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Abstract: An exact solution of expansion coefficients for a T-matrix
method interacting with acoustic scattering of arbitrary order Bessel
beams from an obstacle of arbitrary location is derived analytically.
Because of the failure of the addition theorem for spherical harmonics
for expansion coefficients of helicoidal Bessel beams, an addition theo-
rem for cylindrical Bessel functions is introduced. Meanwhile, an ana-
lytical expression for the integral of products including Bessel and
associated Legendre functions is applied to eliminate the integration
over the polar angle. Note that this multipole expansion may also bene-
fit other scattering methods and expansions of incident waves, for
instance, partial-wave series solutions.
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1. Introduction

An ideal Bessel beam is an exact solution of the Helmholtz equation in cylindrical
coordinates. A helicoidal Bessel beam possesses an axial null and has an azimuthal
phase gradient, which is significantly different from the ordinary (zeroth-order) Bessel
beam. The exact series solutions for acoustic scattering from both ordinary1 and heli-
coidal2 Bessel beams with an on-axis incidence were derived by Marston using a super-
position of plane waves. It is noteworthy that the off-axis scattering of Bessel beams
from a rigid sphere has been investigated by using numerical quadrature to compute
the corresponding beam-shape coefficients.3,4 In addition, the on-axial5,6 and off-axial7

acoustic radiation force properties for spherical shapes in Bessel beams were studied
using the partial-wave series expansion method. The geometrical interpretation of neg-
ative radiation forces in ideal Bessel beams was also discussed and it was found that
negative forces only occur when the scattering into the backward hemisphere is sup-
pressed relative to the scattering into the forward hemisphere.8 It is also of interest to
compute the scattering when studying the radiation torque9–11 caused by Bessel beams.
The special features of acoustic radiation forces and torques from Bessel beams may
help in the design of devices for manipulating particles and larger objects.

The T-matrix method, one kind of semi-analytical and semi-numerical
approach, performs very well for scattering from both spherical and aspherical12,13

obstacles, which could cover the shortage of series solutions for scattering from aspher-
ical shapes in some ways. Note that the T-matrix method has been demonstrated as an
effective tool to calculate acoustic scattering of Bessel beams from complicated
shapes.14,15 Under the structure of the T-matrix method, the incident waves need to be
expanded in a proper scalar basis function. For the ordinary Bessel beam, the expan-
sion coefficients of the incident wave were derived on the basis of spherical harmonics
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according to the addition theorem. However, when it comes to the helicoidal Bessel
beams, the addition expression of Legendre polynomial fails to expand the incident
waves because of the term containing the associated Legendre function Pm

n ðcos cÞ,
where c denotes the angle between the incident and scattered directions and m is an
integer with m � 1. Under this circumstance, a multipole expansion method for acous-
tical Bessel beams of arbitrary orders is derived to facilitate the application of the
T-matrix method for scattering from not only the ordinary Bessel beam, but also the
helicoidal beams. It should be noted that the present multipole expansion of Bessel
beams could also benefit other methods for more general cases, for example, the series
solutions for spheres with off-axis incidence.

2. Addition theory for ordinary Bessel beam

The T-matrix method is effective for acoustic scattering problems in the case where an
arbitrary incident wave can be expanded on a proper scalar basis function. When the
ordinary Bessel beam is considered, the incident wave can be expressed in spherical
coordinates as follows:5

wOBBðr; cÞ ¼ w0

X1
n¼0

in � ð2nþ 1ÞjnðkrÞPnðcos cÞPnðcos bÞ; (1)

where b is the half-cone angle of Bessel beam and c is the angle between the incident
and scattered waves. The scalar basis functions involve the product of spherical har-
monics Ynmðh;/Þ and spherical Bessel functions of the first kind jnðkrÞ, written as

wnm ¼ Ynmðh;/Þ � jnðkrÞ; (2)

where Ynmðh;/Þ ¼ nnmPm
n ðcos hÞeim/ is the normalized spherical harmonics of the indicated

angular arguments with the normalization coefficients nnm ¼ ½ð2nþ 1Þðn�mÞ!�1=2

�½4pðnþmÞ!��1=2. It should be noted that for the outgoing scattered waves, the
Bessel function needs to be replaced by the spherical Hankle function of the first kind
hð1Þn ðkrÞ.

