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Abstract—Deriving decisions from data typically involves a
sequential process with two components, forecasting and opti-
mization. Forecasting models learn by minimizing a loss function
that stands as a proxy for task-specific costs (e.g., trading,
scheduling) without considering the downstream optimization,
which in practice creates a performance bottleneck and ob-
scures the impact of data on decisions. This work proposes a
single data-driven module that leverages the structure of the
optimization component and directly learns a policy conditioned
on explanatory data. For this purpose, we describe an algorithm
to train ensembles of decision trees by directly minimizing task-
specific costs, and prescribe decisions via a weighted Sample
Average Approximation of the original problem. We then develop
a generic framework to assess the impact of explanatory data
on prescriptive performance. To illustrate the efficacy of the
proposed modeling approach, we consider two case studies
related to trading renewable energy. First, we examine trading in
a day-ahead market and propose strategies that balance optimal
trading decisions and predictive accuracy. Next, we append a
storage device and co-optimize the day-ahead offers and the
operational policy, based on a tractable approximation using
the linear decision rule approach. The empirical results demon-
strate improved prescriptive performance compared to solutions
derived under the standard stochastic optimization framework.
Further, we provide valuable insights on how explanatory data
impact optimization performance and how this impact evolves
under different market designs.

Index Terms—Data-driven optimization, decision trees, energy
forecasting, energy storage system, energy trading, linear decision
rules, prescriptive analytics.

I. INTRODUCTION

A. Background and Motivation

ALMOST every aspect of power systems, including real-
time operation, investment planning, and electricity mar-

kets, is subject to uncertainty stemming from multiple sources,
such as stochastic renewable production and unknown market
conditions. Facilitated by the influx of data associated with
the transition towards the smart grid era, recent years have
seen a burgeoning development of energy analytics tools that
enable stakeholders to derive decisions in the presence of
contextual information. Typically, data-driven decision-making
comprises a sequential process with two components, (energy)
forecasting and optimization. The first involves forecasting
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d’Avenir’ program and the ERA-Net SES RegSys project, and the Smart4RES
project (No. 864337), supported by the Horizon 2020 Framework Program.

uncertain quantities, e.g., renewable production or market
prices, at a future time interval and in a form that ranges
from deterministic (point) forecasts to probabilistic forecasts,
scenarios (trajectories) and uncertainty sets. Next, these fore-
casts are used as inputs in an optimization problem to derive
optimal decisions (prescriptions).

In the context of statistical learning, forecasting models are
trained by minimizing a surrogate loss function that serves
as a proxy for a task-specific cost. However, several issues
arise with this approach, as moving from a prediction to
a prescription might not be straightforward. Assessing the
impact of forecasts on decision costs, i.e., forecast value,
is considered to be one of the key challenges in energy
forecasting in the coming years [1]. Further, directly optimiz-
ing towards forecast value rather than accuracy is identified
as a high-leverage objective to employ machine learning as
means of tackling climate change [2]. Studies on the economic
impact of price forecasting errors [3] confirm that increased
accuracy does not always translate into increased value, as
the latter heavily depends on the specific task. A recently
observed trend suggests moving beyond the simple statistical
evaluation of prediction errors to assessing the quality of
decisions obtained for different applications. For example, [4]
proposes a multivariate probabilistic forecasting model and
considers the economic benefits for an electricity retailer as
a means of assessing its forecast value. This trend highlights
two pertinent issues that serve as our current motivation.
First, it is pivotal for the forecasting model to exploit the
structure of the downstream optimization problem in order
to maximize its value. Second, deploying multiple analytic
tools in sequence increases the model chain complexity and
obfuscates the impact of data on the efficacy of decisions.

This work proposes an alternative paradigm for decision-
making in the presence of contextual information in power
system applications, specifically in short-term trading of re-
newable energy. By integrating forecasting and optimization
our goal is to i) improve the out-of-sample prescriptive
performance in trading applications, ii) reduce the effort to
model uncertainty and simplify the data-decisions pipeline,
iii) quantify the impact of contextual information to optimiza-
tion efficacy and enhance model explainability. To this end,
we leverage recent advances in the fields of machine learning
and operations research to propose a data-driven method for
policy learning, that allows decisions to vary as a function of
contextual information.
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B. Literature Review

Classical stochastic optimization assumes that uncertain
parameters have known distributions. In practice, however,
only observational data are available. The problem of single-
stage conditional stochastic optimization in the presence of
contextual information (also called explanatory data or fea-
tures) has received a lot of attention recently. Three general ap-
proaches are identified: i) modifying the optimization compo-
nent, ii) learning under an alternative loss function, iii) directly
forecasting the decisions. For the first approach, [5] establishes
a prescriptive analytics framework for data-driven decisions
via a weighted Sample Average Approximation (SAA) [6] of
the original problem, employing predictive machine learning
algorithms, which sets the base of our approach. Several
extensions exist, including robust prescriptive analytics [7],
dealing with multi-stage problems [8], and considering multi-
stage problems with adjustable robust optimization [9]. In
[10] the residuals induced by the SAA solution are used to
infer decision uncertainty. The second stream of literature
considers training forecasting models under alternative loss
functions in order to explicitly minimize downstream costs
[11]. However, training a machine learning algorithm becomes
challenging, as the alternative loss function might be non-
convex and discontinuous. Gradient-based methods usually
assume a smooth objective, as in an earlier work [12] that
employs a specialized financial criterion as a loss function.
Similarly, [13] describes an end-to-end learning approach for
probabilistic forecasting, with applications for energy storage
arbitrage and grid scheduling. Decision tree learning, on the
other hand, can be used to directly minimize task-specific costs
[14]. An alternative approach based on bilevel programming
is presented in [15], where the lower problem computes the
best decision given a forecast and the upper problem estimates
the linear coefficients of a forecasting model that lead to
minimum costs. In this framework, however, it remains unclear
how to deal with multiple sources of uncertainty. Lastly, the
third approach suggests applying empirical risk minimization
(ERM) to directly forecast the decisions, a form of policy
selection. This is appropriate when the cost function can be
employed as a loss function in a learning algorithm. For
example, [16] describes data-driven solutions to the newsven-
dor problem, which effectively result in a high-dimensional
quantile regression. A significant drawback of this approach,
however, is that it fails to ensure feasible solutions for out-of-
sample observations.

Recent works also consider integrating forecasting and op-
timization and directly learning a policy from data to improve
prescriptive performance. We highlight [17] and [18], which
combine the framework put forward in [5] with learning under
an alternative loss function, as closely related to the present
work. Our approach is also based on decision trees, although
we employ an alternative method to enhance tractability via
a random split criterion. Furthermore, we explicitly quantify
feature importance on optimization performance, which is not
considered in the above-mentioned works, thus also enhancing
explainability of decisions.

