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Abstract—Deriving decisions from data typically involves a se-
quential process with two components, forecasting and optimiza-
tion. Forecasting models learn by minimizing a loss function that
stands as a proxy for task-specific costs (e.g. trading, scheduling)
without considering the downstream optimization problem, which
in practice creates a performance bottleneck and obscures the
impact of data on decisions. This work suggests leveraging the
structure of the optimization component and directly learning
a policy conditioned on explanatory data, effectively proposing
a single data-driven module. For this purpose, we describe
an algorithm to train ensembles of decision trees by directly
minimizing task-specific costs, and prescribe decisions via a
weighted Sample Average Approximation of the original problem.
We then develop a generic framework to assess the impact of ex-
planatory data on optimization efficacy. The proposed method is
validated on the case of trading renewable energy in a day-ahead
electricity market, where we design hybrid policies that balance
optimal trading decisions and predictive accuracy. The empirical
results demonstrate improved performance compared to solutions
derived under the standard stochastic optimization framework.
Further, we provide valuable insights on how explanatory data
impact optimization performance and how this impact evolves
under different market designs.

Index Terms—Data-driven optimization, decision trees, energy
forecasting, energy trading, prescriptive analytics.

I. INTRODUCTION

ALMOST every aspect of power systems, including real-
time operation, investment planning, and electricity mar-

kets, is subject to uncertainty stemming from multiple sources,
such as stochastic renewable production and unknown market
conditions. Facilitated by the influx of data associated with the
transition towards the smart grid era, recent years have seen a
burgeoning development of energy analytics tools that enable
stakeholders to derive decisions in the presence of contextual
information. Typically, data-driven decision-making comprises
a sequential process with two components, (energy) forecast-
ing and optimization. The first involves forecasting uncertain
quantities, e.g. renewable production or market prices, at a
future time interval and in a form that ranges from deter-
ministic (point) forecasts to probabilistic forecasts, scenarios
(trajectories) and uncertainty sets. Next, these forecasts are
used as inputs in an optimization problem to derive optimal
decisions (prescriptions).

In the context of statistical learning, forecasting models are
trained by minimizing a surrogate loss function that serves
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as a proxy for a task-specific cost. However, several issues
arise with this approach, as moving from a prediction to
a prescription might not be straightforward. Assessing the
impact of forecasts on decision costs, i.e., forecast value, is
considered to be one of the key challenges in energy fore-
casting in the coming years [1]. Further, directly optimizing
towards forecast value rather than accuracy is identified as a
high-leverage objective to employ machine learning as means
of tackling climate change [2]. Studies on the economic impact
of price forecasting errors [3] confirm that increased accuracy
does not always translate into increased value, as the latter
heavily depends on the specific task. In an early attempt
[4] dating back to the late 1990s, the authors propose a
metric to quantify operational cost savings for an autonomous
system stemming from employing advanced forecasting tools
instead of naive benchmarks. This is roughly analogous to
comparing the value of stochastic optimization against the
certainty equivalent solution [5], although the focus is placed
on the forecasting rather than on the optimization component.
A recently observed trend suggests moving beyond the simple
statistical evaluation of prediction errors to assessing the
quality of decisions obtained for different applications. For
example, [6] proposes a multivariate probabilistic forecasting
model and considers the economic benefits for an electricity
retailer as a means of assessing the forecast value. In [7], a
stochastic unit commitment problem is employed to evaluate a
spatio-temporal scenario generation methodology. This trend
highlights two pertinent issues that serve as our current motiva-
tion. First, it is pivotal for the forecasting model to be aware of
the structure of the downstream optimization problem in order
to maximize its value. Second, deploying multiple analytic
tools in sequence increases the model chain complexity and
obfuscates the impact of explanatory data on the efficacy of
decisions.

This work addresses both of these issues by describing a sin-
gle data-driven model for policy learning, allowing decisions
to vary as a function of explanatory data. The direct mapping
of data to decisions also enables us to assess the impact of the
former to the efficacy of the optimization, while at the same
time simplifying the overall model chain.

