proposed
by Shinde et al. [15] suggests to simply approximate the spatial and temporal bases func-
tions by linearly interpolating their modes. This approach was also applied by Joyner [16]
for eddy current damage detection.

In the present article, we propose a novel non-intrusive model reduction method addressed to
approximate time-dependent parametrized non-linear physical phenomena. Being inspired

3The reference point is the subspace represented by an arbitrary chosen POD basis from sampling.
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from ITSGM, the new model reduction method is called throughout the paper Bi-CITSGM
(Bi-Calibrated Interpolation on Tangent spaces of the Grassmann Manifold). In contrast to
ITSGM/Galerkin, the Bi-CITSGM does not require access to the underlying mathematical
model. It is based on data and can be applied to generalized parametrized non-linear phys-
ical phenomena. The solutions data can either be provided by numerical computations or
experimental observations. Let us consider an ensemble of solution snapshots obtained from
experiment or from solving the high fidelity model at a finite set of trained points in the
parameter space. The Bi-CITSGM is carried out in two phases, an offline phase and an on-
line phase. The offline phase is the one of data processing where each ensemble of snapshots
is represented in a low dimensional subspace through the POD method. The online phase
corresponds to the process of interpolation and calibration. It consists first in interpolating
the POD eigenvalues by using spline cubic; then to predict the spatial and temporal bases
by using the ITSGM method; and finally, to introduce two small sized matrices serving to
calibrate the spatial and temporal modes with the interpolated eigenvalues. These unde-
termined calibration matrices obey the orthonormality condition and are determined as the
solution of two separate optimization problems.

The remainder of the paper is organized as follows: First, a brief overview of Geodesic
paths parametrization on the Grassmann manifold is given in section 2. In section 3, we
outline the bases interpolation problem and recall the ITSGM method. Then , the new
proposed non intrusive approach Bi-CITSGM is formalized in section 4 and application to
the parametrized flow past a circular cylinder is given in Section 5. Finally, conclusions are
drawn in Section 6.

2. Review of the Grassmann manifold

Recently, the Grassmann manifold has attracted great interest in various applications,
such as subspace tracking [17], sparse coding [18, 19], clustering [20], model reduction [10,
12], etc. The Grassmann manifold G(q,N) is defined as the set of all q-dimensional subspaces
in RN , where 0 ≤ q ≤ N . It is a matrix manifold that is locally similar to an Euclidean
space around each of its points. A concrete representation of the Grassmann manifold is
the Stiefel Manifold representation [21] given as

G(q,N) ∼= ST (q,N)/O(q)

where O(q) is the group of all q × q orthogonal matrices and ST (q,N) = {ϕ ∈ RN×q :
ϕTϕ = Iq} the set of all bases of dimension q, called Stiefel manifold [21, 22]. A point
[ϕ ] ∈ G(q,N) is defined by

[ϕ ] = {ϕQ | ϕTϕ = Iq, Q ∈ O(q)}

where [ϕ ] is realized as a representative of the equivalence class {ϕQ : for all Q ∈ O(q)}.
At each point [ϕ ] of the manifold G(q,N), a tangent space [21, 22] of the same dimension
[21] can be defined by the following abstract concrete set [23]

T
[ϕ ]
G(q,N) = {X ∈ RN×q | ϕTX = 0}.

The geodesic distance distG(ϕ,Ψ) between two points [ϕ ] and [Ψ] of the Grassmann man-
ifold is the minimum of paths lengths between them. By taking the SVD (Singular Value
Decomposition) of ϕT Ψ as UΣV T = ϕT Ψ such that Σ = diag(σi), the geodesic distance
between [ϕ ] and [Ψ] is defined as the summation of squared principal angles

distG(ϕ,Ψ) =

√∑
i

arccos2(σi) (1)

A path that minimizes this distance is called geodesic [24]. This path is associated with a
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second order differential equation [22, 21, 25] uniquely defined by two initial conditions :
the initial position and initial velocity [24]. A geodesic path can then be represented by a
twice differentiable function Γ : [0, 1] −→ G(q,N), where Γ(0) and Γ(1) are respectively its
initial and final points. The parametric representation of the geodesic path in G(q,N) with
initial conditions Γ(0) = [ϕ ] and Γ̇(0) = X is given by [22, 21]