Regarding power systems applications and, in particular,

renewable integration in electricity markets, a vast body of
work deals with decision-making in the presence of contextual
information. A significant part of that work is dedicated to
developing accurate forecasting models; we refer the reader
to [19] and [20] for a recent treatment on renewable and
electricity price forecasting. For our work, the focus is placed
on deriving optimal energy offers for wind power plants
(WPPs) based on probabilistic energy and price forecasts [21]–
[23]. This prototypical problem has found many extensions,
such as considering adjustment markets and risk-aversion [24],
jointly participating in energy and reserve capacity markets
[25], trading under a single-price balancing mechanism [26],
and including a storage device [27].

We now highlight recent works in power systems that
relate to the present methodology. Regarding learning under
alternative loss functions, a task-based load forecasting model
that combines deep learning with stochastic economic dispatch
is proposed in [28], following the work in [13]. A closed-loop
forecast-optimize module is described in [29] to solve the day-
ahead unit commitment problem, employing the loss function
introduced in [11]. Additionally, [30] considers wind forecast-
ing for short-term trading applications and [31] examines load
forecasting for dispatch scheduling, both relying on two-step
approaches that involve first inferring a convex loss function,
then training the forecasting model. However, this approach
does not directly leverage the optimization component. Our
previous work [32] suggests employing a risk-averse trading
strategy as an alternative loss function to forecast market
quantities, prior to deriving trading decisions, which still does
not reduce the modeling effort and cannot handle multiple
uncertainties. In [33], the framework put forward in [16]
is extended by proposing linear decision rules to improve
both the forecasting and trading performance of a WPP
participating in a DA market. For a similar case study with
photovoltaic (PV) plants, [34] describes an ERM formulation
based on neural networks. Both of these works deal with
variations of the newsvendor problem and proposed solutions
do not guarantee feasibility of decisions for more complex
problems. One way to circumvent this issue is by considering
a discrete set of actions that approximate continuous decisions.
For example, [35] examines mode-based control of storage
posed as a supervised classification problem.

Table I groups relevant applications by methodology, and
provides a qualitative comparison. Our main contributions are
summarized as follows:
• We propose and validate an alternative data-driven mod-

eling approach that leverages contextual information to
improve prescriptive performance in renewable trading
applications, which also reduces the modeling effort,
handles multiple sources of uncertainty, and guarantees
feasible decisions.

• Methodological contributions include a novel prescriptive
tree algorithm, which shows significant reductions in
computational costs, and adapting well-known feature
importance metrics from the machine learning literature
to a prescriptive analytics context, departing from the
classical regression setting.

• We illustrate the efficacy of the proposed approach in two
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TABLE I: Summary of relevant research in power systems.
Superscript ∗ denotes learning under an alternative loss func-
tion, † denotes directly forecasting decisions, and †† denotes
integrated forecasting-optimization approaches.

Ref. Feasibility
guarantees

Multiple types
of uncertainty

Reduced modeling
effort

[28], [30], [31], [37]∗ X - -
[29]∗,†† X - X
[33], [34]† - X X
This work∗,†† X X X

case studies of increasing complexity related to renewable
trading. First, we examine trading in a DA market under
different pricing mechanisms and propose strategies that
balance trading cost and predictive accuracy. Next, we
append a storage device and jointly optimize the DA
offering strategy and operational control policy; for the
latter, we employ the linear decision rule approach [36] to
provide a tractable approximation. To our knowledge, em-
bedding the control policy within the learning component
presents a novel application of integrated forecasting-
optimization.

The rest of the paper is organized as follows. Section
II presents the mathematical background and the proposed
methodology. Section III formulates the renewable trading
problem. Results are presented in Section IV. Finally, we
draw conclusions and provide directions for future research
in Section V.

II. MATHEMATICAL BACKGROUND AND PROPOSED
METHODOLOGY

A. Conditional Stochastic Optimization

We study single-stage stochastic optimization problems with
Y ∈ Y ⊆ Rdy being uncertain parameters of interest (e.g.,
renewable production, market prices) and X ∈ X ⊆ Rdx a set
of associated features (e.g., weather conditions), following a
joint probability distribution (X,Y ) ∼ Q. We are interested in
approximating the conditional stochastic optimization problem

v = min
z∈Z

EQ[c(z;Y )|X = x] = min
z∈Z

Ey∼Qx
[c(z;Y )], (1)

where v is the objective value, z ∈ Rdz is the decision vector,
Z is a convex set of feasible solutions, c(·) is a cost function, x
is a new observation of X , and Qx̄ is the marginal distribution
of Y conditioned on x. In place of the true distributions,
we have access to a training data set {(yi, xi)}ni=1 of n
observations and aim at learning a policy ẑ that varies as a
function of X .

The fundamental method of approximating (1) given a set
of observations (empirical or sampled) yi of Y is via SAA
[6]:

ẑSAA = arg min
z∈Z

n∑
i=1

1

n
c(z; yi). (2)

While the SAA enjoys several nice theoretical properties, such
as consistency and asymptotic optimality, it does not leverage

the available contextual information. The standard modeling
approach to do so is to first employ a forecasting model
f : X → Y that maps observations of X to Y , and then
solve an optimization problem, which we denote “Forecast,
then Optimize” (FO). Forecasting model f is typically selected
from a class of machine learning or statistical models. We
differentiate between the case of deterministic forecasts

ẑEV = arg min
z∈Z

c(z;E[Y |X = x]), (3)

where EV stands for Expected Value, and the generalized case
of probabilistic forecasts

ẑFO = arg min
z∈Z

Ey∼Q̂x̄
[c(z;Y )], (4)

where Q̂x̄ denotes the inferred conditional distribution of Y .
In turn, (4) is solved with standard stochastic optimization
techniques. While in most applications, the FO approach
constitutes the current state of the art, note that an optimal
solution to (4) is not an optimal policy, as various implicit
assumptions are in place (e.g., calibration of predictive den-
sity). Therefore, the decision-maker cannot effectively hedge
against miscalibrated forecasting models.

The framework described in [5] integrates predictive and
prescriptive analytics by forming a weighted SAA of (1)
to derive decisions conditioned on contextual information,
termed predictive prescriptions. These prescriptions, which
retain consistency and asymptotic optimality, are defined as:

ẑ(x) = arg min
z∈Z

n∑
i=1

ωn,i(x)c(z; yi), (5)

where ωn,i(x) denotes weights obtained from local learning
algorithms, e.g., nearest neighbors and decision trees. In the
original work [5], ωn,i(x) are derived by training the various
algorithms for prediction. In this work, we derive ωn,i(x)
by directly minimizing decision costs, thus leveraging the
structure of the downstream optimization problem and pro-
viding a more informed approximation of the decisions. This
is further motivated by the fact that in Section III we consider
uncertainties from different sources (renewable production and
market quantities), which in turn depend on a different set
of features. Training a local learning algorithm to predict
both of these, would inevitably lead to suboptimal perfor-
mance. Instead, the proposed approach enables the model
to assess the relative impact of each uncertain parameter on
the downstream decision costs and weight associated features
accordingly during learning, while also exploiting possible
cross-dependencies.

