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Mathématiques et de Sciences Physiques (IMSP),
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Abstract

Spin-Crossover (SCO) and Prussian Blue Analogs (PBAs) materials are investigated in two-

dimension with the three-state Blume-Emery-Griffiths (BEG) model where each spin interacts

with its nearest-neighbors (nn) and next-nearest-neighbors (nnn) and may be either in high-spin

(HS) or low-spin (LS) state. The interactions through the system are strongly dependent on the

instantaneous distance between atoms and are magnetic and elastic in nature. Finite-size effects

have been detected at finite temperature on the model. The thermal distortion of the lattice

configuration due to lattice units displacements strengthened the thermal spin-transition that oc-

curred. The generated numerical results are obtained by two-step Monte-Carlo (MC) simulations

where used thermodynamic parameters allowed to establish a rich phase diagrams. Gradual and

first-order transitions with thermally induced hysteresis phenomena have been observed. Near the

thermal hysteresis loops, the model exhibits throughout relaxation curves, lattice configurations

evolving through 2D-nucleation and growth processes that are enhanced with suitable values of

the model parameters.
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I. INTRODUCTION

Molecular based materials as spin-crossover (SCO) solids and Prussian blue analogs

(PBAs) [1] constitute a class of very promising materials with real opportunities of ap-

plications (in various domains of material science) as display and memory devices [1–4],

multi-sensors [5–14], probes of contact pressure or shocks [15] as well as actuators [6, 16–

18]. They are commutable solids with the presence of transition metal coordination which

have an electronic configuration ranging between 3d4 and 3d7 (chromium, manganese, iron

and cobalt) in octahedral symmetry, surrounded by Nitrogen atoms, called SCO complexes

[1, 19–22]. In special conditions, they may exhibit a phase transition between the diamag-

netic low-spin (LS) state and the paramagnetic high-spin (HS) state [23–25] under external

stimuli such as light, pressure, temperature, magnetic and electric fields, etc [23–26]. The

thermally induced spin-transition leads to both electronic and structural changes, often ob-

served as a color and magnetic moment changes [1, 27, 28]. The system properties are

strongly dependent on interactions between molecules. For weak interactions, the HS frac-

tion changes smoothly with the temperature; whereas when they become strong enough,

the system exhibits cooperative phenomena [29–31] which manifest through the existence of

first-order transitions accompanied with thermal hysteresis. Then, the change in HS fraction

becomes sharper and sharper with increasing interaction strength between molecules. Of

course, the interaction in SCO solids is dominated by the variations of unit-cell volume and

bond-length, that are considerably larger in the HS state.

The most common case studied in literature is of Fe(II)-based SCO materials with 3d6

configuration where the total true spin equal to S = 2 and 0 in HS and LS states, respectively.

The SCO phenomenon is the result of the redistribution of the electrons between the bonding

t2g and the antibonding eg orbitals. In the diamagnetic (S = 0) LS state, only bonding

orbitals are populated (t62ge
0
g), while in the paramagnetic (S = 2) HS state, the electronic

configuration becomes (t42ge
2
g) according to the Hund’s rule. The microscopic changes of the

magneto-elastic properties of the SCO solids at the transition accompanied with large volume

changes resulting from the constructive interferences of the molecular volume changes which

deploy at long-range through elastic interactions. As well demonstrated in several works

[29, 30, 32], the elastic interactions are at the heart of the existence of cooperative effects

in SCO materials and play a crucial role in the existence of first-order transitions and
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thermally induced hysteresis loops observed experimentally [29]. Novel properties [33–35],

have been also detected for SCO solids, in particular the combination of magneto-elastic,

photo-, thermo-chromic and photo-luminescence (PL) features [36–46] in the same material.

In this work, materials combining the spin-transition phenomenon with ferromagnetic

interactions are investigated. Describing this particular SCO systems, we used the Blume-

Emery-Griffiths (BEG) models [47–49] in which we accounted for the elastic and magnetic

interactions [34, 50–62]. We demonstrate that the magnetic and elastic interactions gener-

ate tremendous changes in the spin-transition properties, leading to bring to light new and

unprecedented non-linear behaviors of the HS fraction, nHS. We study carefully, the compe-

titions of the elastic-like interactions responsible for the existence of multi-step transitions

and re-entrant phase transitions triggered by the magnetic interactions [52, 54, 55, 57, 58, 63–

67]. A detailed study of the system properties allowed to establish a rich phase diagram

[68, 69] in which the various system phases have been identified. Morever, dynamical ver-

sion of the present model based on a master equation treatment of the Hamiltonian, is also

presented [70–72]. There, we studied the relaxation of the metastable high spin states at low

temperature as well as the dynamical behavior at finite temperature in bistability regions.

The paper is organized as follows. In Section II, we define the Hamiltonian model of the

system and presents its included interactions as magneto-elastic and electronic part which

are responsible of the system structure and spin state modifications. Sec. III is devoted

to the two step Monte-Carlo algorithm used on the spin state and for the displacements of

the lattice sites. Sec. IV contains the discussions of the obtained results with the model

parameters which are described in the Hamiltonian. In the last section, we conclude.