Γ(t) = span {ϕV cos(tΣ) + U sin(tΣ)} 0 ≤ t ≤ 1 (2)

where UΣV T is the thin SVD of the initial velocity X . For every point [ϕ ] in G(q,N)
there exists a unique geodesic starting from [ϕ ] in every direction X ∈ ST (q,N), giving us
the exponential map Exp

[ϕ ]
: T

[ϕ ]
G(q,N) −→ G(q,N) explicitly calculated as Exp

[ϕ ]
(X) =

Γ(1) = [Ψ]. The exponential of X is given by

[Ψ] = span{ϕV cos(Σ) + U sin(Σ)} (3)

Let us denote Log
[ϕ ]

the inverse map of Exp
[ϕ ]

, which is defined only in a certain neigh-

bourhood of [ϕ ]. If Exp
[ϕ ]

(X) = [Ψ], then X is the vector

X = Log
[ϕ ]

([Ψ]) = U arctan(Σ)V T (4)

with UΣV T is the thin SVD of (I − ϕϕT )Ψ(ϕT Ψ)−1 and Log
[ϕ ]

([ϕ ]) = 0

3. Subspaces interpolation using ITSGM method

Let {θi ∈ Rp, i = 1, · · · , Np} be a set of parameters and [ϕ
θ1

], [ϕ
θ2

], . . . , [ϕ
θNp

] the corre-

sponding set of Np parametrized subspaces 4 belonging to G(q,N) . Consider the problem
of interpolation in which we seek an approximation of [ϕ

θ̃
] for an untrained parameter

θ̃ /∈ {θ1, . . . , θNp}. Provided that the Grassmann manifold is not a flat space, straight for-
ward interpolation of its points does not necessarily result in a point that is included in it.
Therefore, it is necessary to reformulate the interpolation process to be suitable for points
in the Grassmann manifold. To provide a well defined interpolation framework of points in
the Grassamnn manifold, Amsallem et al. proposed the ITSGM (Interpolation on a Tangent
space of the Grassmann Manifold) [10]. It consists in the following steps

step 1 Choose the origin point of tangency, for example [ϕ
θi0

] where i0 ∈ {1, . . . , Np}.
step 2 For i ∈ {1, . . . , Np}, map the point [ϕ

θi
] ∈ G(q,N) to X

i
∈ T

[ϕ
i0

]
G(q,N) such

that Xi = Log
[ϕ
θi0

]
(ϕ

θi
) is the vector represented by

Xi = Ui arctan(Σi)V
T
i

where UiΣiV
T
i = (I − ϕ

θi0
ϕ
θi0

T )ϕ
θi

(ϕ
θi0

Tϕ
θi

)−1, i = 1, . . . , Np, are thin SVD.

step 3 Interpolate the initial velocities X
1
,X

2
, . . . ,X

Np
for the untrained parameter θ̃

using a standard interpolation and obtain X
θ̃
.

step 4 Finally by the exponential mapping, map the interpolated velocity X
θ̃

back to
the Grassmann manifold. The matrix representation of the interpolated subspace
is given by

ϕ
θ̃

= ϕ
θi0
Ṽ cos(Σ̃) + Ũ sin(Σ̃)

where Ũ Σ̃Ṽ T is the thin SVD of the initial velocity vector X
θ̃
.

An illustration of the ITSGM is given in B.1. For more details the reader can refer to
Amsallem et al. [10] and Absil et al. [22].

4Here ϕθi
is refereed to as a possible representative basis of the subspace ϕθi

∈ G(q,N). Typically, this

basis can be a POD basis associated to the parameter θi.
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4. Bi-CITSGM method

4.1. Problem statement

Given a set of parameter values {θi ∈ Rp, i = 1, · · · , Np} for which we dispose of Np so-
lutions at Ns different time instants of a discretized time dependent non-linear parametrized
physical problem of size Nx. By assuming that these parametrized solutions are stored in
Nx × Ns matrices S

θi
, the aim is to approximate the solution snapshots matrix S

θ̃
for a

new untrained parameter value θ̃ /∈ {θ1, . . . , θNp} without going through costly numerical
or experimental procedures. A trivial approach to solve this problem is to use standard
interpolation approaches such as Lagrange, RBF (Radial Basis Function), IDW (Inverse
Distance weighted), etc. These methods are known to be efficient for linear or weakly
non-linear problems, while for non-linear phenomena, they are pointless and unuseful. To
overcome this limitation we introduce in the following a new interpolation approach based
on the ITSGM. This approach is referred to as Bi-CITSGM (Bi-Calibrated Interpolation on
Tangent spaces of the Grassmann manifold).

