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Mixed Modified Fractional Merton model of the bear spread Basket put option using the multidimensional Mellin transform

In this paper, The generalized Mixed-Modified-Fractional-Merton like partial differential equation with multi-assets under mixed modified fractional geometric Brownian motion was derived. The multidimensional Mellin transform was applied to derive the integral equation for the price of the European put option on a bear spread basket of multi-assets.

Introduction

Mandelbrot et al. [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF] was introduced the Fractional Brownian Motion (FBM) as an extension of the Brownien motion. In recent decades, several researchers including, Willinger and Taqqu [START_REF] Willinger | Stock market prices and long-range dependence[END_REF], Lin [START_REF] Lin | Stochastic analysis of fractional Brownian motions[END_REF] et Rosteck [START_REF] Rostek | Option Pricing in Fractional Brownian Markets[END_REF] have focussed their studies on this process by studying self-similarity and the property of long-range dependency. Those authors use FBM to express the random part of financial models. However, the existence of this process in financial models can lead to some difficulties. We can show that except the case H = 1 2 , the FBM process is neither a Markov process, nor a semimartingale. Therefore, Roger [START_REF] Rogers | Arbitrage with fractional Brownian motion[END_REF] and Cheridito [START_REF] Cheridito | Arbitrage in fractional Brownian motion models[END_REF] have shown that there can be no equivalent probability under which the process becomes a local martingale, this raises the arbitrage problem. To overcome this problem, Cheridito [START_REF] Cheridito | Mixed fractional Brownian motion[END_REF] has applied the Mixed Fractional Brownian Motion (MFBM) and Zlli [START_REF] Zili | On the mixed fractional brownian motion[END_REF] has applied its generalisation to unveil the random part of the financial model. A MFBM process whose parameters a, b and H is a linear combination of Brownian Motion B t and independent Fractional Brownian Motion B H t , defined on a probability space (Ω, F, P) by:

M H,a,b t = M H t = aB t + bB H t , ∀(a, b) ∈ R * + × R + , t ∈ [0, T ]. (1) 
Where H ∈ (0, 1) is the Hurst parameter. Cheridito [START_REF] Cheridito | Mixed fractional Brownian motion[END_REF] showed that the MFBM process with H ∈] 3 4 , 1[ equals to a martingale B t and is therefore arbitrage-free. Nonetheless, there is no equivalent probability under which the MFBM for all H ∈] 1 2 , 3 4 [ becomes a local martingale. Djeutcha et al. [START_REF] Djeutcha | Solving Arbitrage Problem on the Financial Market Under the Mixed Fractional Brownian Motion With Hurst Parameter H ∈]1/2[END_REF] suggest a new process defined on the same probability space (Ω, F, P) by:

M H,ε t = aB t + bB H,ε t , ∀(a, b) ∈ R * + × R + , H ∈] 1 2 , 1[, (2) 
with

B H,ε t = t 0 (t -s + ε) H-1 2 dBs, ∀ε ∈ R * + , t ∈ [0, T ]. (3) 
Where B s is a Brownian Motion and ε is a positive constant. The process (2) is an modification of process (1), framed MMFBM stands for "Mixed Modified Fractional Brownian Motion", its importance is linked to fact that it is a continous martingale. It is used in this paper to design the financial assets.The Black Scholes Model [START_REF] Black | The pricing of option and corporate liabilities[END_REF], assumes the price of heavily traded assets follows a geometric Brownian motion with constant drift and volatility. It model cannot capture many of the features of asset price returns in the absence of dividend payments, Merton [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF] considered a jump-diffusion process that allows for the probability of the asset price to change at large magnitudes irrespective of the time interval between successive observations. Empirical studies have showed that the asset price is better described by a process with a discontinuous sample path (Rosenfeld [16], Jarrow and Rosenfeld [START_REF] Jarrow | Jump risks and the intertemporal capital asset pricing model[END_REF], Ball and Torous [START_REF] Ball | On jumps in common stock prices and their impact on call option pricing[END_REF], and Brown and Dybvig [START_REF] Brown | The empirical implications of the Cox-Ingersoll-Ross theory of the term structure of interest rates[END_REF]). Cont and Tankov [START_REF] Cont | Financial Modelling with Jump Processes[END_REF] showed that unlike standard diffusion models such as Black Scholes [START_REF] Black | The pricing of option and corporate liabilities[END_REF], jump-diffusion models produce rich structures of the distribution of asset returns and implied volatility surfaces. To account for the possibility of instantaneous jumps in the asset price, Merton [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF] proposed the following modification of Black Scholes [START_REF] Black | The pricing of option and corporate liabilities[END_REF] by assuming that the discontinuous jumps arrive as a Poisson process.