II. MODEL DESCRIPTION AND INTERACTION HAMILTONIAN

This work is inspired from the electro-elastic model of Boukheddaden et al. [50–55],

designed to describe the thermally induced first-order transition in spin-crossover models

accounting for their electronic and volume changes at the transition. The electro-elastic

model was based on the study of a 2D lattice of SCO atoms coupled elastically through

springs whose elastic constants and equilibrium distances depend on the spin states of the

connected sites. In such a model, the spin-transition molecule is described with a fictitious

spin, σ, whose values −1 and +1 associated to the low-spin (diamagnetic) and high-spin
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(paramagnetic) states. As a matter of fact, this model does not include any ferromagnetic

interactions between the spin states, and the HS spin state is then paramagnetic. Recent

developments in the chemistry of spin-crossover materials and switchable solids [6, 73, 74],

revealed new type of SCO materials which order magnetically in the HS phase (at low

temperature). In these systems, the exchange (or super-exchange) interactions between the

spin states in the HS state is then at work. Besides, the magnetic exchange interaction

was introduced inside binuclear SCO complexes [75] together with an Ising-like interaction

coupling between the binuclear units. To extend our previous two-states electro-elastic model

to study the case of ferromagnetic SCO materials, we designed a spin-1 BEG model that

takes into account electro-elastic interactions [50–53] between SCO units based on three-

states fictitious spin description of a deformable lattice with square symmetry of size L.

The spin variables at each lattice site can be in HS state with Si = ±1 (magnetic state) or

in LS state Si = 0 (non-magnetic state). The degeneracy ratio between HS and LS states is

defined by g = gHS/gLS, where gHS and gLS are the degeneracies of the HS and LS states,

respectively. Here, we take g = 150, which leads to a molar entropy change at the transition,

∆S = R ln g ' 41.7 J.K−1.Mol−1, which is in fair agreement with experimental data of

literature [31, 76] . SCO molecules are assumed to elastically interact via springs and the

lattice deformation is assumed to remain inside the plane (see Fig. 1). Thus, the topological

structure of bonds between atomic sites will be conserved during the simulations. Since the

elastic constant and equilibrium distances between lattice sites depend on the connected

spin state values, the model is described by the following Hamiltonian:

H = Helec +Hmagn +Helas, (1)

where Helec stands for the electronic contribution of ligand-field energy which is set to

the value, ∆ = 450 K, and entropy contribution kBT ln (g) which stabilizes the HS state

[47, 49, 77–80]:

Helec = (∆− kBT ln g)
∑
i

S2
i . (2)

Within these values of ligand-field and degeneracy ratio, the effective ligand-field energy

cancels for the temperature value T ' 90 K which has the same order of magnitude of the

transition temperature of SCO materials.

Hmagn is the magnetic interaction between the spin states which is only between HS
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species:

Hmagn = −
∑
<i,j>

J(rij)SiSj, (3)

and Helas denotes the elastic part:

Helas =
1

2

∑
<i,j>

Aij(rij)(rij −Req(Si, Sj))
2

+
1

2

∑
<i,k>

Bik(rik)(rik −R′eq(Si, Sk))2, (4)

which accounts for nearest-neighbor (nn) and next-nearest-neighbor (nnn) interactions be-

tween the sites. The nnn interactions are introduced here to maintain the lattice stability

with respect to shear distortion [50–53] particularly during the volume expansion / contrac-

tion accompanying the spin-transition along the transformation from the LS to HS phases /

HS to LS phases. To take into account for the anharmonic effects of the lattice, leading to

normal thermal expansion in the LS and HS phases, as well as for the difference of rigidity

between the HS and LS phases (HS is less rigid than LS), the respective nn and nnn elastic

constants, Aij and Bik are written under the following forms:

Aij(rij) = A0 + A1

(
rij −RHH

eq

)2
and Bik(rik) = B0 +B1

(
rik −

√
2RHH

eq

)2

, (5)

where < i, j > and < i, k > respectively run over the nn and nnn bonds, and RHH
eq (resp.

√
2RHH

eq ) is the equilibrium lattice nn (resp. nnn) bond-length in the HS state. Thus,

denoting by RLL
eq (resp.

√
2RLL

eq ) the nn (resp. nnn) LS equilibrium bond-length, we clearly

see from Eq. (5) that the nn (resp. nnn) elastic constant in the HS phase is AHH = A0

(resp. BHH = B0), while that of the LS state is ALL = A0 +A1

(
RHH
eq −RLL

eq

)2
> AHH (resp.

BLL = B0 + 2B1

(
RHH
eq −RLL

eq

)2
> BHH), which meets the constraints of rigidities imposed

to two states. However, it is hard to connect a 2D model system to a 3D material. Indeed,

some of the parameters like the ligand-field and the degeneracy have been chosen from

the experiments. The ligand-field ∆, corresponds to the enthalpy change at the transition

between the LS and the HS state, while the degeneracy ratio g = gHS/gLS connects to

the entropy change at the transition through the relation: ∆S = R ln(g). This quantity

is derived from calorimetric measurements, as stated above. For the other parameters, like

elastic constants, magnetic interactions, it is really hard to connect them to experimental

data, which result from 3D systems, in which in addition anisotropic effects may take place,
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while here we treat the case of an isotropic 2D systems. Furthermore, at least the connection

between the bulk modulus, Y , at 3D and the elastic constants in 2D can be approximated

as, Y ' A/a, where A is the elastic constant of the 2D system and a is the lattice parameter.

For the other parameters (nnn elastic constant) we do not have any experimental indication,

and the strength of the magnetic interactions between the spins subsystem is taken here as

a variable parameter allowing to tune the physical properties of the system.