4.2. Description of the method

Let us assume that S
θi

is approximated in the low dimensional subspace [ϕ
θi

] calculated

by the POD method 5 as follows

S
θi
≈ ϕ

θi
Σ
θi

Λ
θi

T , i = 1, . . . , Np, (5)

where Σ
θi
∈ Rq×q is the matrix of singular values (square roots of POD eigenvalues) of S

θi
,

and ϕ
θi
∈ ST (q,Nx) and Λ

θi
∈ ST (q,Ns), i = 1, . . . , Np, are the corresponding spatial and

temporal bases.

For a new untrained parameter value θ̃ /∈ {θ1, . . . , θNp}, the first step of the Bi-CITSGM
method is to approximate the matrix of singular values Σ

θ̃
by spline cubic interpolation6.

Next, by using the ITSGM method, the sampling subspaces [ϕ
θi

] (resp. [Λ
θi

]) are inter-
polated and an approximated subspace [ϕ

θ̃
] (resp. [Λ

θ̃
]) is obtained. Since ϕ

θ̃
and Λ

θ̃
are

only two possible representatives of the subspaces [ϕ
θ̃
] and [Λ

θ̃
], the right classification of

modes according to the interpolated POD eigenvalues is not necessarily verified. Thus, the
approximated snapshots matrix S

θ̃
must be calibrated as follows

S
θ̃

= ϕ
θ̃
Q
x
Σ
θ̃
QT
t

Λ
θ̃

T

whereQ
x
, Q

t
∈ O(q)2 are introduced to recover the POD character of ϕ

θ̃
and Λ

θ̃
respectively.

These two matrices are of a big significance in the expression of S
θ̃
. In fact, their introduction

guarantees the adequate combination of column vectors of ϕ
θ̃

and Λ
θ̃

which realizes the
best fit with the interpolated singular values matrix Σ

θ̃
. The question of finding the best

calibration matrices Qx and Qt is a delicate one. In the following we propose a practical
approach where these matrices are obtained as the analytical solutions of two optimization
problems.

First of all, the modes orientation of the sampling spatial and temporal bases must be
adjusted with respect to a reference basis 7. The reference basis denoted ϕ

θk0
, is chosen as

the closest basis to ϕ
θ̃

in the sense of the Grassmannian distance. Thus, k0 is determined
by

k0 = argmin
i∈{1,...,Np}

distG(ϕ
θ̃
, ϕ

θi
)

5The POD basis can be chosen to be optimal with respect to any inner product, namely, L2 or H1 or
Euclidean inner product. For the sake of simplicity, the Euclidean 2-norm is used in the following.

6Other interpolation techniques can be used, typically Lagrange, RBF, IDW, etc
7In this manipulation, orientations of spatial and temporal modes are simultaneously adjusted. For

example, the jth modes associated to ϕθk
and Λθk

can be multiplied by −1, without causing any effect on

the snapshot matrices representation given by (5).

5



Denote by || · ||2 the Euclidean two-norm. Once ϕ
θk0

is known, the modes orientation

adjustment is performed by algorithm 1.

Algorithm 1: Bases modes orientation adjustment.

1 for k = 1, . . . , Np do
2 for j = 1, . . . , q and j 6= j0 do
3 If ||ϕθk0

j − ϕθk
j ||2 > ||ϕθk0

j + ϕθk
j ||2

4 multiply the jth spatial and temporal modes ϕθk
j and Λθk

j by −1.

