
HAL Id: hal-03329965
https://hal.science/hal-03329965v1

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph rewriting rules for RDF database evolution:
optimizing side-effect processing

Jacques Chabin, Cédric Eichler, Mirian Halfeld Ferrari, Nicolas Hiot

To cite this version:
Jacques Chabin, Cédric Eichler, Mirian Halfeld Ferrari, Nicolas Hiot. Graph rewriting rules for
RDF database evolution: optimizing side-effect processing. International Journal of Web Information
Systems, 2021, 17 (6), �10.1108/IJWIS-03-2021-0033�. �hal-03329965�

https://hal.science/hal-03329965v1
https://hal.archives-ouvertes.fr

Graph Rewriting Rules for RDF Database Evolution:

Optimizing Side-Effect Processing

Jacques Chabin1, Cédric Eichler2, Mirian Halfeld-Ferrari1, and Nicolas Hiot1,3

1Université d’Orléans, INSA CVL, LIFO EA, 45100 Orléans, France
mail: {jacques.chabin,mirian}@univ-orleans.fr, nicolas.hiot@etu.univ-orleans.fr

2INSA CVL, Université d’Orléans, LIFO EA, 18022 Bourges, France
mail: cedric.eichler@insa-cvl.fr

3Ennov Paris (Siège), 149 avenue de France, 75013 Paris, France

Abstract

Purpose. Graph rewriting concerns the technique of transforming a graph; it is thus natural to
conceive its application in the evolution of graph databases. The paper proposes a two-step frame-
work where (i) rewriting rules formalize instance or schema changes, ensuring graph’s consistency
with respect to constraints, and (ii) updates are managed by ensuring rule applicability through
the generation of side-effects: new updates which guarantee that rule application conditions hold.
Design/methodology/approach. The paper proposes SetUpndopt, a theoretical and applied frame-
work for the management of RDF/S database evolution on the basis of graph rewriting rules. The
framework is an improvement of SetUp which 1) avoids the computation of superfluous side-effects
and 2) proposes, via SetUpndopt, a flexible and extensible package of solutions to deal with non-
determinism.
Findings. The paper shows graph rewriting into a practical and useful application which en-
sures consistent evolution of RDF databases. It introduces an optimised approach for dealing
with side-effects and a flexible and customizable way of dealing with non-determinism. Experi-
mental evaluation of SetUpND

opt demonstrates the importance of the proposed optimisations as they
significantly reduce side-effect generation and limit data degradation.
Originality. SetUpopt originality lies in the use of graph rewriting techniques under the closed
world assumption to set an updating system which preserves database consistency. Efficiency is
ensured by avoiding the generation of superfluous side-effects. Flexibility is guaranteed by offering
different solutions for non-determinism and allowing the integration of customized choice functions.

1 Introduction

This paper focus on the application of graph rewriting in the evolution of graph databases. It shows
the utility of this formal tool into a practical and useful application, by proposing a framework
which ensures the consistent, efficient, and flexible evolution of RDF (Resource Description Frame-
work) databases. Being a graph database, RDF management inspires the use of graph oriented
tools. Initially just a part of the semantic web stack, RDF is currently largely used for representing
high-quality connected data. Data should above all else be usable and therefore satisfy the various
semantics and constraints requirement applications may have.

In the last decade, ontology-based systems have addressed knowledge representation by fol-
lowing the Open World Assumption (OWA) semantics where a statement cannot be inferred as
false on the basis of failures to prove it. In this paper, we consider databases satisfying integrity
constraints (IC) and the Closed World Assumption (CWA) semantics. Indeed, the OWA is not

1

Figure 1: RDF schema and instance as a typed graph.

adapted to data-centric applications needing complete and valid knowledge Tao et al. (2010). A
database where we want to ensure that every drug is associated to a molecule should be considered
inconsistent if the drug d has not its associated molecule. Currently working in the pharmacology
domain, the following example illustrates our motivation.

Example 1 (Motivating Example.) Fig. 1 shows a complete RDF/S graph database consistent
w.r.t. RDF/S constraints. We are concerned by the problem of updating this database, keeping it
consistent. Firstly, suppose an instance update: the insertion of ASA (acide amino-salicylique) as
a class instance of Molecule. How can we guarantee that ASA will also be an instance of all the
super-classes of Molecule? Then, consider a schema evolution: the insertion of provokeReaction as
sub-property of HasConsequence. How can we perform this change ensuring that provokeReaction
will have its domain and range be the same or sub-classes of those of HasConsequence? �

This paper proposes SetUpopt (Schema Evolution Through UPdates, optimized version) a main-
tenance tool based on graph rewriting rules for RDF data graph enriched with integrity constraints.
Consistency is established according to the CWA semantics and ensures data quality for querying
systems requiring reliable information. SetUpopt is built on SetUp, introduced in Chabin et al.
(2020b), by avoiding some superfluous side effect computation and by proposing flexible solutions
for non-determinism. SetUpopt ensures sustainability since it offers the capability of efficiently deal-
ing with evolution of data instance and structure without violating the semantics of the RDF model.

SetUpopt summarized in three main steps
(1) Firstly we formalize atomic updates as graph rewriting rules encompassing integrity constraints:
An Update is a general term and can be classified through two different aspects: whether it con-
cerns the insertion or the suppression of a fact on one hand, and whether it concerns the instance
or the schema on the other. Each atomic update is formalized by a graph rewriting rule whose
application necessarily preserves the database validity. To perform an update, the applicability
conditions of the corresponding rule are automatically checked. When all conditions of a rule
hold, the rule is activated to produce a new graph which takes into account the required update
and is necessarily valid if the graph was valid prior to the update. Graph rewriting rules ensure
consistency preservation in design time – no further verification is needed in runtime.
(2) Secondly, we provide procedure to enforce the (valid) application of an update: If the appli-
cability condition of a rule does not hold, the update is rejected. SetUp provides the possibility
to force its (valid) application by performing side-effects. These side-effects are new updates that

2

should be performed to allow the satisfaction of a rule’s conditions. Side-effects are implemented
by procedures associated to an update type, and thus, to some rewriting rule. When an evolution is
mandatory, we enforce database evolution by performing side-effects (i.e., triggering other updates
or schema modifications which will render possible rule application).
(3) SetUpopt shares steps (1) and (2) with SetUp but goes further by avoiding redundant side-
effect generation on step (2) and by proposing different possible solutions for non-determinism
with SetUpndopt. Indeed, step (2) may present a choice among the new updates to be performed in
order to allow rule application. SetUp dealt with this problem by imposing arbitrary choices where
updates on instances are preferred to updates on schema. SetUpopt is presented in a new flavour,
SetUpndopt, where more sophisticated and flexible politics are implemented through a modular and
customizable choice function.

Paper Organization. After some related work in Section 2, Section 3 sets up the work context and
vocabulary used throughout this paper. Section 4 introduces the background on graph rewriting
and provides an example of a graph rewriting rule formalizing an atomic update. Section 5 deals
with side-effects and Section 6 discusses non-determinism. Section 7 provides an experimental
evaluation of SetUpopt and SetUpND

opt . Conclusions and perspectives are drawn in Section 8.

2 Related work

Consistent database updating has been considered in different contexts, always with two main goals:
database evolution (by allowing changes) and constraint satisfaction (by keeping consistency w.r.t.
the given rules). In this context, two aspects of our proposal can be considered as particularly
original: (i) the use of graph rewriting techniques and (ii) the adoption of CWA with RDF data.
This section firstly discusses on these two aspects and then positions our paper in regards to other
updating approaches.

Graph rewriting for database updates. To generalize and abstract consistent updating meth-
ods, different works have used formalisms such as tree automata or grammars for XML (Schwentick
(2007) as a survey) or first order logic for relational (such as Winslett (1990)) and, currently, graph
databases (e.g., Chabin et al. (2019b); Flouris et al. (2013)). In spite of the importance of graphs
in RDF and ontology representation, the use of formal graph rewriting techniques to model RDF
evolutions is still mildly studied in this context. Formal graph rewriting techniques are usually
based on category theory, an abstract way to deal with different algebraic mathematical structures
(here, the graphs) and the relationships between them. Algebraic approaches of graph rewriting
allow a formal yet visual specification of rule-based systems characterizing both the effect of trans-
formations and the contexts in which they may be applied. Studying the use of graph rewriting
techniques to deal with graph models is the kernel of our motivation. Few approaches relying
on graph rewriting to formalize ontology evolutions have already been proposed De Leenheer and
Mens (2008); Shaban-Nejad and Haarslev (2015); Mahfoudh et al. (2015). They usually focus on
formalization but do not provide an implementation. To the best of our knowledge, only the work
in Mahfoudh et al. (2015) is associated to an implementation where graph rewriting is used to
model ontology updates. Nested and general application conditions are not considered in Mah-
foudh et al. (2015), thus, constraints relative to transitive properties are not tackled; their proposal
cannot offer guarantees we can (e.g., the absence of cycles in subclass relationships).