In the magnetic part of Hamiltonian (1) whose expression is defined in Eq. (3), the

exchange term, J(rij), represents the local magnetic coupling interaction between nn SCO

sites and is written in the form:

J(rij) = J0 − α(rij −RHH
eq ), (6)

in view to decrease the magnetic interaction during the lattice expansion. In Eq. (6), J0 and

α parameters are taken positive, so as to ensure ferromagnetic interactions between the SCO

sites. As a result, the magnetic interaction in a lattice having the lattice parameter of the

LS state is J(rij = RLL
eq ) = J0 + α

(
RHH
eq −RLL

eq

)
, while it is equal to J(rij = RHH

eq ) = J0 in

the elastic HS phase. This point is important and will be discussed later when we examine

the relaxation of photo-induced HS states.

Let us come back to the elastic part of the Hamiltonian (1) defined by Eq. (4) and discuss

in more details the involved physical parameters. As stated above, the elastic constant,

Aij(rij) and Bik(rik) correspond respectively to the nn and nnn bond stiffness constants

whereas rij = ‖~ri− ~rj‖ (rik) is the instantaneous distance between nn (nnn) i and j (i and k)

sites. As it emerges from Eq. (5), bond stiffness constants are taken as parabolic decreasing

functions of the instantaneous distances, which then lead to quartic potentials. However,

one may easily imagine other type of potentials [81, 82] satisfying the experimental condition

of soft HS state and rigid LS state. Here, A0 (B0) and A1 > 0 (B1 > 0) are respectively the

nn (nnn) harmonic and anharmonic contributions to the elastic energy.

The quantity, Req(Si, Sj) (R′eq(Si, Sk)) is the equilibrium distance between two nn (nnn)

sites i and j (i and k), depending on the connected spin state. Since the spin config-

uration of two bounded sites can be HS-HS, HS-LS or LS-LS, we denote their corre-

sponding bond-lengths as, RHH
eq , RHL

eq = RLH
eq or RLL

eq , respectively. Thus, we obtain the

following relations: Req(+1,+1) = Req(−1,−1) = Req(+1,−1) = Req(−1,+1) = RHH
eq ,

Req(+1, 0) = Req(0,+1) = Req(−1, 0) = Req(0,−1) = RHL
eq and Req(0, 0) = RLL

eq . Due to the
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square symmetry of the lattice, the equilibrium distances, R′eq(Si, Sk), between nnn sites,

have been taken equal to those of nn sites multiplied by
√

2. According to these relations, it

is straightforward to demonstrate that the spin dependence of the nn distance, Req(Si, Sj)

can be obtained in a unique way as follows:

Req(Si, Sj) = R0 + 2R1(S2
i + S2

j ) +R2S
2
i S

2
j , (7)

where R0 = RLL
eq , R1 = 1

4
(RHH

eq − RLL
eq ) and R2 = RHH

eq + RLL
eq − 2RHL

eq . Evidently, the

R0 represents the nn LS equilibrium distance, while R1 corresponds to the misfit of lattice

parameter between the HS and LS states, and R2 = 2
(
RHH

eq +RLL
eq

2
−RHL

eq

)
represents the

difference between the centre of mass of HS and LS lattice parameter and that of HS-LS

configuration. In the present work, we take for simplicity, RHL
eq = 1

2
(RHH

eq + RLL
eq ), which

then gives R2 = 0.

A preliminary analytical examination of the role of the bond stiffness in the energetic

stabilization of the spin states helps in the understanding of the relevant parameters con-

trolling the thermodynamic properties of this electro-elastic Hamiltonian. For that, we limit

ourselves to the case of negligible nnn interaction and negligible anharmonic contributions.

Using Eq. (7), Hamiltonian (1) is re-expressed in terms of the BEG Hamiltonian:

H = −
∑
<i,j>

J(rij)SiSj +
∑
<i,j>

K(rij)S
2
i S

2
j

+
∑
i

DiS
2
i +

A0

2

∑
<i,j>

(rij −R0)2, (8)

where the parameters J(rij), K(rij) and Di are the local magnetic coupling interaction, the

local quadrupolar interaction and the local crystal-field contributions respectively. The two

first interaction parameters are given by:

J(rij) = J0 − α(rij −RHH
eq ) and K(rij) = 4A0R

2
1, (9)

and the effective local crystal-field writes:

Di = ∆− kBT ln(g) + 2A0R1

[
zR1 −

z∑
j=1

(rij −RLL
eq )

]
(10)

The fact that the quadrupolar interaction K, which is here positive and exclusively short-

range, indicates that this term stabilizes nn spin configurations Si = 0, Sj = ±1 or
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Si = 0, Sj = 0 which means HS-LS or LS-LS configurations. In contrast, the mag-

netic term stabilizes HS-HS (i.e. ±1-±1) neighboring sites. On the other hand, the ef-

fective crystal-field acting on a spin site now depends on the elastic field created by the

neighbors which acts as an internal pressure. The inspection of the elastic contribution,

2A0R1

[
zR1 −

∑z
j=1(rij −RLL

eq )
]

to the effective crystal-field shows that it is positive when

rij = RLL
eq (LS bond-length) thus stabilizing the LS state and becomes negative for rij = RHH

eq

(HS bond-length) stabilizing the HS state. This behavior of the elastic field establishes a

direct synergy between the entropic effects of the degeneracy and the elastic interactions.

III. THE TWO-STEP MONTE-CARLO ALGORITHM

A planar lattice of square symmetry with N = Lx × Ly SCO sites is considered with

free boundary conditions. The simulations are alternatively executed on spin and position

variables in a two-step strategy. The metropolis algorithm is considered for the spins and

lattice positions update procedure (sites displacements). Then, the stochastic algorithm is

performed in the following way: for a site (i, j) randomly selected, with spin Sij = ±1, 0 and

position, rij, a new spin value S ′ij ( such that Sij → S ′ij = ±1, 0 (Sij 6= S ′ij)) is set without

position change. This spin change is accepted or rejected by the usual Metropolis criterion.