To expand the incident Bessel beam of zeroth-order on the basis function, the
addition theorem for spherical harmonics is applied, written as

Pn cos cð Þ ¼
4p

2nþ 1

Xm¼n

m¼�n

Ynm h;/ð ÞYnm h0;/0
� �

; (3)

where ðh;/Þ is the observation direction and ðh0;/0Þ denotes the incident direction.
Inserting Eqs. (2) and (3) into Eq. (1), one obtains

wOBBðr; cÞ ¼
X
nm

anm � wnm; (4)

where anm is the expansion coefficients of zeroth-order Bessel beam with the explicit
expression given by Gong and co-workers.14,15 It is worthwhile to note that for helicoi-
dal Bessel beams, the Legendre polynomial Pnðcos cÞ would be replaced by associated
Legendre functions Pm

n ðcos cÞ with the addition of an azimuthal phase term of eim/.
Although the associated Legendre functions can be described by the Legendre polyno-
mial using recursion and derivative relationships, the authors could not find an avail-
able method to obtain the expansion coefficients of helicoidal Bessel beams using the
addition theorem for spherical harmonics. Consequently, a multipole expansion
method is introduced to obtain the incident coefficients using the addition theorem for
the Bessel functions.

3. Multipole expansion of helicoidal Bessel beams

Consider an arbitrary object under the illumination of a helicoidal Bessel beam with
its origin OHBB located in an arbitrary location (x0; y0; z0) in the Oxyz coordinates sys-
tem, as described by Fig. 1. For an acoustical Bessel beam of arbitrary order, the
expression of incident wave could be written as

wABB ¼ w0e�ixtineikzðz�z0Þ � JnðkrR0Þein/0 ; (5)

where w0 determines the beam amplitude, kr ¼ k sin b and kz ¼ k cos b denote the

radial and axial wavenumber components, and R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
and

/0 ¼ tan�1½ðy� y0Þ=ðx� x0Þ�. Since all the fields have the same time-dependence e�ixt,
it will be omitted throughout. Other than the superposition of plane waves,1,2 the

Gong et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4985586] Published Online 16 June 2017

J. Acoust. Soc. Am. 141 (6), June 2017 Gong et al. EL575

http://dx.doi.org/10.1121/1.4985586


direct integration will be implemented in the following to compute the incident coeffi-
cients. According to the ideal spherical harmonics expansion,16 the expansion coeffi-
cients of the incident wave could be obtained as

wABBðr; h;/Þ ¼ w0

X1
n0¼0

Xn0

m0¼�n0
an0m0 � jn0 ðkrÞYn0m0 ðh;/Þ; (6)

an0m0 ¼
1

w0jn0 krð Þ

ð2p

/¼0

ðp

h¼0
wABBY �n0m0 h;/ð Þsin hdhd/; (7)

where Y �n0m0 ðh;/Þ is the complex conjugation of normalized spherical harmonics of the
indicated angular arguments. Substituting Eq. (5) into Eq. (7), the expansion coeffi-
cients still could not be obtained through the double integral over ðh;/Þ. In this cir-
cumstance, the addition theorem for the Bessel functions17 is here subtly introduced to
expand the cylindrical Bessel function into the product of two cylindrical Bessel func-
tions with global coordinates (x0; y0; z0) and (x; y; z), and one obtains

JnðkrR0Þein/0 ¼
X1

m¼�1
Jmðr0ÞJmþnðrÞeiðnþmÞ/e�im/0 ; (8)

where r0 ¼ krR0, R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ y2
0

q
, /0 ¼ tan�1ðy0=x0Þ, r ¼ krR, R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and

/ ¼ tan�1ðy=xÞ. Inserting Eqs. (5) and (8) into Eq. (7), the expansion coefficients can
be rearranged and the exact integral over / is carried out as follows:

an0m0 ¼
ineikzz0

jn0 krð Þ
nn0m0

ðp

h¼0
eikzzPm0

n0 cos hð Þsin hdh

�
ð2p

/¼0

X1
m¼�1

Jm r0ð ÞJmþn rð Þei nþmð Þ/e�im/0 e�im0/d/

" #
: (9)

By observation of Eq. (9), only nþm�m0 ¼ 0 (i.e., m ¼ m0 � n) will survive
through the integral over / and thus an0m0 can be written in the form of a single inte-
gral over h

an0m0 ¼
ineikzz0

jn0 krð Þ
nn0m0

ðp

h¼0
eikzzPm0

n0 cos hð Þsin hdh� 2pJm0�n r0ð ÞJm0 rð Þe�i m0�nð Þ/0 : (10)