CWA and OWA. Since RDF data, in the web semantic world, is usually associated to the
OWA, having CWA as the basis of our RDF database maintenance may be seen as atypical. In
this paper, the goal is to use RDF to represent connected data in a data-centered application. We
intend to present a general method which applies to any graph databases where consistency has
to be preserved. Our ultimate goal is to support the anonymisation process and we believe that
adopting the CWA allows a better understanding and management of the published knowledge,
which is crucial for anonymisation. In this context it is worth mentioning, that work such as Cerans

3

• Typing Constraints:

CL(x) ⇒ URI(x) (1) Pr(x) ⇒ URI(x) (2) Ind(x) ⇒ URI(x) (3)

(CL(x) ∧ Pr(x)) ⇒ ⊥ (4) (CL(x) ∧ Ind(x)) ⇒ ⊥ (5) (Pr(x) ∧ Ind(x)) ⇒ ⊥ (6)

CSub(x, y) ⇒ CL(x) ∧ CL(y) ∨ y = Resource (7) PSub(x, y) ⇒ Pr(x) ∧ Pr(y) (8)

Dom(x, y) ⇒ Pr(x) ∧ CL(y) ∨ y = Resource (9) Rng(x, y) ⇒ Pr(x) ∧ CL(y) ∨ y = Literal ∨ y = Resource (10)

CI(x, y) ⇒ Ind(x) ∧ CL(y) ∨ y = Resource (11) CL(x) ⇒ CSub(x,Resource) (12)

Ind(x) ⇒ CI(x,Resource) (13) PI(x, y, z) ⇒ Ind(x) ∧ (Ind(y) ∨ Lit(y)) ∧ Pr(z) (14)
• Schema Constraints:

Pr(x) ⇒ (∃y, z)(Dom(x, y) ∧ Rng(x, y)) (15) ((y 6= z) ∧ Dom(x, y) ∧ Dom(x, z)) ⇒ ⊥ (16)

((y 6= z) ∧ Rng(x, y) ∧ Rng(x, z)) ⇒ ⊥ (17) CSub(x, y) ∧ CSub(y, z) ⇒ CSub(x, z) (18)

CSub(x, y) ∧ CSub(y, x) ⇒ ⊥ (19) PSub(x, y) ∧ PSub(y, z) ⇒ PSub(x, z) (20)

Psub(x, y)∧Dom(x, z)∧Dom(y, w)∧(z 6= w) ⇒ CSub(z, w) (21) PSub(x, y) ∧ PSub(y, x) ⇒ ⊥ (22)

Psub(x, y)∧Rng(x, z)∧Rng(y, w)∧ (z 6= w) ⇒ CSub(z, w) (23)
• Instance Constraints:

Dom(z, w) ⇒ (PI(x, y, z) ⇒ CI(x,w)) (24) Rng(z, w) ⇒ (PI(x, y, z) ⇒ CI(y, w) ∨ (Lit(y) ∧ w = Literal)) (25)

CSub(y, z) ⇒ (CI(x, y) ⇒ CI(x, z)) (26) PSub(z, w) ⇒ (PI(x, y, z) ⇒ PI(x, y, w)) (27)

Figure 2: Simplified and compacted form of RDF/S constraints

et al. (2012); Sirin et al. (2008); Tao et al. (2010) brings back IC and CWA to the OWL world
(sometimes through a hybrid approach), stressing the importance of our proposal.

Positioning our paper w.r.t. to other updating approaches. As in Chabin et al. (2019b),
we consider updates as changes in the world rather than as a revision in our knowledge of the
world (Hansson (2016), as an overview for revision). In such update context, the chase procedure
is usually associated to the generation of side-effects imposing extra insertions or deletions (w.r.t.
those required by the user) to preserve consistency. Clearly, constraints are expected not only
to be inherently consistent (e.g., a set of constraints generating contradictory side effects for the
same update u is not acceptable) but also to avoid contradicting the original intention of the
user’s update. In our current approach, we only deal with RDF/S constraints whose consistency
is ensured, but it could be extended to deal with user-defined constraints.

Several recent updating works focus on consistent graph databases. The approach in Maillot
et al. (2014) differs from ours, by proposing a semantic measure based on the difference between
original and updated RDF sub-graph. Both Chabin et al. (2019b); Goasdoué et al. (2013) consider
RDF updating methods, but the former goes deeper in the study of null values. A parallel can
be done between saturation in Goasdoué et al. (2013), the chase in Chabin et al. (2019b); Flouris
et al. (2013) and SetUp. Authors in Chabin et al. (2019b); Flouris et al. (2013); Goasdoué et al.
(2013) offer home-made procedures to implement their methods: Goasdoué et al. (2013) deals
only with the RDF instance constraints (Fig. 2); in Chabin et al. (2019b); Flouris et al. (2013),
constraints are user’s tuple-generating-dependencies. Incomplete information and updates are the
focus of Chabin et al. (2019b). Schema evolution is mentioned in Flouris et al. (2013); Goasdoué
et al. (2013). More expressive constraints represent a barrier to the update determinism. This is
tackled in Halfeld Ferrari and Laurent (2017) due to simple rules and in Flouris et al. (2013) due
to a total ordering (which may be considered similar to the priority method in this paper).

Our RDF update strategy is different from proposals such as Ahmeti et al. (2014); Gutierrez
et al. (2011) where constraints are just inference rules in OWA. Although some RDF technologies
such as ShEx, SPIN, and SHACL already take constraints into account, the originality of SetUpopt
is in relying on well-studied graph rewriting techniques to ensure database consistent evolution,
providing a useful and modern application for these formal tools. SetUpopt represents a test-bed
for new database applications on the basis of graph rewriting.

3 RDF databases and updates

A collection of RDF statements intrinsically represents a typed attributed directed multi-graph.
Constraints on RDF facts can be expressed in RDFS (Resource Description Framework Schema),
the schema language of RDF. In Flouris et al. (2013) we find a set of logical rules expressing the se-
mantics of RDF/S (rules concerning RDF or RDFS) models. Let AC and AV be disjoint countably
infinite sets of constants and variables, respectively. A term is a constant or a variable. Predicates

4

are classified into two sets: (i) SchPred = {CL,Pr, CSub, PSub,Dom,Rng}, used to define the
database schema, standing respectively for classes, properties, sub-classes, sub-properties, property
domain and range, and (ii) InstPred = {CI, PI, Ind, Lit}, used to define the database instance,
standing respectively for class and property instances, individuals and literals. An atom has the
form P (u), where P is a predicate, and u is a list of terms. When all the terms of an atom are in
AC , we have a fact.

Definition 1 (Database) An RDF database D is a set of facts composed by two subsets: the
database instance DI (facts with predicates in InstPred) and the database schema DS (facts with
predicates in SchPred). We note G = (V,E) the typed graph that represents the same database.
V are nodes with type in {CL,Pr, Ind, Lit} and E are edges having type in {Dom,Rng, PSub,
CSub, CI, PI}. The notation D/G designates these two formats of a database. �

Fig. 1 shows an RDF instance and schema as a typed graph whose specifications are available
in Chabin et al. (2020a). The schema specifies that Has Consequence is a property having class
Drug as its domain and the class Effect as its range. Property Produces is a sub-property of Has
Consequence. Class “Resource” symbolizes the root of an RDF class hierarchy. The instance is
represented by individuals which are elements of a class (e.g., APAP) and their relationships, (e.g.,
Produces, between APAP and Fever−).

The logical representation of this database is a set of facts. For instance facts such as CL(Drug)
or CSub(Drug, Resource) are for the schema description and Ind(Saccharose) or CI(Saccharose,
Excipient) are for the instance description.

Constraints presented in Flouris et al. (2013) are those in Fig. 2 which is borrowed from Halfeld
Ferrari and Laurent (2017). We recall from Flouris et al. (2013) that these constraints capture
the RDF/S semantics and the restrictions imposed by Serfiotis et al. (2005) whose model’s goal
is to provide sound and complete algorithm for RDF/S query containment and minimization.
That model imposes a semantics having characteristics such as: role distinction between types
(classes, properties and individuals), unique domains and ranges for properties and no cycles in
subsumptions. These constraints (that we denote by C) are the basis of our RDF semantics. We
are interested in database that satisfy all constraints in C .

Definition 2 (Consistent database (D ,C)) A database D is consistent if it satisfies all con-
straints in C (i.e., in this paper, those in Fig. 2). �

As already mentioned, this paper adopts the closed world assumption (CWA) where constraints
are not just inferences - they impose data restrictions.

Definition 3 (Update) Let D/G be a database. An update U on D is either (i) the insertion of
a fact F in D (an insertion is denoted by F) or (ii) the removal of a fact F from D (a deletion
is denoted by ¬F). To each update U corresponds a graph rewriting rule r. An update F is
intrinsically inconsistent if 6 ∃D , F ∈ D ∧ (D ,C). An update is consistent if it is not intrinsically
inconsistent. �

Updates can be classified according to the predicate of F , i.e., the insertion (or the deletion) of
a class, a class instance, a property, etc. For each update type, a rewriting rule r describes when
and how to transform a graph database. SetUp relies on a set of 19 graph rewriting rules, denoted
by R, which ensures consistent transformations on G due to any atomic update U . The set R is
defined on the basis of C . On the logical level, (D ,C) expresses consistent databases; on the data
graph level, (G,R) expresses graph evolution with rules in R encompassing constraints from C .
The idea is: given D/G for (D ,C) and update U corresponding to rule r ∈ R; if G’ is the result
of applying r on G then our goal is to have (D ′,C) for D ′/G′.