Whatever the result (acceptance or rejection) the lattice whole is relaxed mechanically by

a slight motion of nodes (selected randomly) with a quantity δu = 0.03 (in any direction:

u = x, y) which is much smaller than the distance between the spin states. The lattice

relaxation is also performed following a Monte Carlo technique at fixed spin configuration.

The procedure of the lattice relaxation is once repeated for each spin flip. Afterwards, a new

spin site will be selected randomly and so on, etc. Once all nodes of the lattice are visited for

the spin change, we define such step as the unit of the Monte Carlo step and denoted ”MCS”.

Physical quantities of interest are calculated in the steady state with NS = 105 MC steps per

site for the spin-flip dynamics and for each spin-flip attempt, all SCO units displacements

are once attempted (one Monte-Carlo cycle). Specifically, a spin variable and its position

are randomly selected within the possible projections with a uniform distribution. About

NE = 2 × 104 MC steps per site are considered for thermal equilibration in the spin-flip

dynamics and then discarded from the averaging procedure. Three to five independent runs

are performed on each MC process in view to get smooth data. The lattice magnetization
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is calculated as follows:

m =< S >=
1

N

N∑
i=1

Si. (11)

The nHS fraction is evaluated as follows:

nHS =< S2 >=
1

N
(N+ +N−), (12)

where N+ and N− are numbers of spins in the up and down states respectively. The magnetic

critical temperature, TC , is defined in the present work as the temperature associated to the

peak in the magnetic susceptibility curve when the magnetization is continuously decreasing

to vanish. The magnetic susceptibility is calculated by the formula:

χ =<< (S)2 > −m2 >, (13)

where S is the averaged system magnetization at a given step of the simulation and < . >

denotes a statistical average over the (NS−NE) MC steps. Another transition temperature of

interest, T1/2, is that of the spin-transition phenomenon which occurs when the HS fraction,

nHS, is equal to 1/2. We also calculate the average intermolecular distance < d >, between

nn SCO sites that provides information about the lattice ”volume” change along the spin-

transition. Its expression is given by:

< d >=

∑
<i,j>

√
(xj − xi)2 + (yj − yi)2

(Lx − 1)Ly + (Ly − 1)Lx
, (14)

with i and j run [1, Lx] and [1, Ly] respectively.

IV. RESULTS AND DISCUSSIONS

The present work, uses as far as possible, realistic model parameters values, already

derived in previous electro-elastic modeling of SCO materials by one of the authors [50–56].

The chosen ligand-field energy value, ∆ = 450K, leads to a molar enthalpy variation at the

transition ∆H ' 3.7 kJ.Mol−1, while the entropy change at the transition, already evaluated

to ∆S ' 41.7 J.K−1.Mol−1, gives a spin-transition temperature, T1/2 = ∆H
∆S

= ∆
kB ln g

' 90 K.

As well, the values of equilibrium distances between two nn sites, which depend on the

spin configuration of linked sites, are taken as follows: RHH
eq = 1.2 nm, RLL

eq = 1 nm,

RHL
eq = 1

2
(RHH

eq + RLL
eq ) = 1.1 nm. In view of the square 2D symmetry of the lattice, the
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nnn equilibrium distances are simply chosen as: R′HHeq =
√

2RHH
eq , R′LLeq =

√
2RLL

eq and

R′HLeq =
√

2RHL
eq for the three possible electronic configurations. It is worth mentioning that

the value of the lattice misfit,
(
RHH
eq −RLL

eq

)
is taken a little bit high in order to enhance

the lattice distortions for the small lattice sizes, investigated in this study.

The effect of the elastic intermolecular interactions on the SCO transition is investigated

by considering different values of the elastic constants. Indeed, the variation of the equi-

librium intermolecular distance and bond stiffness upon the LS to HS transition results in

volume and bulk modulus changes, which are experimental features of the spin-transition

in SCO solids [83–89]. Here, we take A0 = B0 in the range 500 to 104 K.nm−2, leading to

an order of magnitude of bulk modulus E ' A0/Req in the range 0.1-2 GPa, in quite good

agreement with bulk modulus of polymeric materials. The anharmonic contributions to the

elastic constants are, for simplicity, taken as A1 = B1 = 10A0. However, it is important to

notice that their contributions, A1(rij −RHH
eq )2, to the total elastic stiffness is maximum in

the LS state and is equal to A1(RLL
eq − RHH

eq )2 = 200 K (for A0 = 500 K.nm−2) which then

represents 40% of the total elastic energy.

Another new contribution with respect to previously published electro-elastic models

concerns the magnetic interaction between the SCO units, represented in Hamiltonian (3)

by the local exchange interaction J(rij). The values of the constant part, J0, of this term are

selected in the range J0 = 30-100 K, which leads in a simple Onsager 2D model lattice to

magnetic transition temperatures in the range 85-226.90 K. The parameter α, representing

the magneto-elastic coupling in this model, is taken in the range of α = 0-700 K.nm−1 values.

