
HAL Id: hal-03329915
https://hal.science/hal-03329915

Submitted on 31 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subsequent Keyframe Generation for Visual Servoing
Nathan Crombez, Jocelyn Buisson, Zhi Yan, Yassine Ruichek

To cite this version:
Nathan Crombez, Jocelyn Buisson, Zhi Yan, Yassine Ruichek. Subsequent Keyframe Generation for
Visual Servoing. International Conference on Robotics and Automation (ICRA), May 2021, Xi’an,
China. pp.14439-14445, �10.1109/ICRA48506.2021.9561163�. �hal-03329915�

https://hal.science/hal-03329915
https://hal.archives-ouvertes.fr


Subsequent Keyframe Generation for Visual Servoing

Nathan Crombez, Jocelyn Buisson, Zhi Yan, Yassine Ruichek

Abstract— In this paper, we study the problem of autonomous
and reliable positioning of a camera w.r.t. an object when
only this latter is known but not the rest of the scene.
We propose to combine the advantages and efficiency of a
visual servoing scheme and the generalization ability of a
generative adversarial network. The paper describes how to
efficiently create a synthetic dataset in order to train a network
that predicts an intermediate visual keyframe between two
images. Subsequent predictions are used as visual features to
autonomously converge towards the desired pose even for large
displacements. We show that the proposed method can be used
without any prior knowledge on the scene appearance except
for the object itself, while being robust to various lighting
conditions and specular surfaces. We provide experimental
results, both in simulation and using a real service robot
platform to validate and evaluate the effectiveness, robustness,
and accuracy of our approach.

I. INTRODUCTION

Due to demographic and social issues, mobile manip-

ulators capable of autonomously perform everyday home

duty such as tidying rooms up, interacting with furniture or

fetching and bringing of daily supplies are raising great inter-

est. These challenging robot abilities are regularly evaluated

throughout international competitions such as the “World

Robot Summit”[1] or the “RoboCup@Home”[2]. In order

to autonomously perform their tasks, an accurate positioning

of their gripper w.r.t. a scene is a fundamental capacity.

Visual Servoing (VS) is an elegant and well-studied

scheme that can be used to perform such precise position-

ing [3]. VS refers to closed-loop control methods of dynamic

systems, such as robots, using data from vision sensors

as feedback. The visual information is usually obtained by

a camera that is set into motion by the system (eye-in-

hand configuration) or by an external camera that captures

the system displacements (eye-to-hand configuration). The

classical VS scheme aims to regulate to zero an error between

visual features extracted from a desired image and from

images acquired by the robot. A control law is designed w.r.t.

the chosen visual features to control the degrees of freedom

of the camera to reach the desired pose. No matter the visual

characteristics used, a set of features representing the desired

camera pose is always required. Knowing in advance the

configuration of the desired image features is often tricky or

even impossible in many real use cases. In this paper, we

Nathan Crombez, Jocelyn Buisson, Zhi Yan and Yassine Ruichek are with
CIAD laboratory, Université Bourgogne Franche-Comté, UTBM, 90010
Belfort, France, e-mail: {firstname}.{name}@utbm.fr

This work has been supported by the MACPOLO research project.
The MACPOLO project is a Toyota Partner Robot joint research project
between Toyota Tsusho Corporation and University of Technology of
Belfort-Montbéliard (UTBM).

address the following question: how to position a camera

w.r.t. a known object that may lie in different places? Using

VS terminology: how to control the camera displacement

when only the projection of a single object is known in the

desired image while the rest of the scene (e.g., background,

other objects, etc.) remains unpredictable?

In this paper, we propose to exploit the image generation

abilities of Generative Adversarial Network (GAN) to predict

a subsequent desired keyframe in order to iteratively drive

the camera towards a targeted pose. Even without any prior

information regarding the scene that surrounds the object at

the desired pose, our method is able to generate a consistent

image in between the current acquired image and the partially

unknown desired one. Our proposed method is flexible as

it decouples the image prediction from the camera control.