5 end

6 end

The steps of determining Q
x

and Q
t

are the same. The methodology is then described
only for the finding of the spatial calibration matrix Q

x
, the same applies to the determi-

nation of Qt . The spatial calibration matrix Qx is sought as the solution of the constrained
minimization problem

min
Qx∈O(q)

Np∑
i=1

ωi||ϕ
θ̃
Qx − ϕθi ||

2
F (6)

where || · ||F is the Frobenius norm and ωi are the weights given for m > 1 by

ωi =
distG(ϕ

θ̃
, ϕ

θi
)−m

Np∑
k=1

distG(ϕ
θ̃
, ϕ

θk
)−m

(7)

The Lagrange function associated to the constrained minimization problem (6) writes

L(Q
x
, R) =

Np∑
i=1

ωi||ϕ
θ̃
Q
x
− ϕ

θi
||2F + Trace

[
R(QT

x
Q
x
− Iq)

]
where R is a symmetric matrix referred to as the ”Lagrange multiplier”. Considering the
fact that ω1 + · · ·+ ωNp = 1, the Lagrange function simplifies to

L(Q
x
, R) =

Np∑
i=1

ωi||ϕ
θ̃
Q
x
||2F − 2

Np∑
i=1

ωiTrace
(
ϕ
θi

Tϕ
θ̃
Q
x

)
+

Np∑
i=1

ωi||ϕθi ||
2
F + Trace

[
R(QT

x
Q
x
− Iq)

]
= Trace

[
(Iq +R)QT

x
Qx

]
− 2

Np∑
i=1

ωiTrace
(
ϕ
θi

Tϕ
θ̃
Qx

)
− Trace (R) + q

Using the following differentiation identities

d

dB
Trace(ABTB) = B(A+AT )

d

dB
Trace(AB) = AT

The differential of L with respect to Q
x

yields

∂QxL(Q
x
, R) = 2Q

x
(Iq +R)− 2ϕ

θ̃

T

Np∑
i=1

ωiϕθi (8)

When ∂QxL(Qx , R) vanishes, Qx is a stationary point characterized by

Qx (Iq +R) = ϕ
θ̃

T

Np∑
i=1

ωiϕθi (9)

6



By considering the SVD decomposition of the matrix

ϕ
θ̃

T

Np∑
i=1

ωiϕθi = ξΘηT (10)

It follows that
(Iq +R)

T
QT
x
Qx (Iq +R) = ηΘ2ηT

Given that Q
x

is orthonormal and that R is symmetric, we can write

Iq +R = ηΘηT

By plugging the expression of Iq +R into the equation (10), the analytical expression of the
spatial calibration matrix Q

x
follows

Q
x

= ξηT

In the same fashion, the temporal calibration matrix Q
t

is expressed by

Qt = ζρT

where ζ and ρ are the left and right singular eigenvectors of the matrix Λ
θ̃

T

Np∑
i=1

κiΛθi
and

κi =
distG(Λ

θ̃
,Λ

θi
)−l

Np∑
k=1

distG(Λ
θ̃
,Λ

θk
)−l

, l ≥ 1 (11)

Remark 1. If the matrix A = ϕ
θ̃

T

Np∑
i=1

ωiϕθi is singular, we can use SVD to approximate

its inverse called pseudo-inverse with the following matrix

A−1 ≈ A+ = ηΘ+ξT

where for a small threshold ε > 0, the matrix Θ+ is given by

Θ+ =

{
1/θi if θi > ε

0 otherwise

In this case, the spatial calibration matrix is approximated as follows

Q
x
≈ ξI+

Qx
ηT

where

I+
Qx

=

{
1 if θi > ε

0 otherwise

The same remark apply to approximate the temporal calibration matrix and we have

Q
t
≈ ζI+

Qt
γT

where

I+
Qt

=

{
1 if δi > ε

0 otherwise

7



The different steps of the Bi-CITSGM method are summarized in algorithm 2.

Algorithm 2: Bi-CITSGM.

Offline:
1 For each parameter value θi, i = 1, . . . , Np, approximate the snapshots matrix S

θi
by

the POD of order q as follows

S
θi
≈ ϕ

θi
Σ
θi

Λ
θi

T

Online:
2 Interpolate the singular values matrices Σ

θ1
, · · · ,Σ

θNp
and obtain Σ

θ̃
the singular

value matrix associated to the untrained parameter θ̃.
3 Interpolate [ϕ

θi
] and [Λ

θi
], i = 1, . . . , Np, by using the ITSGM method and obtain

the spatial and temporal bases ϕ
θ̃

and Λ
θ̃
.

