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T -matrix evaluation of three-dimensional acoustic radiation forces on nonspherical objects
in Bessel beams with arbitrary order and location
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Acoustic radiation forces (ARFs) induced by a single Bessel beam with arbitrary order and location on a
nonspherical shape are studied using the T -matrix method (TMM) in three dimensions. Based on the radiation
stress tensor approach and the multipole expansion method for the arbitrary Bessel beam, the ARF expressions
are derived in terms of the incident and scattered beam shape coefficients independently with the corresponding
homemade code packages. Several numerical experiments are conducted to verify the versatility of the TMM.
The axial ARFs of several typical shapes are considered in the analysis, with the emphasis on the axial ARF
reversal and the corresponding physical mechanism. This study may guide the experimental setup to find negative
axial ARFs quickly and effectively based on the predicted parameters with TMM. Relatively elongated shapes
may be helpful for pulling forces in Bessel beams. Furthermore, the lateral ARFs for both convex and concave
nonspherical shapes are also investigated with different topological charges, cone angles, and offsets of the
particle centroid to the beam axis in a broadband frequency regime. A brief theoretical derivation of the incident
beam shape coefficients for the standing Bessel beams is also given. The present work could help to design the
acoustic tweezers numerical toolbox, which provides an acoustical alternative to the optical tweezers toolbox.

DOI: 10.1103/PhysRevE.99.063004

I. INTRODUCTION

Acoustic tweezers [1–4], an appropriate counterpart to
optical tweezers [5], could be used for levitation [6,7], pulling
forces [8–12], particle trapping [13,14], and even dynamic
controls [15,16] in the fields of microfluidics and life sciences.
Compared with optical tweezers, acoustic tweezers tend to
exert a larger force over larger length scales with the same in-
tensity, since the radiation force is proportional to the ratio of
the intensity to the velocity in the medium [3,17]. In general,
there are two main schemes to design acoustic tweezers: the
(quasi)standing wave scheme with dual beams [1,2,4] and the
single-beam structure [3]. Single-beam tweezers may be supe-
rior to general plane standing-wave tweezers in some respects,
for instance, single-beam tweezers can continuously pull or
push a particle over a large region, because there are no mul-
tiple equilibrium positions [10,17]. A negative radiation force
single-beam device could pull the target towards the source,
which is of interest in both acoustical [8–12,17] and optical
fields [18]. The physical mechanism is due to the asymmetric
scattering of the incident fields on the target such that the
scattering into the forward direction is relatively stronger than
the scattering into the backward direction [8–10,18,19]. This
is understood by the conservation of momentum and Newton’s
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third law regarding reaction force between the acoustic field
and the inside particle [19,20].

Beams having the local properties of acoustic Bessel beams
are candidates for single-beam tweezers, which have been ex-
amined in theoretical [8–10,21] and experimental approaches
[17,22]. The ordinary Bessel beam (OBB) possesses the ax-
ial maximum and azimuthal symmetry, while the helicoidal
Bessel beams (HBBs) have an axial null and azimuthal phase
gradient. Hefner and Marston conducted the experimental
demonstration for the acoustical vortices by using simple four-
panel piezoelectric transducers [23]. Recently, the transducer
arrays [17,24], active spiral transducer [25,26], diffraction
gratings [27], and metasurfaces [28] have been demonstrated
to produce the local Bessel beams, which coincides with the
theoretical or simulation results. These fabrication technolo-
gies facilitate the experimental studies of Bessel beams and
possible applications in the fields of particle manipulations.
In addition, the exact series solutions have been solved for
the axial acoustic radiation forces (ARFs) of spherical objects
in an on-axis incident Bessel beam for both the ordinary
[8,9] and helicoidal (vortex) [10,17] Bessel beams. The ARF
produced by a Bessel vortex beam has also been studied via
the optical theorem [29–33], which gives the relationship be-
tween the extinction and the scattering at the forward direction
of the beam’s plane wave components. However, it is still
necessary to develop efficient and versatile numerical models
to investigate the three-dimensional ARFs of particles with
different shapes and other complicated conditions.

To this end, the T -matrix method (TMM) is introduced to
the field of acoustic manipulations, which has been demon-
strated effective and very efficient for acoustic scattering
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[34] from spheroid [35–38], superspheroid [38,39], and finite
cylinder with endcaps [40,41]. These nonspherical (convex
or concave) shapes are very common to model the geome-
tries of particles in biomedical engineering (e.g., cells and
bacteria) and lab-chip technologies (e.g., drops with gravity
and fibers) in the context of acoustophoresis, which could
provide more accurate models and give a better prediction of
the particle motions than the spherical shape. It is noteworthy
that other numerical methods, such as the finite element
method [42,43], boundary element method [44–46], finite
volume method [47,48], lattice Boltzmann method [49,50],
and finite-difference time-domain method [51], are also em-
ployed to successfully solve the acoustic radiation force of
particles in fluid. Each numerical method has its own metrics.
However, for typical axisymmetric shapes, the TMM will
be a superior approach, since it will decrease the integral
over the geometrical surface (three dimensions) into the line
integral (two dimensions) and could save much computational
cost, leading to high efficiency in the simulation experiments
even at high frequencies [38,39]. Furthermore, based on the
radiation stress tensor approach [29,52] and the independent
derivations, the three-dimensional ARFs could be expressed
and calculated in terms of the incident and scattered beam
shape coefficients (see details below). Note that the transition
matrix need only calculate once for the scattered field and
is independent of the incident beams, making the TMM
even more efficient to calculate the forces on particles. It is
convenient to obtain the incident beam shape coefficients for
the ordinary and standing plane wave; however, this may be
challenging in the context of vortex beams, since the particle
may deviate the beam axis with an offset. For an ideal Bessel
beam of arbitrary topological charge and location, general
theoretical formulas of the incident beam shape coefficients
are derived based on the multipole expansion method [35] and
are also given by Zhang [53].