Therefore, any type of feature or control method in the

literature can be used jointly with our keyframe prediction

network. More precisely, the following contributions are

described in this paper:

• a novel control pipeline called GANVS that combines

both the advantages and efficiency of the VS framework

and the image translation ability of a GAN,

• an automated synthetic dataset generation strategy that

ensures the generalization of the proposed method to

any kinds of backgrounds, surrounding scenes and di-

verse lighting conditions,

• a quantitative comparison with state-of-the-art methods,

• an accurate positioning performed on a mobile manip-

ulator robot in various real environments.

The remainder of this paper is organized as follows. First,

Section II discusses related work. Then, Section III intro-

duces the general framework of the proposed method and

explains the control scheme. After that, Section IV describes

the GAN architecture and the process to create the dataset.

Experimental results including comparative, qualitative and

quantitative evaluations are presented in Section V. Finally,

conclusion and future work based on preliminary results are

explained in Section VI.

II. RELATED WORK

On the one hand, VS can be performed using geometric

elements based approaches that exploit features such as

image points or straight lines [4]. However, these approaches

involve image processing techniques for the robust extraction

of the features, their matching, and their real-time spa-

tiotemporal tracking. The accuracy of these complex steps

directly affects the performances of the geometric features

based methods. In our study case, since no information is

available in the desired image except the target object, which



may appear under different lighting conditions, thus building

beforehand a set of robust and reliable desired geometric

descriptors is a particularly non-trivial task. An approach

has been recently proposed to autonomously predict a set

of desired image features that represent the grasping pose of

a targeted object [5]. This method has shown robustness to

dynamic scenes but requires depth information and relies on

image points detection and matching.

On the other hand, visual features that are directly based

on the complete photometric information contained in the

images such as pixel luminances [6], photometric mo-

ments [7] or Gaussian mixtures [8] do not require the image

processing stages mentioned above. Moreover, it has been

demonstrated that VS based on photometric information has

several other advantages including very accurate convergence

and robustness to unknown depth and partial occlusions.

Interesting results have also been obtained using model-based

VS even without any information regarding the rest of the

scene [9]. However, since the considered visual features are

the distances between 2D points in the image captured by

the robot and the projection of the 3D lines that compose the

object CAD model, the object pose in the initial image has

to be computed or image processing has to be used to detect

the edges of the object. Moreover, minimizing the point-line

distance imposes a relatively small displacement between

the initial and the desired camera poses. This approach is

therefore more suitable and relevant for object tracking [10].

Exploiting Convolutional Neural Network (CNN) for VS

has been recently investigated. Indeed, many different CNN

architectures have been trained to learn the relative camera

pose between two given images in order to build a VS task

in an end-to-end paradigm. For example, the authors of [11]

have trained a FlowNet network [12] on publicly available

datasets to learn the camera ego-motion between two images

in order to control the 6 degrees of freedom (dof) of a

quadrotor. AlexNet [13] and VGG [14] networks have also

been trained to estimate the relative camera pose between

two input images, that is then used to build a 6 dof control

law [15]. A similar approach has been proposed in order to

solve 4 dof industrial grasp tasks using GoogleNet to output

a motion command [16]. In contrast, authors of [17] have

proposed to use an optical flow network [18] and a single-

view depth network [19] to respectively fill the features error

vector and the interaction matrix of a classical point-based

VS framework [3].

Differently, Deep Reinforcement Learning (DRL) is also

utilized to learn a policy of actions in the environment (i.e.,

robot/camera displacement) by maximizing visual rewards

in order to build VS neural controllers. It has been shown

in [20] that a combination of deep features selected using

a Q-iteration algorithm and DRL can be used to control

4 dof in a synthetic car visual following context. Authors

of [21] have proposed a DRL controller that was trained to

learn a pertinent VS policy for a direct mapping between

errors in the image and the linear velocity commands of a

quadrotor. Since DRL approaches require self-exploration of

the potential actions in the environment, the training stage

(a) I (b) Id (c) Io (d) Ik

(e)