Following [18], we formally define the problem of searching
over functions f : X → Y that improve prescriptive perfor-
mance as

min
f ∈ F , zf (xi) ∈ Z

∑
i∈[n]

c(zf (xi); yi) (6a)

s.t.

zf (xi) = arg min
z∈Z

∑
j∈[n]

ωfn,j(xi)c(z; yj) ∀i ∈ [n], (6b)
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where [n] := {1, . . . , n}. In the following, we focus exclu-
sively on decision trees, which typically outperform other local
learning algorithms, trained to directly output prescriptions
instead of predictions (prescriptive trees). Fig. 1 presents an
overview of the different modeling approaches.

B. Prescriptive Trees with Random Splits

Decision tree learning is a widely popular machine learning
algorithm, employed both for classification and regression
tasks. The proposed method follows the classification and
regression trees (CART) [38] approach, that recursively applies
locally optimal binary splits to partition feature space Rdx ,
resulting in a set of L leaves. A node split separates a region
R ⊆ Rdx at feature j ∈ dx and point s into two disjoint
partitions R = Rl ∪ Rr, such that Rl = {i ∈ [n] : xij < s}
and Rr = {i ∈ [n] : xij ≥ s}, with scalar xij denoting the
i-th observation of the j-th feature. Thus, observations that
satisfy xij < s fall to the left of the node, while the rest fall
to the right. For brevity of exposition we focus exclusively
on quantitative features, although it is straightforward to also
include categorical features.

Decision trees are prone to overfitting, i.e., they suffer
from high variance, which significantly hinders their predictive
capacity. Randomization-based ensemble methods address this
issue and lead to impressive predictive performance. Popular
methods include bootstrap aggregation (bagging), Random
Forests [39] and Extremely Randomized Trees (ExtraTrees)
[40].

In this work, we employ the cost function of (1) as an al-
ternative loss function that determines the node split criterion.
For each tree node, the locally optimal split is derived from:

min
j,s

[
min
zl∈Z

∑
i∈Rl

c(zl; yi) + min
zr∈Z

∑
i∈Rr

c(zr; yi)

]
. (7)

The inner minimization problems correspond to the SAA so-
lution of each partition, with ẑl, ẑr being the estimated locally
constant decisions of the left and right child node. Problem
(7) is of discrete nature and must be solved once per each
tree node. When decision trees are trained for prediction (i.e.,
regression), the standard approach is to order all observations
per selected feature j, evaluate each candidate split point, and
select the best one. This approach relies on the existence of an
analytical solution for the internal minimization problems. In
the regression setting, for example, the SAA solution equals
the within leaf average, which can be updated recursively
for all candidate splits. Unfortunately, this does not apply
to general constrained problems. In that case, we need to
call a general-purpose convex solver for each of the two
SAA problems per each candidate split, which, depending on
the underlying problem, could lead to a significant increase
in computation time. To this end, we propose employing
a randomized split criterion, following the paradigm of the
ExtraTrees algorithm [40], which significantly decreases the
number of candidate splits evaluated per node. We refer to an
ensemble of prescriptive trees as Prescriptive Forest (PF).

For a single prescriptive tree, we start from the top with a
full data set and recursively partition the feature space until

no further improvements are possible or a stopping criterion
is met. Typical stopping criteria include the maximum tree
depth ∆max, the minimum number of observations nmin that
fall at each leaf, and a predefined threshold for cost reduction.
At each node of each tree, we randomly select a subset of
K features from X and for each feature randomly select a
candidate split point within its range. Next, we estimate the
aggregated cost of (7) for each candidate split and compare
it with the cost at its root node, updating the tree structure
accordingly. The process of training a prescriptive tree is
detailed in Algorithm 1.

Algorithm 1 PrescriptiveTree

Input: Data D = {(xi, yi)}ni=1, current partition R, current
depth ∆, hyperparameters {nmin,K,∆max}
Output: Prescriptive tree b

1: Determine cost v = min
z∈Z

∑
i∈R c(z; yi)

2: Set vmin ←− v, split←− False
3: if ∆ < ∆max and n ≥ 2nmin then
4: for κ = 1, . . . ,K do
5: Sample feature j ∈ dx without replacement
6: Sample split point s from range of feature j
7: Left child node: Rl = {i ∈ [n] : xij < s}
8: Right child node: Rr = {i ∈ [n] : xij ≥ s}
9: if |Rl| ≥ nmin and |Rr| ≥ nmin then

10: v = min
zl∈Z

∑
i∈Rl

c(zl; yi) + min
zr∈Z

∑
i∈Rr

c(zr; yi)

11: if v < vmin then
12: Set j∗ ←− j, s∗ ←− s
13: Update vmin ←− v, split←− True
14: end if
15: end if
16: end for
17: if split == True then
18: Dl = {(xi, yi) : i ∈ Rl}
19: Dr = {(xi, yi) : i ∈ Rr}
20: bl = PrescriptiveTree(Dl, Rl,∆ + 1)
21: br = PrescriptiveTree(Dr, Rr,∆ + 1)
22: Update tree structure b
23: end if
24: end if
25: return b

For a single prescriptive tree, the corresponding weights
ωn,i(x) for a new query x are obtained as

ωn,i(x) =
I[R(xi) = R(x)]

|R(x)|
, (8)

where R(x) is the leaf that x falls into, | · | the leaf cardinality
and I[·] an indicator function that checks whether training
observation xi falls into R(x). For an ensemble of B trees
the weights are obtained from

ωn,i(x) =
1

B

B∑
b=1

I[Rb(xi) = Rb(x)]

|Rb(x)|
. (9)

From Algorithm 1 we observe that a single tree is fully
compiled, i.e., each leaf outputs a prescription, thus providing
a direct mapping of input data to decisions, while also ensuring
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Feature data x
Renewable production

Market quantities

Z

z∗

Trading
actions

Forecasts of y

Forecasting Optimization

(a) The standard “forecast, then optimize” modeling approach.

Feature data x

x < threshold

...

TRUE

...

FALSE

Trading
actions

Integrated Forecasting-Optimization

(b) The proposed prescriptive trees approach that integrates forecasting and optimization.

Fig. 1: Deriving trading decisions from contextual information. In both cases the objective is uncertain and must be inferred
from available data.

feasibility. For an ensemble of B trees, an additional step
is required to approximate the solution from (5), which is
detailed in Algorithm 2.