4 Perform algorithm 1 for modes orientation adjustment.
5 Calculate the weights ωi and κi using equations (7) and (11).
6 Perform SVD decompositions

ϕ
θ̃

T

Np∑
i=1

ωiϕθi = ξΘηT Λ
θ̃

T

Np∑
i=1

κiΛθi
= ζδρT

7 Calculate I+
Qx

and I+
Qt

and evaluate the calibration matrices Q
x

and Q
t

as follows

Q
x

= ξI+
Qx
ηT Q

t
= ζI+

Qt
ρT

8 Reconstruct the interpolated snapshots matrix

S
θ̃

= ϕ
θ̃
QxΣ

θ̃
QT
t

Λ
θ̃

T

4.3. Computational complexity

In the case of a univariate interpolation, it was demonstrated in [10] that the computa-
tional cost of ITSGM performed on spatial bases is proportional to O(Nxq

2). Similarly a
computational cost proportional to O(Nsq

2) is expected for temporal bases interpolation.
The other operations of the Bi-CITSGM algorithm involve matrix-matrix products and Sin-
gular value decompositions. Their total computational cost still proportional to O(Nxq

2)
and O(Nsq

2). Since in general Ns � Nx, the complexity of Bi-CITSGM can be approxi-
mated as being proportional to O(Nxq

2). In other words, the complexity is a linear function
of the number of degrees of freedom of the underlying higher-order computational model,
which makes the Bi-CITSGM method computationally efficient. Furthermore, in the par-
ticular case of a linear interpolation, it is possible to drastically reduce the computational
cost of Bi-CITSGM by considering the interpolation procedure proposed by Nguyen [26].
In this case, the complexity can reduce to be proportional to O(q3).

5. Numerical example : flow past a cylinder

5.1. High fidelity problem

Consider the two dimensional flow past a circular cylinder of diameter D. The problem
domain is rectangular with length H = 30D and width 45D. The center of the cylinder
is situated at L1 = 10D from the left boundary and H/2 from the lower boundary. The
fluid dynamics of the flow is driven by an inlet velocity U of a unit magnitude, which
enters from the left boundary of the domain, and is allowed to flow past through the right

8



boundary of the domain. Free slip boundary conditions are applied to the horizontal edges
whilst no slip boundary condition are considered on the cylinder’s wall. The illustration of
the flow configuration is given in Figure B.2. The underlying problem is governed by the
Navier-Stokes equations

∂tu−
1

Re
∆u + u · ∇u +∇p = 0 in Ω× [0, T [

∇ · u = 0 in Ω× [0, T [

u = U on Γinflow × [0, T [

u = 0 on Γnoslip × [0, T [

u2 = 0 on Γfreeslip × [0, T [

∂nu1 = 0 on Γfreeslip × [0, T [

− 1

Re
∂nu + pn = 0 on Γout × [0, T [

u(0) = u0 in Ω

(12)

The parameter to vary is the Reynolds number Re = UD/ν ranged from 90 to 450.Numerical
simulations were performed with Fenics [27] (Taylor-Hood finite element P2/P1) using the
time step 0.01 and the non-uniform mesh represented in figure B.3. This mesh includes 85124
DOFs for velocity and 10694 DOFs for the pressure. In order to validate the high fidelity
model, the hydrodynamics coefficients obtained at Re = 100 were investigated. These are
the mean drag CD, the maximum lift value CL,max, the root mean square lift value CL,rms

and the Strouhal number St. Table B.1 compares the present computed coefficients against
measurement data and other computation results. It shows a good agreement between
literature data and the present simulations. In the following, a solution snapshot of the
periodic flow regime at Re = 100 is considered as the initial condition to generate the
sampling simulations for different training Reynolds number values.