4 Graph rewriting for consistency maintenance

In our proposal, rewriting rules formalize both graph transformations and the context in which they
may be applied. These rules may be fully specified graphically, enabling an easy-to-understand yet

5

formal graphical view of the graph transformation. To prevent the introduction of inconsistencies
during updates, we 1) formally specify rules of R formalizing atomic G evolution and 2) prove that
every rule in R ensures the preservation of every constraints in C .

In our approach, each type of atomic update corresponds to one of the 19 rules in R. The kernel
of R’s construction lies on the detection of constraints in C impacted by an update: an insertion
F (respectively, a deletion ¬F) impacts constraints having the predicate of F in their left-hand
side (respectively, in their right-hand side). Consider for instance constraint (11): if CI(A,B)
is in D , then D should also contain a class B and an individual A. Hence, the graph rewriting
rule formalizing the insertion of CI(A,B) is designed so that it is applicable only in a database
respecting these conditions.

Clearly, in this paper, it is not possible to present each 19 rules of R . The following presents the
background on graph rewriting illustrated by a single rule of R. All rules and proofs are available
in Chabin et al. (2020a). We adopt the Single Push Out (SPO) formalism (Löe (1993)) to specify
rewriting rules as well as several of its extensions to specify additional application conditions and
restrict their applicability: Negative Application Conditions (NACs) (Habel et al. (1996)), Positive
Application Conditions (PACs), and General Application Conditions (GACs) (Runge et al. (2012)).

Example 2 Consider the graph database of Fig. 1 and assume node Allergy exists in G but is only
connected to node Resource and not to nodes such as Effect. Consider the insertion of CI(Allergy,
Effect), i.e., we want to update G by inserting Allergy as an instance of class Effect. As the
update is the insertion of a class instance, the rule to be considered is rCI (Fig. 3). �

The SPO approach is an algebraic approach based on category theory. A rule is defined by two
graphs – the Left and Right Hand Side of the rule, denoted by L and R – and a partial morphism
m from L to R (i.e., an edge-preserving morphism m from an induced subgraph of L to R). 1

Fig. 3a formalizes the SPO core of rCI rule: L has one class-typed node with an attribute URI
whose value is B and one individual-typed node with URI A, while R has the same two nodes
and a CI-typed edge from Ind(A) to CL(B). By convention, an attribute value within quotation
mark (e.g. “NegEffect”) is a fixed constant, while a value noted without quotation mark (e.g. A)
is a variable whose value may be given as an input or assigned according to the context. The
partial morphism from L to R is specified in the figure by tagging graph elements - nodes or edges
- in its domain and range with a numerical value. An element with value i in L is part of the
domain of m and its image by m is the graph element in R with the same value i. For instance,
in Fig. 3a, the notation 1: for the individuals on L and R indicates that they are mapped through m.

A graph rewriting rule r = (L,R,m) is applicable to a graph G iff there exists a total morphism
m̃ from L to G. The result of the application of r to G with regard to m̃ is the object of the
push-out of the diagram composed by L, R, G, m, and m̃. Informally, the application of r to G
with regard to m̃ consists in modifying G by (1) removing the image by m̃ of all elements of L that
are not in the domain of m (i.e., removing m̃(L\Dom(m))); (2) removing all dangling edges (i.e.,
deleting all edges that were incident to a node that has been suppressed in step (1)); (3) adding
an isomorphic copy of all elements of R that are not in the domain of m.

Example 3 In Fig. 3a, the rule is applicable to any graph containing a class node with a URI B
and an individual node with an URI A. Its application consists in adding a class instance edge
from the individual to the class. Assuming that A and B are given as input, this rule is thus a first
way of formalizing the addition of a class instance relation. It is therefore the basis for including
Allergy as an instance of Effects. However, this a naive rule: for instance, the node could already
exist as an instance for the same class, creating a duplicate. To avoid this kind of situations, the
rule applicability must be further restricted. �

NACs and PACs are well-studied extensions that restrict rule application by, respectively, for-
bidding or requiring certain patterns in the graph. A NAC or a PAC for a rule r is defined as

1To avoid multiplying notation, we use notation L and R for every rule, even those in the logical formalism,
sometimes with an index indicating the rule name.

6

(a) (b)

(c)

Figure 3: Insertion of a class instance: SPO core (a), NAC (b), and GAC (c).

a constraint graph which is a super-graph of its left-hand side. An SPO rule r = (L,R,m) with
NACs and PACs is applicable to a graph iff:
(i) there exists a total morphism m̃ : L→ G (this is the classical SPO application condition);
(ii) for all PACs P (resp. NACs N) associated with r, there exists a total morphism (resp. there
exists no total morphism) m̄ : P → G whose restriction to L is m̃.

By convention, since NACs and PACs are super-graphs of L unnecessary parts of L are not
depicted when illustrating a NAC or a PAC. Graph elements that are common to L and the depicted
part of the NAC are identified by a numerical value similarly to elements mapped by the morphism
between L and R .

Example 4 Fig. 3b specifies a NAC for the SPO rule in Fig. 3a. It forbids the application of
the rule if CI(A,B) already exists in the database but, it does not guarantee the satisfaction of
propagation of class instances to super-classes. �

GACs. The more classical application conditions, be it NACs or PACs, are defined as a constraint
graph C and an injective partial morphism (in that case, the identity function) from C to L. From
this observation, nested application conditions Golas et al. (2011); Habel and Pennemann (2009)
are introduced allowing the definition of conditions on the constraint graphs. A condition over a
graph G is of the form true or ∃(a, c) where a : G→ C is a graph morphism from G to a condition
graph C, and c is a condition over C. Now, a PAC P over a rule (L,R,m) can be seen as a
condition (a, true), with a being the identity morphism from L to P while a NAC N can be seen as
a condition ¬(a, true) with a similar definition of a. GACs Runge et al. (2012) are a combination
of nested application condition allowing the definition of complex application conditions for SPO
rules. A GAC of a rule (L,R,m) is a condition over L that may be quantified by ∀ and combined
using ∧ and ∨. The rule (L,R,m) with GAC ∃(a, c) is applicable to a graph G with regard to a
morphism m̃ if there is an injective graph morphism ṁ : G → C such that ṁ ◦ a = m̃ and ṁ
satisfies c.

Example 5 Fig. 3c specifies a GAC of form ∀(a, c) for rCI . The morphism a from L to GacTran-
sCI is depicted on the right part of Fig. 3c. GacTransCI contains L plus a subclass edge from the
class node of L to a new class node n. The condition c is ∃(b, true), with b the morphism from
GacTransCI to NestCond (left part of Fig. 3c): NestCond is itself a super-graph of GacTransCI
and comports one more CI edge from the individual node to n.

Due to this GAC, the rule is applicable to a graph G with regard to a morphism m̃ only if for
all morphism ṁ from GacTransCI to G whose restriction to L is m̃, there also exists at least a
morphism from NestCond to G which restriction to GacTransCI is ṁ.

In other word, this GAC ensures that if the rule is applicable, then ∀C,CL(C) ∧ CSub(B,C)
⇒ CI(A,C). Indeed, if there is a mapping from L to the database graph, the rule is applicable only

7

if, for each matching of GacTransCI (i.e., for all class C that is a super-class of B), there is a
matching of NestCond (i.e., there must be an edge of type CI from Ind(A) to CL(C)). �

To prove that rule rCI , defined in Fig. 3, preserves consistency, we consider the impacted
constraints in C , namely: 11 and 26 in Fig 2 (having atoms with CI on their L). The SPO part
of rCI ensures that the insertion of a class instance is performed only when the individual and its
type already exist in the database (constraint 11). According to rCI ’s GAC, rCI is applicable only
if A is an instance of all super-classes of C (ensuring constraint 26). The correctness of all other
rewriting rules is proved in a similar way in Chabin et al. (2020a). Based on that work we can also
prove the following lemma.

Lemma 1 (Correctness of rewriting rules) Let U be a consistent update, F the fact being
inserted (resp. deleted) and r ∈ R the corresponding rewriting rule. Let G/D be a consistent
database, G’ be the result of the application of r on G (we write G′ = r(G)), and D ′ the database
defined by G’/D ’. Then (1) G′ is consistent, i.e., (D ’,C) and (2) F ∈ D ′ (resp. F /∈ D ′). �

5 Side-effects and Consistent Database Evolution

Traditionally, whenever a database is updated, if constraint violations are detected, either the
update is refused or compensation actions, which we call side-effects, must be executed in order
to guarantee their satisfaction. In our approach, each update U is formalized by a rewriting
rule rU ∈ R and the application of rU relies on whether G satisfies the premisses of rU . The
graph transformation takes place only when G respects all the conditions expressed in rU . If such
conditions are not respected, we generate new updates capable of changing G into a new graph Gn

on which rU can be applied to produce G′. These new updates are called side-effects of U . The
following example illustrates this strategy.

