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1. Introduction
The Paris agreement calls for “a balance between anthropogenic emissions by sources and removals by 
sinks of greenhouse gases in the second half of this century” to limit the increase in global average tem-
perature below 2°C above preindustrial levels (UNFCCC, 2015). Monitoring and tracking this commitment 
require accurate quantification of terrestrial carbon exchange with the atmosphere. The rapid increase of 
carbon dioxide (CO2) has been partially offset by natural biogeochemical processes, including uptake by 
terrestrial and oceanic ecosystems (Friedlingstein et al., 2019). Understanding terrestrial carbon exchange is 
crucial for assessing biosphere-atmosphere interactions, for diagnosing terrestrial ecosystem contributions 
to the global coupled carbon-climate system and, ultimately, for reducing the uncertainty in climate projec-
tions (Friedlingstein et al., 2014).

Though the net global flux of CO2 to the atmosphere is well-constrained (Tans & Conway,  2005; Tans 
et al., 1990), regional-to-continental biogenic CO2 fluxes are not well characterized in current carbon esti-
mation approaches (Crowell et al., 2019). Two approaches are commonly taken to quantify biogenic CO2 
fluxes at the continental scale. “Top-down” approaches use an optimization process by which atmospher-
ic CO2 mole fraction ([CO2]) measurements combined with an atmospheric transport model are used to 
constrain the a priori estimation of the spatial and temporal distribution of biologic CO2 fluxes (Enting 
et al., 1995). Here we use “[]” to represent atmospheric mole fractions and distinguish it from flux space, 
and this convention is used hereafter. Determining and reducing the uncertainty associated with transport 

Abstract Terrestrial biosphere models (TBMs) play a key role in the detection and attribution of 
carbon cycle processes at local to global scales and in projections of the coupled carbon-climate system. 
TBM evaluation commonly involves direct comparison to eddy-covariance flux measurements. We use 
atmospheric CO2 mole fraction ([CO2]) measured in situ from aircraft and tower, in addition to flux-
measurements from summer 2016 to evaluate the Carnegie-Ames-Stanford-Approach (CASA) TBM. WRF-
Chem is used to simulate [CO2] using biogenic CO2 fluxes from a CASA parameter-based ensemble and 
CarbonTracker version 2017 (CT2017) in addition to transport and CO2 boundary condition ensembles. 
The resulting “super ensemble” of modeled [CO2] demonstrates that the biosphere introduces the majority 
of uncertainty to the simulations. Both aircraft and tower [CO2] data show that the CASA ensemble net 
ecosystem exchange (NEE) of CO2 is biased high (NEE too positive) and identify the maximum light use 
efficiency Emax a key parameter that drives the spread of the CASA ensemble in summer 2016. These 
findings are verified with flux-measurements. The direct comparison of the CASA flux ensemble with 
flux-measurements confirms missing sink processes in CASA. Separating the daytime and nighttime 
flux, we discover that the underestimated net uptake results from missing sink processes that result in 
overestimation of respiration. NEE biases are smaller in the CT2017 posterior biogenic fluxes, which 
assimilate observed [CO2]. Flux tower analyses reveal an unrealistic overestimation of nighttime 
respiration in CT2017 which we attribute to limited flexibility in the inversion strategy.
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and with flux priors have been the focus of the atmospheric inversion community (Baker et al., 2006; Gur-
ney et al., 2002; Philip et al., 2019; Schuh et al., 2019). Flux priors are commonly obtained from the simulat-
ed net ecosystem exchange (NEE) from terrestrial biosphere models (TBMs).

TBMs (a “bottom up” approach) simulate surface CO2 fluxes from site level to global scale as they inte-
grate ecological and meteorological drivers (Fung et al., 1987). Flux priors in atmospheric inversions are 
commonly obtained from the NEE simulated by TBMs. TBMs also simulate the land carbon component 
in Earth system models used for climate projections. Joint assimilation systems have also been developed 
to benefit from both ecosystem measurements and atmospheric mole fractions (Kaminski et  al.,  2002). 
The optimization procedure relies on an adjoint model of the biogeochemical processes such as the Bio-
sphere Energy-Transfer Hydrology model included in the Carbon Cycle Data Assimilation System at large 
scales (Knorr, 2000). Such a system was enhanced to assimilate satellite ecosystem products available over 
the globe (Kaminski et  al.,  2012) or eddy-flux and mole fraction measurements over continents (Koffi 
et al., 2013). These approaches optimize a number of model parameters in part of the underlying TBMs, 
and have been applied using remote [CO2] from towers or satellites (e.g., Scholze et al., 2019). On sub-con-
tinental scales, atmospheric [CO2] require fine-resolution models to simulate the complex atmospheric dy-
namics (e.g., Feng, Lauvaux, Keller, et al., 2019) and dense tower networks (Andrews et al., 2014) combined 
with eddy-flux tower networks (e.g., AmeriFlux) covering a wide array of ecosystems and climatic zones 
for evaluations

TBMs have been shown to vary widely in their projections of terrestrial CO2 sink strengths, not only in 
magnitude but also even in sign (Baker et al., 2006; Gurney et al., 2002). Huntzinger et al. (2011) evaluat-
ed flux variability from four TBMs over North America and the potential impact on the inversion results. 
They found that the diurnal variability in surface fluxes within the near field of tower [CO2] observations 
appear to have a significant impact on the high-frequency variations in the atmospheric data, and, thus, the 
inversion needs to adjust the temporal (and spatial) variability of the prior fluxes. Feng, Lauvaux, Keller, 
et al.  (2019) compared the modeled [CO2] errors attributed to biogenic CO2 fluxes, fossil fuel emissions, 
atmospheric transport, and large-scale boundary inflow from daily to annual timescales and discovered 
that the biogenic CO2 fluxes dominate the model errors across timescales, implying that [CO2] observa-
tions hold promise for evaluating and improving TBMs. Global inversions usually optimize CO2 fluxes on 
monthly to annual timescales at the grid scale in the magnitude of a few degrees by a few degrees. Higher 
spatiotemporal resolutions in the prior are often not altered. As the resolution of inversion system improves 
and the need for accurate flux data at high resolution increase, evaluating the higher-resolution spatial and 
temporal structure of TBMs is increasingly important. TBMs with more accurate, high-resolution surface 
biogenic CO2 fluxes will improve our diagnosis, attribution, and projection of terrestrial carbon dynamics, 
and improve “top-down” analysis systems that rely on TBMs for a priori surface flux estimation.

Several multiple-model intercomparison projects have been conducted to characterize or synthesize cur-
rent understanding of land-atmosphere carbon exchange and inform the uncertainty or confidence sur-
rounding projections of future exchange and feedbacks with the climate system, such as the Multi-Scale 
Synthesis and Terrestrial Model Intercomparison Project (Huntzinger et al., 2013) Trends in Net Land-At-
mosphere Carbon Exchange (TRENDY1; Sitch et al., 2008), the regionally focused Large Scale Biosphere 
Atmosphere-Data Model Intercomparison Project (LBAMIP2; Gonçalves et al., 2013), and the International 
Land-Atmosphere Benchmarking Project (ILAMB; Luo et  al.,  2012). These model intercomparison pro-
jects were built upon the protocols that specify standard model inputs, simulations and simulation setup 
procedures. These model intercomparison exercises have been used to explore the uncertainty in model 
simulations that arises from internal variability, boundary conditions, and parameter values for structural 
uncertainty from different model fluctuations (Schwalm et al., 2015). However, due to the complexity of 
TBMs, it is challenging to trace errors in individual models to misrepresentation of specific ecological pro-
cesses or inappropriate model parameters through these model intercomparison projects. This merits deep 
exploration of just one modeling framework but with a perturbed parameter ensemble.