A. Literature Review

Classical stochastic optimization assumes that uncertain pa-
rameters have known distributions. In practice, however, only
observational data are available. The problem of single-period
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conditional stochastic optimization in the presence of explana-
tory data (features) has received a lot of attention recently,
with proposed solutions working on the nexus of machine
learning and operations research. Three general approaches are
identified: i) modifying the optimization component, ii) mod-
ifying how the forecasting model is trained, iii) directly
forecasting the decisions. For the first approach, [8] establishes
a prescriptive analytics framework for data-driven decisions
via a weighted Sample Average Approximation (SAA) [9] of
the original problem, employing predictive machine learning
algorithms. In [10] the residuals induced by the SAA solution
are used to infer decision uncertainty. Integrated approaches
merge the forecasting and optimization component, aiming
either at learning a policy from data [11] or selecting from
a set of discrete actions [12]. The second stream of literature
considers training forecasting models under alternative loss
functions in order to explicitly minimize downstream costs
[13]. However, training a machine learning algorithm becomes
challenging, as the alternative loss function might be non-
convex and discontinuous. Gradient-based methods usually
assume a smooth objective, as in an earlier work [14] that
employs a specialized financial criterion as a loss function.
Similarly, [15] describes an end-to-end learning approach for
probabilistic forecasting, with applications for energy storage
arbitrage and grid scheduling. Decision tree learning, on the
other hand, can be used to directly minimize task-specific costs
[16]. An alternative approach based on bilevel programming
is presented in [17], where the lower problem computes the
best decision given a forecast and the upper problem estimates
the linear coefficients of a forecasting model that lead to
minimum costs. Finally, the third approach suggests applying
empirical risk minimization (ERM) to directly forecast the
decisions, a form of policy selection. This is appropriate when
the cost function can be employed as loss function in a learning
algorithm. For example, [18] describes data-driven solutions
to the newsvendor problem, which effectively result in a high-
dimensional quantile regression. A significant drawback of this
approach, however, is that it fails to ensure feasible solutions
for out-of-sample observations.

The integrated method we propose follows the prescriptive
analytics framework established in [8]. To that end, we develop
a decision tree algorithm that learns by directly minimizing
decision costs. Decision trees are also considered in a similar
context in [11], although in this paper we propose an alterna-
tive approach to enhance tractability via a random split crite-
rion. The final conditional prescriptions are derived by means
of a weighted SAA of the original problem. Furthermore, we
explicitly address the issue of individual feature importance
based on optimization performance, which is not considered
in the above-mentioned works, and propose two methods,
based on the node-splitting criterion and on the permutation
importance method.

From an application standpoint, the case of trading re-
newable energy in a day-ahead (DA) market is considered,
which constitutes a well-researched subject. As forecasting is
not our primary focus, we refer the reader to [19] and [20]
regarding recent advances in renewable and price forecasting,
respectively. Several works examine the problem of deriving

optimal energy offers for wind power plants (WPPs) based
on probabilistic wind forecasts and regulation cost forecasts
[21]–[23]. Extensions of this problem include considering
adjustment markets and risk-aversion [24], jointly participating
in energy and reserve capacity markets [25], and trading
under a single price balancing mechanism [26]. In terms
of applications of data-driven optimization, [27] extends the
framework put forward in [18] and proposes linear decision
rules to improve both the forecasting and trading performance
of a WPP participating in a DA market. For a similar case
study with photovoltaic (PV) plants, [28] proposes an ERM
formulation, approximated with evolutionary algorithms. Fi-
nally, [29] suggests employing the trading strategy as an
alternative loss function to forecast market quantities, prior
to deriving trading decisions.

In summary, the main contributions of this work are:
• We develop a novel decision tree algorithm for policy

learning, trained under an alternative loss function to
minimize task-specific costs. The proposed methodology
is generic and can be readily applied to other conditional
stochastic optimization problems.

• We describe a generic framework for assessing feature
importance in terms of prescriptiveness, i.e., impact on
decision costs, and propose two approaches, the first
based on the internal node-splitting criterion and the
second on the permutation importance method.

• From an application standpoint, we design hybrid policies
for trading renewable energy that trade off predictive
accuracy against optimal trading decisions. By jointly
considering uncertainty from various sources (i.e. energy
and the market), we examine how feature importance
evolves under different tasks and market designs and
identify the key drivers of optimization performance.

The rest of the paper is organized as follows. Section
II presents the mathematical background and the proposed
methodology. Section III formulates the renewable trading
problem. Results are presented in Section IV. Finally, we
draw conclusions and provide directions for future research
in Section V.

II. MATHEMATICAL BACKGROUND AND PROPOSED
METHODOLOGY

A. Conditional Stochastic Optimization

We consider a single-period optimization problem with y ∈
Y ⊆ Rdy being a vector of uncertain parameters and x ∈
X ⊆ Rdx being vector of relevant features, following a joint
probability distribution (X,Y ) ∼ Q. We are interested in the
conditional stochastic optimization problem

v = min
z∈Z

EQ[c(z;Y )|X = x] = min
z∈Z

Ey∼Qx̄ [c(z;Y )], (1)

where v is the objective value, z ∈ Rdz is the decision
vector, Z is a convex set of feasible solutions, c(·) is a cost
function and x is an observation of X . Instead of the true
conditional distribution Qx̄, we have access to a training data
set {(y1, x1), · · · , (yN , xN )} of N observations and aim at
learning a policy ẑ that varies as a function of x.
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The fundamental method of approximating (1) in the pres-
ence of observations of Y is via SAA [9]:

ẑSAA = arg min
z∈Z

N∑
i=1

1

N
c(z; yi). (2)