Fig. 1: Data and method: (a) Current captured image I, (b)

Unknown desired image Id, (c) Desired object-only image

Io that visually represents the targeted camera pose w.r.t. the

object, (d) Generated subsequent keyframe Ik, (e) Overview

of the proposed method pipeline.

is almost impractical on a real robot and is then generally

performed in simulation, leading inevitably to reality gap

issues. To reduce this gap, it has been proposed to utilize

a GAN (i.e., CycleGAN [22]) to translate the real images

acquired during an experiment to the virtual domain of

the synthetic training dataset [23]. All the aforementioned

methods have shown interesting capabilities but fully known

desired visual features are always required by the process.

III. CONTROL SCHEME

We consider the positioning of a camera w.r.t. an object

as an optimization problem that aims to regulate to zero the

error:

e(r) = s(r)− sd (1)

where r represents the current camera pose, and where s(r)
and sd are vectors of visual features extracted respectively

from the current acquired image I (e.g., Fig.1a) and a desired

image Id (e.g., Fig.1b). As the targeted object may be located

in different places, the surrounding background and potential

other objects present in the camera field-of-view cannot

be determined in advance. One can note that in other VS

approaches, Id (or a desired set of features) is assumed to be

fully known. Actually, most of the time in real applications,

if we replace every unknown pixel in Id (Fig.1b) by white

pixels, we obtain what we call the desired object-only image

Io (Fig.1c). This latter visually represents the targeted camera

pose w.r.t. the object.

We propose an approach consisting of two independent

stages depicted in Fig. 1e. The first stage named Subsequent



keyframe generation, predicts a visual image Ik (Fig.1d)

of the scene when the camera is slightly moved to an

intermediary pose rk in between r and the desired pose rd.

This predicted keyframe is obtained as follows:

Ik = Gen(Io,I) (2)

where Gen(·) is the generator of our dedicated GAN that

takes as input the object-only desired image Io and the

current image I (see Section IV).

In the second stage, the generated keyframe Ik is used as

a temporary desired image to drive the camera towards the

targeted pose. Since Ik is a visual prediction generated by the

GAN, the resulting image (Fig. 1d) is often blurred and may

contain artifacts [24]. Consequently, reliable geometric visual

features such as points may be difficult to detect, match

and track. Thus, we chose to use a photometric feature, i.e.,

the luminance of every image pixel of I and Ik. Then, (1)

becomes:

e(r) = Ī(r)− Īk (3)

Note that the overbar denotes the vectorization of the image

content.

The VS task is achieved by iteratively applying linear and

angular velocities to the camera in order to regulate to zero

the error expressed by (3). A classical Gauss-Newton control

law is used to compute these velocities v = (ν ,ω):

v =−λLI
⊤e(r) (4)

where λ is a positive scalar and LI is the interaction matrix

related to pixel luminance of the current image I(r), i.e.,

the matrix that associates the image features displacement

with the motion of the camera pose r [6]. At convergence,

the camera pose r tends to rk , i.e., the pose visually rep-

resented by the predicted keyframe Ik. We consider that the

convergence is reached when the residual photometric error,

i.e., the Zero-mean Normalized Sum of Squared Differences

(ZNSSD) between Ik and I, becomes stable. Once the camera

has reached the pose represented by the keyframe, a new one

is subsequently generated and the process is repeated until

the camera finally arrives at the desired pose represented by

the object-only desired image Io.

IV. SUBSEQUENT KEYFRAME GENERATION

A. Training dataset generation

We developed a synthetic dataset generation strategy to en-

sure that our GAN generalizes to many kinds of backgrounds

and lighting conditions, even in real scenes. We created a

virtual environment consisting in a room with a textured and

highly specular floor that does not contain strong patterns or

visual repetitions. Each time a triplet of images {I,Io,Ik
∗}

is rendered for the training set, the 3D model of the object is

moved to a different place in the room, while the floor texture

is changed and the intensity of each of the four ceiling lights

used to lit the room is randomized (see Fig.2). We denote

a keyframe in the dataset Ik
∗ as opposed to Ik in order to

distinguish the one rendered for the purpose of training from

the one resulting from the generator inference (2). We used

two floor textures, a dark one and a light version derived by

color inversion. The light intensity is randomly chosen in a

range going from half to twice the reference light intensity

for the room, which matches the lighting conditions of a

normal well-lit room.