Recently, Zhou, Williams, Lauvaux, Davis, et  al.  (2020) introduced an ensemble of biogenic CO2 fluxes 
simulated by the Carnegie-Ames-Stanford-Approach (CASA) biosphere model for North America at the 
resolutions of 5 km for North America and ∼500 m for the US CONUS region from 2003 to 2019 by perturb-
ing three model parameters—maximum light use efficiency Emax, optimal temperature of photosynthesis 
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Topt, and temperature response of respiration Q10—on the basis of the CASA biome types. Those parameters 
were chosen as a result of a sensitivity test of simulated biogenic CO2 fluxes to a series of CASA param-
eters. Furthermore, the range of Emax values was determined at the ecosystem level by comparison with 
eddy-covariance measurements of net CO2 flux. Zhou, Williams, Lauvaux, Davis, et al. (2020) illustrated 
that the pruned L2 ensemble has good agreement with the flux data and outperforms many other TBMs 
at diurnal and annual scales, while overestimating model errors as represented by comparison with flux 
measurements.

Atmospheric [CO2] measurements provide another opportunity for evaluating modeled biogenic CO2 flux-
es, as evidenced by the fact that continental [CO2] gradients are mainly attributed to the biosphere (e.g., 
Feng, Lauvaux, Davies, et al., 2019; Feng, Lauvaux, Keller, et al., 2019). The major differences between mole 
fraction and flux measurements fall in the size of the surface influence area, or footprint, that influences a 
given measurement, and also the upwind memory of the samples. The size of a flux tower footprint is only 
about 1 km (e.g., McCaughey et al., 2006), and the measurements carry nearly instantaneous information 
of surface fluxes. Owing to these two factors, the flux measurements do not directly represent regional to 
continental fluxes, as the local fluxes captured may not be representative of broader scale patterns. One ob-
jective of this study is to explore the coherence between CO2 flux and mole fractions with respect to modeled 
biogenic CO2 flux evaluations. The CO2 flux measurements selected for this study are from the AmeriFlux 
network (https://ameriflux.lbl.gov/), which has more than 150 active flux sites sampling a wide range of 
sites from the Amazonian rainforests to the North Slope of Alaska.

An in situ [CO2] tower typically has a footprint of hundreds of kilometers (e.g., Gloor et al., 2001; Sweeney 
et al., 2015) and carries the integrated atmospheric [CO2] signals from day and night. Aircraft measure-
ments have even larger footprints with broad spatial sampling. TBM-modeled CO2 fluxes can be evaluated 
against [CO2] measurements by means of Lagrangian and forward Eulerian transport modeling. Both are 
subject to transport model errors (e.g., Pillai et al., 2012). In Lagrangian modeling, the modeled biogenic 
CO2 mole fractions ([CO2bio] hereafter) can be directly calculated by convolving biogenic CO2 fluxes with 
the influencing areas of the [CO2] measurements that are simulated by an Eulerian transport model (Uliasz 
et al., 1994). The difficulty of this approach is to define the observed [CO2bio] due to mixed signals in the 
[CO2] measurements (e.g., Ogle et al., 2015). In Eulerian transport modeling, the CO2 transport is treated 
as a passive tracer (Sarrat et al., 2007). The modeled total [CO2] is the sum of biogenic, fossil fuel, ocean-
ic, fire CO2 components in conjunction with boundary conditions as described in Feng, Lauvaux, Davies, 
et al. (2019) and Feng, Lauvaux, Keller, et al. (2019). The modeled error therefore can be from any or multi-
ple components in addition to model transport (Feng, Lauvaux, Davies, et al., 2019; Feng, Lauvaux, Keller, 
et al., 2019). Note that these model error sources are also of concern in the “top-down” estimation. Another 
objective of this work is to explore to what degree the atmospheric [CO2] data can be used to evaluate TBMs. 
Here we use CASA (Potter et al., 1993) for demonstration and adopt the Eulerian transport model WRF-
Chem (Grell et al., 2005; Skamarock et al., 2008) to serve this objective.

In this study, we employ both ground-based and aircraft in situ [CO2] data for the model evaluations. The 
NASA-funded Atmospheric Carbon and Transport (ACT)-America project was designed to improve the 
CO2 and methane (CH4) flux estimates by reducing transport and flux uncertainties. Two aircraft measured 
atmospheric CO2, CH4, and other gas species over Mid-Atlantic, Mid-West, and Southern Gulf regions in 
fair and frontal weather regimes. Typical flights encompassed 4–6 h of midday conditions, encompassing 
400–800 km in the horizontal and altitudes ranging from 300 to 9,000 m above ground level. Two aircraft 
flew together, collecting two to four vertical levels (level legs), often stacked one above the other, and typ-
ically about 8–12 vertical profiles per flight day. Pal et al. (2020) found that large horizontal and vertical 
gradients of [CO2] exist across frontal boundaries based on the data collected from the summer 2016 cam-
paign. The cross-frontal [CO2] contrasts are greatest in the atmospheric boundary layer (ABL), ranging from 
5 to 30 ppm, while the contrasts are about 3–5 ppm in the free troposphere (FT). In the vertical dimension, 
higher [CO2] appears in the FT than in the ABL in the cold sector while the opposite pattern appears in 
the warm sector. Averaged ABL-to-FT [CO2] differences can be about 12 and −6 ppm in the warm and 
cold sectors, respectively. These unique flights were designed to be highly sensitive to the seasonal mag-
nitudes of regional-scale carbon fluxes and to provide broad spatial coverage that cannot be obtained with 
the current long-term observing network. The third objective is to explore to what degree the aircraft [CO2] 
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measurements and tower measurements yield consistent evaluations of the modeled fluxes. Merging these 
two [CO2] observing systems lends more confidence to our conclusions regarding the modeled fluxes and 
provides a test of the two observing systems.

The three objectives of this study are addressed through comparing the WRF-Chem [CO2] simulated using 
the CASA L2 flux ensemble members to the airborne and tower-based [CO2] data for the ACT-America 
summer 2016 campaign period (July 18 to August 28, 2021). The WRF-Chem model setup and methods are 
described in Section 2. All the data used in this work are described in Section 3. The modeled and observed 
[CO2], CASA parameter constraints, and causes of the model errors are illustrated in Section 4. Sections 5 
and 6 are discussion and conclusions, respectively.

2. Materials and Methods
2.1. Transport Model Setup

All transport model simulations use WRF-Chem version 3.6.1 (Grell et al., 2005; Skamarock et al., 2008). 
The modification made to transport greenhouse gases as passive tracers (Lauvaux et al., 2012) allows us to 
carry ensemble tracers for biogenic CO2 fluxes (Section 2.2) and [CO2] boundary conditions (Section 2.4) in 
one transport run (Section 2.3). In each transport run, WRF-Chem carries 39 CO2 tracers for the ensembles 
of boundary conditions and biogenic fluxes, ocean, fossil fuel, and biomass burning fluxes. The modeled 
total [CO2] is the sum of a boundary condition, a biogenic flux, and the oceanic flux, fossil fuel emission, 
and biomass burning CO2 tracers as described in Feng, Lauvaux, Davies, et al. (2019) and Feng, Lauvaux, 
Keller, et al. (2019). The [CO2] boundary condition tracers are propagated into WRF-Chem hourly with the 
consideration of the conservation of mass (Butler et al., 2020). Five global CO2 inversion/reanalysis systems 
are used for [CO2] boundary conditions (Section 2.4) and 29 biogenic CO2 fluxes are used for the biogenic 
CO2 tracers (Section 2.2). The CO2 oceanic flux, fossil fuel emission, and biomass burning are taken from 
CarbonTracker version 2017 (CT2017; Peters et al., 2007).

The same model configurations in Feng, Lauvaux, Davies, et al. (2019) and Feng, Lauvaux, Keller, et al. (2019) 
are used except for the meteorological initial and boundary conditions. In this study, we used the ERA5 re-
analysis (Hersbach et al., 2020) and benchmark the model transport by nudging the WRF-Chem simulation 
to ERA5. The wind evaluations show that nudging clearly improves model transport (see Text S1 in support-
ing information). A suite of transport runs is created for uncertainty quantification (Section 2.3). Choices 
of the model physics schemes are summarized in Table 1. All WRF-Chem simulations have a horizontal 
resolution of 27 × 27 km for the period from July 18 to August 28, 2016 covering the ACT-America summer 
2016 aircraft campaign at hourly resolution. Vertically, WRF-Chem has 50 levels from surface to 50 hPa with 
29 levels within 2 km above ground.