While the SAA enjoys several nice theoretical properties, such
as consistency and asymptotic optimality, it fails to exploit the
available information encoded in x. The standard approach for
doing so is to employ a forecasting model g : X ×Rdx → Rdy
that maps observations of x to y, prior to solving an optimiza-
tion problem, which we denote Forecast-then-Optimize (FO).
We differentiate between the case of deterministic forecasts

ẑEV = arg min
z∈Z

c(z;Ey∼Qx̄
[Y |X = x]), (3)

where EV stands for Expected Value, and the generalized case
of probabilistic forecasts

ẑFO = arg min
z∈Z

Ey∼Q̂x̄
[c(z;Y )], (4)

where Q̂x̄ is the approximated conditional distribution of Y . In
turn, (4) is solved with standard stochastic optimization tech-
niques. While in most applications, this approach constitutes
the current state of the art, note that an optimal solution to (4)
is not an optimal policy, as various implicit assumptions apply
(e.g. calibration of predictive density). Alternatively, one can
directly forecast the decision via ERM [18]. Depending on (1),
however, various solutions might overlap. As such a case is
relevant to the applications presented in Section III, we omit
a separate presentation for the ERM approach.

The framework proposed in [8] integrates predictive and
prescriptive analytics by forming a weighted SAA of (1) to
derive conditional decisions, termed predictive prescriptions.
These prescriptions, which retain consistency and asymptotic
optimality, are defined as:

ẑ(x) = arg min
z∈Z

N∑
i=1

ωN,i(x)c(z; yi), (5)

where ωN,i(x) denotes weights obtained from local learning
algorithms, e.g. decision trees. In the original work [8] ωN,i(x)
are derived by training the various algorithms for prediction.
This work proposes deriving ωN,i(x) by directly minimizing
decision costs, leading to prescriptive trees. Thus, we leverage
the structure of (1) during learning, providing a more informed
approximation of the decisions. This is further motivated by
the fact that in Section III we consider uncertainty stemming
from different sources (renewable production and market quan-
tities), which in turn depend on a different set of features.
Training a local learning algorithm to predict both of these,
would inevitably lead to suboptimal performance. Instead,
our approach allows the model to assess the relative impact
of each uncertain parameter on the final decision costs and
weight them accordingly during learning, while also exploiting
possible cross-dependencies. Fig. 1 presents respective flow
diagrams for the above-mentioned approaches.

B. Randomized Prescriptive Trees

Decision tree leaning is a widely popular machine learning
algorithm, employed both for classification and regression
tasks. The proposed method follows the classification and
regression trees (CART) [30] approach, that recursively applies
locally optimal binary splits, resulting in a set of L leaves,
R1:L. A node split separates the feature space at feature j ∈ dx
and point s into two disjoint partitions: R1(j, s) = {i ∈
[N ]|xi,j < s} and R2(j, s) = {i ∈ [N ]|xi,j ≥ s}, where [N ]
is shorthand notation for {1, 2, . . . , N}. Thus, observations
that satisfy xi,j < s fall to the left of the node, while the rest
fall to the right. For brevity of exposition we focus exclusively
on quantitative features, although it is straightforward to also
include categorical features. The locally optimal split at a root
node is found by solving

min
j,s

min
c1

∑
xi∈R1(j,s)

`(yi, c1) + min
c2

∑
xi∈R2(j,s)

`(yi, c2)

 ,
(6)

where `(·) is the selected training loss function, e.g. the sum of
squared errors for regression. In this case, node predictions are
equal to the average observation in the new partition, as each
split aims at minimizing the within-leaf variance. Decision
trees are prone to overfitting, i.e., they suffer from high
variance, which significantly hinders their predictive capacity.
Randomization-based ensemble methods address this issue and
lead to impressive predictive performance. Popular methods
include bootstrap aggregation (bagging), Random Forests [31]
and Extremely Randomized Trees (ExtraTrees) [32].

In this work, we employ the cost function of (1) as the split
criterion, with the locally optimal split obtained from:

min
j,s

min
z1∈Z

∑
xi∈R1(j,s)

c(z1; yi) + min
z2∈Z

∑
xi∈R2(j,s)

c(z2; yi)

 .
(7)

The inner minimization problems correspond to the SAA
solution of each partition, with ẑ1, ẑ2 being the estimated
locally constant decisions. One approach to solve (7) is by
ordering the observations in feature j, evaluating the solution
of the inner problem at each candidate point, and selecting the
split with the lowest cost. However, the discrete nature of (7)
makes it intractable for all but the simplest problems. To that
end, we employ a randomized split selection, following the
ExtraTrees algorithm [32]. We refer to an ensemble of trees
grown with random splits as Randomized Prescriptive Trees
(RPT).