dS(t) = S(t)[r -λE(Y -1))]dt + σS(t)dW (t) + σS(t)(Y -1)dN (t) (4) 
where Y (t) is a nonnegative continuous random variable with Y -1 denoting the impulse change in the asset price from S(t) to Y S(t) as a result of the jump and Y -1 ∼ N (µ, δ 2 ), E is the expectation operator, and N = (N (t), t 0) is a Poisson process with constant intensity λ and such that dN (t) = 1 (respectively, dN (t) = 0) with probability λdt (respectively, 1 -λdt). Using Mellin transform techniques adapted from Rodrigo and Mamon [START_REF] Rodrigo | An application of Mellin transform techniques to a Black-Scholes equation problem[END_REF], Li and Rodrigo [START_REF] Li | Alternative results for option pricing and implied volatility in jump-diffusion models using Mellin transforms[END_REF] studied the Partial Integro Differantial Equation (PIDE) and found exact pricing formulas for European options with general payoffs such as those in many types of option. A PIDE analogue of Dupire's PDE was also derived and used to find an explicit formula for the implied volatility. In the same vein, Rodrigo and Goard [START_REF] Rodrigo | Pricing of general European options on discrete dividend-paying assets with jump-diffusion dynamics[END_REF] considered PIDE with a time varying D and obtained exact pricing formulas for European options on discrete dividend-paying assets.

An option is a financial derivative that grants its holder the right without obligation to buy a specific asset on or before given date in the future for an agreed price called the exercise price. A multi-asset option is path dependent option that depends on more than one underlying asset with the payoff defined by a function of the asset prices. A basket option is a financial contract with a portfolio of several underlying equity assets.The payoff function for a basket put option is of the form:

(K - n i=1 α i S i ) + (5) 
where α i is the number of shares of asset i in the basket. S i is the price of asset i in the basket, K is the exercise price and

n i=1 α i = 1.
Several authors have studied the Basket option, among which Xu and Zheng [START_REF] Xu | Basket options valuation for a local volatility jump-diffusion model with asymptotic expansion method[END_REF] who have studied the Basket options valuation for a local volatility jump-diffusion model with asymptotic expansion method, Kamdem [START_REF] Kamdem | Option pricing with Levy process using Mellin Transform[END_REF], use Mellin transform to get the expression for the free boundary an price of an American finite-lived option, when the underlying is govern by the Levy process and show how to compute the price of an American option on a basket of stocks using Mellin transform of several variables. A bear spread option is a vertical spread. It consists of buying one put in hopes of profiting from a decline in the underlying stock, and writing another put with the same expiration but with a lower strike price, as a way to offset some of the cost. The payoff function of the bear spread option is given by

(K 2 -x) + -(K 1 -x) + (6) 
Using Eq.( 5) and Eq.( 6), we define the Bear spread Basket put option as follows

(K 2 - n i=1 α i S i ) + -(K 1 - n i=1 α i S i ) + (7) 
This paper add a long-range dependency property to the model given by Merton [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF] as far as the non-arbitrage condition is concerned.

Our approach will consist firstly of describing the random part of the Merton model by using the Mixed Modified Fractional Brownian Motion and secondly to evaluate the basket option coupled with the bear spread option using the Mellin transform method with several variables and drawing inspiration from research of Kamdem [START_REF] Kamdem | Option pricing with Levy process using Mellin Transform[END_REF], Frontczak [START_REF] Frontczak | Pricing Options in Jump Diffusion Models Using Mellin Transforms[END_REF] and Fadugba [START_REF] Fadugba | Mellin transform in higher dimensions for the valuation of the European basket put option with multi-dividend paying stocks[END_REF].

Our motivation comes from the fact that the study of the markets with the MMFBM process is recent and the evaluation of the bear spread basket put option price whose the payoff function is given by Eq.( 7) seems to be not studied in the recent litterature.

The main concern in this paper will be centered around finding the partial differential equation of the pricing Basket options under MMFM model (Mixed Modified Fractional Merton model). We also determine the closed formula for the bear spread Basket put option price. The section 2 of this paper presents the Mixed Modified Fractional Merton Model, the section 3 defined the Bear spread Basket put options in a MMFM model, the section 4 establish the Partial Integro Differential Equation (PIDE) under the MMFM model and the section 5 gives the Multi-dimensional Mellin transform for the tarification of the european Put option on a bear spread basket of multi-assets.