Example 6 Let D/G be the database as the one in Fig. 1, but without NegEffect and its incident
edges. Consider that U is the insertion of class instance CI(Allergy,NegEffect) and rCI ∈ R the
corresponding rule (Fig. 3). The rule cannot be applied on G since it requires the existence of both
the class and the individual which we want to “link together”. If two side-effects are generated: (U1)
the insertion of an individual Allergy and (U2) the insertion of class NegEffect, their corresponding
rules are triggered, adding the individual and class and connecting them to class Resource. Rule
rCI can then applied, giving the graph of Fig. 1, except for a missing subclass edge between Effect
and NegEffect and a missing CI edge from Allergy to Effect. �

Roughly, the idea of SetUp is to allow the interaction between a graph rewriter and a side-effect
generator. The latter, producing new updates to be treated by the former, can follow different
politics in ordering and in authorizing the treatment of these new updates. In Chabin et al.
(2020b), the authors consider table UpdCond which is indexed by the update type and imposes a
pre-established order to deal with the side-effects. Fig. 4(a) and 5(a) show an extract of UpdCond
(e.g., from the second row of the latter, we know that the insertion of CI(A,B), depends on the
existence of A as an individual, B as an class and the respect of hierarchical constraints). To design
UpdCond for an insertion P , all constraints c ∈ C (Fig. 2) having atoms with the predicate of
P in Lc (its body) are considered and updates corresponding to the atoms in Rc (its head) built.
Deletions are treated in a reciprocal way, considering from the predicate of P on the heads of
constraints and defining new updates based on the atoms in their bodies. It is worth noting that
UpdCond is designed to contain all conditions needed for an update without taking into account
any kind of history concerning previous applied updates. For instance, from Fig. 5(a), consider
the insertion CI(b, B). It engenders the insertion of CL(B) even if we know – from a previous
insertion in U – that B already exists as a class. The SetUp version (Chabin et al. (2020b)) takes
into account all UpdCond, without any extra reasoning concerning the update ’status’.

In the current paper, we propose to optimize the SetUp version by proposing SetUpopt. This
new algorithm aims at avoiding unnecessary rule application and redundant side-effect generation.
SetUpopt is based on a simple observation: when performing an update which is a side-effect of

8

a user’s original update, the update-processing knows about operations previously performed and
can be optimized on this basis. In other words, while we do not have any a priori knowledge on
the original update U (we just know that G is consistent), we do have some new knowledge (con-
cerning operations already performed) when dealing with U ’s side-effects. Thus, some constraint
verification can be ignored at this second step. The following example illustrates the proposal.

Example 7 We show how SetUpopt deals with the insertion of CI(I, A). The first side effects
ensure typing, with (1) Ind(I) and (2) CL(A) and schema constraints with (3) CI(I,B) for
each super-class B of A. Indeed (3) is generated by the application of rule 26, i.e., CSub(y, z) ∧
CI(x, y) ⇒ CI(x, z) with the instantiation x → I, y → A and z → B. Denote by U1 = CI(I,B)
one update generated in (3). When dealing with U1, we do not need to reconsider its side-effects.
Indeed, we have:
(4) Ind(I) which has already been treated in (1);
(5) CL(B) which does not need to be checked, since the reason for having U1 as U ’s side-effect is
that B is a class in G;
(6) CI(I, C) for each existing super-class C of B. These updates do not need to be generated. We
have CSub(A,B) and for each C we have CSub(B,C). Then CSub(A,C) is also true in G and
C’s instances are already treated in (3).
Therefore, in SetUpopt, any insertion U1 = CI(I,B) generated as a side-effect of an original in-
sertion U = CI(I, A) triggers no side-effect. �

SetUpopt is summarized by Algorithm 1. Given a database D/G and an update U , Algorithm 1
transforms G by applying rules in R. Denote by rU ∈ R the rewriting rule associated to U . When
rU cannot be applied on G, SetUpopt computes, recursively, all updates necessary to change G into
a new graph where rU is applicable.

On line 1 of Algorithm 1, each condition c, necessary for applying rU on G, is added to
PreConditions. Here, it is worth remarking the main differences between SetUp and SetUpopt:

• In FindPredCond2ApplyUpdopt. While, in SetUp, FindPredCond2ApplyUpd works on table
UpdCond for any update u, in SetUpopt, FindPredCond2ApplyUpdopt distinguishes between
the original update U and its subsequent side effects u′. More precisely, we remark:

– SetUpopt and SetUp treat original update in the same way,i.e., by following UpdCond.

– SetUpopt is built for insertions. Indeed the optimisations proposed in SetUpopt have no
real impact for deletions since they do not required many useless verification. In fact,
they often rely on dangling edges suppression which alleviate recursive calls and a priori
analysis. Thus, for deletions, SetUpopt behaves as SetUp.

– SetUpopt analyses the received update u according to its history. If u is a side-effect,
SetUpopt activates an optimized side-effect table where superfluous verifications are
avoided.

• SetUpopt requires parameter Uprev as input. This parameter indicates whether the update be-
ing treated is a original one (with an empty Uprev) or a side-effect (when Uprev in nonempty).
Function FindPredCond2ApplyUpdopt uses this information to launch the right treatment.

On line 2 of Algorithm 1, each condition c is considered. PreConditions can be seen as a
set (updates treated on any order) or as a list ordered according to a particular method. For
SetUp (in Chabin et al. (2020b)) a pre-defined order has been defined. SetUpopt is built on the
optimisation of SetUp’s pre-defined order. Indeed, when an update u′ is a side-effect, its history
may tell us that some verifications (normally imposed for an original update u) are not necessary,
since they have already been done for one ‘ancestor’ of u′.

Once a condition c is chosen, Planner2FitGraphInCond (line 4) generates a new update set U ′

(i.e., side-effects for U). Recursive calls (line 6) ensure that each side-effect u′ ∈ U ′ is treated.
However, each call also sends the information concerning the ‘father’ of the update being treated;
the result computed by function FindPredCond2ApplyUpd depends on the update history. When
conditions for a rewriting rule ru′ hold, function GraphRewriter applies ru′ and the graph evolves.

9

Algorithm 1: SetUpopt(G,R, U, Uprev)

Input: Graph database G, set of rewriting rules R, update U , previous update Uprev

Output: New graph database G
1: PreConditons := FindPredCond2ApplyUpdopt(G,R, U, Uprev)
2: for all condition c in PreConditons do
3: if c is not satisfied in G then
4: U ′ :=Planner2FitGraphInCond (G, c)
5: for all update u′ in U ′ do
6: G := SetUpopt(G,R, u′, U)
7: G := GraphRewriter(G,R, U)
8: return G

Eventually, if U is not intrinsically inconsistent, we obtain a new graph on which rU is applica-
ble (Chabin et al. (2020b)).

Correction of SetUpopt

In Chabin et al. (2020b), the correction of SetUp is proved (proof in Chabin et al. (2020a), done
on the basis of UpdCond). The correction of SetUpopt is established from the correction of SetUp
to which we add the analysis of the abandoned side-effect verifications. In the rest of this section,
we consider the insertion of PSub , CI and PI. The former is presented in details while the latter
two are presented in a summarized way. In proving the correction of the insertion of PSub , we
explain how this update is performed within SetUpopt. The reasoning for the insertion of CSub is
similar, but it is not presented here due to the lack of space.

PSub. The only update that may lead to the generation of PSub-typed side-effects is the insertion
of a PSub relationship. Fig. 4(a) is an extract of UpdCond showing the side effects triggered by
the insertion PSub(A,B). These side effects ensure constraints shown in Fig. 2:
(1) s1 and s2 ensure that concerned properties exist (ensuring typing constraints such as 4 and 6);
(2) s3 and s4 ensure that containment between properties are reflected in their domains and ranges
(rules 21 and 23);
(3) s5 ensures that A is not a sub-property of B, avoiding cycle in sub-property relationships as
stated by rule 22;
(4) s6 et s7 generate new PSub updates, respectively, for each super-class X of B and for each
sub-class X of A (they correspond to applications of the transitive rule 20). The application of
transitivity is detailed in the proof of Lemma 2.
(5) s8 generates instance updates as side-effects of schema changes to propagate property instances
to super-properties.

Notice that when dealing with updates generated in step (4) above, there is no need to perform
steps (1), (2) and (3). In other words, side-effects considered in (1), (2) and (3) have to be
performed only to the original update PSub and not for the updates it generates as side-effects.
Algorithm SetUpopt implements this politics whose soundness is proven by the lemma 2 whose
proof (available in the Appendix A) explains details of the reasoning adopted by SetUpopt.

Indeed, Fig. 4(b) summarizes the action of SetUpopt which corresponds to our conclusions in
in the proof of Lemma 2, precisely:

• For performing the schema change required by the insertion PSub(A,B), only one situation
need to be considered: the one dealing with insertions, such as PSub(Pj , B), which are
side-effects of the original PSub(A,B).

• For performing the instances changes implied in the required insertion PSub(A,B), side-
effect s8 (rule 27) need to be considered – triggered by PSub(A,Pj), PSub(Pj , B) and
PSub(Pj , Pk), which are side-effects of the original PSub(A,B)

10

In this table, U1 is a generated update, i.e., a side-effect generated during the processing of the
original update. The second column shows Uprev, the update triggering U1 (i.e., U1’s ‘father’).
The third column indicates the U1’s side-effect generated by SetUpopt. Notice that, in the first line
of Fig. 4(b) we generate new PSub(X,Y) side effects (their ’father’ is PSub(X,B)). To know the
new side effects generated in this case, we use the last line where A is renamed into X.