The total magnetic energy reaches its maximum value, when all spin states are LS and lattice

bond-lengths are equal to those of the LS lattice (rij = RLL
eq ). In this case, the magneto-

elastic contribution exchange interaction, J = J0−α
(
rij −RHH

eq

)
takes its maximum value,

20 K which still remains small compared to J0 for J0 = 50 K and α = 100 K.nm−1.

A. Finite-size effects in gradual spin- and magnetic-transitions

The application of the two-step MC procedure enables us to estimate steady state finite-

size effects on various physical quantities, namely, the HS fraction, nHS, the net magne-

tization m, the magnetic susceptibility χ and the average intermolecular distance, < d >,

between nn SCO sites, as well as spin-spin correlation C. Various system sizes, 8×8, 12×12,
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16× 16 and 16× 24 SCO units are selected and investigated. Corresponding numerical re-

sults are illustrated in Fig. 2. The simulations are performed with the value of the nn

harmonic elastic interaction, A0 = 2000 K.nm−2, for which we do not expect a first-order

spin-transition, but rather a continuous transformation from LS to HS.

In panel (a), the temperature dependence of the HS fraction nHS, is presented for different

system sizes. The set of obtained curves shows a continuous gradual transition between the

values nHS =< S2 >= 0 (LS state) and nHS = 1 (HS state). It evidently appears that

finite-size effects are almost negligible for lattice sizes beyond 16 × 16. Panel (b) displays

the net magnetization, m, which shows a re-entrant-like behavior. Indeed, m is zero in

the temperature interval 0-50 K and then suddenly increases, goes through a maximum, the

height of which increases with system size, and finally falls down at high temperatures, i.e. in

the HS phase. The final value of m decreases as the system’s size increases, indicating that in

the thermodynamic limit this value will be zero, and the system will reach the paramagnetic

phase. These observations insure that in the thermodynamic limit, the magnetization will

reach its maximum value, not necessarily, m = 1, and its non-zero value will only prevail in a

narrow temperature range. These observations suggest that at low and high temperatures,

the system will be globally non-magnetic. Indeed, at low temperatures, the LS state (<

S2 >= 0 and < S >= 0) is stabilized by the ligand-field and the elastic interactions, and

so one gets m = 0 and nHS = 0. This is a strictly diamagnetic phase, where the SCO

lattice is exclusively populated by spins of values 0. In the high temperature limit, the

states S = +1 and S = −1 are equally populated, and the HS sate is favored which leads to

stabilize the paramagnetic state characterized by, m = 0 and nHS = 1 for very large systems.

Between the two previous phases, an totally- or partially-ordered phase with m 6= 0 and

nHS 6= 0 emerges (see Figs. 2a,b). Here, a ferromagnetic phase appears embedded in two

non-magnetic phases. The above observations are strengthened by the computation of the

magnetic susceptibility curves, illustrated in Fig. 2c. Two peaks can be observed for each

system, except for the low sized one. The first peak appears after a very sharp jump of χ(T )

and is attributed to the spin-transition which occurs at about T = 72 K for the 16 × 24

system. A direct finite-size analysis of the behavior of the first peak height χmax with

system size formally given by the square root of the system volume (number of SCO units)

is performed (see inset of Fig. 2c). Calculations yield a behavior of the form χmax ' N0.5δ.

The extracted exponent from a log-log plot is δ = 1.75±0.06, which value is close to the 2D
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system. This scaling result physically indicates that the peak is associated to a macroscopic

instability in the system that results from microscopic cooperative phenomena to which

most SCO units contribute. This instability is of first-order kind and is accompanied by a

hysteresis phenomenon. The associated pseudo-transition temperature is slowly decreasing

with increasing system size showing some convergence. It is important to mention that

the critical exponent is ”measured” on the magnetic subsystem which is, of course, coupled

to the SCO elastic lattice through the magneto-elastic interaction. However, the effect of

the SCO transition is to drive the system from the diamagnetic (S = 0) to magnetic state

(S2 = +1) through first-order or gradual transformation (Figs.2 and 3). But then, when

the magnetic order is generated, the SCO elastic interactions play a negligible role in the

system’s behavior (the lattice parameter becomes almost that of the HS and does not change

a lot). As a result, the magnetic transition from the ferromagnetic to the paramagnetic

state, which takes place at higher temperature than the SCO transition mainly follows the

behavior of that of an Ising model, although the “exchange” interaction J slightly depends

on the distances as J(rij) = J0 − α(rij −RHH
eq ). However, as we explained above, in the HS

region, one has 〈rij〉 ' RHH
eq , and so the effect of the long-range interactions on the magnetic

subsystem remain negligible. That is the main reason for which the same critical exponent

as that of the 2D Ising model is found in these simulations.

The second less sharp peak is attributed to a second-order phase transition taking place

in the HS state between the ferromagnetic phase at intermediate temperatures and the

paramagnetic disordered phase that prevails at high temperature. For the 16 × 24 sys-

tem, the ferromagnetic phase exists between temperatures associated to both peaks of

χ which are estimated to 72 K and 93 K. The order-disorder transition temperature,

TC ' 93 K well corresponds to the expected Onsager critical temperature of a 2D Ising sys-

tem, TC = 2.269
(
J0 − α(< d > −RHH

eq )
)
. Using these values, the critical temperature is esti-

mated using Onsager formula, TOns = 2J/ ln
(
1 +
√

2
)

which gives TOns = 2.269J0 = 113.4K

in the case of a perfect HS system, for J0 = 50 K. On the other hand, at the maximum value

of χ, the corresponding HS fraction value is nHS ' 0.9, (the magnetization peaks at m ' 0.6)

indicating that the present ferromagnetic phase is only partially ordered. Consequently, the

ferromagnetic phase of Fig. 2b must be seen as a diluted phase containing about 10% of

diamagnetic LS phase, randomly distributed. Thus, the critical transition temperature, is

lower than that of the pure saturated HS phase and can be estimated in a simple attempt as,
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T dilutOns = 0.9TOns ' 103 K. It is however important to mention that the ferro-paramagnetic

transition temperatures, estimated from the MC simulations, crucially depends on the sys-

tem size. Thus, for a finite system, the critical temperature is always lower than that of

Onsager, to which it connects through the following relation, TC = TOns/(1 + 5
4
√
N

) [90],

where N is the system ”volume”. According to these developments, one can evaluate an-

alytically using, for the case 16 × 16 system, the expected ferromagnetic to paramagnetic

transition temperature as TC = T dilutOns /(1 + 5
4
√
N

) ' 95 K, which is in excellent agreement

with the value TC = 93 K emerging from the simulations.