For a single prescriptive tree, we start from the top with a
full data set and recursively partition the feature space until
no further improvements are possible or a stopping criterion
is met. Typical stopping criteria include the maximum tree
depth ∆max, the minimum number of observations nmin that
fall at each leaf, and a predefined threshold for cost reduction.
At each node of each tree, we randomly select a subset of
K features from x and for each feature randomly select a
candidate split point within its range. Next, we estimate the
aggregated cost of (7) for each candidate split and compare
it with the cost at its root node, updating the tree structure
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Fig. 1: Moving from data to decisions. On top, a standard model chain comprising of forecasting and optimization components
is depicted, with different type of forecasts typically employed in practise being showcased. On bottom, a prescriptive decision
tree that maps input data to decisions is shown. In both cases, the objective is uncertain and must be inferred from data.

accordingly. The subroutine of splitting a single tree node is
detailed in Algorithm 1.

Algorithm 1 Node Split
Input: Training data (xi, yi), current partition Rinit, current
depth ∆, hyperparameters {nmin,K,∆max}
Output: Local split s

1: Find initial cost vinit = min
z∈Z

∑
xi∈Rinit

c(z; yi) and initial

prescription ẑ = arg min
z∈Z

∑
xi∈Rinit

c(z; yi)

2: if ∆ < ∆max then
3: Select K random features { x1,x2,· · · , xK}
4: Select random split point sκ ∀ κ ∈ K from

U [xminκ , xmaxκ ] such that |R1|, |R2| ≥ nmin
5: Solve (7) ∀(κ, sκ)
6: Find tuple (j∗, s∗) such that v(s∗) = min

κ=1,··· ,K
v(sκ)

7: if v(s∗) < vinit then
8: ∆←− ∆ + 1
9: return tuple (j∗, s∗) {Create split}

10: else
11: return nothing {Node becomes leaf with output ẑ}
12: end if
13: end if

For a single prescriptive tree, the corresponding weights
ωN,i(x) for a new query x are obtained as:

ωN,i(x) =
I[xi ∈ R(x)]

|R(x)|
, (8)

with R(x) is the leaf that x falls into, |R(x)| the leaf
cardinality and I[xi ∈ R(x)] an indicator function that checks
whether xi falls into R(x). For an ensemble of B trees the
weights are obtained from:

ωN,i(x) =
1

B

B∑
b=1

I[xi ∈ Rb(x)]

|Rb(x)|
. (9)

From Algorithm 1 we observe that a single tree is fully
compiled, i.e., each leaf outputs a prescription, thus providing
a direct mapping of input data to decisions, while also ensuring
feasibility. For an ensemble of B trees, an additional step
is required to approximate the solution from (5), which is
detailed in Algorithm 2.

The main computational cost of Algorithm 1 occurs during
the evaluation of candidate splits. The motivating factor behind
the random split criterion lies in the expected reduction in
computation time, as only a small number of splits are
evaluated at each node. Computational experiments between
the ExtraTrees and the Random Forest algorithm [32] suggest
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Algorithm 2 Generation of Predictive Prescription
Input: New query x
Output: Prescription ẑRPT

1: Initialize ωN,i(x) = 0
2: for tree b = 1, . . . , B do
3: ωN,i(x) = ωN,i(x) + 1

B
I[xi∈Rb(x)]
|Rb(x)|

4: end for
5: return ẑRPT (x) = arg min

z∈Z

N∑
i=1

ωN,i(x)c(z; yi)

an average reduction in training time by a factor of 3 for
K =

√
dx, which can rise up to a factor of 10 for wider

data sets (larger dx). Regarding the ensemble size B, the
generalization error is expected to monotonically decrease as
B increases, thus the computation time is the main consid-
eration for its selection. Note that the task of training an
ensemble is trivially parallelizable. Similarly, the rest of the
hyperparameters K,nmin represent an inherent trade-off be-
tween model capacity and computation costs (single trees are
maximally grown, thus ∆max is set at infinity). The number
of candidate splits K controls how strong individual splits are,
with the number of split evaluations growing linearly with K.
Regarding nmin, larger values result in shallower trees (and
reduced computations), with higher bias and lower variance.
Section IV presents detailed results on how hyperparameters
B,K and nmin affect model performance under different loss
functions.

C. An Illustrative Example

To illustrate the proposed method, we study a toy newsven-
dor problem. Consider an uncertain demand generated from
Y = 10 + 10I[X > 0.5] + 10I[X > 0.8] + ε, with X being
a single feature following a uniform distribution U [0, 1] and
ε random noise following a normal distribution N(0, 2). The
cost function is set as c(z;Y ) = 2(Y − z)− + 10(z − Y )+.
We sample 1000 observations and train a single prescriptive
tree with ∆max = 2. For the purpose of illustration, instead of
random splits, we considered evaluating splits at 100 equally
spaced quantiles of x. Fig. 2 presents a data scatterplot
alongside the derived decisions and split thresholds, while
Fig. 3 presents the tree structure, both of which highlight the
fact that the tree does a good job of approximating the optimal
decision.