(a)

Original update Side-effects #
PSub(A,B) if B is not a property : Pr(B,Ressource,Ressource) s1

if A is not a property : Pr(A,DB,RB) with DB domain of B and RB range of B s2
if DA = DB then nothing else CSub(DA,DB) s3

if RA = RB then nothing else if RB = Literal then ¬Pr(A), P r(A,DA,Literal)
else if RA = Literal then ¬Pr(B), P r(B,DB,Literal) else CSub(RA,RB) s4

¬PSub(B,A) s5
∀ X such that PSub(B,X) then PSub(A,X) s6
∀ X such that PSub(X,A) then PSub(X,B) s7
∀ I, J such that PI(I, J, A) then PI(I, J ,B) s8

(b)

U1: side effect of Uprev Uprev Side-effects generated by U1

PSub(X,B) PSub(A,B) ∀Y s.t.PSub(B, Y) : PSub(X,Y)
∀(I, J)s.t.P I(I, J,X) : PI(I, J,B)

PSub(A, Y) PSub(A,B) (original or SE) ∀(I, J)s.t.P I(I, J,A) : PI(I, J, Y)

Figure 4: Handling PSub as an original update or as a side effect. (a) An extract of UpdCond
showing side effects for insertion PSub. (DA is domain of A, DB domain of B, RA range of A and
RB range of B.) (b) Side-effect optimizations when PSub insertion is itself a side-effect. Green
lines indicate side-effects that are terminal ones in the insertion computation processing.

CI and PI. PI and CI as side-effects for, receptively, PSub and CSub are treated when dealing
with the latter (e.g., Fig. 4). The insertion of a property instance PI may be the side-effect of the
insertion of another PI (a consequence of the application of rule 27).

Figure 5(a) is an extract of UpdCond with the side effects for the insertion of CI and
PI(i, j, P), aiming in the latter case the satisfaction of rules 14 (si), 24 (sii), 25 (siii), and 27
(siv).

We propose Fig. 5(b) as a summary of the updates that may lead to side-effects PI or CI. For
instance, from the 2nd column of Fig. 5(b), we know that CI may be triggered as side-effects by (i)
another CI, (ii) the insertion of an individual Ind, (iii) the insertion of a sub-class relationship, or
(iv) the insertion of a property instance PI. The 3rd column of the table in Fig. 5(b) indicates the
knowledge on which the SetUpopt politics is defined. Then, to show the adopted politics, SetUpopt
actions are summarized in Fig. 5(c). Let us illustrate our reasoning with an example. In Fig 5(b)
let CI(i, A) be triggered by CI(i,X) (2nd column). In this situation, we know that it has been
triggered since CSub(X,A) and that the previous treatement ensure CI(i, Y) for all Y super-class
of X (3rd column). Thus, in Fig 5(c), we indicate that, if the side-effect CI(i, A) comes from the
insertion of CI(i,X), then no verification is needed (everything has being done during the insertion
of CI(i,X)). Indeed, SetUpopt proceeds in the same way for the three first cases in the 2nd row of
Fig 5(b), i.e., there is nothing to be tested, as shown in the last line of Fig 5(c).

The situation is different when the CI(i, A) is generated by a PI (Fig 5(c), top line of 2nd
row). The following side-effects should be generated: ∀B s.t. CSub(A,B), CI(i, B). Indeed, if
CI(i, A) is a consequence of the insertion of a property instance (PI), the instance i should be
inserted as an instance of all super-classes B of A. Notice however that such an insertion, CI(i, B),
correspond to the case treated in the previous paragraph (i.e., (Fig 5(c), bottom line of 2nd row).
We then know that no other verification is needed, and this is why the action is marked in green
in Fig 5(c).

11

(a)

Original update Side-effects #

PI(i,j,P) Ind(i), Ind (j) ∨ Lit(j), Pr(P) si
Let Dom (P, PD) then CI(i, PD) sii

Let Rng (P, PR) then CI(j, PR) ∨ (Lit(j) ∧ PR=Literal) siii
∀ Q s.t. PSub (P, Q) then PI(i, j, Q) siv

CI(Xi,XC) Indiv (Xi); CL (XC) ∨ (XC = Ressource); sv
∀ YC CSub (XC, YC) then CI(Xi, YC) svi

(b)

U1: side-effect of Uprev Uprev Relevant Knowledge

PI(i, j, Q) PI(i, j, P) PSub(P,Q) and ∀Y s.t.PSub(C, Y) : PI(i, j, Y)
PSub(P,Q) PI(i, j, P) and ∀Y s.t.PSub(P, Y) : PI(i, j, Y)

CI(i, A) CI(i,X) CSub(X,A) and ∀Y s.t.CSub(A, Y) : CI(i, Y)
Ind(i) A = resource and ∀Y,¬CSub(A, Y)

CSub(X,A) CI(i,X) and ∀Y s.t.CSub(A, Y) : CI(i, Y)
PI(i,X, Y) Dom(Y) = A
PI(X, i, Y) Rng(Y) = A

(c)

U1: side-effect of Uprev Uprev Side-effects generated by U1

PI(A,B,C) PI(A,B,X) or PSub(X,C) ∅
CI(i, A) PI(i,X, Y) or PI(X, i, Y) ∀B s.t. CSub(A,B), CI(i, B)

CI(i,X); Ind(i); CSub(X,A) ∅

Figure 5: Handling instanciation as an original update or as a side effect. (a) An extract of
UpdCond showing side effects for insertion PI and CI. (b) Relevant knowledge when CI or
PI is a side-effect, depending on the triggering update. (c) Side-effect optimizations when CI or
PI insertion is itself a side-effect. Green lines indicate side-effects that are terminal ones in the
insertion computation processing.

6 Non determinism: impact on side effects

When dealing with update on database with constraints, non-determinism is a classical problem.
For instance, in Fig. 1, to avoid re-inferring fact CI(Allergy,Effect) after its deletion, we should
delete F1 = CSub(NegEffect, Effect), or F2 = CI(Allergy,NegEffect) or both. Like SetUp,
SetUpopt adopts pre-established solutions for dealing with such kinds of non-deterministic situations:
changes on instances are preferred to changes on schema.

SetUpND
opt , summarized by Algorithm 2, is a flexible extension of SetUpopt, allowing the im-

plementation of different politics for dealing with non-determinism. FindPredCond2ApplyUpdnd
opt

(Algorithm 2, line 1) generates a set of ordered lists of pre-conditions: each list corresponds to a
solution for the implementation of update U . This set is the input of function ChoosePreCond
which selects one of these lists, that will be recursively applied by the algorithm. ChoosePreCond
can be easily changed to implement different politics.

6.1 Identifying and managing non-determinism causes

FindPredCond2ApplyUpdnd
opt operates on UpCond and the optimizations proposed by SetUpopt.

In the absence of non-deterministic situations, it behaves as its counterpart in Algorithm 1. The
solutions that FindPredCond2ApplyUpdnd

opt proposes for non-determinism depend on the detected
kind of non-determinism (classified according to their causes). In our approach, we identify three
possible causes of non-determinism: (i) different lists of side-effects are possible for one update;
(ii) updates can be treated by the graph rewriter or as a pre-condition (i.e., a side-effect) and (iii)
different possible update order. Below we briefly consider them in the context of SetUpND

opt .

Dealing with different possible lists of side-effects. Deletions ¬CSub, ¬PSub, ¬CI, ¬PI
are source of non-determinism since each of the involved atoms is the head (Rc) of a constraint

12

Algorithm 2: SetUpND
opt (G,R, U, Uprev)

Input: Graph database G, set of rewriting rules R, update U , previous update Uprev

Output: New graph database G
1: PossiblesPreconditions := FindPredCond2ApplyUpdnd

opt(G, U, Uprev)
2: PreConditions := ChoosePreCond(PossiblesPrecondition)
3: for all condition c in PreConditons do
4: if c is not satisfied in G then
5: U ′ :=Planner2FitGraphInCond (G, c)
6: for all update u′ in U ′ do
7: G := SetUpND

opt (G,R, u′, U)
8: G := GraphRewriter(G,R, U)
9: return G

c ∈ C whose body (Lc) has more than one atom (Fig. 2). We recall (Section 5) that UpCond is
built on the basis of the constraints in C and it indicates the situations where different side-effect
choices are possible. FindPredCond2ApplyUpdnd

opt checks whether the update u corresponds to one
of the cases above and generates a list of preconditions for each possible choice.

Updates as pre-conditions or through graph rewriting. In SetUpopt some side-effects are
directly handled by the graph-rewriter, either by desideratum (the side-effect and the original
update must be conducted simultaneously, e.g., the deletion of a property comes with the deletion
of its range and domain) or by convenience (the side-effect corresponds to the suppression of
dangling edges, e.g., the deletion of a property implies the deletion of the edges connecting it to its
sub-properties). The latter solution seems efficient but may lead to data degradation as illustrated
in the following example.