Algorithm 2 PredictivePrescription

Input: New query x
Output: Prescription ẑ

1: Initialize ωn,i(x) = 0
2: for tree b = 1, . . . , B do
3: ωn,i(x) = ωn,i(x) + 1

B
I[Rb(xi)=R

b(x)]
|Rb(x)|

4: end for
5: return ẑ(x) = arg min

z∈Z

∑
i∈[n] ωn,i(x)c(z; yi)

As discussed, the main computational cost of Algorithm 1
occurs during the evaluation of candidate splits. The moti-
vating factor behind the random split criterion lies in the
expected reduction in computation time, as only a small
number of splits are evaluated at each node. Computational
experiments between the ExtraTrees and the Random Forest
algorithm [40] suggest an average reduction in training time
by a factor of 3 for K =

√
dx, which can rise up to a factor

of 10 for wider data sets (larger dx). Regarding the ensemble
size B, the generalization error is expected to monotonically
decrease as B increases, thus the computation time is the main
consideration for its selection. Note that the task of training
an ensemble is trivially parallelizable. Similarly, the rest of
the hyperparameters K,nmin represent an inherent trade-off
between model capacity and computational costs (single trees
are maximally grown, thus ∆max is set at infinity). The

number of candidate splits K controls how strong individual
splits are (for K = 1 splits are completely random), while
regarding nmin, larger values result in shallower trees (and
reduced computations), with higher bias and lower variance.
Section IV presents detailed results on how hyperparameters
B,K and nmin affect model performance under different
loss functions and an empirical comparison for different node
splitting criteria.

C. An Illustrative Example

To illustrate the proposed method, we study a toy newsven-
dor problem. Consider an uncertain demand generated from
Y = 10 + 10I[X > 0.5] + 10I[X > 0.8] + ε, with X being
a single feature following a uniform distribution U [0, 1] and
ε random noise following a normal distribution N(0, 2). The
cost function is set as c(z;Y ) = 2(Y − z)− + 10(z − Y )+.
We sample 1000 observations and train a single prescriptive
tree with ∆max = 2. For the purpose of illustration, instead of
random splits, we considered evaluating splits at 100 equally
spaced quantiles of X . Figure 2a presents a scatterplot with
the in-sample fit, while Fig. 2b presents the tree structure, both
of which highlight the fact that the tree does a good job of
approximating the optimal decision.

D. Measuring the Prescriptiveness

Explainability is pivotal to disseminating the results to
industry stakeholders and enabling large scale adoption of
analytics tools in real-life applications. Here, we are interested
in a quantitative assessment of the impact of the various
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ẑ = 11.70 ẑ = 12.03
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FALSE

(b) Prescriptive tree structure.

Fig. 2: Illustrative example.

features on the efficacy of decisions (prescriptiveness). This is
especially important in cases where obtaining explanatory data
incurs in and of itself additional costs, e.g., acquiring weather
forecasts for multiple locations. We propose adapting the
well-known Mean Decrease Impurity (MDI) in a prescriptive
analytics context. Provided a scoring rule, the MDI measures
the total decrease in node impurity (dissimilarity) weighted
by the probability of reaching a specific node averaged over
the ensemble [41]. Considering a prescriptive tree node R0

partitioned at (j, s) into R1, R2, the decrease in aggregated
cost is measured as:

∆v(j, s) = v(R0)− v(R1)− v(R2). (10)

For an ensemble of B trees, the importance of feature j
in terms of prescriptiveness, Imp(j), is measured as the
aggregated cost decrease over all the nodes that j defines the
split variable, over all trees B in the ensemble:

Imp(j) =
1

B

B∑
b=1

∑
`∈R1:L:j`=j

p(b)∆v(j`, s), (11)

with p(b) =
|Rb

` |
n being the proportion of observations reaching

node R` in tree b and j` the feature used for splitting that node.
The MDI is estimated internally during training, and is thus
obtained without additional computational costs.

We also consider measuring prescriptiveness by adapting the
permutation importance technique proposed in [39]. First, we
estimate aggregated costs with respect to the selected objective
function over a hold-out set, which defines the base score.
Next, we iterate over all the features, permutate (re-shuffle)
each one, and derive new prescriptions, repeating the process

a number of times. The permutation importance is then defined
as the expected cost increase compared to the base score.
Preliminary analysis indicated that this approach leads to a
significant increase in computational costs, as prescriptions
need to be re-optimized at each query. Therefore, we omit
it from the experimental results, but note that it presents an
attractive alternative for the case of a single prescriptive tree.

III. RENEWABLE TRADING

This section applies the proposed methodology to renewable
energy trading. We consider an aggregation of plants partici-
pating as a single entity in short-term markets and present two
case studies of increasing complexity. First, we derive optimal
offers for participating in a DA market. Next, we append a
generic storage device and jointly optimize the DA offers and
the operational control policy of the storage.

A. Case Study 1: Trading in a DA market
First, we examine trading in a DA market as a price-

taker under different balancing mechanisms. Prior to market
closure, the producer submits an energy offer poffert for each
clearing period t of the DA market. As temporal constraints
do not apply, subscript t is dropped from the formulation.
During real-time (RT) operation, the system operator activates
balancing reserves to maintain the demand-supply equilibrium
and stabilize the system frequency. The system assumes two
states, namely short, i.e., demand exceeds supply and upward
regulation is required, and long, i.e., supply exceeds demand
and downward regulation is required. Based on RT production,
the producer buys back (sells) the amount of energy shortage
(surplus) in order to balance its individual position. In the
following, we present problem formulations that apply to
different balancing market designs.

Let pE denote the stochastic renewable production, πda the
clearing price of the DA market and π↑/↓ the marginal cost
of activating upward/downward regulation services. Under the
assumption of individual rationality, shortage of supply leads
to increased RT marginal costs. Thus, we assume that if the
system is short, it holds that π↑ ≥ πda and π↓ = πda; while if
the system is long, then π↓ ≤ πda and π↑ = πda. Let us further
define λ↑ = max{0, π↑ − πda} and λ↓ = max{0, πda − π↓}
as the respective upward and downward unit regulation costs.
Evidently, it holds that λ↑ · λ↓ = 0, i.e., only one of them (at
most) assumes a value greater than zero for a given settlement
period.

Under a single-price balancing mechanism, the profit for
each settlement period is defined as:

ρsingle = πdapoffer + π↑(pE − poffer) + π↓(pE − poffer)
= πdapE −

[
−λ↑(pE − poffer) + λ↓(pE − poffer)

]︸ ︷︷ ︸
imbalance cost

.