It is important to investigate the particle dynamics in
three dimensions with the on- or off-axis incidence, since
it could help the beam calibrate with the particle centroid
in experimental setups with higher frequency regimes. To
some extent, the numerical method is an alternative to direct
experimental approaches and more versatile than analytical
investigations. In this paper, several numerical experiments
are conducted based on the traditional T -matrix method with
the emphasis on nonspherical objects which are typical in
engineering practice and life sciences, such as the generalized
superspheroid and finite cylinder with endcaps which may be
used to model the biological cells or bacteria. This will extend
the previous theoretical studies of the axial ARF [8–10] and
numerical implementations of the off-axial ARF on a sphere
[11,54] to cases of an object with complicated shapes placed
in a Bessel beam with arbitrary location and order. Note
that few analytical solutions of the ARF on rigid spheroids
have been derived in the long-wavelength limit [55,56], which
has the potential for the Bessel beam illumination example.
The physical mechanism of the axial ARF reversal for non-
spherical shape is demonstrated by numerical experiments
and the corresponding parameter conditions are discussed.
In addition, the lateral and the axial ARFs for both convex
and concave nonspherical shapes are discussed with emphasis
on the dimensionless frequency, the cone angle of the Bessel
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FIG. 1. Schematic of an arbitrary 3D object in an ideal fluid
illuminated by a helicoidal Bessel beam (HBB) with arbitrary order
and location. The acoustic scattering in the forward half-space (red
solid arrows) is relatively stronger than the scattering in the backward
half-space (blue dashed arrows), leading to a negative ARF.

beam, and the offsets. The theoretical formulas of the Bessel
standing wave with arbitrary orders and offsets are also briefly
given with the numerical example.

II. THEORETICAL AND NUMERICAL MODELS

A. Radiation momentum stress tensor method

The ARFs come from the transfers of linear momentum be-
tween the acoustic fields and particles which could be induced
by the scattering or absorption. The radiation stress tensor
approach [29,52] is widely employed to compute the static ra-
diation force by integrating the time-averaged radiation stress
tensor over a far-field spherical surface S0. Consider a particle
with arbitrary shape S in an ideal fluid, as shown in Fig. 1; a
Bessel beam is incident with arbitrary topological charge and
location. Based on the momentum conservation, the radiation
stress tensor ST in the ideal fluid meets ∇ · 〈ST 〉 = 0. By
integrating ST over the particle surface S, the expression of
the ARF could be written as

F = −
∫∫

S
〈ST 〉 · dS = −

∫∫
S
〈L〉dS + ρ0

∫∫
S

dS · 〈uu〉,
(1)

where 〈L〉 is the time average of the Lagrangian density, ρ0

is the density of the surrounding fluid, and ρ0〈uu〉 describes
the average value of the flux of momentum density tensor.
The integral in the ARF expression on the particle surface S
could be transferred to the far-field standard spherical surface
S0 according to the Gaussian theorem, having

F =
∫∫

S0

〈L〉dS − ρ0

∫∫
S0

dS · 〈uu〉 . (2)
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Note that Eq. (2) could apply for the arbitrary-shaped
particle since the integral will, in fact, be conducted in a
standard spherical surface, which is very important for both
theoretical and numerical computations. For simplicity, the
time average of the Lagrangian density is divided into three
terms: the contribution of only the incident beam 〈Lii〉, only
the scattered field 〈Lss〉, and the interaction of the incident and
scattered fields 〈Lis〉, respectively:

〈Lii〉 = 1

2
ρ0ui · ui − p2

i

2ρ0c2
0

〈Lss〉 = 1

2
ρ0us · us − p2

s

2ρ0c2
0

〈Lis〉 = ρ0ui · us − pi ps

ρ0c2
0

, (3)

where c0 is the velocity in the fluid, ui,s are the incident and
scattered velocity vectors with ui,s = nui,s, n is the outward
unit normal vector, and pi,s are the first-order pressure of
the incident and scattered fields with the relationship pi,s =
ρ0c0ui,s, leading to the vanishing of 〈Lss〉. In addition, there
will be no transfer of linear momentum when the particle does
not exist in the fluid, making the terms related only to the
incident fields vanish:∫∫

S0

〈Lii〉dS − ρ0

∫∫
S0

dS · 〈uiui〉 = 0 . (4)

Inserting Eqs. (3) and (4) into (2), the ARF expression in
terms of the velocity and pressure scalar quantities is

F = −
∫∫

S0

〈
pi ps

ρ0c0
2

〉
ndS − ρ0

∫∫
S0

〈usus〉ndS − ρ0

×
∫∫

S0

〈usui〉ndS . (5)

By using the relations between the velocities (pressures)
and complex velocity potentials for both the incident and far-
field scattered fields, such as ui,s = ∇�i,s, pi,s = iωρ0�i,s,
and ui,s = n · ∇�i,s = ∂�i,s/∂r (far-field approximation), the
expression of ARF in terms of velocity potentials could be

F = 1

2
ρ0k2

∫∫
S0

Re

{(
i

k

∂�i

∂r
− �i

)
�s

∗ − �s�s
∗
}

ndS ,

(6)

where k is the wave number, * denotes complex conjugation,
�i, �s denote the incident and scattered complex velocity
potentials, and Re means the real part of a complex number.