Presentation of the MMFM model

We recall that the Merton model is defined by Eq.( 4). However, to resolve the arbitrage problem in such a market when H ∈] 1 2 , 1[, we plan to substitue in (4) the process W t by the MMFBM defined by equation [START_REF] Ball | On jumps in common stock prices and their impact on call option pricing[END_REF]. The latter is thus called "Mixed Modified Fractional Merton model" in short MMFM model and is a modification of model (4) defined by Eq.( 8) below.

Definition 1. The MMFM model is one in which the dynamic underlying asset price S ε t verify the following stochastic equation:

dS ε t S ε t = [r -λE(Y -1)]dt + σdM H,ε t + σ(Y -1)dN (t), S ε 0 = S 0 > 0, H ∈] 1 2 , 1[ (8) 
By using the equations (2)-( 3) and taking into consideration that :

dM H,ε t = bφ ε t dt + a + bε H-1 2 dB t (9) 
with

φ ε t = H - 1 2 t 0 (t -s + ε) H-3 2 dB s , (10) 
Eq.( 8) can also be written as

dS ε t S ε t = [r -λE(Y -1) + bσφ ε t ]dt + σ(a + bε H-1 2 )dW t + σ(Y -1)dN (t). (11) 
In the remainder of this paper, the MMFM Model given by Eq.( 8) is used for the tarification of the bear spread Basket options. The solution of Eq.( 8) is

S ε t = S ε 0    r -λλE(Y -1) - σ 2 2 a + bε H-1 2 2 t + σM H,ε t + N (t) i=1 Y i    (12) 
3 Bear spread Basket options in a MMFM model

In this section, we now shall concentrate on the pricing of bear spread basket options in the MMFM model. Denoting by S ε i,t the price of the i-th asset in the basket at time t, the basket is given by

S ε t = n i=1 α j S ε i,t , (13) 
where α j , for all j is deterministic, positive and constant weights specified by the option contract. We assume that the risk neutral measure

dS ε i,t S ε i,t = (r -λE(Y -1))dt + σ i dM H,ε i,t + (Y -1)dN (t), (14) 
where (M H,ε i,t ) t 0 is a Mixed Modified Fractional Brownian motion associated with the price process of asset i. Given the above dynamics, the i-th asset price at time t equals

S ε i,t = S ε i,0    r -λλE(Y -1) - σ 2 i 2 a + bε H-1 2 2 t + σ i M H,ε i,t + N (t) i=1 N (t i )    (15) 
Further, we assume the different asset prices to be instantaneously correlated according to

corr(dM H,ε i,t , dM H,ε j,t ) = ρ ij (a + bε H-1 2 ) 2 dt, ∀i = j, (16) 
with ρ ∈ [-1, 1]. Using Eq.( 17) the Mixed Modified fractional Bear spread Basket put option is defined as follows

φ(S ε 1 , S ε 2 , • • • , S ε n ) = (K 2 - n i=1 α i S ε i ) + -(K 1 - n i=1 α i S ε i ) + (17) 
where K 1 and K 2 are respectively the strike price of the option such that K 1 < K 2 .

PDE of the option price under the MMFM model

We consider an option on n stocks, with each the stock price S ε i , i = 1, 2, 3, • • • , n follow correlated geometric Mixed Modified Fractional Brownian motion with drift µ i and volatility σ i solution of Eq.( 14). Before the derivation of the generalized Mixed-Modified-Fractional-Merton partial differential equation, a counterpart; the Itö's lemma in higher dimensions is needed. Consider a multi-dimensional Mixed Modified Fractional Itö's process of the form

dX i,t = µ i (X i,t , t)dt + σ i (X i,t , t)dM H,ε i,t , 1 i n, (18) 
Therefore, the multi-dimensional Itö's lemma for Eq.( 18) is given by

df (X t , t) =   ∂f (X t , t) ∂t + n i=1 µ i ∂f (X t , t) ∂x i + 1 2 (a + bε H-1 2 ) 2 n j,i=1 ρ ij σ i σ j x j x j ∂ 2 f (X t , t) ∂x i ∂x j   dt+ n i=1 σ i ∂f (X t , t) ∂x i dM H,ε i,t (19) 
where f (X t , t) ∈ C 2,1 . The derivation of the generalized Mixed-Modified-Fractional-Merton partial differential equation for the European bear spread basket put option is given in the following result.