Example 8 For the update U = ¬Pr(HasConsequence) over the database in Fig. 1, the only
required pre-condition is U1 = ¬PI(APAP,Fever,HasConsequence). As HasConsequence is a
super-property of Produces, to ensure U1, we have choices: U2 = ¬PI(APAP,Fever, Produces), or
U3 = ¬PSub(Produces,HasConsequence) or both. As SetUpopt gives priority to instance changes,
U2 is applied as a side-effect. However, U3 is also performed because of the dangling edges resulting
from the deletion of the node HasConsequence. One can argue that SetUpopt ‘deletes too much’.
SetUpND

opt gives the possibility to change this politics by performing U3 as a side-effect (instead of
automatically leaving it to be performed by the graph rewriter). As a consequence, U2 does not
need to be performed and the resulting database comprises one more fact than in the first scenario,
PI(APAP,Fever, Produces). To sum up, in this scenario FindPredCond2ApplyUpdnd

opt produces
a set with two lists {l1, l2}. In l1, updates concerning the schema, such as U3, comes first than
updates concerning the instances, such as U2 (as we explain in the following paragraph discussing
update order). List l2 does not contain updates concerning schema, such as U2. �

Side-effects of deletions ¬Pr, ¬CL, ¬Ind, ¬Lit may be treated as side-effects or through
the graph rewriting. SetUpopt offers the possibility to let FindPredCond2ApplyUpdnd

opt treat those
updates originally sent to the graph rewriter by convenience. The function generates such a
possibility for specific side effects of deletions ¬Pr (side effect ¬PSub) and ¬CL (side effects
¬CSub and ¬CI). Thus, for such cases, FindPredCond2ApplyUpdnd

opt engenders two side-effect
lists, each one giving rise to a different database instance. Deletions ¬Ind, ¬Lit are left to the
graph rewriter – changing the politics for them does not result in different database instances.

Update order. The order in which pre-conditions are treated may impact the resulting database.
We distinguish two situations where this can happen. Firstly, for ¬PR (or ¬CL) as in Example 8,
if U2 is treated before U3 we delete PI(APAP,Fever, Produces); otherwise we keep it. Secondly, if
inconsistent updates are considered as input, for instance the insertion U = CI(Allergy,Allergy)

13

in database Fig. 1, may result in a database where Allergy is an individual or a class depending
on the order updates Ua = Ind(Allergy) and Ub = CL(Allergy) are performed.

The function FindPredCond2ApplyUpdnd
opt outputs a set of lists. To prepare each list, it gener-

ates a set of updates to be performed, and then order them according to an established politics.
Several ordered lists may be generated from a single set if relevant. SetUpND

opt implements the
ordered lists by imposing a partial order on the pre-conditions as explained below. When several
ordering are possible, any representative is chosen as the orders will be equivalent. Notice that
even if intrinsically inconsistent updates may generate several ordered lists, we do not detail them
here because we plan to accept only consistent updates.

For insertions:

• Pre-conditions related to typing (rules 1 to 14) always come first. Those related to instance
constraints (rules 24 to 27) come second, and schema constraints come last.

• Pre-conditions with quantifiers (i.e., with the form ”∀...”, as s6 to s8 in Fig. 4(a)) are in-
stantiated. Then, PSub and PI (resp. CSub and CI) are ordered to be consistent with
the partial order composed by sub-property (resp. sub-class) relationships (i.e., CI(i, A)
executed before CI(i, B) implies ¬CSub(A,B); CSub(A,B) executed before CSub(A,C)
implies ¬CSub(B,C)).

For deletions:

• Pre-conditions related to schema comes first, then instances, and finally typing.

• Pre-conditions with the form ”∀” (e.g. s6 to s8 in Fig. 4 (a)) are instantiated. Then, PSub
and PI (resp. CSub and CI) are ordered to be consistent with the partial order composed by
sub-property (resp. sub-class) relationships (i.e.¬CI(i, A) executed before ¬CI(i, B) implies
¬CSub(B,A); ¬CSub(A,B) executed before ¬CSub(A,C) implies ¬CSub(C,B)).

The construction of a list of updates that represents the choice of dealing with updates as
pre-conditions instead as through graph rewriting is performed by placing deletions of PSub (or
CSub) before those of PI (or, resp. CI). The reverse would produce a list whose application result
is identical to the one obtained when choosing to let the graph rewriter in charge of deleting PSub
(as discussed in the previous paragraph, particularly in Example 8).

6.2 Handling choices in a modular way

All versions SetUp, SetUpopt and SetUpND
opt are implemented in Java and rely on AGG – The

Attributed Graph Grammar System (Taentzer (2003)), one of the most mature development
environment supporting the definition and application of typed graph rewriting systems (Segura
et al. (2008)). All versions provide a textual interface (TUI) and offer different updating modes,
according to the user level. While FindPredCond2ApplyUpdnd

opt is intrinsically integrated in the
code, ChoosePreCond is modular and trivial to replace. Indeed, we define an interface with a
unique method, ChoosePreCond, which receives a set of ArrayList of updates and renders an
ArrayList of updates. This interface is used throughout the code by levering Java’s implicit type
casting. Thus, when using SetUpND

opt , one may propose any implementation of the aforementioned
interface for non-deterministic side-effect management. Therefore, any user may implement his
own version of ChoosePreCond and integrate it seamlessly to our tool. We currently propose three
different implementations:

1. Choiceui. The simplest version is a user-interaction tool that integrates a TUI and allows
the user to choose his favourite update list.

2. ChoiceSetUp. This version gives priority to schema preservation and minimizes the generation
of pre-conditions, mimicking the politics adopted in SetUp (Chabin et al. (2020b)). In this
version and referring to the cases in Section 6.1, the following remarks hold.

14

(i) When dealing with different lists of updates, the choice falls on a single update, preferably
one concerning an instance.
(ii) The possibility of dealing with an update as a pre-condition instead as through graph
rewriting is not taken into account. For instance, in Example 8, where the set {l1, l2} is
generated, the choice falls on l2.
(iii) The order impacts only intrinsically inconsistent update (i.e., if the system input is an
intrinsically inconsistent update, the order in which side-effects are taken into account can
result in different database instances).

3. Choiceopt. This version behaves similarly to ChoiceSetUp except when dealing with the dele-
tion of a property. In such a situation, the chosen update list is the one where the deletion
of PSub is done before the deletions of PI. Thus, in Example 8, with the set {l1, l2}, the
choice falls on l1. We believe Choiceopt is a good candidate to preserve the quality of the
database. However, we emphasize the biggest advantage of SetUpND

opt : any user may easily
implement and integrates his own choice function.

7 Experimental evaluation

This section experimentally investigates the proposed extensions. To allow comparison with SetUp
we reproduce experiments proposed in Chabin et al. (2019a) using: (1) SetUpopt to quantify the
optimization in term of generated side-effects, and (2) SetUpND

opt with Choiceopt to highlight the
benefits of this new choice function.

7.1 Experimental context

Figure 6: Experimental graph with I = 1 and S = 2

Datasets. For comparison sake, we use experimental datasets proposed in Chabin et al. (2019a).
A simplified example is provided in Fig. 6 with the aforementioned graphical representation for
typed edges and nodes. Experimental graphs are synthesized RDF/S graphs composed of: (A)
Schema: (i) a minimal schema with no hierarchy (a property with two dom/rng classes and a
class, illustrated in red and black in the upper right part of Fig. 6) plus (ii) a simple hierarchy of
S classes and properties (illustrated in the bottom part of the figure). In what follows we note
Ci (resp. Pi) the class (resp. property) of depth i within the hierarchy, so that C1 is on top and
CS at the bottom. (B) Instances of all these classes and properties (in blue and yellow in the
figure). Concepts outside or at the bottom of the hierarchy have I instances, the next has 2 ∗ I
instances, etc (so that the top of the hierarchy has S*I instances). The values of (I, S) used in
experiments are (1, 1), (1, 5), (5, 1), and (5, 5) which correspond to graphs with (|V |, |E|) equal to
(16, 24), (44, 152), (40, 80), and (116, 480), respectively.
Experimental scenarios. Experimental scenarios consist in insertions and deletions categorized
according to update type and database configurations, since the impact of an update is intrinsically
related to these two factors. Considered scenarios are a sub-sets of those of Chabin et al. (2019a):

1. ¬Prop(top): suppression of P1.

15

Figure 7: Number of side-effects generated by SetUp , SetUpopt , and SetUpND
opt using ChoiceOPT .

2. ¬CL(∃CTopDom): suppression of a class C such that Dom(P1, C).

3. CL(¬∃C): addition of a class C outside of the hierarchy.

4. CI(¬∃I, ∃CinH): addition of CI(ind, C1) where Ind(ind) is not in the database.

5. CSub (resp. PSub) (top reverse) addition of CSub(C1, C) (resp. PSub(P1, P) where CL(C)
(resp. Pr(P)) is not in the database.

We chose to reproduce these scenarios as SetUp leads to an explosion of side-effects when suppress-
ing P1 (cases 1. and 2.) and when adding an entity on top of the hierarchy (cases 5.).
Experimental results. Figs. 7 shows the number of side-effects generated in each scenario using
SetUp, SetUpopt, and SetUpND

opt with ChoiceOPT . Side-effects are reported as the number of explicit
preconditions and verifications; those tackled by the GraphRewriter are not taken into account.

7.2 Result interpretation

SetUpopt optimization. As expected, SetUpopt provides the same results as SetUp regarding
deletions, but also insertions in simple scenarios (e.g.CL(¬∃C)). SetUpopt provides significant
optimizations for insertions triggering multiples side-effects. For example, with CI(¬∃I, ∃CinH)
and S=5, SetUpopt generates 9 side-effects instead of 27, due to better CI propagation management.