2.2. Biogenic CO2 Flux Ensemble: CASA and CT2017

We include 29 biogenic CO2 fluxes in each transport run as separate tracers: the 27-member CASA L2 NEE 
ensemble, the mean of the CASA NEE ensemble, and the CT2017 posterior biogenic CO2 flux.
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Parameterization Option used Reference

Microphysics Thompson Thompson et al. (2004)

Longwave radiation RRTMG longwave scheme Iacono et al. (2008)

Shortwave radiation RRTMG shortwave scheme Iacono et al. (2008)

PBL scheme MYNN2 Nakanishi and Niino (2006)

Land surface Unified Noah land-surface model Chen and Dudhia (2001)

Cumulus Kain-Fritsch (new Eta) scheme Kain (2004)

Abbreviations: MYNN2, Mellor-Yamada Nakanishi and Niino Level 2; PBL, planetary boundary layer.

Table 1 
WRF-Chem Model Physics Parameterization Choices
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The CASA ensemble members (Zhou, Williams, Lauvaux, Feng, 
et al., 2020) were generated by perturbing the maximum light use efficien-
cy (Emax), optimal temperature of photosynthesis (Topt), and temperature 
response of respiration (Q10) with the consideration of the biome types in 
CASA, as described in Zhou, Williams, Lauvaux, Davis, et al. (2020). These 
three perturbed parameters were determined to dominate the sensitivity 
of modeled CO2 fluxes to the model parameters according to an Extended 
Fourier Amplitude Sensitivity Testing analysis. The initial range for each 
parameter was broadly sampled for the L1 ensemble. Parameter ranges 
were subsequently narrowed to those consistent with AmeriFlux data, 
resulting in a L2 ensemble. CASA simulates gross primary productivity 
(GPP), total ecosystem respiration (Re), and NEE at monthly resolution. 
The monthly GPP and Re fluxes were then downscaled to 3-hourly res-
olution by 3-hourly air temperature and shortwave downward radiation 
from the North American Regional Reanalysis (Mesinger et al., 2006) us-
ing the Olsen and Randerson (2004) method. Two sets of flux products 
are included in the official release of the CASA flux ensemble, one at 
500-m resolution covering the US CONUS region and the other at 5-km 
covering a broader swath of North America. We used the L2 5-km CASA 
ensemble for this study. Details about the CASA ensemble products can 
be found in Zhou, Williams, Lauvaux, Davis, et al. (2020) and Zhou, Wil-
liams, Lauvaux, Feng, et al. (2020).

Unlike CASA that directly simulates biogenic CO2 fluxes (“bottom-up”), CT2017, a “top-down” flux es-
timate, optimizes the a priori fluxes (CASA; Potter et  al.,  1993) by assimilating observed [CO2] (Peters 
et al., 2007). CT2017 global 3-hourly posterior biogenic fluxes at 1° × 1° are used in this study. Note that, 
unlike the CASA ensemble used spun up to equilibrium, the CT2017 biogenic flux prior from CASA include 
an assumed global terrestrial biospheric sink of 2 PgC/yr.

Both CASA and CT2017 biogenic CO2 fluxes have a 3-hourly temporal resolution. To downscale to hourly 
fluxes for the transport model simulations, values in each 3-hourly flux file are repeated hourly over the 
period they represent.

2.3. Transport Ensemble

The transport ensemble runs are generated using the combination of multiple physical parameterizations 
and the stochastic kinetic energy backscattering scheme (SKEBS; Berner et al., 2009; Shutts, 2005). Through 
this combination, model meteorological initial conditions and physics were perturbed at the same time, in-
troducing transport uncertainty due to the model dynamics and physics. Previous studies demonstrated that 
model errors can be best captured by a combination of multi-physics and SKEBS (Berner et al., 2011, 2015) 
as opposed to a single perturbation scheme. Feng, Lauvaux, Davies, et al. (2019) and Feng, Lauvaux, Keller, 
et al. (2019) for the first time applied this combination to simulations of [CO2] and demonstrated that a 
relatively small transport ensemble can represent model [CO2] transport uncertainty. We use the root-mean-
square deviation (RMSD) of the simulated [CO2] transport ensemble from the ensemble mean to repre-
sent transport uncertainty. Similar calculations are used to estimate biogenic flux and boundary condition 
uncertainty.

Here we varied the land surface models (LSMs) and planetary boundary layer (PBL) schemes in WRF-
Chem based on the sensitivity study conducted by Díaz-Isaac et al. (2018). The ensemble members are (a) 
Mellor-Yamada Nakanishi and Niino Level 2.5 (MYNN 2.5) PBL scheme with Noah LSM, (b) Mellor-Yama-
da-Janjic PBL scheme with RUC LSM, and (c) Yonsei University PBL scheme with five-layer thermal diffu-
sion LSM. The associated surface layer parameterizations are MYNN, Eta, and MM5, respectively. A sum-
mary of transport ensemble members can be found in Table 2. Note that these transport ensemble runs are 
free runs, not nudged to ERA5.
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Transport run PBL scheme Surface layer LSM SKEBS

1 MYNN MYNN Noah N

2 MYNN MYNN Noah Y

3 MYNN MYNN Noah Y

4 MYNN MYNN Noah Y

5 MYJ Eta RUC N

6 MYJ Eta RUC Y

7 MYJ Eta RUC Y

8 YSU MM5 Thermal N

9 YSU MM5 Thermal Y

10 YSU MM5 Thermal Y

Abbreviations: LSM, land surface model; MYNN, Mellor-Yamada 
Nakanishi and Niino; PBL, planetary boundary layer; SKEBS, stochastic 
kinetic energy backscattering scheme.

Table 2 
Perturbations of the Transport Ensemble
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2.4. Boundary Condition Ensemble

A suite of optimized [CO2] from five global inversion systems are collected for this study. They are CT2017 
(Peters et al., 2007, with updates documented at http://carbontracker.noaa.gov), TM5 as described in Basu 
et al. (2016), GEOS-Chem developed in the Carbon Monitoring System (Liu et al., 2014), GEOS-Chem as 
described in Schuh et al. (2019), and PCTM as described in Barker et al. (2004). These global modeled [CO2] 
fields are propagated into WRF-Chem hourly as separate tracers following Butler et al. (2020).

2.5. Footprint Analysis

To understand the fluxes influencing the observations used in this study, the Lagrangian Particle Dispersion 
Model (Uliasz et al., 1994) is used to create surface influence functions (footprints) for each flight in the 
Summer 2016 ACT aircraft campaign (see description in Section 3.1). Particles are released along the time 
of each aircraft transect within the boundary layer, and are traced backwards in time over a two-week pe-
riod using meteorology provided by the WRF nudged-transport simulation. The influence by the surface is 
represented by the number of particles interacting with the surface grid, that is, below 50 m above ground, 
are summed up, providing a temporal and spatial function that relates the signal observed by the aircraft to 
the surface fluxes responsible for that signal (Seibert & Frank, 2004).

In addition to aircraft [CO2] measurements, we also use a subset of the ground-based [CO2] tower meas-
urements from the NOAA ObsPack GlobalViewPlus package (Cooperative Global Atmospheric Data Inte-
gration Project, 2019; see Section 3.2). We create footprints for the towers by releasing particles at 21 UTC 
backward in time over two-week period using the nudged transport from July 18 to August 28, 2016 across 
23 different tower sites in the US. The selection of 21 UTC limits the tower observations to well-mixed ABL 
conditions, minimizing model transport uncertainty.

2.6. Model Evaluation Metrics

To demonstrate the importance of the uncertainty in the biosphere, we first compare the contribution of 
biosphere, transport, and boundary conditions to the modeled [CO2] uncertainty. We use the RMSD of a 
given component to illustrate the ensemble spread and associated uncertainty.