(12)
Here, {pE , λ↑, λ↓} defines the uncertain problem parameters
(i.e., parameter Y ). Since profit is affine with respect to the
contracted energy, it is trivial to derive the optimal energy
offer analytically as:

poffer∗ =

{
pmin, if − λ̂↑ + λ̂↓ ≤ 0

pmax, if − λ̂↑ + λ̂↓ > 0,
(13)
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where ·̂ denotes expected (forecast) values, see [22, Section II]
for proof. We interpret (13) as follows: the optimal offer equals
zero if the system is expected to be short (typically pmin = 0)
and the nominal capacity if the system is expected to be long.
The case of zero costs is merged with the former without
loss of generality. In practice, however, following this policy
incurs great risks and could constitute market abuse, which
motivates designing a strategy that does not lead to excessive
imbalances.

Alternatively, if the balancing market operates under a dual-
price balancing mechanism, (12) is modified to impose non-
arbitrage between the DA and the balancing market. The single
period profit is now defined as:

ρdual = πdapE −
[
−λ↑(pE − poffer)− + λ↓(pE − poffer)+

]︸ ︷︷ ︸
imbalance cost

,

(14)
where (·)− = min{·, 0} and (·)+ = max{·, 0}. Hence, the
term defining the imbalance cost is non-negative, which in
turn means that no additional profit can be attained in the bal-
ancing market. This contrasts the single-price market design,
where deviations that help restore the system frequency result
in negative imbalance costs, i.e., additional profit. Provided
probabilistic forecasts for all the uncertain parameters, the
optimal offer is derived analytically as:

poffer∗ = F̂−1(
λ̂↓

λ̂↓ + λ̂↑
), (15)

where F̂−1 is the predicted inverse cumulative distribution
function (c.d.f.) of pE . The above solution holds without
assuming independence between energy production and unit
regulation costs, see [22, Section III] for details. The optimal
offering strategy thus requires probabilistic forecasts of energy
production and deterministic forecasts of unit regulation costs.

For both cases, we propose a hybrid policy that balances
profit maximization and energy forecasting accuracy. Specifi-
cally, the problem is formulated as:

min
poffer

E
[
(1− k)(−ρsingle/dual) + k

∥∥pE − poffer∥∥2

2

]
(16a)

s.t. pmin ≤ poffer ≤ pmax. (16b)

The objective function (16a) minimizes a convex combination
of (normalized) trading cost and prediction error, which sets
the loss function of the tree algorithm. We can interpret
this objective as adding a regularization term that penalizes
excessive deviations from the expected energy production;
contrary to other risk-averse formulations, this provides a more
intuitive trade-off to stakeholders. This trade-off is controlled
from design parameter k. Specifically, for k = 0 we retrieve
a purely prescriptive task, while for k = 1 we obtain a purely
predictive task with a standard regression loss.

B. Case Study 2: Including Storage

Energy storage presents a promising avenue to support the
participation of renewable plants in electricity markets and

enhance their profit [27], offering functions such as arbitrag-
ing in DA markets and compensating for deviations from
the submitted schedule during real-time operation. Here, we
extend the previous problem by appending a generic storage
device to the aggregation of renewable plants and jointly
optimize the DA offers, considering a closed system, and the
operational control policy of the storage. We maintain a similar
setting as before, i.e., the aggregation participates in a DA
market subject to imbalance penalties, considering a dual-price
balancing mechanism. Participating in additional markets, such
as intraday, or offering balancing services is not examined.
Optimizing over the operational policy of the storage means
that we allow recourse actions based on the realization of
uncertainty. This defines a multi-stage dynamic optimization
problem; a tractable reformulation is provided by applying
the linear decision rule (LDR) approach [36], modeling real-
time decisions as an affine function of uncertainty, in this case
energy forecast error. Throughout, we use ·̃ to denote decisions
that depend on the realization of uncertainty. Index t is used
to define a specific time period (scalar), while absence of t
defines a vector over the DA horizon of length T .

Let ξ ∈ Ξ ⊆ RT define the energy forecast error for the
DA horizon, i.e., a sample path of errors of length T , and Ξ
define an uncertainty set. The uncertain renewable production
is defined as pE = p̂E + ξ, i.e., the expected value (forecast)
p̂E ∈ RT plus the error term ξ. We define recourse actions of
the storage as an affine function of uncertainty. For example,
the decision vector for charging is defined p̃ch = p̂ch +Dchξ;
here, p̂ch ∈ RT denotes the scheduled DA decisions and
Dch ∈ RT×T is a linear coefficient matrix that determines
the operational policy mapping realizations of uncertainty
ξ to recourse actions. Note that the whole error history is
considered; to retain non-anticipativity we require Dch to be
lower-triangular.

We consider a modified version of [27] and design a control
policy that aims at minimizing the imbalance volume, without
considering the balancing mechanism in the objective function.
The results presented in Section IV show that this represents
a realistic application for a dual-price balancing mechanism.
Following our previous formulation, we optimize over a con-
vex combination of trading performance and deviations from
the contracted energy. For simplicity, we assume DA prices
are known. The problem is defined as

min
P

E

[
T∑
t=1

−(1− k)πdat p
offer
t + k

∥∥∥poutputt − poffert

∥∥∥2

2

]
(17a)

s.t. pmin ≤ poffer ≤ pmax, (17b)

psoct = psoct−1 + ηchp̃cht−1 +
1

ηdis
p̃dist−1 ∀t ∈ [T ], (17c)

psoc1 = psocT = p0, (17d)

poutput = p̂E + ξ + p̃dis − p̃ch, (17e)

0 ≤ p̃dis ≤ cdis ∀ξ ∈ Ξ, (17f)

0 ≤ p̃ch ≤ cch ∀ξ ∈ Ξ, (17g)
0 ≤ psoc ≤ Bmax ∀ξ ∈ Ξ, (17h)
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where P = {poffer, p̂ch, p̂dis, Dch, Ddis} is the set of deci-
sion variables, and psoc, poutput are auxiliary variables for the
induced state of charge in the storage and the actual output
of the plant-storage system. The objective (17a) minimizes a
convex combination of trading profit from the DA market and
deviations between actual output and the contracted energy.
The trade-off is controlled from parameter k. For k = 0
the main function of the storage is to arbitrage in the DA
market, while for k = 1 the focus is placed on compensating
deviations from the schedule during real-time operation. Prob-
lem constraints include the limits for contracted energy (17b),
the state transition equation of the storage (17c), initial and
terminal conditions for the state of charge (17d), and technical
limits of the storage (17f)-(17h). In a data-driven setting, we
assume that ξ belongs to a finite set Ξ = {ξi}ni=1, which
we use to approximate the objective (17a) (remark that the
i-th observation ξi is a sample path of length T ). Further,
we employ duality theory and standard techniques from ro-
bust optimization, to reformulate (17f)-(17h). For reference,
constraint (17f) is reformulated as follows. First, we define
a polyhedral uncertainty set Ξ′ = {ξ : Hξ ≤ h}, where
H = [I,−I]ᵀ ∈ R2T×T , with I defining an identity matrix,
and h ∈ R2T containing the upper and lower bound for each
period t. Next, we define the inner max problemmax