Fig. 2: Discretization of training example poses of the

camera. The yellow sphere corresponds to the pose for Ik
∗

associated with the blue pose for I and green pose for Io.

Multiple orientations are considered for each position in the

pyramid.

In this work, we restrict the camera motion to 4 dof (i.e.,

the translations and the rotation around the optical axis) to

simplify the creation of the dataset and the training of the

GAN. Therefore, the set of all poses in which the object is

visible can be approximated by an inverted cone. The current

and the desired camera poses r and rd could be anywhere

within this volume. This latter is discretized into layered

grids, with at least two levels corresponding to the minimum

and maximum heights of the camera w.r.t. the object (see

Fig. 2). As the dimensions of the object in image-space

varies according to the camera height, we respectively set

the grid dimensions at each level with a different number

of fixed positions. For each position in the pyramid, a fixed

number of rotations Nθ around the optical axis of the camera

is considered. The discretization parameters must ensure that

the photometric overlap as a percentage of the object area in

the images rendered from two adjacent poses is near equal

at each level.

Similar to [15], we also generate Nc additional poses r

around each pose rd in the pyramid to improve the accuracy

of the final convergence. More precisely, the poses r are

obtained using a Gaussian draw with standard deviations

σx = σy = gs

12
, σz =

gz

12
and σθ = 360◦

12·Nθ
, where gs is the

distance between two consecutive poses in the grid at the

level where rd is located, and gz is the mean distance between

the current grid level and the two neighboring ones.

Each pose in the pyramid can be either an initial pose r or

a desired one rd. Given a pair {r,rd}, an intermediary pose

rk is calculated and the respective images triplet {I, Io, Ik
∗}

is rendered. A straightforward approach to calculate rk is to



use a linear interpolation between the two aforementioned

poses. This approach, however, often leads the object to leave

the field-of-view of the camera. We chose instead to calculate

the pose rk so that the trajectory of the object in image-space

follows a straight line. Also, we ensure that the translation of

the object centroid in I and Ik is not greater than a threshold

δuv and the rotation of the object is not greater than δθ . These

two thresholds must be adjusted according to the camera

parameters and the dimensions of the object to ensure that

the transformation between the two aforementioned images

is consistent across all examples in the training set, and

more importantly, to keep sufficient overlap between the two

images allowing the VS to converge.

In order to render Io, we replace the floor texture with a

pure white background and randomize the intensity of each

of the four lights to vary the lighting conditions in I and Ik

from the ones in Io. We iterate over the whole pyramid twice

in order to create the complete training set, this ensures that

the set contains examples of I with different backgrounds

and lighting conditions but from the same camera pose r.

B. GAN Architecture

The GAN architecture that we used is composed of a

PixelGAN discriminator and a ResNet generator with 9 con-

secutive residual blocks, both of them are implemented in the

official PyTorch Pix2Pix/CycleGAN framework1. Although

the default UNet generator generally produces sharper and

more detailed images than the ResNet one, our tests have

showed that the latter can generalize better in terms of

predicting the pose transformation between I and Io. We used

Wasserstein GAN loss with gradient penalty [25] as it allows

the model to learn on our very large and complex dataset for

which the default loss led either to exploding or vanishing

gradient. We therefore replaced every batch normalization

layer in the generator and discriminator by instance ones,

as the gradient penalty works with normalization schemes

that do not introduce correlations between examples. Apart

from that, the network is kept unchanged and all the other

parameters are left to their default values.