We focus on the performance of the individual biogenic CO2 flux members through the biome-based model 
biases, which is determined by the CASA biome map and the footprint of the measurements. The uncer-
tainties in modeled [CO2] associated with the individual biogenic flux members are determined by the 
spread of the transport and boundary conditions ensembles.

To investigate the causes of modeled [CO2] biases and eliminate the potential interference of transport and 
boundary conditions inherent in [CO2] comparisons, we also directly compare the CASA flux members 
and CT2017 fluxes member with AmeriFlux eddy-covariance flux measurements. This comparison tests 
for consistency between [CO2] and eddy-covariance flux analyses and lends more insight into the diel cycle 
of CO2 fluxes. We group these analyses according to the dominant biomes surrounding each [CO2] tower.

Due to the uneven distribution of flux and [CO2] towers, flux towers cannot be always found in the footprint 
of a given [CO2] tower. We therefore propagate the flux biases at each [CO2] tower location using Equation 1 
below. By assuming that a given biome type in the CASA model and CT2017 have a similar behavior (bias) 
everywhere, we group the flux towers influenced by the same dominant biome together and calculate the 
overall flux, TF , and bias for the given biome. The flux biases at a given [CO2] tower location iB , can be ex-
pressed in the following equation.

 

 
    

 

24 14

1 0

1 ,
24i T T t

t T
B F W W (1)

where TW  and tW  are the spatial and temporal weighting functions that propagate the flux biases from the 
biome level to the [CO2] site level, respectively. The subscript T denotes the biome: Indexes 1 to 14 are the 
biome in CASA following Zhou, Williams, Lauvaux, Davis, et al. (2020); index 0 represents water bodies. 

TW  are the fractional areas of individual biomes relative to the entire summer-averaged influence area of 
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tower-based, daytime [CO2] observations (Figure S2). In the analysis, we find that some towers can be influ-
enced by up to six biome types according to the footprint of the tower [CO2] measurements. The temporal 
weighting function, tW , is essentially equal across the 24 h of a day due to the indistinguishable diel cycle 
after averaging the footprint over the period of interest (Figure S3b and Text S2 in SI). We acknowledge 
that a more thorough analysis should consider day-to-day variation in tW  for each tower observation. We 
hypothesize that the day-to-day variation in tW  will have minimal impact on the bias analysis we focus on 
in this study.

3. Data
3.1. ACT-America Aircraft Data

Two aircraft, the NASA Langley Beech-craft B200 King Air and NASA Goddard Space Flight Center’s 
C-130H Hercules aircraft, were used to collect high quality in situ measurements of greenhouse gases, other 
gas species, and meteorological fields over Mid-Atlantic (MA), Mid-West (MW), and South Gulf (South) 
regions of the United States. The flight dates and patterns can be found Table S1. All the flights during this 
time took off around noon and landed around 5 p.m. local time. In this study, we used ACT-America L3 
Merged in situ Atmospheric Trace Gases and Flask Data (Davis et al., 2018). This product provides integrat-
ed measurements and metadata flag information, including flight pattern, airmass type, and boundary layer 
information at five-second intervals. More information about the ACT-America campaign and measure-
ments can be found at https://actamerica.ornl.gov/ and Davis et al. (2021). The nearest point interpolation 
is applied to extract modeled [CO2] along the flight tracks.

3.2. NOAA ObsPack GlobalViewPlus [CO2] Product

We also use tower-based in situ [CO2] data from the NOAA ObsPack GlobalViewPlus product (Cooperative 
Global Atmospheric Data Integration Project, 2019; see locations in Figure 1). Twenty-three tower locations 
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Figure 1. Carnegie-Ames-Stanford-Approach (CASA) biome type regridded to the 27 × 27-km WRF-Chem grids, and the locations of the [CO2] towers (red 
circled crosses) and AmeriFlux flux towers (black triangles). The colored area is the model domain.

https://actamerica.ornl.gov/
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(Table 3) from this data package were selected for investigations. The Ob-
sPack product collects greenhouse gas data from providers around the 
globe and reformats the data into the ObsPack framework in support of 
carbon cycle modeling studies (Masarie et al., 2014). The [CO2] data are 
first organized into hourly data, and then nearest point interpolation is 
applied to extract modeled [CO2] at the tower locations.

3.3. AmeriFlux CO2 Flux Measurements

We also include CO2 flux measurements to evaluate our findings regard-
ing biogenic CO2 flux members. The CO2 flux data are obtained from the 
eddy-covariance measurements from the AmeriFlux network (https://
ameriflux.lbl.gov). Seventy-one flux tower sites from the domain of inter-
est were used. The data providers are responsible for data quality control. 
The locations and information of the sites can be found in Figure 1 and 
Table S2. We obtained a single estimate of NEE for each flux tower loca-
tion from the non-gap-filled NEE values reported by AmeriFlux, with a 
preference for eddy-covariance measurements with a storage correction. 
Tower-measured NEE was averaged to three-hour intervals to match the 
time resolution of CASA and CT2017. No intervals were excluded if they 
had any reported data.

4. Results
4.1. Spatiotemporal Variability of [CO2]

We select five of the 25 research flights (Figure 2) to illustrate the typi-
cal flight patterns for fair and frontal weather regimes. As expected, both 
models and observations show large [CO2] gradients in the ABL, leading 
to large variations in [CO2bio]. Pal et al. (2020) reported that an elevat-
ed [CO2] band was repeatedly observed along the cold frontal bounda-
ry, a feature also captured by the simulations. The 8/4/2016 frontal case 
shows a narrow, elevated [CO2] band at the frontal boundary (∼25 ppm 
difference in [CO2] across the front). We examined this frontal case with 
a 3 × 3-km (cloud-resolving) resolution model and showed that this el-
evated [CO2] band has a maximum width of ∼200 km and a length of 
over 800 km extending from northeastern Kansas to northeastern Iowa 
(Samaddar et al., 2021). Figure 2 shows that the frontal boundaries are 

associated not only with elevated [CO2] but also with highly variable [CO2bio]. More than 5 ppm RMSD 
of [CO2bio], caused by variability among the CASA ensemble fluxes, appears in the ABL along the frontal 
boundaries. Enhanced by the baroclinic instability, the cold airmass on the west lifted the warm airmass 
aloft. ABL [CO2] penetrates into the free troposphere along the frontal lifting. RMSD in [CO2bio] greater 
than 3 ppm, an indicator of strong surface influence, reaches up to 3.5 km above sea level on 7/18 and 
1.7 km on 8/4 (Figure 2). On the contrary, both [CO2] and [CO2bio] have less variability for the fair-weather 
cases.

We use the ABL [CO2] observations to evaluate biogenic CO2 fluxes since, as Figure 2 illustrates, these data 
are the most sensitive to variations in the biological CO2 fluxes. We limit our work to ABL [CO2] for the 
rest of this analysis. Figure 3 shows the averaged [CO2] sampled by aircraft and simulations. Note that the 
modeled [CO2] are from the transport-nudged simulation (described in Section 2.1), while the uncertain-
ties are determined by spreads of the ensemble runs associated with different components described in 
Sections 2.2, 2.3 and 2.4. All ACT-America aircraft collected afternoon samples aiming at well-mixed ABL 
conditions. The most outstanding feature overall is that the biosphere is the most uncertain component 
in the simulation for the fair and frontal weather regimes except for three cases in the South and one in 
the Midwest. The footprint analysis (Figure S4) shows that the Southern flights are mainly influenced by 
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Site Lat Lon

Intake 
elevation 
(m ASL)

1st biome type 
(fraction %)

2nd biome 
type 

(fraction %)

AMT 45.03 −68.68 160 DB (42.1) EN (32.2)

BAO 40.05 −105 1,884 GL (62.8) EN (36.4)

CPS 49.82 −74.98 389 EN (46.3) MF (32.2)

ESP 49.38 −126.54 47 EN (49.6) Wa (47.1)

ETL 54.35 −104.99 597 EN (67.8) CR (14.0)