From the view of numerical computation, the TMM is an
efficient tool to compute acoustic scattering on nonspherical
objects. At present, this method will be further extended for
ARFs, which is closely related to the incident and scattered
fields. In the TMM formulation, the velocity potentials of the
incident and scattered fields could be expanded as [35–41]

�i = �0

∑
nm

anm jn(kr)Ynm(θ, ϕ), (7)

�s = �0

∑
nm

snmh(1)
n (kr)Ynm(θ, ϕ), (8)

where anm and snm are the incident and scattered coefficients
of expansion (others prefer to call them the incident and
scattered beam shape coefficients), �0 is the beam amplitude,
and jn(kr), h(1)

n (kr) are the spherical Bessel and Hankel
functions of the first kind, respectively. In the far field (kr →
∞), the following asymptotic expressions of the spherical
Bessel function and Hankel function of the first kind are used
respectively as jn(kr) � i−(n+1)eikr/2kr + in+1e−ikr/2kr and
h(1)

n (kr) � i−(n+1)eikr/kr. Ynm(θ, ϕ) denotes the normalized
spherical harmonics. The transition relationship between anm

and snm is given by snm = Tnm,nm′anm′ , where Tnm,n′m′ denotes
the transition matrix, which depends only on the properties
of the object, including the geometrical shape, the material
composition, and the boundary conditions at the interface,
and otherwise is independent of the sources. For the exact
series solution, the transition matrix could be considered as
T =(sn − 1)/2 without dependence on the azimuthal index m
for spheres, which is, in fact, the partial-wave coefficients an

with the scattering coefficients sn known for a wide variety of
spheres [57] and may be taken as a special case for the TMM.
Varadan et al. also gave the explicit expressions of the tran-
sition matrixes for acoustic soft, hard, and fluid sphere [58],
which all coincide with those obtained with the exact series
solutions. It is noteworthy that both the TMM [35–41] and the
series solution for scattering by a sphere can be truncated at
appropriate indices (Nmax) in computations, which make the
asymptotic expressions of scattered fields convergent in the
far field. After using the far-field asymptotic expressions for
the scattered velocity potentials and implementing several al-
gebraic manipulations (including the recursion relation of the
spherical Bessel function and its derivative jn′ = (n/kr) jn −
jn+1 with the variable kr), the ARF could be given briefly in
terms of the incident and scattered beam shape coefficients,
such that

F = 1

2
ρ0k2�0

2
∫∫

S0

Re

{
−

∑
nm

∑
n′m′

in′−n

(kr)2 (anm + snm)sn′m′ ∗

×Ynm(θ, ϕ)Yn′m′ ∗(θ, ϕ)

}
ndS, (9)

which could be applied for radiation force with arbitrary
orientation and agrees with Eqs. (7) and (9) in Silva’s work
[59]. The differential surface area is dS = r2 sin θdθdϕ. The
dimensionless ARF Y is introduced to coincide with the exact
solutions for spheres with the relationship as

F = πr2
0 I0c−1

0 Y, (10)

where I0 = (ρ0c0/2)(k�0)2, and r0 is the characteristic di-
mension of the target. The outward unit normal vector is
n= sin θ cos ϕex + sin θ sin ϕey + cos θez in Cartesian ordi-
nates. Hence,

Y = − 1

π (kr0)2

∫∫
S0

Re

{∑
nm

∑
n′m′

in′−n

(kr)2 (anm + snm)sn′m′ ∗

×Ynm(θ, ϕ)Yn′m′ ∗(θ, ϕ)

}

× (sin θ cos ϕex + sin θ sin ϕey + cos θez)r2 sin θdθdϕ.

(11)
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The integration could be simplified easily by using Eqs.
(15.150–152) in Ref. [60] for the integration involving the
spherical harmonics and circular functions, with the detailed

derivations given in Appendix A. Finally, the axial and lateral
components of the dimensionless ARFs could be derived
independently as

Yx = 1

2π (kr0)2 Im

{∑
nm

(anm + snm)
(−sn+1,m+1

∗bn+1,m − sn−1,m+1
∗bn,−m−1 + sn+1,m−1

∗bn+1,−m + sn−1,m−1
∗bn,m−1

)}
, (12)

Yy = 1

2π (kr0)2 Re

{∑
nm

(anm + snm)
(
sn+1,m+1

∗bn+1,m + sn−1,m+1
∗bn,−m−1 + sn+1,m−1

∗bn+1,−m + sn−1,m−1
∗bn,m−1

)}
, (13)

Yz = 1

π (kr0)2 Im

{∑
nm

(anm + snm)(sn+1,m
∗cn+1,m − sn−1,m

∗cnm)

}
, (14)

where the coefficients are bn,m = [(n + m)(n + m + 1)/
(2n − 1)(2n + 1)]1/2 and cn,m = [(n + m)(n − m)/(2n − 1)
(2n + 1)]1/2. As observed from Eqs. (12)–(14), the three-
dimensional ARFs could be obtained once the scattered beam
shape coefficients are calculated from the incident coeffi-
cients through various methods, such as the partial-wave
series solution, the T -matrix method, and other kinds of
theoretical and numerical methods. It is noteworthy that the
theoretical expressions of the axial ARF from spherical shapes
in the zeroth- and first-order Bessel beams are derived in
Refs. [8–10] and three-dimensional ARFs for arbitrarily lo-
cated elastic spheres in Ref. [11].