To facilitate the implementation of integral operation over h analytically, an
exact solution to the integral on the hybrid product including the associated Legendre,
Bessel, and exponential functions in spherical coordinates was verified rigorously by
Neves et al.18 as follows:ðp

h¼0
sin hPm

n ðcos hÞeikr cos b cos hJmðkr sin b sin hÞdh ¼ 2in�mPm
n ðcos bÞjnðkrÞ: (11)

Note that for the expansion coefficients in Eq. (10), the parameters in cylindrical
coordinates could be expressed in spherical coordinates, such that eikzz ¼ eikr cos b cos h and
Jm0 ðrÞ ¼ Jm0 ðkr sin b sin hÞ. The expansion coefficients of Bessel beams with arbitrary
orders could be derived analytically immediately after substituting Eq. (11) into Eq. (10),

an0m0 ¼ 4pnn0m0 i
n0�m0þnPm0

n0 ðcos bÞ � e�ikzz0 Jm0�nðr0Þe�iðm0�nÞ/0 : (12)

Fig. 1. (Color online) Schematic of an arbitrary object (taking a spheroid as an example) illuminated by a heli-
coidal Bessel beam of arbitrary orders with its origin OHBB located in arbitrary location ðx0; y0; z0Þ in the Oxyz
coordinates system.
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Note that the spherical Bessel function jn0 ðkrÞ is canceled by the integration results.

4. Verification and discussions

To verify the correctness of the multipole expansion of acoustical Bessel beams of arbi-
trary orders (including ordinary and helicoidal Bessel beams), the T-matrix method is
applied here for acoustic scattering from a helicoidal Bessel beam for the on-axis case
(the origins of the beam OHBB and target O coincide). First, the unknown coefficients of
the scattered fields fnm could be computed by multiplying the multipole expansion coeffi-
cients of arbitrary-order Bessel beam an0m0 in Eq. (12) by the transition matrix of a con-
sidered obstacle Tnm;n0m0 , i.e., fnm ¼ Rn0m0Tnm;n0m0an0m0 [see Eq. (13) in Ref. 13 in matrix
notation]. Then the scattered scalar basis functions are easily obtained by replacing the
Bessel function with spherical Hankel function of the first kind in Eq. (2). Finally, the
scattered field could be calculated immediately by multiplying the computed coefficients
of the scattered fields by the scattered basis functions.

For brevity, only the scattering form function modulus by a rigid sphere
placed in the first-order Bessel beam with different half-cone angle b is presented
below, as shown in Fig. 2. The curves represent the form function modulus calculated
by the T-matrix method with half-cone angle b ¼ 15� (dotted line), b ¼ 30� (dashed
line), and b ¼ 45� (solid line), respectively. While the reference results for these cases,
denoted by different kinds of scatters, were extracted from the data using an exact
series solution by Marston2 (given in Fig. 1 of Ref. 2). By comparison, all the results
obtained by the T-matrix method using the derived multipole expansion agree very
well with those from the partial wave series solution using superposition of plane
waves. Moreover, computations using the multipole expansion for scattering by rigid
spheroids were also conducted with the T-matrix method (not given for brevity), and
the results again agree well with results obtained using a modal matching method.19

Note that various methods for acoustic scattering have their own merits. The
exact series solutions perform well for scattering from spheres at extremely high fre-
quency. However, the series solutions using spherical harmonics seem to have limita-
tions for aspherical objects with a large aspect ratio due to the ill-condition during
matrix inversion procedures. The T-matrix method has advantages for scattering by
aspherical obtacles.12–15 Unfortunately, this method has limitations at high frequency.
As a consequence, the exact series solution and the T-matrix method complement each
other and provide two powerful tools to investigate the scattering from ordinary and
helicoidal Bessel beams. The idea of multipole expansion for acoustic beams may bene-
fit other numerical methods to study more complicated waves (compared with ordinary
plane waves), such as smoothed particle hydrodynamics20 and modified finite element
methods.21–23 The present multipole expansion method is also applicable for scattering
from electromagnetic Bessel beams24 using the T-matrix method.25 Furthermore, it is
noteworthy that the present method could be extended for cases of the off-axis inci-
dence by changing the origin of the incident beam without any extra computation
trouble.
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Fig. 2. The form function modulus for scattering by a rigid sphere using the T-matrix method (lines). The
parameters selected in this case are all the same as those of Fig. 1 in Ref. 2.
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