GCI01 32.47 −92.28 165 EN (61.2) DB (22.3)

GCI02 33.75 −89.85 205 DB (56.2) CR (27.3)

GCI03 31.89 −89.73 232 EN (57.9) DB (33.9)

GCI04 33.18 −85.89 428 EN (58.7) DB (40.5)

GCI05 30.2 −85.83 105 Wa (41.3) EN (41.3)

HFM 42.54 −72.17 369 DB (87.6) Wa (10.0)

HNP 43.61 −79.39 97 CM (43.8) DB (17.4)

LEF 45.95 −90.27 868 DB (81.8) Wa (7.4)

MBO 43.98 −121.69 2742 EN (73.6) GL (20.6)

MRC 41.47 −76.42 652 DB (98.3) CM (1.7)

OSI 45 −122.7 620 EN (74.4) Wa (12.4)

SCT 33.41 −81.83 420 EN (78.5) DB (17.4)

SGP 36.61 −97.49 374 GL (77.7) DB (12.4)

SNP 38.62 −78.35 1,025 DB (93.4) EN (3.3)

TPD 42.64 −80.56 266 DB (32.2) CR (27.3)

WBI 41.72 −91.35 621 CR (76.9) DB (17.4)

WGC 38.27 −121.49 483 DB (26.4) CR (24.0)

WKT 31.31 −97.33 708 GL (67.8) DB (22.3)

Abbreviations: CM, cropland natural vegetation mosaic; CR, croplands; 
DB, deciduous broadleaf forest; EN, evergreen needleleaf forest; GL, 
grasslands; MF, mixed forest; Wa, water.

Table 3 
Selected [CO2] Towers and Top 2 Biome Types

https://ameriflux.lbl.gov
https://ameriflux.lbl.gov
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Figure 2. Simulated [CO2] (left column) and the root-mean-square deviation (RMSD) of the biogenic [CO2] ([CO2bio]) from the mean of modeled [CO2bio] 
(right column) for five flights in the ACT Summer 2016 aircraft campaign: (a) 7/18 19 UTC (front in MA); (b) 7/21 19 UTC (fair Wx in MA): (c) 8/4 18 UTC 
(front in MW); (d) 8/9 19 UTC (fair Wx in MW); (e) 8/22 22 UTC (fair Wx in South). The aircraft sampled [CO2] are overlaid with the simulations (left column). 
The black dots on the RMSD panels are the flight paths. Potential temperature contours are overlaid to indicate the frontal locations.
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Gulf onshore flow and, thus had a limited flux footprint over land. The 
one Midwestern flight was an OCO-2 underflight in the western Dakotas 
where biological fluxes are small.

Observations tend to be encompassed by the ensemble model spread ex-
cept on four flight days: 7/22, 7/25, 7/26, and 8/12, on which the model 
shows large discrepancy with observations. Our preliminary investiga-
tion indicates that the disagreements on 7/25 and 7/26 are mainly caused 
by unrealistically strong uptake to the west of the Appalachia area in the 
CT2017 biogenic fluxes; 8/12 is due to errors in the long-range transport.

In the following sections, we focus on investigating the coherence be-
tween aircraft and tower [CO2] data and evaluating the model biases 
across the CASA ensemble members. CT2017 serves as the reference for 
this exercise. As an inversion product that is constrained by atmospheric 
data, we expect that CT2017 should agree well with observed [CO2] even 
though the ACT-America aircraft data were not assimilated in CT2017. 
Figure 4 shows the model skill in the [CO2] simulations driven with dif-
ferent biogenic CO2 fluxes. Note that both aircraft and tower [CO2] data 
are kept at native temporal resolutions in the comparisons, reflecting the 
model performance in capturing the spatiotemporal variability of [CO2] at 
the synoptic scale (no diel variation due to only afternoon samples used). 
In general, both aircraft and tower [CO2] comparisons show that skill of 
the CASA members is similar to CT2017 in capturing the variability in 
ABL [CO2] as indicated by the similar correlations with observations, but 
better in capturing the magnitude of this variability (normalized stand-
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Figure 3. Daily afternoon averaged [CO2] from the ACT aircraft and 
simulations. The error bars of the simulated [CO2] are the spread of the 
full, biogenic flux, transport, and boundary condition ensembles. Note that 
the spread of boundary condition is very small and not visible in the figure. 
Only the atmospheric boundary layer samples are included in the analysis. 
The point-down arrows denote the frontal cases during the campaign. 
Gray dashed lines denote the transit flights. “MA,” “MW,” and “South” on 
the top of the figure denote the Mid-Atlantic, Mid-West, and South of Gulf 
Coast flights.

Figure 4. Taylor diagrams of simulated [CO2] compared with the observations. The standard deviations of models are normalized by the standard deviations 
of observations (“REF”). The model [CO2] are associated with the (29) biogenic flux members from Carnegie-Ames-Stanford-Approach (CASA) and 
CarbonTracker version 2017 (CT2017). The color scheme indicates CT2017, CASA ensemble mean, CASA low Emax (E1), CASA medium Emax (E2), and CASA 
high Emax (E3) groups. “P#” in the legend denotes the index of CASA ensemble member in the original product. The observations used in (a) are from the 
atmospheric boundary layer legs of the ACT-America aircraft measurements. The flight dates and other information are listed in Table S1. The observations 
used in (b) are from the [CO2] tower measurements at afternoon hours (19–22 UTC). The locations and information can be found in Figure 1 and Table 3. Both 
aircraft and tower [CO2] data are kept at native temporal resolutions. Modeled [CO2] are determined by the value of the nearest grid cell to sample locations. 
The period of interest is from July 18 to August 28, 2016 covering the ACT-America summer 2016 aircraft campaign.
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ardized deviations). CT2017 overestimates the magnitude of variability in 
ABL [CO2]. Tower and aircraft yield similar results.

Aligning the aircraft and tower comparisons together, the CASA-simulat-
ed [CO2] tend to somewhat underestimate the variability of aircraft [CO2] 
(root-mean-squared errors) but overestimate that of tower [CO2]. Given 
the different sampling strategies between aircraft and tower measure-
ments, we hypothesize that the models have a tendency to underestimate 
the spatial variability of atmospheric [CO2] but overestimate temporal 
variability at the synoptic scale.

Another feature worth noting is that the CASA-simulated [CO2] are clus-
tered into two groups. Some high Emax members fall into the low Emax 
group, and the rest falls in the medium Emax group. This grouping is evi-
dent in both aircraft and tower [CO2] comparisons. Given the same trans-
port and boundary conditions were used, the clustering is likely driven by 
the difference in biogenic fluxes associated with the values of the three 
parameters used for generating the CASA flux ensemble.

4.2. Identification of the CASA Key Parameters

The modeled [CO2] biases associated with individual CASA flux mem-
bers and CT2017 with the uncertainty bounds that are determined by the 
transport and boundary condition ensembles are shown in Figures  S6 
and S7 for each observation from aircraft and tower comparison, respec-
tively. Applying the footprint analysis to aircraft and tower measurements 
and the CASA-defined biome map, we obtain the model biases for each 
biome. We list the top 2 biomes with the most influence on each aircraft 
and tower measurements in Tables 3 and 4, respectively. Croplands (CR), 
deciduous broadleaf forest (DB), and grasslands (GL) are the major bi-
ome types sampled by aircraft; CR, DB, GL, and evergreen needleleaf for-
est (EN) are mainly sampled by towers (Figure 5). The samples primarily 
influenced by water bodies are removed from the results. Two aspects 
stand out in the comparisons, modeled [CO2] from all the flux members 
are positively biased across all biome types, and one group of the CASA 
flux members has better agreement with the observations than others. 
These two aspects are illustrated consistently in the comparisons of both 
aircraft and tower measurements.