B. A brief review of incident beam shape coefficients
of arbitrary Bessel beams

Consider the Bessel beam is placed in an arbitrary location
relative to the particle, as shown with the coordinate system
in Fig. 2. The origin of the Oxyz system O coincides with
the particle centroid, while the origin of the Bessel beam OB

in the OBx′y′z′ system coordinates is located at (x0, y0, z0) in
Oxyz. The velocity potential of a Bessel beam with arbitrary
topological charge M and location could be expressed as

�B = �0iMeikz (z−z0 )JM (krR′)eiMϕ′
, (15)

where R′ =
√

(x − x0)2 + (y − y0)2 and ϕ′ = tan−1

[(y − y0)/(x − x0)] in Fig. 2 describe the radius and azimuthal
angle of the field point (x, y, z) in the OBx′y′z′ system.

x
x’

z’

z

y
y’

O (0,0,0)

OB(x0,y0,z0)

(x,y,z)

R
0

R

R0

r

(x,y,0)

FIG. 2. The coordinate relationship of the particle centroid
[O(0, 0, 0)] and beam origin [OB(x0, y0, z0)]. (x, y, z) is an arbitrary
field point.

kz = k cos β and kr = k sin β are the axial and transverse
component of the wave number k = ω/c0, with β the cone
angle of the Bessel beam and ω the angular frequency. By
using the addition theorem for the Bessel functions and the
exact solution to the integral on the hybrid product, including
the associated Legendre, Bessel, and exponential functions in
spherical coordinates as∫ π

θ=0
dθ sin θeikr cos β cos θPm

n (cos θ )Jm(kr sin β sin θ )

= 2in−mPm
n (cos β ) jn(kr), (16)

the incident beam shape coefficients of the Bessel beam with
arbitrary topological charge and location could be derived
[35]:

anm = 4πξnmin−m+MPm
n (cos β ) × e−ikzz0 Jm−M (σ0)e−i(m−M )ϕ0 ,

(17)

with the normalized coefficients ξnm = [(2n + 1)(n − m)!]1/2

[4π (n + m)!]−1/2, σ0 = krR0, R0 = (x2
0 + y2

0 )1/2, and ϕ0 =
tan−1(y0/x0). When the offset is (x0, y0, z0) = (0, 0, 0),
Eq. (17) will degenerate into the on-axis incidence situation
of the Bessel beam.

The scattered beam shape shape coefficients snm are still
missing to calculate the three-dimensional ARFs based on
Eqs. (12)–(14). In this work, a versatile TMM (which gives
a linear relationship between the incident and scattered beam
shape shape coefficients as snm = Tnm,n′m′an′m′) is introduced
to the field of radiation forces. Note that the TMM in the
acoustic field mainly considers the scattering field in under-
water or elastic mediums instead of the further consideration
on the acoustic radiation forces and torques. The present work
is inspired to take advantage of this method (as discussed in
the Introduction), which is very efficient for both spherical
and aspherical shapes with rotational symmetry and only
needs to be computed once for the transition (T ) matrix as
shown in Appendix B. The TMM makes it possible to employ
nonspherical shapes to model the real interesting particles in
life science and engineering in a more exact manner.

III. NUMERICAL RESULTS AND DISCUSSION

A. Validation of T -matrix method for acoustic radiation force

To verify the correctness of the TMM, several examples
are implemented for a rigid sphere in the ordinary (OBB, blue
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(b)

(d)(c)

zO
s

a
b

r

β

Wave vector

Wave vector

O
x0

(a)

FIG. 3. Validations of the axial ARFs calculated using the TMM compared with those from the exact solutions for a rigid sphere (a = b)
in a Bessel beam based on the multipole expansion method. (a) On-axis incidence for with the orders M = 0 (blue dashed line) and M = 1
(red solid line). (b) Off-axis incidences with the order M = 0 and cone angle β = 30◦. (c) 2D schematic of a “peanut-shaped” generalized
superspheroid placed on the axis of a Bessel beam. (d) Convergence tests for a rigid generalized superspheroid with aspect ratio a/b = 4 for
on-axis and off-axis incidences with the order of Bessel beam M = 1.

dashed line) and first-order helicoidal Bessel beams (FHBB,
red solid line), as shown in Fig. 3(a). Both cases are under
on-axis incidence. The axial ARFs Yz for the OBB case are
extracted from Fig. 2 of Ref. [8], with the half-cone angle
β = 60◦ [blue circles in Fig. 3(a)], while those for the FHBB
are extracted from Fig. 1 of Ref. [10] with β = 66.42◦ [red
triangles in Fig. 3(a)]. The reference results are calculated
with the exact series solutions (partial-wave series method).
As shown in Fig. 3(a), all the TMM results agree well with
the series solutions. In addition, the axial ARFs Yz for a rigid
sphere located off the OBB axis have been calculated by
TMM and partial-wave series method based on the multipole
expansion method, with the references given by the boundary
element method (Fig. 11 in Ref. [46]). The cone angle is
β=30◦, dimensionless frequency ka = 1, and x0 describes the
offset with the length unit in meters. As shown in Fig. 3(b), the
results from the TMM and partial-wave series coincide with
each other and agree well with those from the boundary ele-
ment method. Moreover, the TMM has been demonstrated for
the scattering from spheroid [36–39], finite cylinder [40,41],
in plane wave, and Bessel beams, and hence it could be
applied for the radiation forces for these shapes convinc-
ingly, provided that the incident and scattered coefficients
of expansion are computed correctly [see Eqs. (12)–(14)].
It is noteworthy that the incident and scattered coefficients
(occurring as column vectors in our numerical computations
with the TMM) will be assembled in the same way for the
radiation force. This will further verify the effectiveness of

the present derivation of the ARF using the TMM and the
corresponding homemade codes.