V. EXPERIMENTAL RESULTS

We conducted experiments to validate, compare and eval-

uate our approach, both in simulation (Section V-A) and

with a real robot (Section V-C). We used different target

objects including a plane toy, a textured box and a giraffe

toy. We generated a fully synthetic dataset for each of them,

only replacing the 3D model of the object in the scene

before launching the automated process that generates the

images (Section IV-A). Indeed, since our objects have similar

sizes, each synthetic training dataset has been generated

using the same set of parameters. More precisely, the pose

volume has been discretized into three levels: the highest

level corresponds to the limit of the robot end-effector used

in the real experiments, the lowest one corresponds to the

closest distance between the camera and the object where the

1https://github.com/junyanz/pytorch-CycleGAN-and-

pix2pix

latter is fully in the field-of-view of the former and the third

level corresponds to the median height. The grid dimensions

of each level are respectively 7×7, 5×5 and 3×3, and we

set the number of rotations Nθ to 10. In order to ensure a

sufficient photometric overlap between I and Ik, we chose

a translation threshold δuv = 16 and a rotation threshold

δθ = 20◦. Regarding the final convergence, we set the number

of poses Nc to 50. Considering this parameterization, each

dataset contains around 600k triplets of images {I,Io,Ik
∗}

and can be automatically generated in less than 3 hours on

a computer with an Intel Core i7-8700K at 3.70GHz CPU

and two NVIDIA GTX 1080 Ti GPUs. Each model has been

trained using the Adam optimizer with a constant learning

rate lr = 2.0×10−4 and mini batches of 16 samples over 10

epochs. Training for one object took 27 hours on the same

computer.

A. Validation

We performed many experiments to validate the effective-

ness of our approach in a simulated environment consisting

in a small room that contains one or several 3D textured

known or unknown objects on the ground. The ground

appearance was randomly selected from a set of 50 different

textures including grass, concrete, wood, floor tiles, etc.

Some of them contain strong patterns or visual repetitions,

while some are more uniform.

Fig. 3 illustrates one of these experiments. It shows the

initial image I with the object-only desired image Io overlaid

on its top left for ease of visualization (Fig. 3a). To converge

to the desired pose, 17 subsequent keyframes Ik generated by

the GAN have been used as photometric feature predictions.

Some of them are displayed on the top row (Fig. 3b-3e). We

insist on the fact that these images have been generated by

our trained GANVS and are thus not rendered in our virtual

scene. Even though the GAN was never trained with this kind

of background, we can see that it actually recreated the pat-

tern quite well. The final difference images (I(r)− Ik) at the

end of each corresponding photometric VS are also shown

on the bottom row (Fig. 3b-3e). The final image I when the

desired pose has been reached can be seen in Fig. 3f, where

the object-only desired image Io is overlaid on the top left

to visually evaluate the final convergence. Fig. 3g shows the

residual photometric error, i.e the ZNSSD between I and Ik

throughout the experiment. As our method can be seen as a

series of individual photometric VS, each peak corresponds

to the first iteration of a new Ik, then the error decreases

until reaching the convergence and so on. The computed

linear and angular velocities of the camera are respectively

shown in Fig. 3h and Fig. 3i. The camera trajectory in scene-

space, as shown in Fig. 3j, does not follow a straight line

since our GAN is trained to predict subsequential keyframes

that keep the object in the camera field-of-view, i.e., the

object follows a straight line in image-space (Section IV-A).

The initial displacement between the initial and the desired

poses was [8.9cm,21.0cm,19.2cm,−96.3◦]. Despite the large

initial displacement, the high difference between the initial

and the object-only desired images, in addition to important



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 3: Validation in simulation: (a) the initial I with Io overlaid on its top left, (b-e) 4 among the 17 keyframes Ik generated

by the GAN (top row) and their corresponding image differences after the camera convergence (bottom row), and (f) the

final I, (g) the residual photometric error (ZNSSD), (h) the computed linear camera velocities, (i) the computed angular

camera velocity and (j) the camera trajectory.

part in the latter that is totally unknown (Fig. 3a), the camera

converges to the desired pose with a low final pose error

equal to [−5.3mm,−1.0mm,−0.9mm,1.6◦].