For the first aspect, we find that all flux estimates, including CT2017 and CASA ensemble, overestimate 
[CO2]. This is also reflected in Figure 3. Figure 3 also displays that both biogenic flux and transport can play 
an important role in modeled [CO2] errors. We first focus on the relative performance across the ensemble 
members to isolate the influence from model transport. The model biases seem scaled with the degree of 
plant productivity, given that we find larger biases associated with CR and DB and smaller biases associated 
with EN and GL. Zhou, Williams, Lauvaux, Davis, et al. (2020) also reported that the monthly averaged NEE 
of the CASA ensemble averaged over 13 years had a larger positive bias in CR and DB than EN and GL in 
summer. When comparing aircraft-based biases to tower-based biases, the WRF-Chem simulated [CO2] is 
more positively biased. Assuming that spatial variability in [CO2] is related to temporal variability, as towers 
and aircraft basically observe the same weather systems, the larger aircraft-based biases might be caused by 
different geographic sampling or by the enhanced variability in aircraft data (designed to sample frontal sys-
tems) leading to larger biases. As expected, CT2017 has better agreement with the observations overall since 
its fluxes have been optimized using atmospheric [CO2] data. However, the fact that WRF-Chem performs 
better when coupled to optimized CT2017 biogenic CO2 fluxes confirms that transport model differences 
remain much smaller than flux differences.
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Date First biome type (fraction %)
Second biome 

type (fraction %)

2016-07-18a DB (60.1) CR (17.4)

2016-07-19 DB (40.7) EN (20.7)

2016-07-21a DB (54.6) Wa (15.7)

2016-07-22 DB (60.7) EN (16.8)

2016-07-25 DB (69.0) EN (16.4)

2016-07-26 DB (61.0) CR (17.6)

2016-07-27 DB (30.1) EN (19.1)

2016-08-03 GL (38.0) OS (24.5)

2016-08-04a GL (40.3) Wa (25.5)

2016-08-05 GL (40.9) Wa (17.5)

2016-08-08 DB (34.6) CR (24.1)

2016-08-09a DB (44.0) GL (21.6)

2016-08-10 DB (35.7) CR (20.1)

2016-08-12 Wa (25.1) CR (20.1)

2016-08-13 CR (72.6) GL (12.0)

2016-08-14 CR (62.7) EN (9.0)

2016-08-16 Wa (71.3) DB (9.4)

2016-08-19 Wa (93.3) DB (3.3)

2016-08-20 Wa (66.2) CR (14.1)

2016-08-21 CR (42.4) Wa (22.0)

2016-08-22a CR (41.3) DB (28.4)

2016-08-24 Wa (83.9) EN (5.2)

Abbreviations: ACT, Atmospheric Carbon and Transport; CR, croplands; 
DB, deciduous broadleaf forest; EN, evergreen needleleaf forest; GL, 
grasslands; OS, open shrublands; Wa, water.
aDenotes the flights shown in Figure 2.

Table 4 
Top 2 Biome Types in the ACT-America Summer 2016 Flight Samples
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Figure 5. Modeled [CO2] biases against aircraft and tower measurement during afternoon hours (from noon-6 p.m. local time) on the basis of different biomes 
for the period from July 18 to August 28, 2016. The model [CO2] are associated with the (29) biogenic flux members from Carnegie-Ames-Stanford-Approach 
(CASA) and CarbonTracker version 2017 (CT2017). The color scheme indicates CT2017, CASA ensemble mean, CASA low Emax (E1), CASA medium Emax (E2), 
and CASA high Emax (E3) groups. “P#” on the x-axis are the indexes of CASA ensemble members in the original product.
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For the second aspect, we discover that distinct groups of CASA members reflect the three parameter values 
for maximum light use efficiency, Emax. The flux members that show the best agreement with the obser-
vations mostly have medium Emax values while the groups with low and high Emax values correspond to 
larger model biases. Both aircraft and tower measurements identify that Emax is the dominant parameter 
in the CASA ensemble, which is consistent with the sensitivity results of Zhou, Williams, Lauvaux, Davis, 
et al. (2020).

The performance of the individual flux members is summarized by ranking them as a function of bias 
(Figure 6). Medium Emax (E2) leads to better modeled [CO2] across different biome types and observation 
platforms. The groups with low (E1) and high (E3) Emax tend to have similar biases. A few members with 
high Emax are ranked high (in the top one third), such as P27 and P25 for CR, P27 for DB, P27 for GL, and P27 
for EN. For DB and EN, both E2 and E3 are assigned the same value (medium Emax) in CASA perturbation, 
explaining why some model members with high Emax value are ranked high. However, due to the impact 
of the long-range transport over upwind biomes (where E2 not equal E3), the model [CO2] bias ranking is 
different for the DB’s and EN’s Emax groups.

Further investigating the top-performing 11 ensemble members according to Q10 values (Figure 7), we find 
that in general, the flux members with low Q10 value (Q10 = 1.2) are ranked high, followed with medium Q10 
(Q10 = 1.4), and then high Q10 value (Q10 = 1.6). In contrast, no Topt-driven grouping is visible (not shown). 
We conclude that Q10 plays a secondary role in CASA-simulated summer NEE.
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Figure 6. The final ranking of the modeled [CO2] bias among the biogenic flux members shown in Figure 5. The model skills are ranked decreasingly, meaning 
the model biases increase from top to bottom. The name convention of the Carnegie-Ames-Stanford-Approach (CASA) ensemble members follows P#/
ToptEmaxQ10. # is the index of the CASA members in the original product. At the position of Topt, “0” means the default value; “2” means the default value plus 
2°C; “-2” means the default value minus 2°C. For Emax, “1,” “2,” and “3” denotes the low, medium, and high Emax in Table 4 of Zhou, Williams, Lauvaux, Davis, 
et al. (2020) and Zhou, Williams, Lauvaux, Feng, et al. (2020). “2,” “4,” “6” at the Q10 position indicate that Q10 = “1.2,” “1.4,” and “1.6,” respectively.
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In summary, the aircraft and tower data deliver consistent results. Given the multiple level-leg sampling 
and profiling strategies available in the aircraft data in addition to the large vertical gradients in [CO2bio] 
that appear in data set (Figure 2), there is potential to impose additional constraints on biogenic fluxes and 
mixing heights using the vertical gradients of [CO2]. Although outside the scope of this study, these vertical 
gradients will be examined in future work.

4.3. The Causes of Modeled [CO2] Biases

The model-tower comparisons show the modeled [CO2] biases for each [CO2] tower we included in the pre-
vious analysis in Figure 8a. All the CASA members lead to an overestimate of [CO2] except at three towers: 
BAO, ETL, and OSI. The CASA flux members result in modeled [CO2] that is similar to CT2017 for GL and 
EN sites with the exception of three sites in the South Gulf region (GCI01, GCI03, and GCI04). Variability 
in the TBM parameters have more impact on CR and DB where they have the larger sink strength and plant 
productivity. A similar pattern of biases across biome types can be seen in CT2017, though CT2017 shows 
slightly better agreement with the observations.

Model transport, boundary condition, and other CO2 flux components also contribute to modeled [CO2] 
errors. Although we illustrated that the contribution is less than that from the biosphere, it can poten-
tially shift the biases uniformly up or down. Therefore, to root out the potential interference, following 
Equation 1, we calculate flux biases associated with each [CO2] tower over the same time period following 
Equation 1 (Figure 8b). Consistent with the [CO2] analysis, all the flux members show positive biases across 
the [CO2] towers, indicating the positive biases in modeled [CO2] are mainly due to the fact that CASA 
and CT2017 underestimate net uptake. For CASA, this can be attributed to weak plant productivity and/
or strong respiration. Zhou, Williams, Lauvaux, Davis, et al. (2020) pointed out that there is a missing net 
sink due to the lack of crop harvest and forest recovery in the CASA model, yielding a net overestimate in 
annual respiration. Additionally, the relative performance among the CASA Emax groups and CT2017 with 
respect to flux tower data is consistent with the comparison to [CO2]. The low Emax values lead to the largest 
biases in both [CO2] and flux space, and CT2017 shows smaller biases for CR and DB. Such coherence across 
measurement space (mole fraction and flux) and platforms (aircraft, [CO2] towers, and flux towers) lends a 
high degree of confidence to these results.