5.2. Construction of the POD sampling bases

The training flows are obtained by solving the high fidelity model 8 for the training
Reynolds number values included in [90, 450] where the final time T is equal to 12. The
velocity and pressure variables are decomposed into mean and fluctuating parts as follows{

u(t, x,Re) = u(x) + u′(t, x,Re), in Ω

p(t, x,Re) = p(x) + p′(t, x,Re), in Ω

The mean parts u and p are given by

u =
1

NpNs

Np∑
i=1

Ns∑
j=1

u(tj , x,Rei) p =
1

NpNs

Np∑
i=1

Ns∑
j=1

p(tj , x,Rei)

where Np is the number of trained Reynolds numbers and Ns the number of snapshots.
Two POD bases of dimensions qu and qp for the fluctuating velocity and pressure are then
constructed and the solutions are approximated as follows

u′ ≈
qu∑
i=1

αi
uϕ

i
u p′ ≈

qp∑
i=1

αi
pϕ

i
p (13)

The above velocity and pressure POD bases were constructed by considering 500 snapshots
(Ns = 500) regularly distributed between the instants ti = 7 and tf = 12, representing

8In this example, the non dimensional Navier-Stokes equations are solved. The variation of the Reynolds
number is carried out through the variation of the kinematic viscosity ν. The inlet velocity U in this case
is kept constant.
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about 8 periods of the flow. The contribution ratio of the kth mode is given by

RICk =

k∑
i=1

λi/

Ns∑
i=1

λi

with λi the POD eigenvalues. POD eigenvalues and respective modes contribution ratio
for the different trained Reynolds number values are represented in figure B.4. It can
be noticed that only few modes are capable of reproducing the quasi-totality of the flow.
Therefore, for this study case, the POD bases were constructed by considering the 10 first
modes for velocity and 8 first modes for the pressure. In what follows, the non intrusive
ROM obtained by the proposed method Bi-CITSGM is compared to the ROM obtained by
ITSGM/Galerkin. The Galerkin based reduced order model construction for this problem
is given in Appendix B.

5.3. Application of the Bi-CITSGM to predict the flow for untrained Reynolds number values

For different untrained Reynolds number values, the Bi-CITSGM method is applied to
find an approximation of the solutions snapshots of both velocity and pressure. Cubic spline
method is used to interpolate the singular values, whilst ITSGM is used for bases interpo-
lation. In a fist attempt to closely Analise the results of the Bi-CITSGM approach, the
sensibility of this last with respect to the parameter stepping size ∆Re (length between the
points of the sampling points) and the number of neighboring bases Nb considered in the
ITSGM, is first investigated. To this end, we considered two examples of untrained Reynolds
number values, Re = 160 (see Figure B.5) and Re = 280 (see Figure B.6). After inspect-
ing the relative mean errors 9 for different configurations combining Nb ∈ {2, 3, 4, 5, 6} and
∆Re ∈ {20, 30, 40, 50}, we observed that there is no specific rule that allows us to have
a prior knowledge of the best balance between Nb and ∆Re. Thus in the present article,
we have chosen to consider Nb and ∆Re relatively small. That is, Nb = 3 and ∆Re = 30
which means that Re ∈ {90, 120, 150, . . . , 420, 450}. The inverse weights powers m and l are
chosen such as m = l = 3.

Consider now the case of an untrained Reynolds number value Re = 195. The associated
first four POD and Bi-CITSGM basis functions are represented in figures B.7 and B.8.
From a visual point of view, the Bi-CITSGM spatial modes look almost identical to the
original POD modes. The quality of the corresponding temporal modes can be checked out
by inspecting the hydrodynamics coefficients. These are shown in Figure B.9 and table B.2
where a good match with the coefficients obtained by the high fidelity model can be seen.
This agreement is further confirmed by relative errors where the Bi-CITSGM presented a
low error of about 0.4% for velocity and 3.2% for pressure. In terms of computational time,
table B.3 reports that the proposed Bi-CITSGM performs in real time (less than one second)
and is about 10 times faster than the ITSGM/Galerkin approach. This is essentially due to
the costly computational operations involved in the Galerkin projection process which are
note present in the Bi-CITSGM.

Now, in order to further inspect the robustness of the Bi-CITSGM, the same previous study
for Re = 195 was performed for several other untrained Reynolds number values. To this end
we considered two different regimes, the interpolatory regime lying in the interval ]90, 450[
and the extraolatory regime lying in the interval ]450, 500[. In figure B.10, the hydrodynam-
ics coefficients CD, CL,max, CL,rms and Strouhal number St obtained by ITSGM/Galerkin

9Let f be a function and f̃ its approximation, the mean relative error is calculated as follows

ε% = 100×
∫ T

0
||f − f̃ ||L2(Ω) dt/

∫ T

0
||f ||L2(Ω) dt

10



and Bi-CITSGM are compared to those obtained by the high fidelity model. Good agree-
ments can be seen for CL,max, CL,rms and St, whilst it was difficult to track the mean
drag coefficient CD. In spite of this, reasonably accurate predictions of the flow allover the
untrained Reynolds number values have been produced by the Bi-ITSGM. This is shown
in Figure B.11 where the recorded mean relative errors are less than 1.5% for velocity and
10% for pressure, in both the interpolatory and extraolatory regimes.