B. Comparisons with state-of-the-art methods

In this section, we compare our proposed method

(GANVS) with the luminance based Direct VS (DVS) [6]

and a deep neural network based VS (CNNVS) [15]. The

CNNVS approach has been implemented and validated ac-

cording to the original paper. For a fair comparison, both

GANVS and CNNVS have been trained on the same dataset

generated for one of our object (the plane toy). Especially, as

recommended by the authors of [15], the CNNVS network

(VGG) was pre-trained on ImageNet [26] then fine-tuned

with our dataset.

The three approaches were compared on tasks of posi-

tioning w.r.t. one object over 10 batches of 50 individual

runs. For each run, the object-only desired image Io is

rendered from a random camera pose, then the camera

is randomly displaced to an initial pose and the texture

of the ground is changed. The difficulty (i.e., the initial

relative displacement between r and rd) is incremented over

each batch. More precisely, displacements are drawn from

Gaussian distributions on the 4 dof with standard deviations

increasing linearly for each batch: from 1cm to 22cm for the

translations and 1◦ to 60◦ for the rotation, respectively for

batches 1 to 10.

Fig. 4 provides the results of this benchmark, i.e., the

convergences rate of the three compared methods. It can

be seen that the proposed approach has a larger conver-

Fig. 4: Convergence rate comparison of DVS, CNNVS and

GANVS methods for 10 batches of 50 individual runs. The

difficulty of each batch is incremented linearly and each run

is performed with a different ground texture.

gence domain and a higher proportion of runs converging

to the desired pose than the state-of-the-art ones. In order

to guarantee that the camera converges to the desired pose,

it is known that DVS requires a large photometric overlap

between the initial and desired images. In our case, since

most of the pixels in our desired image Io are unknown,

the only useful overlap is on the object itself, narrowing

even further the convergence domain. It is interesting to

observe that even if GANVS and CNNVS are two deep

learning based methods that have been respectively trained

and fine-tuned on the same dataset, our approach, which

separates the features prediction and the camera control,

provides significantly better results. CNNVS seems facing



more difficulties when the ground is particularly textured.

Moreover, since CNNVS estimates the relative pose of the

camera in scene space, the displacement follows a straight

line in 3D space which corresponds to a curved trajectory of

the object in image space. This sometimes leads the object

to leave the field-of-view of the camera.

C. Real experiments

Experimental results were carried out using a Toyota

HSR (Human Support Robot) [27]. The HSR has a 4 dof

manipulator arm of revolute joints mounted on a prismatic

torso and the whole is driven by an omnidirectional mobile

base. A calibrated camera is embedded on the end-effector of

the robot. We used our method to position the gripper of the

HSR w.r.t. an object in different unknown and uncontrolled

real environments (Fig. 5).

Fig. 5: The Toyota HSR performing precise positioning in

different unknown environments.

The progress of two real experiments is illustrated in

Fig. 6. These experiments have been conducted in a building

hall next to large bay windows, thus the lighting condi-

tions changed while GANVS was progressing. In the first

experiment, the floor has two types of repetitive tiles, one

dark and one light including different shapes. In the second

experiment, the targeted object is a giraffe toy, surrounded

by various unknown objects. Of course, the unknown objects

do not appear in the object-only desired image.

Even with large initial displacements and high differ-

ences between the initial and the object-only desired images

(Fig. 6a), the camera still converges to the desired pose with

low final errors as shown by the final pixel-level alignments

(Fig. 6f).

Due to paper length constraint, the curves of the photo-

metric error, the camera velocities and the camera trajectory

are not reported for these experiments. However, it can

be seen in the complementary video clip that these curves

and trajectories are similar to those obtained in simulation

(Fig. 3g-3j), showing that GANVS has similar behaviours in

real experiment and simulation. Moreover, while having been

trained only on synthetic data, and even if no particular effort

has been made on lighting conditions, GANVS reconstructed

complex details from the background of the real images, in-

cluding strong patterns, specular highlights, unknown objects

and even the base of the robot that is partially visible in

some of the experiments. Although parts of the generated

keyframes may sometimes appear blurry, the images contain

sufficient data for the photometric VS to converge to the

desired pose.