Theorem 1. Let f (S ε 1 , S ε 2 , S ε 3 , • • • , S ε n , t) ∈ C 2,1
be some functions with multi-assets, S ε i be the current price of the underlying asset i , S ε j be the current price of the underlying asset j , K 1 and K 2 be the strike price of the bear spread option, σ i be the volatility of asset i , σ j be the volatility of asset j , ρ ij be the correlation coefficient between asset i and asset j , T be the time to expiry, r be the risk-free interest rate and . Using the Itö's lemma [START_REF] Rostek | Option Pricing in Fractional Brownian Markets[END_REF],the generalized Mixed-Modified-Fractional-Merton partial differential equation for price of an European bear spread basket put option is obtained as

∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂t + 1 2 (a + bε H-1 2 ) 2 n j,i=1 ρ ij σ i σ j S ε i S ε j ∂ 2 f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂x i ∂x j + λE [f (S ε 1 y, • • • , S ε n y, t) -f (S ε 1 , • • • , S ε n , t)] + n i=1 (r -λE(Y -1))S ε i ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i -rf (S ε 1 , S ε 2 , • • • , S ε n , t) = 0 (20) 
Proof. Construct a portfolio consisting of an option

f (S ε 1 , S ε 2 , • • • , S ε n , t) and ∂f (S ε 1 ,S ε 2 ,••• ,S ε n ,t) ∂S ε i amount of assets S ε i .
Let the asset j S be driven by correlated geometric Brownian motions. Using Eq.( 19) for some functions

f (S ε 1 , S ε 2 , • • • , S ε n , t) with multi-assets,yields df (X t , t) = ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂t + n i=1 µ i S ε i ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i dt +   1 2 (a + bε H-1 2 ) 2 n j,i=1 ρ ij σ i σ j S ε i S ε j ∂ 2 f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂x i ∂x j   dt + n i=1 σ i S ε i ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i dM H,ε i,t + [f (S ε 1 y, • • • , S ε n y, t) -f (S ε 1 , • • • , S ε n , t)] dN (t) (21) 
The value of the portfolio denoted by Π is given by

Π = f (S ε 1 , S ε 2 , • • • , S ε n , t) - n i=1 S ε i ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i (22)
After one time step dt, the value of the portfolio changes by

dΠ = df (S ε 1 , S ε 2 , • • • , S ε n , t) - n i=1 ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i dS ε i (23)
Substituting Eq.( 14) and Eq.(25) into Eq.( 23) yields

dΠ = df (S ε 1 , S ε 2 , • • • , S ε n , t) - n i=1 ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i dS ε i (24) dΠ = ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂t + n i=1 (r -λE(Y -1))S ε i ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i dt +   1 2 (a + bε H-1 2 ) 2 n j,i=1 ρ ij σ i σ j S ε i S ε j ∂ 2 f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂x i ∂x j   dt + n i=1 σ i S ε i ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i dM H,ε i,t - n i=1 ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i (r -λE(Y -1))S ε i dt - n i=1 ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i σ i S ε i dM H,ε i,t - n i=1 ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i (Y -1)S ε i dN (t) + [f (S ε 1 y, • • • , S ε n y, t) -f (S ε 1 , • • • , S ε n , t)] dN (t)) (25) 
i.e

dΠ =   ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂t + 1 2 (a + bε H-1 2 ) 2 n j,i=1 ρ ij σ i σ j S ε i S ε j ∂ 2 f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂x i ∂x j   dt + f (S ε 1 y, • • • , S ε n y, t) -f (S ε 1 , • • • , S ε n , t) - n i=1 ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i (Y -1)S ε i dN (t)) (26) 
or dN (t) = 1 with the probability λdt. Therefore, we have

dΠ =   ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂t + 1 2 (a + bε H-1 2 ) 2 n j,i=1 ρ ij σ i σ j S ε i S ε j ∂ 2 f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂x i ∂x j   dt + λE f (S ε 1 y, • • • , S ε n y, t) -f (S ε 1 , • • • , S ε n , t) - n i=1 ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i (Y -1)S ε i dt (27) 
The portfolio is now riskless due to the elimination of dM Hε t term. It must then earn a return similar to other short term riskless securities such as bank account. Therefore

dΠ = rΠdt ( 28 
)
where r is the riskless interest rate. Substituting Eq.( 22) and Eq.( 27) into Eq.(28) gives (56)

  ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂t + 1 2 (a + bε H-1 2 ) 2 n j,i=1 ρ ij σ i σ j S ε i S ε j ∂ 2 f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂x i ∂x j   dt + λE f (S ε 1 y, • • • , S ε n y, t) -f (S ε 1 , • • • , S ε n , t) - n i=1 ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i (Y -1)S ε i dt = r f (S ε 1 , S ε 2 , • • • , S ε n , t) - n i=1 S ε i ∂f (S ε 1 , S ε 2 , • • • , S ε n , t) ∂S ε i dt (29) with                                              d 1 = ln    n i=1 α i S ε i,t K 2   +
The proof of this Proposition 1 is obvious and as indication, we can use an approach given by Frontczak [START_REF] Frontczak | Pricing Options in Jump Diffusion Models Using Mellin Transforms[END_REF].