We break the daytime and nighttime flux biases apart to explore what causes the overall weak NEE uptake in 
CASA. In summer, the daytime fluxes are a combination of GPP and ecosystem respiration; the nighttime flux-
es are driven completely by respiration. In the flux observations, the all time, daytime, and nighttime averaged 
fluxes range from −2 to −1 µ mol m−2 s−1, from −8 to −3 µ mol m−2 s−1, and from 0.5 to 2.5 µ mol m−2 s−1, 
respectively (Figure S5 in SI). Temporal downscaling of CASA’s monthly fluxes resulted in consistent under-
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Figure 7. Top 11 biogenic flux members in Figure 6 applied different color schemes in order to reveal the secondary parameter, Q10. Note that the flux members 
associated in the medium Emax are with color background; others are with white background.
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estimation of the daytime net sink (Figure 8c): decreasing Emax values leads to larger biases across biomes 
(sites), and increasing Emax values do not offset the weak net uptake in CASA, indicating that tuning the pa-
rameters cannot fully counteract the lack of the harvest sink in CASA for summer 2016. The nighttime bias of 
CASA’s downscaled respiration has a smaller bias than the daytime productivity plus respiration, bias is still 
large, especially when considered as a portion of the averaged nighttime flux magnitude. On average, CASA 
underestimates the daily averaged sink by 1–2 µ mol m−2 s−1 for EN, CR, and DB and by 1 µ mol m−2 s−1 or 
less for GL. The different magnitudes of flux biases across the biomes suggest that the flux bias is scaled with 
the strength of the seasonal uptake and/or the strength of the annual net carbon exchange (i.e., missing sink).

CR and DB have more distinct Emax ranking patterns for the daytime and nighttime flux biases. For CR, low 
Emax leads to larger biases in both daytime and nighttime fluxes due to low daytime net uptake and nighttime 
respiration. Since Emax in CASA directly impacts GPP and indirectly impacts respiration, increasing both 
GPP and respiration is favorable for capturing CR fluxes in CASA. This is also reflected by the combination 
of high Emax and high Q10 values (P25 and P27) being ranked in the top group in Figure 6. For DB, however, 
low Emax leads to large, positive flux biases in daytime but the smallest positive bias at night, suggesting that 
the bigger issue for DB is that the CASA model tends to respire carbon faster than in the actual ecosystem.

In both mole fraction and flux space, CT2017 agrees more closely overall with the observations than the 
CASA members after averaging (Figure  8). However, once we break nighttime and daytime flux apart, 
CT2017 overestimates the nighttime respiration for these four biome types and daytime net uptake for DB.
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Figure 8. CO2 mole fraction and flux biases at the [CO2] towers from July 18 to August 28, 2016. (a) Afternoon averaged (19–22 UTC) [CO2] biases. (b) All time, 
(c) daytime (15–2 UTC), and (d) nighttime (3–14 UTC) averages of the flux biases derived from Equation 1. The shaded areas are the minimum and maximum 
biases among different Emax groups in the Carnegie-Ames-Stanford-Approach (CASA) ensemble. The associated solid lines are the mean of the given Emax group. 
Additionally, CarbonTracker version 2017 and the CASA ensemble mean are denoted in green and purple dotted lines. The horizontal gray line is unbiased. The 
vertical gray lines divide the towers into various biomes determined by the footprint analysis. The dominate biomes, GL—grassland, EN—evergreen needleleaf 
forest, Wa—water, CR—croplands, DB—deciduous broadleaf forest, MF—mixed forest for [CO2] towers are listed in Table 3. A mixed type is listed if the 
difference between the fractions of the top two biome types is within 10%.
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5. Discussion
Multiple CO2 observation platforms (i.e., aircraft and tower [CO2] and flux tower data) across measurement 
space (i.e., concentration vs. flux) identify that Emax is the most important parameter driving the spread of 
the CASA flux ensemble for summer 2016. In concentration space, the modeled [CO2] biases can be contrib-
uted by biogenic flux, transport, boundary conditions and other CO2 flux components. Although Figure 3 
demonstrates that, in the sampled cases, the biosphere dominates the model errors, the transport errors are 
not negligible. The model transport errors can increase or decrease modeled [CO2] biases in Figure 5 as a 
whole. We choose to focus on the relative performance among these flux members to minimize the impact 
of the potential transport errors on interpreting the results. However, we acknowledge that the complexity 
the model transport introduces in the results are not eliminated.

We argue that the transport error is unlikely to change our major conclusion that the biogenic fluxes 
are biased or change the relative performance across the biogenic CO2 flux members. This argument 
is supported in the consistent results from the flux comparison in Section 4.3. This is also reflected by 
the results that CT2017 has smaller biases against measured [CO2] (Figures 5 and 6). While the CT2017 
fluxes were optimized with the TM5 transport model (Krol et al., 2005), we consistently found that the 
associated WRF-simulated [CO2] bias was the lowest compared to the CASA members. We also note that 
a slightly different version of CASA (Potter et al., 1993) is used as a prior in CT2017. In our transport 
model setup, we nudged the WRF-Chem model to the state-of-the-art reanalysis product ERA5 in order 
to improve the large-scale dynamics. The comparison between the nudged and free run modeled wind 
fields illustrates the effectiveness and efficiency of this meteorological constraint. Finally, the ensemble 
of perturbed transport simulations confirms the secondary role of transport errors in [CO2] model-data 
residuals. Hence, it seems highly unlikely that transport errors could be the cause of our findings regard-
ing the CASA ensemble.

The CarbonTracker (CT) inversion system works by estimating scaling factors that multiply the prior 
model (CASA)’s NEE. During the growing season, an increase in the terrestrial sink is equivalent to 
amplifying the prior model’s diel cycle, to perhaps unrealistic levels. These scaling factors are constant 
for each week and are independent from one week to the next. Thus, the CT fluxes may yield periods 
of unrealistically large diel cycles, possibly followed by periods with abnormally small daily cycles of 
NEE. The shape of the day-night flux differences and day-to-day changes cannot be adjusted by CT. To 
alleviate this problem, some regional inverse flux estimation pioneers have applied different strategies. 
Gourdji et al. (2012) first estimated diel cycle of the fluxes at a 3-hourly resolution for the North Amer-
ican continent. In Schuh et al. (2013), the two regional inversion techniques were used to minimize the 
artifact in the diel cycle of the estimated fluxes: the Colorado State University inversion technique opti-
mized for GPP and respiration separately, while the Pennsylvania State University inversion optimized 
daytime NEE and nighttime NEE on a 7.5-day time scale. Most inversion systems that optimize NEE 
with prescribed diel cycle may potentially alleviate the unrealistic diel cycles but, on the other side, may 
be subject to temporal aggregation errors (e.g., Byrne et al., 2020; Peters et al., 2007; Schuh et al., 2010). 
Additionally, since CT relies heavily on simulated transport, it is also possible to retrieve exaggerated di-
urnal cycles in fluxes if that model ventilates the PBL too strongly. While this process could affect fluxes 
throughout the day, thin and stable nighttime boundary layers are particularly difficult to represent in 
models of this class.

Section  4.3 provides more insight into the causes of the modeled [CO2] biases for summer 2016. The 
biggest assumption we made in Equation 1 is homogeneity across the entire biome. The optimal meth-
od for calculating the flux biases at a [CO2] tower should be based on the flux towers in a [CO2] tower’s 
footprint (shown in Figure S2). However, due to the uneven distribution of the flux towers in the domain 
of interest, this direct calculation is not possible. The method we used to derive the flux biases at each 
[CO2] tower takes the influence from multiple biomes into account and results in a bias ranking among 
the flux members that is consistent with the ranking in mole fraction space, indicating the reliability of 
this method.