16

In particular, it greatly improves the issue of inserting an entity on the top of the hierarchy.
With CSub (top reverse) and (I, S) =(1, 1), (1, 5), (5, 1), and (5, 5), SetUp produces 10, 62, 26, and
182 side effects, while SetUpopt only produces 7, 29, 11, and 89, respectively. A first explanation
is that both tools generate initially CI(i, C) for all the S ∗ I individuals i such that CI(i, C1).
In SetUpopt , these side-effects are terminal, while in SetUp each of these in turn generate typing
checks (Ind(i) and CL(C1)) and CI(i, Resource). Thus, with S = 1, SetUp generates 3 ∗ I more
side-effects than SetUpopt. With S 6= 1, SetUpopt integrates even more optimizations and the
difference is not only strictly more than 3*I ∗ S, but also increases with S. Noticeably, the ratio
of side-effect generated by SetUp to those generated by SetUpopt roughly goes from 1, 4 to 2, 2 as
(I, S) goes from (1, 1) to (5, 5). Note that the size of the graph is a constant plus 2*(S+S ∗ I),
meaning that the lower bound of redundant side-effects ignored by SetUpopt (> I ∗ S) is roughly
the size of the graph. This obviously depends on the database configuration; in general we can say
that it is at least linear in the size of the part of the database impacted by the update.

Impact of choice: limiting data-degradation. The most problematic scenarios for SetUp
(Chabin et al. (2019a)) are those leading to the suppression of a property on top of the hierarchy.
Indeed, not only does it lead to an explosion of side-effect (¬Prop (top) leads to 45 and 225 side-
effects with (I, S) = (1, 5) and (5, 5), respectively) but it also significantly degrades the database
as all PIs are suppressed. The choice function Choiceopt has been introduced to tackle the issue,
as discussed in the previous section. Figure 7 shows that it only triggers 9 and 29 side-effects with
(I, S) = (1, 5) and (5, 5), respectively. This is optimal w.r.t. the number of side-effect since it
corresponds to S − 1 ¬PSub (one per property in the hierarchy, except for the one been deleted)
and I ∗ S ¬PI (one per instance of the property been deleted). Furthermore, this solution is also
optimal with regard to the minimization of deleted facts.

This shows the significance of SetUpND
opt firstly, arbitrary choices hard-coded in SetUp were

sub-optimal w.r.t. the original aim, data conservation. Secondly, other objectives or metrics could
dictate these choices, hence the importance of proposing a modular and easy way to propose new
choice functions. This also illustrates the relevance of considering the possibility of tackling updates
as pre-conditions rather than to delegate their application to the graph rewriter.

8 Conclusions and Perspectives

This paper proposes two major improvements of SetUp , a theoretical and applied framework for
ensuring consistent evolution of RDF graphs whose originality lies in the use of a typed graph
rewriting system. Each atomic update is formalized using a graph rewriting rule whose applica-
tion necessarily preserves constraints. If an update cannot be applied, SetUp generate additional
consistency preserving updates called side-effects to ensure its applicability.

Both improvement presented herein, SetUpopt and SetUpND
opt concern the management of these

side-effects. SetUpopt avoids the generation of unnecessary verifications while recursively handling
side-effects. This is done by leveraging knowledge of updates’ history. Indeed, while we do not have
any a priori knowledge on an original update U , we do have some new knowledge when dealing
with U ’s side-effects. SetUpND

opt is a module of SetUpopt proposing a flexible and modular way of

handling non-determinism. SetUpND
opt generates all different ways of guaranteeing the applicability

of an update. The corresponding set of ordered lists of side-effects is transmitted to an easily
customizable choice function. This function selects one of these lists and returns it to SetUpND

opt

which ensures its recursive application. To demonstrate modularity and evolution capability, we
implemented three different choice functions, including one taking user’s input through a TUI.

The evaluation of SetUp exhibited performances issues with regard to two families of scenarios
leading to an explosion of generated side-effects: the addition of an entity or the suppression of a
property on top of a hierarchy. We show experimentally that both are addressed by our proposal.
Indeed, SetUpopt greatly improves the first situations, ignoring a number of unnecessary side-effects
roughly linear in the size of the experimental database. Regarding the second kind of scenarios,
function Choiceopt used alongside SetUpND

opt not only minimizes generated side-effects but also data

17

degradation. In a graph of size (|V |, |E|) = (116, 480), the generated side-effects goes down from
225 to 29, each remaining side-effect being necessary and leading to the suppression of a fact.

We believe that the ameliorations proposed in this paper greatly improve the framework us-
ability and wish to further investigate metrics to make decisions in case of non-determinism. In
particular, we plan to use SetUpND

opt on offline RDF graph anonymization, where a snapshot of a
RDF graph is anonymized and openly published. In this context, a separate entity triggers updates
in SetUpND

opt to conform to a privacy model such as k-anonymity or differential privacy. In this
case, decisions should consider utility but also take into account published knowledge to preserve
privacy.

References

S. Abiteboul, I. Manolescu, P. Rigaux, M.-C. Rousset, and P. Senellart. Web data management.
Cambridge University Press, 2011.

A. Ahmeti, D. Calvanese, and A. Polleres. Updating RDFS ABoxes and TBoxes in SPARQL.
CoRR, abs/1403.7248, 2014.

K. Cerans, G. Barzdins, R. Liepins, J. Ovcinnikova, S. Rikacovs, and A. Sprogis. Graphical schema
editing for stardog OWL/RDF databases using OWLGrEd/S. 849, 01 2012.

J. Chabin, C. Eichler, M. Halfed Ferrari, and N. Hiot. SetUp: a tool for consistent
updates of RDF knowledge graphs. https://www.univ-orleans.fr/lifo/evenements/sendup-
project/index.php/softwares/setup-schema-evolution-through-updates/, 2019a.

J. Chabin, M. Halfeld Ferrari, and D. Laurent. Consistent updating of databases with marked
nulls. Knowledge and Information Systems, 2019b.

J. Chabin, C. Eichler, M. Halfed Ferrari, and N. Hiot. Graph rewriting system for consistent
evolution of RDF databases. Technical report, LIFO, Université d’Orléans, INSA Centre Val de
Loire, 2020a. URL hal.archives-ouvertes.fr/hal-02560325v3.

J. Chabin, C. Eichler, M. Halfeld-Ferrari, and N. Hiot. Graph rewriting rules for rdf database
evolution management. In Proceedings of the 22nd International Conference on Information
Integration and Web-Based Applications & Services, iiWAS ’20, page 134143, New York, NY,
USA, 2020b. Association for Computing Machinery. ISBN 9781450389228. doi: 10.1145/3428757.
3429126. URL https://doi.org/10.1145/3428757.3429126.

P. De Leenheer and T. Mens. Using graph transformation to support collaborative ontology evo-
lution. In A. Schürr, M. Nagl, and A. Zündorf, editors, Applications of Graph Transformations
with Industrial Relevance, pages 44–58, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
ISBN 978-3-540-89020-1.

M. A. Farvardin, D. Colazzo, K. Belhajjame, and C. Sartiani. Scalable saturation of streaming
RDF triples. Trans. Large Scale Data Knowl. Centered Syst., 44:1–40, 2020.

G. Flouris, G. Konstantinidis, G. Antoniou, and V. Christophides. Formal foundations for RDF/S
KB evolution. Knowl. Inf. Syst., 35(1):153–191, 2013.

F. Goasdoué, I. Manolescu, and A. Roatiş. Efficient query answering against dynamic RDF
databases. In Proceedings of the 16th International Conference on Extending Database Tech-
nology, pages 299–310. ACM, 2013.

U. Golas, E. Biermann, H. Ehrig, and C. Ermel. A visual interpreter semantics for statecharts
based on amalgamated graph transformation. ECEASST, 39, 01 2011.

C. Gutierrez, C. A. Hurtado, and A. A. Vaisman. RDFS update: From theory to practice. In The
Semanic Web: Research and Applications - 8th Extended Semantic Web Conference, ESWC,
Greece, Proceedings, Part II, pages 93–107, 2011.

18

hal.archives-ouvertes.fr/hal-02560325v3
https://doi.org/10.1145/3428757.3429126

A. Habel and K.-h. Pennemann. Correctness of high-level transformation systems relative to nested
conditions. Mathematical. Structures in Comp. Sci., 19(2):245–296, Apr. 2009. ISSN 0960-1295.

A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application conditions.
Fundam. Inf., 26(3,4):287–313, Dec. 1996.

M. Halfeld Ferrari and D. Laurent. Updating RDF/S databases under constraints. In Advances
in Databases and Information Systems - 21st European Conference, ADBIS, Nicosia, Cyprus,
Proceedings, pages 357–371, 2017.

M. Halfeld Ferrari, C. S. Hara, and F. R. Uber. RDF updates with constraints. In Knowledge
Engineering and Semantic Web - 8th International Conference, KESW, Szczecin, Poland, Pro-
ceedings, pages 229–245, 2017.

S. O. Hansson. Logic of belief revision. In E. N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edition, 2016.

H. Katsuno and A. O. Mendelzon. On the difference between updating a knowledge base and
revising it. In Proc. of the 2nd Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’91). Cambridge, MA, USA, April 22-25., pages 387–394, 1991.

H. Knublauch and A. Ryman. Shapes constraint language (SHACL). W3C first public working
draft, w3c. http://www.w3.org/TR/2015/WD-shacl-20151008/., 2017.

H. Knublauch, J. A. Hendler, and K. Idehen. SPIN - overview and motivation. W3C member
submission. http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222, 2011.

S. Link. Towards a tailored theory of consistency enforcement in databases. In Foundations
of Information and Knowledge Systems, Second International Symposium, FoIKS, Germany,
Proceedings, pages 160–177, 2002.