Furthermore, the convergence curves of the TMM are dis-
cussed in terms of the axial ARF versus a different truncation
number Nmax for a biconcave shape [see Fig. 3(c) for the
two-dimensional (2D) schematic, taking the “peanut-shaped”
generalized superspheroid as an example]. The definitions of
a and b for the generalized superspheroid in Fig. 3(c) are
analogous with those for a spheroid [36]. For the rotational
symmetry of the generalized superspheroid, the distance of
the surface field to the origin (center of the object) could be
expressed as rS (θ )=(a2cos2θ + b2sin2θ )1/2, where θ is the
polar angle of the surface field point, which are used by
implementing an integral over the object surface to obtain
the transition matrix Tnm,n′m′ relating the incident coefficients
to the scattered coefficients of expansion. Note that due to
the rotational symmetry, the integral involving the term rS (θ )
over the surface is only dependent on the polar angle and
is otherwise independent of the azimuthal angle. Figure 3(d)
depicts the axial ARFs of a rigid “peanut-shaped” generalized
superspheroid with the aspect ratio a/b = 4. The incident
wave is a first-order Bessel beam with an arbitrary cone
angle (here we choose β = 66.42◦), and the dimensionless
frequency kr0=8, where r0 is the characteristic length of the
nonspherical object. Under this circumstance, r0 is the larger
value between a and b. The on-axis incidence is described by
the blue solid line with triangles, while the off-axis case with
the offset (x0, y0) = (0.1π/kr0, 0.1π/kr0) is described by the
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(a)

(d)(c)

(b)

(e)

β=66.42

β=80

β=30

β=66.42

β=80

β=30

β=66.42

β=80

β=30

β=66.42

β=80

β=30

Yz=0

Yz=0

kr0=1.8 (Negative ARF)

kr0=2.1 (Positive ARF)

FIG. 4. (a) The axial ARF of the rigid oblate spheroid with aspect ratio a/b = 1/2 with r0 = b (a < b). The order of the Bessel beam is
M = 1 with cone angles β = 30◦, 66.42◦, and 80◦. (b) Like panel (a) except that the particle is the prolate spheroid with a/b = 2 and r0 = a
(a > b). Panels (c) and (d) depict the enlarged view of the negative ARF region for the rigid oblate and prolate spheroids, respectively. (e)
Angular dependence of the scattered form functions vs the scattered polar angle θs for the oblate spheroid in the first-order HBB with β=80◦

for kr0 = 1.8 [red solid line, corresponding to the red solid pentagram in (c)] and kr0 = 2.1 [blue dash line, corresponding to the blue solid
pentagram in (c)]. The black dotted line denotes the direction of the incident wave vector with θs = β. Negative axial ARFs exist when the
scattering in the forward hemisphere is relatively stronger than that in the backward hemisphere.

red solid line with circles. (x0, y0) are the translational coor-
dinates of the beam center with respect to that of the object
(i.e., the origin of the considered coordinates). A convergence
test for a rigid finite cylinder with spherical endcaps has been
conducted in Ref. [40] and is hence omitted for brevity. All
these curves converge very fast versus Nmax, which further
demonstrates the efficiency of the present TMM for ARF.
In the following computations, the truncation number is set
as Nmax = 2 + Int(8 + kr0 + 4.05 3

√
kr0), which could ensure

the accuracy and convergence of the present computations
according to our tests. The symbol Int means to round the fol-
lowing number towards the positive infinity. Both the accuracy
and convergence tests and related discussions provide enough
validation of the T -matrix method for acoustic radiation force.

B. Axial ARF reversal and physical mechanism

Two numerical experiments were conducted with the
emphasis on the negative ARFs exerted on the rigid oblate
and prolate spheroids in Bessel beams and the related physical
mechanisms. The Neumann boundary condition was applied
throughout for objects including spheroids, generalized
superspheroids, and finite cylinders in the following. In this
section, the rotational axis of the rigid spheroid coincides
with the incident beam axis. Note that the relative orientation
of the spheroid to the beam axis changes the scattering field
from the particle, leading to the alteration of the transfer of
linear momentum from the incident acoustic beam to the
particle. The Yz of the oblate and prolate spheroids versus
the dimensionless frequency kr0 in the FHBB are depicted
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FIG. 5. Negative axial ARF “islands.” The 2D plots depict only the negative ARFs in the (kr0, β ) domain with colors, while the white
domain stands for the non-negative ARFs. (a) The rigid generalized superspheroid with a/b = 2 under the on-axis incidence of the OBB (order
M = 1). (b) Like panel (a) except that M = 1. (c) Like panel (a) except that M = 2. (d) Like panel (a) except that M = 3. (e) Like panel
(b) except that a/b = 3. (f) Like panel (b) except that a/b = 4. (g) Like panel (c) except that a/b = 1/2. r0 = b since a < b in this case. This
shape may model a red blood cell shape with a dip in the center. Panels (h–l): The 2D negative ARF islands for a capsule shape (l=2b) with
r0 = l . (h–j) are for the first-order (M = 1) HBB with (h) on-axis and (i, j) off-axis incidence. The offsets (x0, y0 ) in the unit of meters are
(0, 0), (0.1π/kr0, 0.1π/kr0), and (0.5π/kr0, 0.5π/kr0), respectively for (h–j). (k) Like panel (i) except that M = 2. (l) Like panel (j) except
that M = 2.

in Fig. 4(a) for a/b = 1/2 and Fig. 4(b) for a/b = 2, with
β = 30◦, 66.42◦, and 80◦. a is the polar radius and b is the
equatorial radius [36]. The ranges, including the negative
ARFs, in panels (a) and (b) are zoomed in and presented in
panels (c) and (d) of Fig. 4, respectively. It implies that a
large β (sufficiently nonparaxial) may facilitate the pulling
force since the negative ARFs appear for both cases with
β = 80◦ in the considered region, while it fails for β = 30◦.
Specifically, negative ARFs are impossible for plane waves
(β = 0◦) with passive spheres [19,61]. The term in Eq. (21) of

Ref. [19] [Fz = Pscac−1(cos β − 〈cos θs〉) without absorption]
including cos β represents the momentum removed from the
incident Bessel beam (which induces positive ARFs), and
the term including −〈cos θs〉 gives the axial projection of
the momentum transport associated with the scattered field
(which may induce positive or negative ARFs), where θs is
the polar angle of the field point with respect to the positive z
direction [see Fig. 3(c)].