One crucial parameter of the model is the average intermolecular distance, < d >, between

nn SCO molecules. Reported in Fig. 2d, its behavior with temperature is quite similar to

that of nHS and finite-size effects are also found negligible on this quantity beyond the

16 × 16 system size. The linear increase of intermolecular distance, < d >, in the HS and

LS phases is due to thermal expansion, caused by the anharmonic (quartic) elastic term of

the Hamiltonian. Due to the form of the anharmonic contribution (A1

(
rij −RHH

eq

)2
) to the

nn elastic constant, which is stronger in the LS spin state (rij = RLL
eq ) and almost negligible

in the HS state (rij = RHH
eq ), the slope of the curve < d > (T ) is higher in the LS phase.

According to this behavior, the thermal expansion coefficient for the nn bond-length, defined

as αT = d(ln< d >)/dT , leads to the value, 6.4× 10−4 K−1, which is found the same for all

investigated system sizes. This value strongly depends of the anharmonic elastic constant

A1 which was taken quite high in the simulations (A1 = 10A0) in order to magnify this

phenomenon. In the temperature interval 60-90 K, the intermolecular distance, undergoes

a rapid increase in the same region of first-order transition as that of the HS fraction (see

panel a) and finally saturates at high temperatures. This thermal behavior of < d > leads

to an important remark concerning the magnetic properties. Indeed, the total exchange like

interaction, J , depends on the nn distance between the SCO sites, and therefore at fixed

temperature, T , its average value, < J >= J0 − α
(
< d > −RHH

eq

)
is clearly temperature-

dependent. This makes the study of the magnetic subsystem more complex than thought,

and in the same time this fact makes the problem extremely close to the previous BEG

studies [47, 78–80] in which all interacting parameters, including magnetic exchange, were

assumed to be linearly depend on temperature.

The fact that a sharp transition takes place exactly in the same region for the electronic

state, that is the HS fraction parameter (see panel a), and the structure, that is the lattice
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parameter, is a key MC result of the model which reproduces experimental observations on

SCO solids at the spin-transition. The correlation between nHS and < d > is also explored

by computing nHS as function of < d > (see inset of Fig. 2d) as the temperature varies.

Corresponding data collapse for different system sizes in a straight line of slope 0.2 nm,

establishing an undoubtedly evident correlation between nHS and < d >. The thermal

behavior of the spin-spin correlation function C(T ) =< SiSj > has been also examined

with system size. The results (not reported) are similar to the one observed in Fig. 2b.

Less finite-size effects are obtained at low and high temperatures than in Fig. 2a. In these

temperature ranges, curves for different system sizes collapse.

B. Effect of the harmonic elastic constant A0

Now, we study the effect of the model parameter values on the system. For that, since

large scale computing properties of the model is demanding in simulation time, the 16× 16

system is selected to predict qualitatively the thermal behavior of magnetization m, HS

fraction nHS, magnetic susceptibility χ and average intermolecular distance < d >, as

function of the elastic constant A0. Fig. 3 summarizes the system’s behavior for three

values of this constant: A0 = 1000, 4000 and 8000 K.nm−2. One sees that the HS fraction,

nHS (see panel a), changes from gradual to sharp discontinuous transition with unchanged

transition temperature, T1/2 ∼ 69 K. This behavior can be well understood, since the

transition temperature between the LS and HS states involves only a change of the total

effective ligand-field, whose elastic part vanishes at the transition. Therefore, the transition

temperature at which the system switches between the LS and HS states, only depends on ∆,

J0 and g. Panels (b) and (c) show the magnetization, m and the susceptibility, χ which also

change from a continuous transition character to discontinuous when values of the elastic

constant A0 increases. Thus, for A0 = 4000 and 8000 K.nm−2, the magnetization jumps

from 0 to 0.9 exactly at the SCO transition and then vanishes following a second order-

disorder transition whose critical temperature, TC , depends on A0, as well indicated by the

shift of the broad maxima of the susceptibility χ (see panel c). This behavior highlights the

effect of the elasticity of the material on the magnetic properties. Finally, panel (d) shows

that the average intermolecular distance, < d >, is influenced by the change of A0 mainly

in the LS state where the LS lattice distance < d >= 1 nm is stabilized for high A0 while
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the transition transforms from gradual to first-order, in agreement with nHS(T ) behavior.