S. Link and K. Schewe. An arithmetic theory of consistency enforcement. Acta Cybern., 15(3):
379–416, 2002.

M. Löe. Algebraic approach to single-pushout graph transformation. Theoretical Computer Science,
109(12):181 – 224, 1993.

M. Mahfoudh. Adaptation d’ontologies avec les grammaires de graphes typés: évolution et fu-
sion. (Ontologies adaptation with typed graph grammars : evolution and merging). PhD thesis,
University of Upper Alsace, Mulhouse, France, 2015.

M. Mahfoudh, G. Forestier, L. Thiry, and M. Hassenforder. Algebraic graph transformations for
formalizing ontology changes and evolving ontologies. Knowledge-Based Systems, 73:212 – 226,
2015.

P. Maillot, T. Raimbault, D. Genest, and S. Loiseau. Consistency evaluation of RDF data: How
data and updates are relevant. In Tenth International Conference on Signal-Image Technology
and Internet-Based Systems, SITIS 2014, Marrakech, Morocco, November 23-27, 2014, pages
187–193, 2014.

O. Runge, C. Ermel, and G. Taentzer. Agg 2.0 – new features for specifying and analyzing algebraic
graph transformations. In Applications of Graph Transformations with Industrial Relevance,
pages 81–88, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

T. Schwentick. Automata for XML - A survey. J. Comput. Syst. Sci., 73(3):289–315, 2007.

S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated Merging of Feature Models
Using Graph Transformations, pages 489–505. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

19

G. Serfiotis, I. Koffina, V. Christophides, and V. Tannen. Containment and minimization of RDF/S
query patterns. In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, editors, The Semantic
Web - ISWC 2005, 4th International Semantic Web Conference, ISWC 2005, Galway, Ireland,
November 6-10, 2005, Proceedings, volume 3729 of Lecture Notes in Computer Science, pages
607–623. Springer, 2005.

A. Shaban-Nejad and V. Haarslev. Managing changes in distributed biomedical ontologies us-
ing hierarchical distributed graph transformation. International Journal of Data Mining and
Bioinformatics, 11(1):53–83, 2015.

A. Shipilev, S. Kuksenko, A. Astrand, S. Friberg, and H. Loef. OpenJDK Code Tools: JMH, 2007.
URL https://openjdk.java.net/projects/code-tools/jmh/.

E. Sirin, M. Smith, and E. Wallace. Opening, closing worlds - on integrity constraints. In C. Dol-
bear, A. Ruttenberg, and U. Sattler, editors, Proceedings of the Fifth OWLED Workshop on
OWL: Experiences and Directions, collocated with the 7th International Semantic Web Confer-
ence (ISWC-2008), volume 432 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

H. Solbrig and E. P. hommeaux. Shape expressions 1.0 definition. W3C member submission.
http://www.w3.org/Submission/2014/SUBM-shex-defn-20140602, 2014.

G. Taentzer. Agg: A graph transformation environment for modeling and validation of software.
In AGTIVE, 2003.

J. Tao, E. Sirin, J. Bao, and D. L. McGuinness. Integrity constraints in OWL. In M. Fox and
D. Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, , USA. AAAI Press, 2010.

J. Tekli, R. Chbeir, A. J. M. Traina, and C. T. Jr. XML document-grammar comparison: related
problems and applications. Central Eur. J. Comput. Sci., 1(1):117–136, 2011.

M. Winslett. Updating Logical Databases. Cambridge University Press, New York, NY, USA, 1990.

20

https://openjdk.java.net/projects/code-tools/jmh/

A Proof of Lemma

Comment for reviewers: The lemma is given to reviewer’s appreciation. We put it in an
appendix due to constraints on the paper size. It can be omitted in a published version.

Lemma 2 Let G be a consistent graph and R our set of graph rewriting rules. Let D ′/G′ be
the database such that G′ = SetUpopt(G,R, U, Uprev) where U = PSub(A,B) and Uprev = ∅ are
consistent updates. Then G′ is a consistent graph where A is a sub-property of B. �

proof. Update U is a schema update. When neither A nor B exist in the G, we have a trivial
situation: SetUpopt creates two properties setting A as sub-property of B. To consider situations
where properties A or B exist in G, let us define a hierarchy of properties as a set of properties
P1, . . . , Pn such that each Pi is a sub-property of Pi+1 for i ∈ [0, n− 1].

Situation1 : Both A and B exist and belong to the same hierarchy H (i.e., there is a sequence of
successive properties from A to B or from B to A). We consider two cases:
• (1.1) A = Pi and B = Pj for i > j. In this case, as G is consistent and complete, due to rule 20,
there is a link PSub(B,A) in G (i.e., B is a sub-class of A). The insertion U = PSub(A,B) is thus
a contradiction detected by side effect s5 in Fig. 4(a). Side-effect s5 is implemented by reversing
rule 20, as shown in Fig. 4(a). Different deletion choices can be applied here, but the consequence
is always the same: after deletions, B is not a sub-property of A anymore. Priority is given to the
update, thus A is set as a sub-property of B. In this case, we insert PSub(A,B) in a graph where
A belongs to an hierarchy, say H1 and B to another one, say H2 (the common hierarchy is broken
by the deletions). This is the case we consider in Situation2 below.
• (1.2) A = Pi and B = Pj for i < j. In this case, following the same reasoning of (1.1) we know
that there is a link PSub(A,B) in G and thus the insertion U = PSub(A,B) is superfluous.

Situation2 : Both A and B exist such that A ∈ H1 and B ∈ H2 where H1 and H2 are two non-
empty hierarchies in G (i.e., H1 and H2 have at least the property being inserted). To position
the properties in their hierarchy, let A = Pla and B = Plb . Recall that side-effects s6 and s7 are
implemented on the basis of rule 20 whose format is: PSub(x, y) ∧ PSub(y, z)⇒ PSub(x, z).
• (2.1) Under the instantiation x→ A and y → B, if there are super-properties z of B, then A is
set as a sub-property of each super-property z of B.
• (2.2) Under the instantiation y → A and z → B, if there are sub-properties x of A, then a link
between x and B is created, i.e., each sub-property x of A is set as a sub-property of B.
• (2.3) Now suppose Pj ∈ H2 is one of the instantiations of z in (2.1). We have a new sub-
property relationship PSub(A,Pj) from (2.1). By using the same transitive rule 20, we should add
PSub(A,Pk) for all k > j to our graph database. However, as k > j ≥ lb, we know that edges
indicating this sub-property hierarchy have already been establish in (2.1). Thus, for generated
updates of the form PSub(A,Pj), no subsequent schema side-effect need to be considered.
• (2.4) Now suppose Pj ∈ H1 (j < la) is one of the instantiations of x in (2.2). We have a new
sub-property relationship PSub(Pj , B) from (2.2). By using the same transitive rule 20, we add
PSub(Pj , Pk) (for all j < la and k > lb) to our graph database. The inclusion of these edges
finishes the transitive closure obtained with rule 20.

(*) In conclusion, for performing the schema change required by the insertion PSub(A,B), only
step (2.4) above need to be considered when dealing with insertions, such as PSub(Pj , B), which
are side-effects of the original PSub(A,B).

Impact on instances. On the other hand, steps (2.1) − (2.4) above generate sub-properties re-
lationships which may trigger rule 27 concerning property instances. Indeed, a schema change
may imply instance changes: the insertion of PSub(A,B) also triggers side-effect s8 (Fig.4(a)).
This side effect corresponds to the application of rule PSub(z, w) ∧ PI(x, y, z) ⇒ PI(x, y, w).
Firstly, for instantiation z → A and w → B, all instances of property A are set as instances
of property B. Then, similarly, for generated updates of type PSub(A,Pj), PSub(Pj , B) and
PSub(Pj , Pk) (steps (2.3) and (2.4) above), side-effect s8 is triggered to propagate instances of a

21

sub-property to its super-property. Note that the insertion of a property instance may also trigger
rules 14, 24 and 25. However, when these insertions are triggered by the application of the rule
PSub(z, w)∧PI(x, y, z)⇒ PI(x, y, w) the application of these constraints can be ignored. Indeed,
typing (rule 14) has already been verified, since we have PI(x, y, z) and PSub(z, w) (ı.e. x and y
are individuals and w is a property). Denote by dz, rz, dw, and rw the domains and ranges of z
and w, respectively. As we have PSub(z, w), rules 21 and 23 ensure that rw = rz (resp. dw = dz)
or CSub(rz, rw) (resp. CSub(dz, dw). As we have PI(x, y, z), rules 24 and 25 ensure CI(x, dz) and
CI(y, rz). Therefore, if CSub(rz, rw) (resp. CSub(dz, dw), rule 26 imposes that CI(y, rw) (resp.
CI(x, dw)). If rw = rz (resp. dw = dz), we have CI(y, rw) (resp. CI(x, dw)).

(**) Thus, for performing the instances changes implied in the required insertion PSub(A,B),
side-effect s8 (rule 27) need to be considered – triggered by PSub(A,Pj), PSub(Pj , B) and
PSub(Pj , Pk), which are side-effects of the original PSub(A,B). �

22

	Introduction
	Related work
	RDF databases and updates
	Graph rewriting for consistency maintenance
	Side-effects and Consistent Database Evolution
	Non determinism: impact on side effects
	Identifying and managing non-determinism causes
	Handling choices in a modular way

	Experimental evaluation
	Experimental context
	Result interpretation

	Conclusions and Perspectives
	Proof of Lemma