The schematic of Fig. 1 qualitatively describes how to
produce a negative ARF on an arbitrary object. The red solid
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FIG. 6. Three-dimensional ARFs vs dimensional frequency kr0 and cone angle β. The first two columns describe the transverse ARFs
while the third is the axial ARFs. A rigid generalized superspheroid with aspect ratio a/b = 2 under the (a–c) on-axis and (d–f) off-axis
incidences of the first-order (M = 1) HBB. The offset is set as (x0, y0 ) = (0.5π/kr0, 0.5π/kr0). The third row is as same as the second except
that the particle is a smoothed rigid spheroid with a/b = 2.

arrows in the forward hemisphere denote the total scattered
fields with the forward axial components, while the blue
dashed arrows in the backward hemisphere represent the
total scattered field with the backward axial components. The
resultant forward component of all the scattering denoted by
the red solid arrows is relatively larger than the resultant
backward component of all scattering denoted by the blue
dashed arrows. To further reveal the physical mechanism
quantitatively, the angular dependences of the scattered form
functions versus the scattered polar angle θs for the oblate
spheroid in the FHBB with β = 80◦ are plotted in Fig. 4(e)
with kr0 = 1.8 [marked as the red pentagram in Fig. 4(c)]
and kr0 = 2.1 [marked as the blue pentagram in Fig. 4(c)].
The black dotted line denotes the direction of the incident
wave vector (i.e., θs=β). As shown in the enlarged view in
Fig. 4(c), the ARF is negative at kr0 = 1.8 and otherwise
positive at kr0 = 2.1. It can be observed in Fig. 4(e) that for
kr0 = 1.8, the scattering dominates in the forward directions
with θs < β, resulting in the negative ARF; for kr0 = 2.1,
the scattering in the backward direction is relatively stronger
than that in the forward, leading to the positive ARF. To
better understand the relationship between the axial ARFs and
two-dimensional scattering patterns, the scattering patterns of
form functions for both the oblate and prolate spheroids in
the first-order HBB (M = 1) with cone angle β = 80◦ are
given versus different dimensionless frequencies ranging from

kr0 = 10 to kr0 = 0.2 (see Movie 1 in Supplemental Material
[62]). Note that at high frequencies, the forward scattering is
comparable with the scattering in the backward hemisphere;
however, the positive axial force induced by the incident wave
(Pscac−1 cos β) is important and leads to the resultant axial
force being positive.

C. Pulling forces on typical nonspherical objects

After giving an explicit explanation of the physical mech-
anism for the negative ARF, the emphasis will be put on
the parameter conditions for exerting the pulling force on
several typical objects, which may have potential applica-
tions in acoustophoresis, surface chemistry, atomic physics,
ultrasonic medicine, reduced gravity environment, and so on.
Panels (a)–(d) of Fig. 5 study the influence of the topological
charges (orders) of the Bessel beams for a “peanut-shaped”
generalized superspheroid with a/b = 2 for an on-axis inci-
dence. The 2D plots depict the negative ARF “islands” in
the (kr0, β ) domain and the white domains stand for the
positive ARFs (not shown numerically). The islands of the
negative ARF are different between the OBB and HBBs, since
panel (a) has two subregions, while panels (b)–(d) have one
subregion under consideration. For the HBBs, the frequencies
of the negative ARF seem to increase with the increase of
the beam order. To discuss the parameter of the aspect ratio,
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FIG. 7. Three-dimensional ARFs (first to third columns: Yx , Yy, and Yz) vs transverse offset x0 and y0 for Bessel beam with different orders:
(a–c) OBB (M = 0), (d–f) first-order (M = 1) HBB, and (g–i) second-order (M = 2) HBB.

the 2D plots of a generalized superspheroid with a/b = 3
and a/b = 4 in the FHBB are given in panels (e) and (f)
[compared with panel (b)], respectively. These results imply
that the distributions of the negative ARF depend on both the
beams and objects. However, the central frequencies do not
change greatly with the aspect ratios. The oblate case for the
generalized superspheroid is also described in panel (g). This
shape is like some biological cells, the red blood cell with a
dip in the center, for example. In biomedicine or a reduced
gravity environment, the finite cylinder shapes with endcaps
are helpful to model several kinds of bacteria or space shuttle,
which will be discussed as follows. Capsule-shaped (cylinder
with spherical endcaps [40,41]) objects are investigated for
both the on-axis [panel (h)] and off-axis incidences [panels
(i)–(l)]. The aspect ratio is l/b = 2 for all the cases, where
l is the half length of the total cylinder and b is the radius
of the cylindrical portion [40]. Panels (h)–(j) are for FHBB
while panels (k) and (l) are for second-order HBB (M = 2).
The beam axis is shifted off the axis of the object in the
transverse plane as (0.1π/kr0, 0.1π/kr0) for Figs. 5(i) and

5(k) and (0.5π/kr0, 0.5π/kr0) for Figs. 5(j) and 5(l). Note
that there is no need for the extra computational cost for the
off-axis incidence compared with the on-axis case [35]. By
comparison, the area of the negative force island decreases
with a larger offset with respect to the object’s center for
both the FHBB and second-order HBB. It also implies that
the negative ARFs occur at higher frequencies with a larger
offset by comparing Fig. 5(i) with Fig. 5(j) [or Fig. 5(k)
with Fig. 5(l)]. Unfortunately, quantitative results for the
orientation dependence of the negative force are not available,
although it is known that to induce a negative axial ARF the
scattering in the forward hemisphere needs to be stronger than
scattering in the backward hemisphere [29].