VI. CONCLUSION AND FUTURE WORK

We presented GANVS, a background-agnostic method

for positioning a camera w.r.t. an object that combines the

advantages and efficiency of photometric VS and the gener-

alization ability of GAN. A dedicated GAN is used to predict

intermediate visual keyframes between two images allowing

to converge towards a desired pose following subsequent

photometric VS. To the best of our knowledge, this is the

first attempt at using a GAN to predict an image, visually

representing a movement in space, to control a system. Our

method can therefore be used even with no prior information

about the scene around the targeted object and is also robust

to varying and dynamic lighting conditions. Since several

photometric VS are successively performed, the domain of

convergence is very high, thus the displacement to position

the camera can be very large. We tested and validated our

method both in simulation and using a robotic platform,

including qualitative and quantitative evaluations.

In the future, we intend to investigate the robustness of

our method to partial occlusions and training an object-

agnostic GANVS. Indeed, we actually conducted experi-

ments in simulation placing 3D distractor models on top

of the target object, covering large parts this latter. Even

though GANVS has not been trained with occlusions, though

the background and the distractors are completely unknown,

and none of them are visible in the object-only image,

it was able to correctly detect the target object, infer the

translation and rotation and recreate the keyframe including

the distractor objects allowing the VS scheme to converge to

the desired pose. These encouraging results seem to indicate

that the generalization ability of GANVS offers sufficient

robustness to occlusions without being specifically trained

for this purpose which simplifies the dataset creation.

Additionally, even if GANVS is trained for a specific

target object, it actually shows a moderate ability to gen-

eralize to target objects that the network has never seen

before. Indeed, with both unknown background and unknown

target object in simulation, GANVS was able to generate

keyframes with correct reconstruction of the scene and

correct displacement. However, the convergence accuracy is

not satisfactory since the model oscillates around the desired

pose. Preliminary results with fine-tuning on a small dataset

for new object, containing less than 10k triplets of images,

showed substantially improved convergence of GANVS and

can be done rapidly (about 40 minutes). Both fine-tuning

and modifying the dataset generation strategy to improve

generalization to unknown objects should be investigated in

future work.

REFERENCES

[1] H. Okada, T. Inamura, and K. Wada, “What competitions were
conducted in the service categories of the world robot summit?”
Advanced Robotics, vol. 33, no. 17, pp. 900–910, 2019.

[2] L. Iocchi, D. Holz, J. Ruiz-del Solar, K. Sugiura, and T. van der Zant,
“Robocup@home,” Artif. Intell., vol. 229, no. C, p. 258–281, 2015.

[3] F. Chaumette and S. Hutchinson, “Visual servo control, part i: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82–90, December 2006.



(a) (b) (c) (d) (e) (f)

Fig. 6: Two real Experiments: (a) the initial I with Io overlaid on its top left, (b-e) some keyframes Ik generated by GANVS

(top row) and their corresponding image differences after the camera convergence (bottom row), and (f) the final I.

[4] E. Marchand and F. Chaumette, “Feature tracking for visual servoing
purposes,” Robotics and Autonomous Systems, vol. 52, no. 1, pp. 53–
70, 2005.

[5] J. Haviland, F. Dayoub, and P. Corke, “Predicting target feature
configuration of non-stationary objects for grasping with image-based
visual servoing,” CoRR, vol. abs/2001.05650, 2020.

[6] C. Collewet and E. Marchand, “Photometric visual servoing,” IEEE

Transactions on Robotics, vol. 27, no. 4, pp. 828–834, Aug 2011.