The CASA simulations were spun up equilibrium, and the parameters were adjusted to match the ob-
servations. CASA’s overestimation of summer NEE likely derives from missing carbon sink processes 
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because of the balanced-biosphere equilibrium starting condition resulting in carbon pools that are too 
large rather than a problem in the model’s parameters (Pietsch & Hasenauer, 2006; Wutzler & Reich-
stein, 2007; Zhou, Williams, Lauvaux, Davis, et al., 2020). The range of the three perturbed parameters, 
Emax, Topt, and Q10, were determined by comparison to flux measurements over 13-year simulation period. 
Tuning these parameters cannot solve the fact that carbon stocks are actually dynamic and out of equi-
librium. Our results may erroneously indicate that a particular parameter set has the smallest bias when 
the core problem may be that the carbon pool is out of equilibrium. This is consistent with the finding 
that CT2017, with its imposed net global land sink, is less biased than the balanced biosphere CASA L2 
ensemble. We therefore do not intend to stress which parameter set is the best. Instead, the highlight of 
this work is to demonstrate that atmospheric [CO2] data can be used, with flux tower measurements, to 
diagnose the performance of TBMs. This study demonstrates the utility of multiple observation platforms 
for TBM evaluation.

The rankings in Section 4.2 show that increasing Emax does not necessarily lead to better agreement with 
the measurements. Increasing Emax increases GPP, but the carbon seems to respire away quickly in CASA 
and does not reside long enough, perhaps because harvest is not represented in this simulation. Key 
missing processes include the effects of management and land use such as (a) agricultural sinks from 
management that removes crops and crop residues thus decreasing the size of the carbon pool that might 
be respired, (b) pastureland sinks from cattle and other grazers that consume plant biomass and store 
it in their body mass, (c) forest carbon storage as trees and stands mature with sequestration in wood. 
Additional candidates include stimulation of ecosystem carbon sinks by growth enhancement factors 
such as rising CO2 concentration, nitrogen deposition, fertilizer additions, and the like. Including these 
missing processes in the model framework would require a re-evaluation of all model parameters, and 
we might find that a different Emax parameter set was best relative to what was identified in this study 
and might lead to a better match with this suite of observation. In addition, the temporal downscaling of 
CASA’s monthly fluxes suggests that day-night variation in respiration may not be correctly captured in 
the temporal downscaling to hourly variations. The modeled respiration is primarily related to temper-
ature. However, previous studies have shown that the correlation plots of respiration and temperature 
are scattered. The high-biased points tend to occur in daytime, and the low-biased points tend to occur at 
nighttime because carbon fixation processes are more active during daytime when more labile carbon is 
readily available to be respired.

Simplistic temporal downscaling of CASA’s monthly carbon fluxes likely contributes to biases in the diel cy-
cle at sub-daily scale. The 3-hourly CASA ensemble flux products were downscaled from the native monthly 
resolution using the Olsen and Randerson (2004) method, in which GPP is downscaled with downward 
shortwave radiation, Re is downscaled with air temperature and Q10, and NEE is the sum of GPP and Re. 
This makes it difficult to use the diel cycle analyses in Section 4.3 to make conclusions about GPP and Re in 
CASA at fine scales. However, redistribution of respiration to shift more to nighttime would appear insuffi-
cient to address the flux biases. In the flux diurnal analysis, we found a slight over-estimation of nighttime 
fluxes (bias was near zero for most ecosystems expect for DB) and a significant under-estimation of the 
daytime uptake. If we transfer respiration from daytime to nighttime to fix the daytime sink under-esti-
mation, the net slightly positive flux bias during nighttime will increase, which is contrary to the expected 
near-zero correction at night or would exacerbate the overestimation where it already exists (again, mainly 
DB). Hence, changing the diurnal cycle of respiration is insufficient to address the day/night flux mismatch-
es. Consequently, only an increase in GPP (or an overall decrease in respiration) can fix the bias, requiring 
model structural corrections to include the missing processes mentioned above. Also, note that the biases 
in the study period of six weeks are nonetheless on a similar timescale as direct estimation from native 
monthly CASA GPP and Re.

The ability to diagnose errors in GPP and respiration will require models that resolve the diel cycle and pos-
sibly additional data dedicated to the photosynthetic process. Carbonyl sulfide (COS) has been proposed as 
an independent proxy for GPP as it diffuses into leaves in a fashion very similar to CO2, but in contrast to the 
latter, is generally not emitted by respiration. Campbell et al. (2017) presented a global, measurement-based 
estimate of GPP growth during the twentieth century that is based on long-term atmospheric COS records, 
derived from ice-core, firn and ambient air samples and found that the observation-based COS record is 
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most consistent with simulations of climate and the carbon cycle. Recently, Spielmann et al. (2019) used 
concurrent ecosystem-scale flux measurements of CO2 and COS at four European biomes for a joint con-
straint on CO2 flux partitioning. Their results demonstrated the importance of using multiple approaches 
for constraining present-day GPP due to a systematic underestimation under low light conditions with the 
classical approaches relying merely on CO2 fluxes. Other studies have used the δ13C of nocturnal whole-eco-
system respiration as a proxy from which to derive carbon isotope discrimination associated with photosyn-
thesis (Alstad et al., 2007; Bowling et al., 2002; Flanagan et al., 1996). Joint atmospheric gas constraints may 
improve our diagnoses of the causes of biases in TBM flux estimates. Studies using ACT-America airborne 
biogenic tracers, including CO2, COS, and CO, are submitted to this collection (Parazoo et al., 2020).

6. Conclusions
We evaluate the modeled [CO2] biases associated with CASA TMB biogenic CO2 flux ensemble members 
and the CT2017 posterior biogenic flux using aircraft and tower in situ [CO2] jointly with eddy-covariance 
flux data from July 18 to August 28 in summer 2016. Aircraft and tower in situ [CO2] were influenced by 
GL, EN, DB, and CR. While the mole fraction-based analyses revealed a systematic underestimation of 
carbon uptake by the balanced-biosphere CASA runs, the flux-based analyses identified a combined effect 
from an overestimation of respiration and under-estimation of productivity. The joint observational analy-
sis yields strong confidence that these results span large spatial domains and multiple ecosystems due to the 
availability of long aircraft transects and a wide network of ground-based measurements. The results from 
analyzing both mole fraction and flux model-data residuals were consistent. The systematic errors in CASA 
that span all parameter values suggest that missing processes cannot be properly simulated by adjusting 
the existing parameters. Analyses indicate that modeled [CO2] biases are related to biome productivity; 
the models tend to be biased more for high productivity biomes (DB and CR) and biased less for GL and 
EN. In particular, the summer harvest sink absent from CASA seems to be responsible for large biases in 
the Midwest. Lastly, CT2017, an inversion product that is constrained by atmospheric [CO2] data and has 
an imposed net biogenic carbon sink, shows better agreement with [CO2] mole fraction data compared to 
CASA flux ensemble members. However, the flux-based analyses revealed that the diurnal variations of CT 
were unrealistically large. We suggest that the scaling of the net daily fluxes in large-scale inversions must 
be further decomposed into day and night sub-components to reproduce the diel cycle of photosynthetic 
and ecosystem respiration processes. Lastly, our setup does not resolve the subgrid biome variability, which 
is a shortcoming at the scale. The CASA ensemble provides an alternative flux data set at 500 × 500 m. A 
sensitivity study with both sets of the CASA flux ensemble can be tested in future.

Data Availability Statement
The CarbonTracker CT2017 product can be obtained from NOAA GML, Boulder, Colorado, USA from the 
website at http://carbontracker.noaa.gov. The L2 CASA ensemble suite used in this work can be found at 
https://doi.org/10.3334/ORNLDAAC/1675. NCEP Real-Time 12-km SST are archived at ftp://polar.ncep.
noaa.gov/pub/history/sst/ophi. The ensemble output will be made available from datacommons@psu at 
https://doi.org/10.26208/z864-qk7. The Obspack CO2 Global View Plus data package can be obtained from 
https://www.esrl.noaa.gov/gmd/ccgg/obspack/. The citations for individual [CO2] towers are listed in Ta-
ble S3. AmeriFlux data are obtained from https://ameriflux.lbl.gov/, with citations given in Table S2.
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