D. Measuring the Prescriptiveness

Explainability is pivotal to disseminating the results to
industry stakeholders and enabling large scale adoption of an-
alytics tools in real-life applications. Here, we are interested in
a quantitative assessment of the impact of various features on
the efficacy of decisions (prescriptiveness). This is especially
important in cases where obtaining explanatory data incurs in
and of itself additional costs, e.g. acquiring weather forecasts
for multiple locations. The proposed approach adapts the Mean
Decrease Impurity (MDI) in a prescriptive analytics context.
Provided a scoring rule, the MDI measures the total decrease
in node impurity (dissimilarity) weighted by the probability
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Fig. 2: Data scatterplot and derived decisions for the toy
problem.
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Fig. 3: Tree structure for the toy problem.

of reaching a specific node averaged over the ensemble [33].
Considering a prescriptive tree node R0 partitioned at (j, s)
into R1, R2, the decrease in aggregated cost is measured as:

∆v(j, s) = v(R0)− v(R1)− v(R2). (10)

For an ensemble of B trees, the importance of a feature xj
in terms of prescriptiveness, Imp(xj), is measured as the
weighted cost decrease over all trees in the ensemble:

Imp(xj) =
1

B

B∑
b=1

∑
xj∈R1:L

p(b)∆v(j, s), (11)

with p(b) =
|Rb

l |
N being the proportion of observations reaching

node Rl in tree b. The MDI is estimated internally during
training, and is thus obtained without additional computational
costs.

We also consider measuring prescriptiveness by adapting
the permutation importance technique proposed in [31]. First,
we estimate aggregated costs with respect to the selected
objective function over a hold-out set, which defines the base
score. Next, we iterate over all the features, permutate (re-
shuffle) each one, and derive new prescriptions, repeating
the process a number of times. The permutation importance
is then defined as the expected increase in decision costs
compared to the base score. Preliminary analysis indicated that
this approach leads to a significant increase in computational
costs, as prescriptions need to be re-optimized at each query.
Therefore, we omit it from the experimental results, but note
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that it presents an attractive alternative for the case of a single
prescriptive tree.

III. RENEWABLE TRADING

A. Problem Formulation

This section applies the proposed methodology to the case
of trading renewable energy. Throughout, we assume a renew-
able producer participating as a price-taker in a DA market
subject to imbalance costs. Prior to market closing, the pro-
ducer submits an energy offer Ect for each clearing period t of
the DA market. As temporal constraints do not apply, subscript
t is dropped from the formulation. During real-time operation,
the system operator activates balancing reserves to maintain
the demand-supply equilibrium and hence stabilize the system
frequency. The system assumes two states, namely short, i.e.,
demand exceeds supply and upward regulation is required, and
long, i.e., supply exceeds demand and downward regulation
is required. Based on real-time production, the producer buys
back (sells) the amount of energy shortage (surplus) in order
to balance its individual position. In the following, we present
problem formulations that apply to different balancing market
designs.

Let EW denote the stochastic renewable production, πDA

the clearing price of the DA market and π(↑/↓) the marginal
cost of activating upward/downward regulation services. Under
the assumption of individual rationality, shortage of supply
leads to increased real-time marginal costs. Thus, we assume
that if the system is short, it holds that π↑ ≥ πDA and π↓ =
πDA; while if the system is long, then π↓ ≤ πDA and π↑ =
πDA. Let us further define λ↑ = max(0, π↑−πDA) and λ↓ =
max(0, πDA − π↓) as the respective upward and downward
unit regulation costs. Evidently, it holds that λ↑ · λ↓ = 0, i.e.,
only one of them (at most) assumes a value greater than zero
for a given settlement period.

Under a single-price balancing mechanism, the revenue for
each settlement period is defined as:

ρsingle = πDAEc + π↑(EW − Ec) + π↓(EW − Ec)
= πDAEW −

[
−λ↑(EW − Ec) + λ↓(EW − Ec)

]︸ ︷︷ ︸
imbalance cost

. (12)

Here, (EW , λ↑, λ↓) define the uncertain problem parameters.
Since revenue is affine with respect to the contracted energy,
it is trivial to derive the optimal energy offer analytically as:

Ec∗ =

{
Emin, if − λ̂↑ + λ̂↓ ≤ 0

Emax, if − λ̂↑ + λ̂↓ > 0,
(13)

where λ̂↑/↓ denotes expected (forecast) values, see [22, Sec-
tion II] for proof. We can interpret (13) as follows: the optimal
offer equals zero if the system is expected to be short and the
nominal capacity if the system is expected to be long. The
case of zero costs is merged with the former without loss of
generality. In practice, however, following this policy incurs
great risks and could constitute market abuse, which motivates
designing a policy that does not lead to excessive imbalances.