One of the most important results concerns the extent of the
first-order HBB negative ARF regions evident in Figs. 5(b)
and 5(h), where the cone angle β can be as small as 54 de-
grees. For fixed rigid spheres on the axis of a first-order HBB,
it has long been known that conditions can be found giving
negative axial ARF [8,10]. The smallest value of β for a
first-order HBB to produce negative ARF on a rigid sphere
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is known to be β of approximately 63 degrees. Inspection of
Figs. 5(b) and 5(h) shows that for an appropriately elongated
generalized superspheroid [Fig. 5(b)] and capsule [Fig. 5(h)]
the associated values can be as small as 54 and 55 degrees,
respectively. This suggests those shapes of elongated objects
can be especially favorable for producing negative axial ARF
in first-order HBB.

D. Three-dimensional ARFs for typical nonspherical objects

The three-dimensional ARFs (from the first to third col-
umn) of typical concave and convex shapes are investigated
versus the dimensionless frequencies kr0, the cone angle of
the Bessel beam β, and the transverse offset (x0, y0), as shown
in Fig. 6. The first-order HBB is considered with both on- (first
row) and off-axis incidences (second and third rows). The
offset is set as (x0, y0) = (0.5π/kr0, 0.5π/kr0). The general-
ized superspheroid with a/b = 2(first and second rows) is dis-
cussed at first, and it could be found that the transverse ARFs
vanish for the on-axis incidence because of the rotational
symmetry of both the incident Bessel beam and geometric
shape. However, for the off-axis incidence, the transverse
ARFs will exist [see Figs. 6(d) and 6(e)]. To investigate the
effect of the geometric shapes on the three-dimensional ARFs,
the ARFs of a smoothed spheroid with the same aspect ratio
a/b = 2 and offset are given in the third row of Fig. 6. By
comparison of the ARFs in the second and third rows, the
main profiles of ARFs in the two-dimensional (kr0, β ) regions
are similar for the same aspect ratio and offset. However,
there are some “jumps” in the ARFs patterns versus (kr0, β )
at relatively high frequencies (e.g., kr0 � 4.75). This is due
to the fact that the scattering patterns will be more easily
influenced when the aspect of the geometric shape comparable
with the wavelength (i.e., relatively high frequency), which
is further demonstrated by the similar ARFs patterns at low
frequencies, see the second and third rows.

In addition, the three-dimensional ARFs of the generalized
superspheroid with a/b = 2 are studied versus the offset x0

and y0 in ordinary (M = 0), first-order (M = 1), and second-
order (M = 2) Bessel beams, as depicted in Fig. 7. The range
of the offset is −1 � x0 � 1 and −1 � y0 � 1, with increase
�x0(�y0) = 0.02. The incident dimensionless frequency is
kr0 = 10 and cone angle β = 30◦. As observed in the first
(Yx) and second (Yy) columns, the transverse ARFs versus
the offsets (x0, y0) have a rotational symmetry with the angle
of π/2. This could be easily understood by the reciprocity
of transverse ARFs in x and y directions. Furthermore, the
axial ARFs of OBB and HBBs are different, such that the
maximum value occurs at the axis for the OBB while at
the concentric ring for the HBBs, which depends on the
structure profiles of the Bessel beams. The three-dimensional
ARFs could be used to discuss the trapping stability and the
dynamic motions (axial translocation and orbital rotation
around the beam axis) of particles in the Bessel beams. To
further understand the three-dimensional ARFs of the gen-
eralized superspheroid versus different dimensional frequen-
cies and transverse offsets, the ARFs are given when the
superspheroid is placed in the ordinary (M = 0), first-order
(M = 1), and second-order (M = 2) Bessel beams, respec-
tively, with a fixed cone angle β = 30◦ and frequencies

FIG. 8. Axial ARFs of a rigid sphere in a standing or traveling
Bessel beam with a fixed cone angle β = 60◦.

ranging from kr0 = 0.2 to kr0 = 10 (see Movie 2 in the
Supplemental Material [62]). The transverse forces are given
in the form of arrow patterns, while the axial force is placed
in the background with the color maps.

E. Axial ARFs of rigid spheres in standing Bessel waves

The incident beam shape coefficients of a traveling Bessel
beam are given theoretically in Eq. (17) [35], which could be
easily extended for the standing Bessel waves. The velocity
potential �SB of a standing Bessel beam could be written as

�SB = �0iM[Aeikz (z−z0+h) + Be−ikz (z−z0+h)] × JM (krR′)eiMϕ′
,

(18)

where h is the axial distance between the particle centroid and
nearest pressure antinode, and A and B are the amplitudes of
the two beams with opposite propagation. To keep the energy
of the standing fields the same as the traveling Bessel beam,
one has A2 + B2 = 1, with B = αA and A = 1/

√
1 + α2. Con-

ducting the similar derivation of the beam shape coefficients
of a single Bessel beam, the theoretical derivations for the
standing Bessel beams could be obtained as

anm = 4πξnm[Aeikz (−z0+h) + Be−ikz (−z0+h)(−1)n−m]

× in−m+MPm
n (cos β )Jm−M (σ0)e−i(m−M )ϕ0 . (19)

Both the axial ARFs of a rigid sphere in standing
(α = 1) and traveling (α = 0) Bessel beams with differ-
ent orders (M = 0, 1, 2, and 3) are calculated versus the
dimensional frequency ka with a fixed cone angle β =
60◦. As observed in Fig. 8, axial force curves in stand-
ing Bessel waves show intuitive oscillation characteristics
versus the dimensionless frequency, similar to the plane
standing waves, which are different from those in trav-
eling Bessel beams. However, the fabrication setups for
Bessel beams and calibration of two counterpropagating
Bessel beams will be challenging in experimental and applied
investigations.
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IV. CONCLUSIONS