ξ
p̂dis +Ddisξ

s.t. Hξ ≤ h : µ

 ≤ cdis (18)

where µ denotes the dual variables. From duality, we derive{
max
µ

− hᵀµ

s.t. Hᵀµ = Ddis

}
≤ cdis − p̂dis (19)

which finally leads to

∃µ, with hᵀµ ≤ cdis − p̂dis, Hᵀµ = Ddis, µ ≥ 0. (20)

The rest of the constraints are reformulated in a similar
fashion. If the uncertainty set Ξ′ is too wide, no control
will take place during real-time operation, while if it is
too tight, it is possible to get infeasible actions. During the
actual implementation, we add a saturation block to ensure
feasible recourse actions. Therefore, the maximum charge is
set as min{cin, Bmax−psoc

ηch
}, while the maximum discharge

is min{cout, psocηdis}. Lastly, we note that Ξ′ varies on an
hourly and daily basis. To determine h we use the intervals
derived from the underlying samples ξi. For reference, con-
sider the example forecasts shown in Fig. 3. At 00:00 scenarios
show small dispersion (i.e., less uncertainty), which results in
tighter upper and lower bounds in h. On the other hand, at
12:00 the derived bounds in h are wider, due to the larger
dispersion of the underlying scenarios.

C. Energy and Price Forecasting

As discussed, the standard FO approach requires forecasting
the uncertain quantities prior to solving a stochastic opti-
mization problem. The problem described above requires esti-
mating the conditional distribution of pE and the conditional
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Fig. 3: Day-ahead renewable energy forecasts: point forecasts,
probabilistic forecasts (prediction intervals or PI), and scenar-
ios.

expectations of λ↑/↓. To this end, the producer employs feature
vectors xE and xmarket that include information associated
with the uncertain parameters, e.g. weather predictions, his-
torical energy production, and historical market prices, among
others. As our purpose is not to provide a comprehensive
analysis of forecasting models, we employ established bench-
marks. For probabilistic energy forecasting, we select the
Quantile Regression Forests model, a machine learning model
with state-of-the-art performance in energy forecasting [42].
For the second case study, the standard modeling approach
requires as input temporally correlated scenarios (trajectories)
of renewable production. To this end, we employ a Gaussian
copula function, given the conditional marginal predictive
densities obtained from the QRF, following the procedure
detailed in [43]. For reference, different types of forecasts are
shown in Fig. 3.

Contrary to energy forecasting, the literature on forecasting
unit regulation costs is relatively scarce. A standard practice
is to partition the problem into three prediction tasks, namely
upward and downward regulation cost and direction prediction.
Finally, individual components are combined according to
the requirements of the specific policy by the law of total
expectation. Specifically, the individual components are:

φ̂ = P(λ↑ > 0), (21)

λ̂↑ = φ̂E
[
λ↑|λ↑ > 0

]
, (22)

λ̂↓ = (1− φ̂)E
[
λ↓|λ↓ > 0

]
, (23)

where φ̂ is the estimated probability of the system being short.
Therefore, the prediction for the upward unit regulation cost
λ↑ equals the expectation of a regression model trained con-
ditionally on the system being short, weighted by probability
φ. Following [44], we apply exponential smoothing to model
the individual components.

IV. EVALUATION AND RESULTS

A. Experiment Setup

1) Data: For the computational experiments, we consider
an aggregation of 3 WPPs and 1 PV plant, with a total
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TABLE II: Storage parameters (normalized).

Parameter Value

Bmax 0.5
cch 0.5Bmax

cdis 0.2Bmax

ηch 0.8
ηdis 0.9

capacity of 49 MW (16% PV share), respectively located in
northern and southern France. For the storage case study, a
typical set of parameters is shown in Table II. Contextual
information x comprises features typically used as input in
forecasting applications. A forecast horizon of 12-36 hours
ahead is considered. In order to deal with possible temporal
correlations, we conduct a preliminary analysis by examining
the partial autocorrelation function (PACF) of target variables
(energy and prices) and include relevant lags as additional
features in x. By sufficiently enlarging the feature space x
with historical lags, we treat training data (yi, xi) as i.i.d.

Regarding renewable production, the feature vector xE

comprises weather forecasts from a numerical weather pre-
dictions (NWP) model, namely wind speed, wind direction,
temperature, cloud coverage, and solar radiation forecasts for
each plant location. The NWP forecasts are issued at 00:00 on
day D-1 spanning a horizon of 24-48 hours ahead. Examining
the PACF did not reveal any lags to be important, thus we
do not include any in xE ; this result is standard in renewable
forecasting for horizons larger than a couple of hours ahead.

Regarding market data, we employ data for the French
electricity market for the same period, downloaded from
[45]. Market-related contextual information xmarket include
historical lags (as indicated from the PACF) for DA prices (one
day and one week prior), historical lags for system imbalance
volumes (two days prior), and DA forecasts for available ther-
mal generation, electricity demand, and renewable generation
at transmission level. The system-wide forecasts issued from
the operator are processed to determine a net load series,
by subtracting the expected renewable production from the
expected electricity demand, and a system margin series,
defined as the ratio of net load to available thermal generation.
In addition, we include categorical variables for the calendar
effect, namely day of the week and hour of the day. For the tree
algorithm, feature vectors xE and xmarket are concatenated,
resulting in a total of dx = 20 features. Models are trained on
one year of historical data spanning 2019 and evaluated on the
first 4 months of 2020. Lastly, a half-hour settlement period
is assumed for the DA and balancing market.

2) Benchmarks: Our goal is to showcase the ability of
the proposed approach to provide informed decisions under
different objectives using a single data-driven model, without
the need to deploy multiple forecasting models. The following
approaches are compared:
• FO: The standard sequential modeling approach. This

involves i) deriving probabilistic energy forecasts using
the QRF model, ii) forecasting the unit regulation costs
with exponential smoothing, iii) solving a stochastic

optimization problem.
• PF : Predictive prescriptions with weights derived from

a prescriptive forest with random splits.
For the sake of comparison, the naive SAA solution and
the perfect-foresight solution are also estimated. Optimization
problems are solved either analytically, when applicable, or
numerically. As mentioned, different values of design param-
eter k define different objectives; thus, a different prescriptive
forest is trained for each value of k. Note that we consider
offline (batch) learning, thus we implicitly assume stationarity.
If the underlying processes are non-stationary, then offline
learning will not suffice and online learning should be consid-
ered. This is outside the scope of the current work but presents
an interesting research direction.