C. Effects of the magnetic coupling J0 and the magneto-elastic coupling constant

α

As for Fig. 3, quite similar tendencies are observed for increasing values of the coupling

constant J0 at fixed A0 value (see Fig. 4). However, one can remark the existence of notable

differences between the effects of A0 and J0. First of all, increasing J0 from 30 to 100 K shifts

downward the spin-transition temperature, as indicated in Fig.4(a), and so the exchange

coupling J0 stabilizes the magnetic HS spin phase while giving a sharper character to the

spin-transition, as A0 does. It is interesting to notice that the SCO transition temperature

can be determined analytically in this model. At the switching temperature between the LS

and HS states, free energies of HS and LS phases must be equal. Let us denote by PHS and

PLS the probabilities of occupying HS and LS sites, respectively. Their general expressions

are given as, PHS = ΩHSe
−βEHS and PLS = ΩLSe

−βELS , where Ω is the electronic degeneracy

of the spin state (ΩHS = 2 and ΩLS = 1) and EHS (resp. ELS) is the energy per site in

the HS (resp. LS) state. At the transition, one has PHS = PLS. On the other hand, the

transition takes place between LS and HS ordered phases (their mixing entropy’s are equal

to zero). Moreover, the elastic energies of HS and LS phases are also zero (see Eq. (4)),

and therefore, the energies of the HS and LS phases are simply given by EHS = Deff − J0

(where Deff = ∆ − kBT ln(g)) and ELS = 0, respectively. At the transition we then have,

e−β[(∆−kBT1/2 ln 2g)−J0] = 1, which leads to the transition temperature, kBT1/2 ' ∆−J0
ln 2g

= 72 K

for J0 = 40 K, which is in excellent agreement with that of MC simulations, derived from

Fig.4(a) for nHS = 1/2: when a half of the system has switched from the LS to the HS state.

In this problem, the system exhibits two magnetic transitions. The first-one, strongly

correlated to the SCO transition takes place between the diamagnetic state (< S2 >= 0 and

ferromagnetic state (< S2 >= 1). The second ferromagnetic-paramagnetic order-disorder

transition takes place at higher temperature in the present studied cases. To observe a

crossover between the critical exponent of 2D Ising model and that of mean-field universality

class, we must have a long-range magnetic coupling between the spin states along the ferro

to paramagnetic transition. In other words, there must be a strong interference between the

magnetic transition temperature and the SCO temperature. If these two temperatures are
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very close, then the two transitions will interfere and as a result the magnetic interaction

J(rij) will strongly depend on the lattice parameter in the temperature region where the

magnetic phase transition take place between the ferromagnetic and the paramagnetic HS

states. Although interesting, we believe that this type of study merits a specific work.

The shift of the SCO transition can be evaluated through the relation T1/2 = ∆−J0
kB ln 2g

in the

domain where the second-order and SCO-transition temperatures are very close regarding

to J0 values (e.g. for J0 = 30 K, Tc = 90 K and T1/2 = 75 K with MC simulations) and

the exact relation yields T1/2 = 73.63 K. This estimation is in fair agreement with the MC

simulations of Figs. 4a,b. Beyond that, the obtained result leads to a lowering of the first-

order transition temperatures (T1/2 = 52 K for MC simulations) by of 61.36 K and with

Tc = 204 K, for high second-order transition temperature, when J0 is increased to 100 K.

As such, this leads to have non-valid relation between T1/2 and ∆−J0
kB ln 2g

. This effect is also

found in the magnetic transition (see Figs. 4c), which also shows a huge effect of J0 on the

second-order phase transition, as expected from theory of 2D Ising systems. Indeed, a clear

saturation of the magnetization m at high temperatures and an increasing of the domain

of the ferromagnetic phase with J0 which is a common feature in Ising systems [49, 77, 78].

Here, the HS units are created and interact magnetically in the system. Overall, in Fig. 3

we demonstrated that an enough strong harmonic elastic coupling, A0, induced a first-order

SCO (on nHS(T )) triggers a first-order transition on the magnetization, m(T ), from the LS

diamagnetic state to an ordered (or partially-ordered) ferromagnetic state. Here, we also

demonstrate that the opposite effect is also possible, since an increasing magnetic interaction,

J0, induces a first-order SCO transition. This interplay between the elastic and the magnetic

interactions is even more flagrant in the curves of Fig. 4d, which present significant effect of

J0 on the average intermolecular distance, < d >, which is a purely structural quantity. Here,

we see that the slopes of < d > (T ), in the HS phase change with respect to J0, which means

that even the thermal expansion coefficient (d ln<d>
dT

) depends on J0 values. This proves that

the magneto-elastic interaction introduced in this model is very efficient and allows a strong

coupling between the magnetic and the structural properties of the lattice. Thus, the average

intermolecular distance, < d >, from the LS diamagnetic state to an ordered (or partially-

ordered) ferromagnetic state is a relevant parameter that shows the relationship between

the system volume change and the magneto-elastic interaction. In addition, as in Fig. 4,

similar tendencies are observed for increasing values of the magneto-elastic coupling α at
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fixed J0 and A0 values (see Fig. 5). For increasing α values, one gets first- and second-

order transitions where the former coincides to the equilibrium spin-transition temperature

(nHS = 1/2). All transition temperatures shifted to lower values with increasing α value as

depicted in the inset of Fig. 5a. For J0 = 60 K and A0 = 1000 K.nm−2, Dia-Ferro and

Ferro-Para-magnetic characters of the transition are found from thermal behaviors of the

thermodynamic quantities (HS fraction nHS, magnetization m and magnetic susceptibility

χ).