[7] M. Bakthavatchalam, O. Tahri, and F. Chaumette, “A Direct Dense
Visual Servoing Approach using Photometric Moments,” IEEE Trans-

actions on Robotics, vol. 34, no. 5, pp. 1226–1239, Oct. 2018.

[8] N. Crombez, E. M. Mouaddib, G. Caron, and F. Chaumette, “Visual
servoing with photometric gaussian mixtures as dense features,” IEEE

Transactions on Robotics, vol. 35, no. 1, pp. 49–63, 2018.

[9] E. Marchand, P. Bouthemy, and F. Chaumette, “A 2d–3d model-based
approach to real-time visual tracking,” Image and Vision Computing,
vol. 19, no. 13, pp. 941–955, 2001.

[10] P. Han and G. Zhao, “A review of edge-based 3d tracking of rigid
objects,” Virtual Reality & Intelligent Hardware, vol. 1, no. 6, pp. 580
– 596, 2019.

[11] A. Saxena, H. Pandya, G. Kumar, A. Gaud, and K. M. Krishna,
“Exploring convolutional networks for end-to-end visual servoing,”
in 2017 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2017, pp. 3817–3823.

[12] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov,
P. v. d. Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” in 2015 IEEE International Con-

ference on Computer Vision (ICCV), 2015, pp. 2758–2766.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems 25. Curran Associates, Inc., 2012,
pp. 1097–1105.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on

Learning Representations (ICLR), 2015.

[15] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke,
“Training deep neural networks for visual servoing,” in IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2018, pp.
1–8.

[16] X. Fu, Y. Liu, and Z. Wang, “Active learning-based grasp for accurate

industrial manipulation,” IEEE Trans. Automation Science and Engi-

neering, vol. 16, no. 4, pp. 1610–1618, 2019.
[17] Y. Harish, H. Pandya, A. Gaud, S. Terupally, S. Shankar, and K. M.

Krishna, “Dfvs: Deep flow guided scene agnostic image based visual
servoing,” arXiv preprint arXiv:2003.03766, 2020.

[18] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep net-
works,” in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017, pp. 1647–1655.
[19] I. Alhashim and P. Wonka, “High quality monocular depth estimation

via transfer learning,” arXiv preprint arXiv:1812.11941, 2018.
[20] A. X. Lee, S. Levine, and P. Abbeel, “Learning visual servoing

with deep features and fitted q-iteration,” CoRR, vol. abs/1703.11000,
2017. [Online]. Available: http://arxiv.org/abs/1703.11000

[21] C. Sampedro, A. Rodriguez-Ramos, I. Gil, L. Mejias, and P. Campoy,
“Image-based visual servoing controller for multirotor aerial robots
using deep reinforcement learning,” in IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 2018, pp. 979–986.
[22] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image

translation using cycle-consistent adversarial networks,” in 2017 IEEE

International Conference on Computer Vision (ICCV), 2017, pp. 2242–
2251.

[23] O.-M. Pedersen, E. Misimi, and F. Chaumette, “Grasping Unknown
Objects by Coupling Deep Reinforcement Learning, Generative Ad-
versarial Networks, and Visual Servoing,” in IEEE International

Conference on Robotics and Automation (ICRA), 2020, pp. 1–8.
[24] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image

translation with conditional adversarial networks,” in Computer Vision

and Pattern Recognition (CVPR), 2017 IEEE Conference on, 2017.
[25] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,

“Improved training of wasserstein gans,” in International Conference

on Neural Information Processing Systems (NIPS). Curran Associates
Inc., 2017, p. 5769–5779.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural

information processing systems, 2012, pp. 1097–1105.
[27] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and

K. Murase, “Development of human support robot as the research
platform of a domestic mobile manipulator,” ROBOMECH Journal,
vol. 6, no. 4, 2019.


	Introduction
	Related work
	Control scheme
	Subsequent keyframe Generation
	Training dataset generation
	GAN Architecture

	Experimental results
	Validation
	Comparisons with state-of-the-art methods
	Real experiments

	Conclusion and Future Work
	References