3) Evaluation: The proposed approaches are examined in
terms of out-of-sample prescriptive performance and trading
results. For the former, we employ the coefficient of prescrip-
tiveness P [5], a unitless metric that measures relative opti-
mization performance against the naive SAA and the perfect-
foresight solution. Specifically, for each i in {FO,PF} and
different values of design parameter k the coefficient P is
estimated as:

Pi,k = 1− v̂ik − v̂∗k
v̂SAAk − v̂∗k

, (24)

where v̂ik, v̂
SAA
k , v̂∗k are the aggregated cost over the test set

under the i, SAA, and perfect-foresight method. Note that
the SAA approach optimizes over the empirical distributions
without leveraging contextual information. The coefficient P
is bounded above by one, while negative values indicate a
failure to outperform the SAA. Regarding trading results, we
estimate aggregated profit and risk. The conditional value at
risk at 5% level (CV aR5%) is used as a proxy for trading risk,
defined as the expected profit over the 5% worst returns.

B. Effect of Hyperparameters and Split Criterion

This subsection examines the performance of the tree al-
gorithm with respect to hyperparameters {B,K, nmin} in a
controlled setting. We consider the problem of trading in a
DA market under a single-price balancing mechanism as a
test bed and examine prescriptive performance for values of
k = {0, 0.5, 1} by randomly sampling n = 1000 training and
validation observations and estimating the respective coeffi-
cient of prescriptiveness P . The process is repeated 10 times.

Fig. 4a plots the prescriptive performance as a function
of the ensemble size B for the different values of k. The
performance appears to be insensitive to the size of the
ensemble, with similar results across the different tasks. Note
that the discrepancy across the levels of coefficient P for the
different values of k is attributed to the relative difficulty of
the underlying problem; for example, for k = 1 we retrieve
higher values of P , which means that the regression task is
relatively easier. We discuss this in more detail in the next
subsection. Next, we examine the effect of number of splits
evaluated per node K, which controls the model capacity. For
K = 1 node splits are completely random (requiring minimum
computations), while for K = dx all features are considered.
From Fig. 4b a significant discrepancy across tasks is evident.
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Fig. 4: Effect of hyperparameters B,K, and nmin.

Specifically, the selection of K has a notable effect on the
performance of the predictive task, with a significant decrease
for lower values of K, while this effect is less pronounced for
the other tasks. Overall, higher values of K lead to increased
prescriptive performance for all tasks. Finally, we examine
the impact of the minimum leaf size nmin. Generally, smaller
values of nmin result in lower bias, while larger values provide
a smoothing effect. Fig. 4c indicates a decrease in performance
for values of leaf size greater than 10, with the effect being
more pronounced for the predictive task (k = 1). For the
rest of this section, the results presented are estimated with
hyperparameters K = 3dx/4, B = 50, and nmin = 10.

Lastly, we repeat the experiment for k = 0.5 and exam-
ine different node splitting criteria. Specifically, we consider

ordering observations and evaluating all splits as in Random
Forests (RF), evaluating on 10 equally spaced quantiles of
the empirical distribution of each feature (RF-Q), and random
splits as in ExtraTrees (ET). We remark that the effect of the
hyperparameters varies for the different splitting criteria. Thus,
we are not primarily interested in an exhaustive comparison in
terms of prescriptive performance, but rather want to highlight
the effect of the selected criterion on computational costs for
a specific set of hyperparameters. Table III presents results
in terms of prescriptive performance and average CPU time
train a single tree over 10 iterations using a standard machine
with an Intel Core i7 CPU with a 2.3GHz clock rate and
32GB of RAM. We observe that the random split criterion
shows a significant reduction in computation time, both against
the RF and the RF-Q approaches, without compromising
prescriptive performance. Note that the training time depends
on the structure of the underlying problem. In this experiment
the problem is relatively simple; for larger problems (e.g.,
including storage) the RF criterion becomes intractable.

TABLE III: Average performance (±one standard deviation)
for sample size n = 1000.

Split criterion RF RF-Q ET

Coefficient P 0.16 ±0.08 0.18 ±0.05 0.16 ±0.04
Single tree CPU time (sec) 650.58 ±103.84 26.43 ±1.80 2.15 ±0.24

C. Case Study 1 Results

1) Single-price market: First, we examine results for a
single-price balancing market. Table IV presents aggregated
results for k = {0, 0.25, 0.5, 0.75, 1}, with the PF approach
leading to an expected profit increase of 3.82% across all
values of k, with a maximum of 7.44% for k = 0.25. As
expected, larger values of k lead to more conservative offers
and thus to a higher CV aR5%, as the minimization of the
imbalance volume is weighted more heavily in the objective.
This is evident in Fig. 5, with offers showing larger deviations
from actual production as k decreases. Fig. 6 further highlights
the improved risk-reward trade-off of the PF, as it sets the
efficient frontier, attaining higher revenue for a given level of
risk and vice versa. The above observations regarding trading
performance are further validated by examining the coeffi-
cient of prescriptiveness P , with the PF showing improved
performance for all k smaller than 1. Interestingly, the FO
approach fails to outperform the naive SAA solution for lower
values of k (P is negative). Both approaches converge to
similar performance for k = 1, which effectively means that
the proposed method achieves similar predictive performance
with the QRF algorithm. Lastly, we observe significantly lower
values of coefficient P for k less than 1 compared to the
regression task, highlighting the fact that trading is relatively
more demanding than simple energy forecasting, as the relative
distance from the perfect-foresight solution is greater. This
could be attributed to the fact that trading tasks require an
estimation of unit regulation costs in the DA horizon, which
in practice is known to be difficult. Nonetheless, the results
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TABLE IV: Results For Single-Price Market

k 0 0.25 0.5 0.75 1

Method FO PF FO PF FO PF FO PF FO PF

Total Profit (103 EUR) 1 191 1 250 1 170 1 257 1 170 1 225 1 182 1 212 1 184 1 178
CV aR5% (EUR) -442.44 -353.51 -403.50 -281.84 -243.29 -228.68 -119.56 -132.32 -92.45 -105.12
Coefficient P 0.06 0.15 -0.01 0.13 -0.01 0.08 0.11 0.17 0.85 0.85

TABLE V: Results For Dual-Price Market

k 0 0.25 0.5 0.75 1

Method FO PF FO PF FO PF FO PF FO PF

Total Profit (103 EUR) 1 130 1 137 1 130 1 140 1 130 1 140 1 130 1 141 1 141 1 138
CV aR5% (EUR) -97.29 -106.30 -97.30 -99.98 -97.27 -104.14 -97.30 -104.98 -99.94 -107.46
Coefficient P 0.62 0.66 0.63 0.68 0.64 0.69 0.66 0.72 0.86 0.86
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Fig. 5: Illustration of actual production and different DA offers
for a single day.

provide a quantitative estimation of this empirical knowledge,
which we believe to be of use to both researchers and other
stakeholders.