Computation of three-dimensional acoustic radiation
forces on objects with complex geometrical shapes and
boundary conditions is a challenging topic in engineering
applications. Previous derivations of the acoustic radiation
pressure are based on the long-wavelength approximation
[63–65], which has the limitation that the particle size is
much smaller than the acoustic wavelength. Recently, the
partial-wave series solution has been introduced to study the
ARF in the context of a Bessel beam without the limitation
of computational frequencies. However, this exact solution
may be restricted to certain shapes [8–10]. The T -matrix
method is quite helpful for typical objects in engineering and
is especially efficient for shapes with rotational symmetry. In
addition, the TMM could be employed for scattering problems
involved in a waveguide [66] or multiple scattering [67]
(including objects of multilayers and/or arbitrary numbers),
which could be further extended for the ARFs based on the
present work. The present numerical experiments demonstrate
the effectiveness of the TMM to calculate the ARFs for several
typical shapes, and the negative axial ARFs are obtained
under certain conditions with the corresponding physical
mechanisms. The TMM is very versatile for both spherical
and nonspherical shapes with different material composition
[34–41,58] once the geometrical shape functions could be
given explicitly, providing an alternative to theoretical and
experimental approaches. Other numerical methods, such as
the finite volume method (FVM) [47,48], the (modified) fi-
nite element method (FEM) [68,69], the boundary element
method (BEM) [44–46], the finite-difference time-domain
method (FDTD) [51], and methods based on the ray acoustics
approach [70] and the perturbation theory [71], may combine
with the present derivation to provide more choices for the
computations of ARFs in Bessel beams. The TMM can be
also used to calculate the acoustic radiation torques [72],
which has been implemented in optics with the TMM [73]

for a Gaussian beam incidence [74] by using the sums of
products of the expansion coefficients for the integrals of the
angular momentum fluxes [75]. The design of the acoustic
tweezers numerical toolbox will benefit from the present work
as similar to that in optics [74]. It is anticipated that the three-
dimensional ARFs could be obtained immediately once the
scattered coefficients could be calculated according to a cer-
tain incident wave. The dynamic motions could be obtained
for the axial translocation and orbital rotation around the beam
axis. The long nonspherical shape may be especially favorable
for producing negative axial ARFs in Bessel beams, which
is potential in the fields of microfluidics and life sciences.
A brief theoretical derivation of the beam shape coefficients
for the standing Bessel beams is given with comparisons of
axial ARFs in both standing and traveling beams, which may
provide more possibilities for the particle manipulations with
vortex beams.
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APPENDIX A: DETAILED DERIVATIONS OF
THREE-DIMENSIONAL ARFs

To conduct the integrals of products including spherical
harmonics and trigonometric functions over the solid angle in
Eq. (11), the following formulas should be introduced based
on Eqs. (15.150)–(152) in Ref. [60] for the three-dimensional
dimensionless ARFs Yx, Yy, and Yz, respectively:

∫ 2π

0

∫ π

0
Ynm(θ, ϕ)Yn′m′ ∗(θ, ϕ)sin2θ cos ϕdθdϕ

= −1

2
(bn+1,mδm′,m+1δn′,n+1 − bn,−m−1δm′,m+1δn′,n−1 − bn+1,−mδm′,m−1δn′,n+1 + bn,m−1δm′,m−1δn′,n−1), (A1)∫ 2π

0

∫ π

0
Ynm(θ, ϕ)Yn′m′ ∗(θ, ϕ)sin2θ sin ϕdθdϕ

= i

2
(bn+1,mδm′,m+1δn′,n+1 − bn,−m−1δm′,m+1δn′,n−1 + bn+1,−mδm′,m−1δn′,n+1 − bn,m−1δm′,m−1δn′,n−1), (A2)∫ 2π

0

∫ π

0
Ynm(θ, ϕ)Yn′m′ ∗(θ, ϕ) sin θ cos θdθdϕ = (cn+1,mδm′,mδn′,n+1 + cn,mδm′,mδn′,n−1), (A3)

where δ is the Kronecker delta function. Substituting Eqs. (A1)–(A3) into the three components in Eq. (11), the explicit
expressions are obtained as Eqs. (12)–(14) with the corresponding coefficients therein.

APPENDIX B: EXPLICIT EXPRESSION OF TRANSITION (T ) MATRIX

The incident and scattered beam shape coefficients are related by the transition matrix, depending on the geometric shape,
material composition, and boundary conditions at the interface of the particle. For a rigid particle with rotational symmetry, the
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T matrix could be calculated as T = −ReQQ−1, with the element of the Q matrix derived as [36]

Qσσ ′
nm,n′m′ =

∫ π

0
ξn′m′ jn′ (kr)Pm′

n′ (cos θ )ξnm

[
∂h(1)

n (kr)

∂r
Pm

n (cos θ ) − rθ

r2
h(1)

n (kr)
∂Pm

n (cos θ )

∂θ

]
r2 sin θdθ

×
∫ 2π

0

(
cos m′ϕ
sin m′ϕ

)(
cos mϕ

sin mϕ

)
dϕ, (B1)

where r(θ ) is the geometric shape function and rθ = dr/dθ is the derivate of r(θ ) with respect to the polar angle θ on the
particle surface. Further details and simplified methods can be found in Refs. [36,40]. In fact, the Q matrix can be calculated for
an arbitrary shape from a theoretical point of view; however, there can be severe numerical difficulties in the general situation.
The TMM is quite efficient for rotational shapes, as demonstrated in the literature over recent decades.
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