6. Conclusions

In this article, we proposed the non intrusive method Bi-CITSGM for model reduction of
parametrized nonlinear time-dependent physical problems. Based on data only, the ability
of this approach to quickly and accurately reproduce flow solutions for new untrained pa-
rameter values was numerically investigated. To this end, the interpolation and exrapolation
cases of the flow past a circular cylinder were considered, where the varied parameter is the
Reynolds number. The results show the ability of the Bi-CITSGM to produce reasonably ac-
curate results with a relative mean error less than 1.5% for velocity and 10% for the pressure.
Moreover, they show the advantageous computational time of the Bi-CITSGM (less than 1
second) which is reduced by one order of magnitude with respect to the ITSGM/Galerkin,
and by several orders of magnitude with respect to the high fidelity model. Future work
includes applying the Bi-CITSGM approach on Smolyak grids to more realistic scenarios
(experimental data), and use it with a genetic algorithm to solve inverse problems.
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Appendix A. Review of POD

Let S ∈ RNx×Ns be the snapshot matrix represented in the low dimensional subspace
span(ϕ) obtained by the POD method. Here, the POD basis can be chosen to be optimal
with respect to any inner product. Assume that optimality is realized with respect to an
inner product 10 for which the associated linear operator is denoted A. The POD method
consists of the following steps

step 1 build the correlation matrix C as C = STAS
step 2 solve the eigenvalue problem CΛ = Λλ

step 3 calculate the POD left singular vectors as ϕ = SΛλ−
1
2

Let Σ = λ
1
2 , the snapshots matrix S can be written as

S = ϕΣΛT

In applications, the POD basis is truncated to an order q < Ns, where only the first modes
corresponding the the first q significant eigenvalues of C are considered. This truncated
basis is sufficient to represent the most of the information contained in S.

10Different choices can be made for the inner product of optimality of the POD basis. For example, if the
POD basis is to be optimal with respect to the L2 inner product, the operator A is the mass matrix. The
simplest choice is the Euclidean inner product for which A is the identity matrix.

11



Appendix B. POD reduced order model of the flow past a cylinder

By plugging expressions (13) into equations (12) and imposing the orthogonality condi-
tion of the residual on the basis functions ϕi

u and on the gradient of ϕl
p, the reduced order

model associated to the problem of flow past a cylinder writes

qu∑
j=1

M
(u)
ij

dαj
u

dt
+

qu∑
j=1

[
1

Re
R

(u)
ij + C

(u)

ij

]
αj
u +

qu∑
j=1

qu∑
k=1

C
(u)
ijkα

j
uα

k
u +

qp∑
l=1

K
(u)
il αl

p = F̃
(u)
i ,

qu∑
j=1

M
(p)
mj

dαj
u

dt
+

qu∑
j=1

[
1

Re
R

(p)
mj + C

(p)

mj

]
αj
u +

qu∑
j=1

qu∑
k=1

C
(p)
mjkα

j
uα

k
u +

qp∑
l=1

K
(p)
ml α

l
p = F̃ (p)

m

qu∑
j=1

M
(u)
ij αj

u(0) =

∫
Ω

u0ϕ
i
u dx

∀i = 1, · · · , qu, ∀m = 1, · · · , qp
(B.1)

where

M
(u)
ij =

∫
Ω

ϕj
uϕ

i
u dx R

(u)
ij =

∫
Ω

∇ϕj
u : ∇ϕi

u dx K
(u)
il =

∫
Γ

ϕl
pϕ

i
u · n dσ

C
(u)