Conclusion

In this paper, we have studied the generalized Mixed-Modified-Fractional-Merton like partial differential equation with multi-assets under mixed modified fractional geometric Brownian motion was derived. We have used the multidimensional Mellin transform was applied to derive the integral equation for the price of the European put option on a bear spread basket of multi-assets.

  r(T -t)-λ(Y -1)(T -t)+n ln(Y )+ 1 2 (a+bε H-1 2 ) 2

					n i=1 σ 2 i (T -t)+nδ 2
				(a+bε H-1 2 ) 2	n i=1 σ 2 i (T -t)+nδ 2
	d 2 = d 1 -(a + bε H-1 2 ) 2	n i=1 σ 2 i (T -t) + nδ 2
	ln   	n i=1 α i S ε i,t K 1	  + r(T -t)-λ(Y -1)(T -t)+n ln(Y )+ 1 2 (a+bε H-1 2 ) 2	n i=1 σ 2 i (T -t)+nδ 2
	d 3 =			(a+bε H-1 2 ) 2	n i=1 σ 2 i (T -t)+nδ 2
	d 4 = d 3 -(a + bε H-1 2 ) 2	n i=1 σ 2 i (T -t) + nδ 2 .

Rearranging and solving the last equation further, the multi-dimensional Mixed Modified Fractional Merton partial differential equation for the price of an option f (S ε 1 , S ε 2 , • • • , S ε n , t) with multi-assets is obtained as

5 Multi-dimensional Mellin transform for the tarification of the european Put option on a bear spread basket of multi-assets

The following result gives the derivation of the expression for the integral equation for the price of the European bear spread basket put option by means of the Mellin transform in higher dimensions.

Theorem 2. The generalized Mixed-Modified-Fractional-Merton partial differential equation for the price of the European bear spread basket put option is given by

with the initial and boundary conditions are given by

Then, the expression for the integral equation for the price of the European put option on a bear spread basket of multi-assets is obtained as

Proof. It is assumed that the underlying assets and follow geometric Mixed Modified Fractional Brownian motion. From Eq.( 31)

To use the multi-dimensional Mellin transform, assume that f

Equation Eq.(37) guarantees the existence of the multi-dimensional Mellin transform. Let

where the complex variable w 1 , w 2 , • • • , w n exists in an appropriate domain of convergence C n . Conversely, the multi-dimensional Mellin transform inversion formula for the European put option on a bear spread basket of multi-assets is given by

Thus to find the multi-dimensional Mellin transform of Eq.( 31), applying the definition given by Eq.(38) to Eq.( 31), yields

where

We recall that, for the jump size distribution, different distributions are commonly used in financial literature, pominent candidates are among others(Log-normally distributed jumps,double exponentially distributed jumps, Gamma distributed jumps and One-sided exponentially distributed jumps). The choice of the distribution of Y is crucial in order to solve the problem analytically in the (S ε 1 , S ε 2 , • • • , S ε n , t)-domain. In this paper, the explicit expression for G(w 1 , w 2 , • • • , w n ) is given in the case for Y follows the Log-normally distributed jumps given by Merton [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF]. We obtain :

Therefore

By setting

The solution to Eq.( 45) is obtained as

where J(w 1 , w 2 , • • • , w n ) is the constant of integration given by

The multi-dimensional Mellin transform of the final condition

in Eq.( 33) is obtained as

where

Equation Eq.( 50) is called the multinomial beta function of n-variables. Substituting Eq.(49) into Eq.( 47) yields

Therefore, Eq.( 46) becomes

Taking the inverse multi-dimensional Mellin transform of Eq.( 52), the expression for the integral equation for the price of the European put option on a bear spread basket of multi-assets is obtained as

We complete this section by showing explicitly that Eq. (39) with the special choices of f

) and log-normally distributed jumps is equivalent to Mixed Modified Fractional Merton's infinite series solution for a European put in the bear spread basket option.

and jumps are distributed log-normally with parameters µ and δ, Y ∼ ln(µ, δ), then Eq.( 39) is equivalent to Mixed Modified Fractional Merton's solution which is formulated as an infinite series of Mixed Modified Fractional Black Schole Merton-prices(MMFBSM):

Where f M M F BSM (S ε 1 , • • • , S ε n , K 1 , K 2 , r, T, t) denotes the European put in the bear spread basket option due to the Mixed Modified Fractional Black Schole Merton and equals