Alternatively, if the balancing market operates under a dual-
price balancing mechanism, (12) is modified to impose non-
arbitrage between the DA and the balancing market. The single
period revenue is now defined as:

ρdual = πDAEW −
[
−λ↑(EW − Ec)− + λ↓(EW − Ec)+

]︸ ︷︷ ︸
imbalance cost

,

(14)
where (u)− = min{u, 0} and (u)+ = max{u, 0}. Hence,
the term defining the imbalance cost is non-negative, which
in turn means that no additional revenue can be attained in
the balancing market. This contrasts the single-price market
design, where deviations that help restore the system frequency
result in negative imbalance costs, i.e., additional revenue. Pro-
vided probabilistic forecasts for all the uncertain parameters,
the optimal offer is derived analytically as:

Ec∗ = F̂−1(
λ̂↓

λ̂↓ + λ̂↑
), (15)

where F̂−1 is the predicted inverse cumulative distribution
function (c.d.f.) of EW . The above solution holds without
assuming independence between energy production and unit
regulation costs, see [22, Section III] for details. Thus the opti-
mal offering strategy requires probabilistic forecasts of energy
production and deterministic forecasts of unit regulation costs.

For both cases, we propose a hybrid policy that balances
profit maximization and energy forecasting accuracy. Specifi-
cally, the problem is formulated as:

min
Ec

E
[
(1− k)(−ρsingle/dual) + k

∥∥EW − Ec∥∥2

2

]
s.t. Emin ≤ Ec ≤ Emax.

(16)

The objective function of problem (16) comprises two terms.
The first term minimizes the trading costs (negative revenue),
while the second term minimizes the energy forecast error.
We can interpret this objective as adding a regularization term
that penalizes excessive deviations from the expected energy
production. Design parameter k controls the trade-off between
the two objectives and defines different tasks. Specifically, for
k = 0 we retrieve a purely prescriptive task, while for k = 1
we obtain a purely predictive task.

B. Energy and Price Forecasting

As discussed, the standard FO approach requires forecasting
the uncertain quantities prior to solving a stochastic opti-
mization problem. The particular instance described above
requires estimating the conditional distribution of EW and
the conditional expectations of λ↑/↓. To that end, the pro-
ducer employs feature vectors xE and xmarket that include
information relevant to the uncertain parameters, e.g. weather
predictions, historical energy production, and historical market
prices, among others. Subsequently, offering decisions are
derived either numerically (sampling scenarios) or analytically.
Note that since we consider single-period problems, scenario
generation boils down to simply sampling from the conditional
distribution of EW .
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As our purpose is not to provide a comprehensive analysis
of forecasting models, we employ established benchmarks.
For probabilistic energy forecasting, we select the Quantile
Regression Forests model proposed in [25]. Contrary to energy
forecasting, the literature on forecasting unit regulation costs
is relatively scarce. A standard practice is to partition the prob-
lem into three prediction tasks, namely upward and downward
regulation cost and direction prediction. Finally, individual
components are combined according to the requirements of
the specific policy by the law of total expectation. Specifically,
the individual components are:

φ̂ = P(λ↑ > 0), (17)

λ̂↑ = φ̂E
[
λ↑|λ↑ > 0

]
, (18)

λ̂↓ = (1− φ̂)E
[
λ↓|λ↓ > 0

]
, (19)

where φ̂ is the estimated probability of the system being short.
Therefore, the prediction for the upward unit regulation cost
λ↑ equals the expectation of a regression model trained con-
ditionally on the system being short, weighted by probability
φ. Following [34], we apply exponential smoothing to model
the individual components.

IV. EVALUATION AND RESULTS

A. Experimental Setting

For the computational experiments, we consider an aggrega-
tion of 3 WPPs and 1 PV plant, with a total capacity of 49MW
(16% PV share), respectively located in northern and southern
France. The results presented do not explicitly consider the
effect of DA prices or possible control actions, e.g. curtail-
ing production when DA prices are negative. Energy-related
features xE include weather forecasts for each plant location,
namely wind speed, wind direction, temperature, cloud cover-
age and solar radiation, issued at 12am on day D-1 spanning
a horizon of 24-48 hours ahead. Due to the close proximity
of the WPPs, respective weather forecasts are aggregated via
averaging. We employ market data for the French electricity
market for the same period, downloaded from [35]. Market
data comprises historical lags for DA prices (one day and
one week prior), historical lags for system imbalance volumes
(two days prior), and DA forecasts for available thermal
generation, electricity demand, and renewable generation at
transmission level. The DA forecasts from the system operator
are processed to generate a net load series, defined as the
expected electricity demand minus the expected renewable
production, and a system margin series, defined as the ratio
of net load to available thermal generation. In addition, we
include categorical variables to model the calendar effect,
namely day of the week and hour of the day. A total of dx = 20
features are employed. Both DA and balancing markets are
cleared at a half-hour settlement period, thus we derive 48
offers per day. Models are trained on one year of historical
data spanning 2019 and evaluated on the first 4 months of
2020.

Our goal is to showcase the ability of the proposed approach
to provide informed decisions under different objectives using

a single data-driven model, without the need to deploy multiple
forecasting models. The following approaches are compared:
• FOk: The standard FO approach, in which uncertain

parameters are estimated via probabilistic forecasting
prior to solving the respective stochastic optimization
problem for trading on a single and dual-price market,
respectively.