2) Dual-price market: Table V presents aggregated results
for a dual-price balancing mechanism. Contrary to the single-
price case, trading performance is rather insensitive to the
selection of parameter k, with the PF resulting in an expected
profit increase of 0.62%. In fact, we do not observe significant
differences between the optimal trading strategy (k = 0)
and offering the expected energy production (k = 1). This
could be attributed to the non-arbitrage condition imposed
by the market design. This notion is further supported by
examining the evolution of P , which for lower values of k
is significantly greater than the single-price market. Overall,
the PF consistently leads to similar or improved prescriptive
performance as shown by the values of coefficient P . We
highlight the fact that this improved performance also comes at
a reduced modeling effort, as we employ a single data-driven
model and thus avoid developing multiple forecasting models.

3) Feature Importance: Next, we investigate how different
features affect prescriptive performance, as measured by the
adapted MDI method. A subset of the most important features
is plotted in Fig. 7, with feature importances normalized to
add up to one. Considering a single-price market, we observe
that for lower values of k, variables pertaining to estimating
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Fig. 6: Risk versus reward for trading in a single-price market.
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unit regulation costs assume greater weight. This is attributed
to the PF placing more weight on the trading cost term in
the objective. Specifically, the aggregation of the expected
system margin and net load, expected temperature at the
WPP site, and lag observations for system imbalance volume
assume approximately 65% of the total feature importance for
k = {0, 0.25, 0.5}. Note that the WPPs are located in close
proximity to large metropolitan areas and interconnections
with neighbouring countries, thus the expected temperature
effectively serves as a proxy for electricity demand. As k
increases, the importance of features related to energy fore-
casting gradually increases, with the expected wind speed at
the WPP site reaching approximately 75% of the total feature
importance for k = 1.

Under a dual-price mechanism, we observe significantly
fewer variations in feature importance across the different
values of k, resembling the results in Table V. Specifically,
the expected wind speed at the WPP location is consistently
the most important variable throughout, with its importance
ranging from 60% to 78%, followed by the expected system
margin. Previous works on similar case studies mention that
renewable forecasting is relatively more important than price
forecasting [33]. The results presented in Table V and Fig. 7
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Fig. 7: Normalized feature importance based on prescriptive-
ness.

provide quantitative evidence for these assertions by jointly
considering the two sources of uncertainty in the problem
formulation and measuring the impact of different features.

Finally, examining results across the different market de-
signs, enables us to conclude that forecasting regulation costs
is relatively more important if a single-price balancing mech-
anism is in place, while renewable energy forecasting should
be the primary focus for participants in dual-price markets.

D. Case Study 2 Results

Next, we present results for the storage case study. To
examine trading performance, we assume participation in a
market with a dual-price balancing mechanism. As indicated
by the previous results in Section IV-C2, in practice there is
no significant difference between the optimal offering strategy
and offering the expected energy production under this market
design. Therefore, the operational control policy implemented,
i.e., using storage to minimize deviations from the submitted
schedule, also makes sense from an economic perspective.
Table VI shows results for a value of k = 0.75. In terms
of trading performance, the proposed method attains a 3.07%
profit increase, accompanied with a decrease in CV aR5%.
The prescriptive performance is also improved as evident by
the increased value of coefficient P . Lastly, compared to the
previous case study, significantly higher profits are observed.
This highlights the storage’s ability to support renewables
in market applications and validates the applicability of the
proposed control policy.

V. CONCLUSIONS

This work presented an integrated forecasting and opti-
mization approach to improve prescriptive performance in
renewable trading applications. We proposed a prescriptive tree

TABLE VI: Results-Storage (k = 0.75)

Method FO PF

Total Profit (103 EUR) 1 628 1 678
CV aR5% (EUR) -8.88 -6.12
Coefficient P 0.89 0.92

algorithm that minimizes task-specific costs for conditional
stochastic optimization problems, employing a random split
criterion to speed up computations. Further, we provided a
framework to measure feature importance in terms of the
impact on optimization efficacy under different objective func-
tions.

We validated the proposed approach in two case studies
related to short-term trading of renewable generation and
examined performance under different balancing mechanisms.
The proposed approach led to an average increase in aggregate
profit of 3.82% and 0.62% for trading in a DA market under
a single- and dual-price balancing mechanism, respectively.
In an additional case study that included a generic storage
in the dual-price setting, a 3.07% profit increase was shown.
Overall, we observed consistently better or similar prescriptive
performance against the current state of the art, which also
came at a reduced modeling effort. Lastly, we examined fea-
ture importance under different objectives and across different
market designs, demonstrating the capability of the proposed
solution to measure the impact of data on decision-making,
and provided insights on trading under different regulatory
frameworks. Future work could focus on learning in an adap-
tive (online) setting and enhancing model interpretability.
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[15] M. A. Muñoz, S. Pineda, and J. M. Morales, “A bilevel framework for
decision-making under uncertainty with contextual information,” arXiv
preprint arXiv:2008.01500, 2020.

[16] G.-Y. Ban and C. Rudin, “The big data newsvendor: Practical insights
from machine learning,” Operations Research, vol. 67, no. 1, pp. 90–
108, 2019.

[17] N. Kallus and X. Mao, “Stochastic optimization forests,” arXiv preprint
arXiv:2008.07473, 2020.

[18] N. Mundru, “Predictive and prescriptive methods in operations research
and machine learning: an optimization approach,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2019.

[19] G. Kariniotakis, Renewable Energy Forecasting: From Models to Appli-
cations. Woodhead Publishing, 2017.

[20] J. Nowotarski and R. Weron, “Recent advances in electricity price
forecasting: A review of probabilistic forecasting,” Renewable and
Sustainable Energy Reviews, vol. 81, pp. 1548–1568, 2018.

[21] P. Pinson, C. Chevallier, and G. N. Kariniotakis, “Trading wind gen-
eration from short-term probabilistic forecasts of wind power,” IEEE
Transactions on Power Systems, vol. 22, no. 3, pp. 1148–1156, 2007.

[22] C. J. Dent, J. W. Bialek, and B. F. Hobbs, “Opportunity cost bidding
by wind generators in forward markets: Analytical results,” IEEE
Transactions on Power Systems, vol. 26, no. 3, pp. 1600–1608, 2011.

[23] E. Y. Bitar, R. Rajagopal, P. P. Khargonekar, K. Poolla, and P. Varaiya,
“Bringing wind energy to market,” IEEE Transactions on Power Systems,
vol. 27, no. 3, pp. 1225–1235, 2012.

[24] J. M. Morales, A. J. Conejo, and J. Pérez-Ruiz, “Short-term trading for
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