ij =

∫
Ω

(u · ∇)ϕj
u · ϕi

u dx+

∫
Ω

(ϕj
u · ∇)u · ϕi

u dx

C
(u)
ijk =

∫
Ω

(ϕj
u · ∇)ϕk

u · ϕi
u dx F̃

(u)
i =

∫
Ω

(
1

Re
∆u− u · ∇u−∇p

)
ϕi
u dx

M
(p)
mj =

∫
Ω

ϕj
u∇ϕm

p dx R
(p)
mj = −

∫
Ω

∆ϕj
u : ∇ϕm

p dx K
(p)
ml =

∫
Ω

∇ϕl
p∇ϕm

p dx

C
(u)

mj =

∫
Ω

(u · ∇)ϕj
u · ∇ϕm

p dx+

∫
Ω

(ϕj
u · ∇)u · ∇ϕm

p dx

C
(p)
mjk =

∫
Ω

(ϕj
u · ∇)ϕk

u · ∇ϕm
p dx F̃ (p)

m =

∫
Ω

(
1

Re
∆u− u · ∇u−∇p

)
∇ϕm

p dx

More details about this reduced order model can be found in [28].
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Figure B.1: Illustration of bases interpolation by ITSGM. Step 1 : chose a point of tangency [ϕθ0 ] and

define the tangent space T
[ϕ

0
]
G(q,N); Step 2 : compute the initial velocities χk ∈ T[ϕ

0
]
G(q,N) as the

image by the logarithmic mapping of the subspaces [ϕθk
] ∈ G(q,N); Step 3 : Interpolate χk and obtain

the approximate initial velocity χ̃ associated the the new untrained parameter θ̃; Step 4 : determine the
approximate subspace [ϕ

θ̃
] as the image by the exponential mapping of χ̃ ∈ T

[ϕ0 ]
G(q,N).
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Figure B.2: Two-dimensional domain and boundary conditions for the problem of flow past a circular
cylinder.
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Figure B.3: Non-uniform mesh used to simulate the problem of flow past a circular cylinder.
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Figure B.4: POD eigenvalues and corresponding ratio with respect to trained Reynolds numbers. q is
referred to as the number of POD modes.
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Figure B.5: Influence of the number of neighboring bases Nb and the sampling stepping size ∆Re on the
Bi-CITSGM for the untrained value Re = 160.
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Figure B.6: Influence of the number of neighboring bases Nb and the sampling stepping size ∆Re on the
Bi-CITSGM for the untrained value Re = 280.
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(a) mode 1

(b) mode 2

(c) mode 3

(d) mode 4

Figure B.7: POD (left) and calibrated ITSGM (right) velocity modes associated to the untrained Reynolds
number Re = 195.
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(a) mode 1

(b) mode 2

(c) mode 3

(d) mode 4

Figure B.8: POD (left) and calibrated ITSGM (right) pressure modes associated to the untrained Reynolds
number Re = 195.
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Figure B.9: Lift and drag coefficients CD and CL obtained by Bi-CITSGM and ITSGM/Galerkin with those
obtained by the high fidelity model at the untrained Reynolds number Re = 195.
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Figure B.10: Aerodynamics coefficient and Strouhal number at different untrained Reynolds number values.
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Figure B.11: Mean relative Errors at different untrained Reynolds number values.
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Coefficient Current Liu [29] Henderson [30] Norberg [31] Placzek [32] Calhoun [33]

CD 1.343 1.350 1.335 - 1.374 1.330
CL,max 0.348 0.339 - - 0.327 0.298
CL,rms 0.245 - - 0.227 0.226 -
St 0.154 0.164 0.165 0.164 0.168 0.175

Table B.1: Comparison of the hydrodynamics coefficients and the Strouhal number obtained by the current
simulations (Fenics) with those of the literature.
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Method CD CL,max CL,rms St ε%
u ε%

p

High fidelity model 1.30 0.67 0.47 0.17 - -
ITSGM/Galerkin 1.30 0.69 0.47 0.17 0.1% 0.3%

Bi-CITSGM 1.30 0.67 0.48 0.17 0.4% 3.2%

Table B.2: Aerodynamics coefficients and mean relative at the untrained Reynolds number Re = 195. ε%u
and ε%p are respectively velocity and pressure mean relative errors.
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ITSGM/Galerkin Bi-CITSGM

9.5 sec 0.8 sec

Table B.3: Comparison of the computational time of a single prediction needed by the ITSGM/Galerkin
approach and the Bi-CITSGM approach.
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