• RPT k: Predictive prescriptions with weights derived
from the proposed RPT algorithm.

Optimization problems are solved either analytically, when
applicable, or numerically. As mentioned, for k = 0 both
approaches result in the theoretical optimal offer for a risk-
neutral participant, while for k = 1 the task coincides with
forecasting energy production.

B. Hyperparameter Tuning

This subsection examines the performance of the RPT
method with respect to hyperparameters {B,K, nmin} in a
controlled setting. We consider the problem of trading in a
single-price market for values of k = {0, 0.75, 1}, randomly
select a subset of 2000 training and 200 validation samples
and estimate the (normalized) expected cost with respect to
the different objective functions. The process is repeated 10
times and the expected costs for the different objectives are
standardized as to have zero mean and unit variance.

Fig. 4a plots the standardized cost as a function of the
ensemble size B for the different values of k. The performance
appears to be insensitive to the size of the ensemble, with
similar results across the different tasks. Next, we examine the
effect of subset size K, which controls the model capacity.
For K = 1 node splits are completely random (requiring
minimum computations), while for K = dx all features are
evaluated at each split. From Fig. 4b a significant discrepancy
across tasks is evident. Specifically, the selection of K has a
notable effect on the performance of the predictive task, with
a significant decrease for lower values of K, while this effect
is less pronounced for the other tasks. This discrepancy across
tasks could be attributed to the fact that the prescriptive tasks
are relatively more demanding than simple energy production
forecasting. This fact is further analyzed in the following
subsection where we estimate relative performance indices.
Further, a non-negligible decrease in variance as K increases
is also evident for the prescriptive task. Finally, we examine
the impact of the minimum leaf size nmin. Generally, smaller
values of nmin result in lower bias, while larger values
provide a smoothing effect. Fig. 4c indicates a decrease in
performance for values of leaf size greater than 10, with the
effect being more pronounced for the predictive task. For the
rest of this section, the results presented are estimated with
hyperparameters K = dx/2, B = 50, and nmin = 5.

C. Trading Results

We examine the performance for the different market de-
signs in terms of revenue attained, trading risk and relative
optimization performance. The conditional value at risk at
5% (CV aR5%) is used as a proxy for trading risk, defined
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Fig. 4: Effect of hyperparameters B,K, and nmin in performance.

TABLE I: Results For Single-Price Market

Trading k = 0 k = 0.25 k = 0.5 k = 0.75 k = 1

Results FO RPT FO RPT FO RPT FO RPT FO RPT

Gross Revenue (103EUR) 1 172 1 266 1 165 1 248 1 156 1 235 1 155 1 231 1 176 1 178
Expected Revenue (EUR/hour) 201.77 217.91 200.64 214.84 199.09 212.69 198.90 211.88 202.51 202.79

CV aR5% (EUR) -467.61 -363.08 -465.22 -353.42 -449.37 -315.95 -331.90 -174.87 -97.13 -99.48
Coefficient of prescriptiveness P 0.03 0.17 -0.01 0.12 -0.05 0.09 -0.08 0.11 0.86 0.86

TABLE II: Results For Dual-Price Market

Trading k = 0 k = 0.25 k = 0.5 k = 0.75 k = 1

Results FO RPT FO RPT FO RPT FO RPT FO RPT

Gross Revenue (103EUR) 1 136 1 137 1 136 1 141 1 136 1 137 1 137 1 141 1 138 1 139
Expected Revenue (EUR/hour) 195.51 195.84 195.56 196.42 195.65 195.85 195.82 196.49 196.01 196.11

CV aR5% (EUR) -91.79 -102.96 -91.80 -91.94 -91.44 -104.19 -91.22 -94.53 -100.05 -97.67
Coefficient of prescriptiveness P 0.66 0.70 0.67 0.70 0.68 0.71 0.71 0.74 0.86 0.87

as the expected return over the worst 5% of cases. Revenue
and risk are absolute metrics of performance and thus cannot
be employed to compare relative performance across differ-
ent use cases. The coefficient of prescriptiveness P [8] is
a unitless metric, analogous to the R2 for regression, that
measures relative optimization performance against the naive
(SAA) and perfect-foresight solution. Specifically, for each
i in {FO,RPT} and each value of k, the coefficient P is
estimated as:

Pi,k = 1− v̂ik − v̂∗k
v̂SAAk − v̂∗k

, (20)

where v̂ik, v̂
SAA
k , v̂∗k are the expected costs over the test set

under the i, SAA and perfect-foresight method. Note that the
SAA approach results in a constant energy offer derived from
empirical distributions. The coefficient P is bounded above by
one, while negative values indicate a failure to outperform the
SAA.

First, we examine results for a single-price balanc-
ing market. Table I presents aggregated results for k =
{0, 0.25, 0.5, 0.75, 1}. The RPT approach leads to a total
revenue increase of 8.02%, 7.12%, 6.83%, 6.58% and 0.17%,
for each respective value of k. As expected, a larger k leads to
more conservative offers, as the minimization of the imbalance
volume is weighted more heavily in the objective. Fig. 5
further showcases the improved risk-reward trade-off of the
RPT, as it sets the efficient frontier, attaining higher revenue

for a given level of risk and vice versa. The ’elbow’ of the
graph present at k = 0.75 indicates a good trade-off point for
the selection of k. The above observations regarding trading
performance are further validated by examining the coefficient
of prescriptiveness P . Interestingly, the FO approach fails
to outperform the naive SAA solution for lower values of
k (P is negative). The fact that both approaches converge
to similar performance for k = 1, effectively means that
the proposed method achieves similar performance with the
Random Forest algorithm for standard regression. In addition,
we observe significantly lower values for the coefficient P
for k = {0, 0.25, 0.5, 0.75} compared to the regression task,
highlighting the fact that prescriptive tasks are relatively more
demanding than simple energy forecasting, as the relative
distance from the perfect-foresight solution is greater. This
could be attributed to the fact that prescriptive tasks require
an estimation of unit regulation costs in the DA horizon, which
in practice is known to be difficult. Nonetheless, our results
provide a quantitative estimation of this empirical knowledge,
which we believe to be of use to both researchers and other
stakeholders.

Table II presents aggregated results for a dual-price balanc-
ing mechanism. Contrary to the single-price case, results are
rather insensitive to the selection of parameter k. This could
be attributed to the non-arbitrage condition imposed by the
market design. This notion is further supported by examining
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the evolution of P , which for lower values of k is significantly
greater than the single-price market. Regarding the examined
approaches, a small performance increase is evident for the
RPT method for a lower k. Specifically, the gross revenue
increase for the RPT approach ranges between 0.09% and
0.44%, which, however, might be negligible in terms of mone-
tary value. Nonetheless, the single data-driven model proposed
achieves similar or better performance than the benchmark,
without requiring to develop multiple forecasting models.

D. Assessing Feature Importance

In this subsection, we investigate how different features
affect optimization performance, as measured by the MDI
method. Feature importances are normalized to add up to one.
A subset of the most important features is plotted in Fig. 6.
Considering a single-price market, we observe that for lower
values of k, variables pertaining to estimating unit regulation
costs assume greater weight. This can be attributed to the RPT
placing more weight on the prescriptive term in the objective
function. Specifically, the aggregation of the expected system
margin, expected temperature at the WPP site, and lag observa-
tions for system imbalance volume assume approximately 65%
of the total feature importance for k = {0, 0.25, 0.5, 0.75}.
Note that the WPPs are located in close proximity to large
metropolitan areas and interconnections with neighbouring
countries, thus the expected temperature effectively serves as
a proxy for electricity demand. As k increases, the importance
of features related to energy forecasting gradually increases,
with the expected wind speed at the WPP site reaching
approximately 80% of the total feature importance for k = 1.

Under a dual-price mechanism, we observe significantly
fewer variations in feature importance across the different
values of k, resembling the results presented in Table II.
Specifically, the expected wind speed at the WPP location is
consistently the most important variable throughout, with its
importance that ranging from 65% to 78%, followed by the
expected system margin. Previous works on similar use cases
mention that energy forecasting is relatively more important
than price forecasting [27]. The results presented in Table II

Fig. 6: Normalized feature importance based on prescriptive-
ness.

and Fig. 6 provide quantitative evidence for these assertions
by jointly considering the two sources of uncertainty in the
problem formulation and measuring the impact of different
features.

Finally, comparing results across the different market de-
signs, enables us to conclude that forecasting regulation costs
is relatively more important if a single-price balancing mech-
anism is in place, while energy forecasting should be the
primary focus for participants in dual-price markets.

V. CONCLUSIONS

This work presented a novel integrated forecasting and op-
timization approach to approximate conditional stochastic op-
timization problems employing weighted SAA. We proposed
a decision tree learning algorithm that minimizes task-specific
costs for generic convex problems during learning, employing
a random split criterion to speed up computations. Further, we
provided a framework to measure feature importance in terms
of impact on optimization efficacy under different objective
functions.

We validated the proposed approach in the case of a
renewable producer participating in competitive electricity
markets and proposed hybrid policies that balance optimal
decisions and energy forecasting accuracy. In a detailed em-
pirical analysis, we compared the proposed approach with the
stochastic optimization benchmark in terms of monetary gains
and relative optimization performance. Overall, our proposed
solution achieved consistently better or similar performance
against the current state of the art, with relative improvements
being more pronounced for a single-price market. Additionally,
we examined feature importance under different objectives and
across different market designs, demonstrating the capability
of the proposed solution to measure the impact of data on
decision-making, and provided valuable insights on trading
under different regulatory frameworks. Future work will ex-
amine multi-period problems, which are increasingly complex
as they require accounting for the spatio-temporal correlations
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of uncertain parameters, and enhancing the tractability of the
proposed algorithm.
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