D. Phase diagrams

It should be interesting to devise the temperature phase diagram of the model, relying

on the behavior of the HS fraction, and the magnetic susceptibility. The results as functions

of A0 and J0, for two selected values of J0 (panels a and b) and for two selected values of A0

(panels c and d), respectively, are presented in Fig. 6. It is observed that the high tempera-

ture phase is a disordered phase, and the low temperature one is a diamagnetic phase. The

intermediate phase is the ferromagnetic phase, that is separated from the diamagnetic phase

by continuous spin-transitions at low values of A0 (or J0, respectively), and by first-order

transitions at higher values of both parameters. It is important to notice that the model does

not exhibit tricritical points for the selected values of J0 (or A0, respectively), contrarily to

observations done in our previous works, where only spin-flip dynamics are considered. This

absence could be a finite-size effect. From Figs. 6a,b, it emerges that the transition lines

decrease as function of A0, with the presence of a sharp kink in the TC-lines at A0R
2
1 = 10

and 2.5 K, respectively in panels (a) and (b). Beyond these kinks, the spin-transition occurs

through a first-order transition at low temperatures, where discontinuities are observed in

the thermal behaviors of the order-parameters. In this range of A0R
2
1, the transition lines

increase and reach their limit values. With increasing J0 value, one can remark that the

domain of the ferromagnetic phase increases as in most Ising-like ferromagnetic systems as

previously stated, and the onset temperature for the appearance of the first-order transition

decrease. This remark is also observed in Figs. 6c,d, where the transition lines decrease

slightly when J0 increases, with appearance of a sharp kink at about J0 = 50 K (panel c),

and J0 = 40 K (panel d), in the TC-lines. From these values of J0, the spin-transition lines

are first-order, and may decrease with J0, whereas the TC-lines undergo a rapid increase,
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resulting in the increase of ferromagnetic phase domain.

E. Thermal hysteresis behaviors of the system

At the vicinity of first-order transitions, hysteresis phenomena are observed. Here a

32×32 system is considered and the calculations are proceeded as follows. The temperature

is raised from 1 K to 130 K with an increment of 1 K. When 130 K is reached, the

simulations continued to 1 K with a temperature step of −1 K. The hysteresis cycles

achieved are illustrated in Fig. 7 for varying values of the parameters A0 (panel a) and

J0 (panel b) and selected values of other parameters that are indicated in the panels. It

is observed that when the value of A0 is raised, the switching temperature of the upward

branch T1/2↑ increases while that of the downward branch T1/2↓ decreases (see Fig. 7a).

As a consequence, the cycle area increases with A0. Interestingly, the center of the cycle

evidently remains almost constant in this A0 range, in good agreement with the previous

analytical predictions which indicated that the transition temperature at equilibrium does

not depend on the harmonic elastic constant, A0. On the contrary, increasing values J0 shift

the hysteresis loop to low temperatures with a decrease of the associated T1/2↑ and T1/2↓

values and a clear saturation of the lattice by HS units at high temperatures (see Fig. 7b).

The magnetization corresponding to the case of J0 = 100 K, as displayed in the inset of

Fig. 7b, shows also hysteresis behavior with a clear saturation in the HS phase. Figs. 8a,b

show the behavior of the limiting transition temperatures T1/2↑ and T1/2↓ of the hysteresis

loops as well as the associated equilibrium temperatures, defined as T1/2 = 1
2
(T1/2↑ + T1/2↓)

as function of the harmonic elastic constant, A0, and magnetic interaction J0, respectively.

The corresponding widths ∆T = T1/2↑ − T1/2↓ are also monitored when A0 and J0 increase.

In panels (a) and (c) of this figure, at low values of A0 and for J0 = 50 K, ∆T = 0 K and

only critical hysteresis cycles can be observed. There, the SCO lattice presents only gradual

SCO transition and the magnetic subsystem, exhibits only second-order phase transitions,

where T1/2↑ ' T1/2↓ ' T1/2. This is in fact the case for A0 = 103 K.nm−2 where one

maximum is found for the response function χ in Fig. 3c. With increasing A0, one can

see from this figure that a second maximum appears in the low temperature range. In this

case, jumps are observed in the behavior of m, nHS and χ and thermal hysteresis loops

take place, as we have already explained. From the above, the existence of a critical value
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of the interaction parameter A0 is obvious (see Figs. 8a,c). Close to this critical point,

the upward borderline is slightly curved. This feature may account for the finite value of

the temperature sweeping rate (kinetic effect) [50, 77]. For J0 = 80 K (Figs. 8b,c), the

same behaviors are obtained with a decrease of the transition temperatures (T1/2↑, T1/2↓ and

T1/2) and an increase of hysteresis loop width as shown in Fig. 7b. One also remarks that

from the critical point, the hysteresis loop width increases gradually with the parameter

A0 and an almost straight lines are obtained (see Fig. 8c). We now turn to the study of

the spatio-temporal features of the SCO transformation obtained with this model. At this

end, some snapshots of transient states have been taken along the thermal hysteresis loop in

heating and cooling processes of Fig. 7a for the elastic constant value, A0 = 8.103 K.nm−2.

In this figure, one remarks that the transition from the LS to HS state (LS → HS) occurs

around T4 = 75 K on heating and from the HS to LS state (HS → LS) around T8 = 55 K

on cooling. Both processes proceed via nucleation phenomena with domain growth. The

obtained results are summarized in Fig. 9 which shows, in addition to the nucleation and

growth process of the HS (red/blue) and LS (green) spin domains in the model accompanied

by the volume (here surface) change at the transition process, the clear occurrence of the

magnetic order-disorder transition. As reported in Refs. [50–53, 82, 91–95] one can observe

that the nucleation and growth processes of spin domains start from edges and corners for

both HS → LS [Fig. 9: F(T6)-A(T1)] and LS → HS [Fig. 9: A(T1)-F(T6)] transitions. The

growing domains propagate towards the center of the lattice and then merge. During HS→

LS transformation, LS domains grow and finally combine together to extend to the whole

system. Domain growth occurs in the diagonal directions and a few one appears somewhere

at the edges (see right panels of Fig. 9). The onset of such inhomogeneous structures was

reported in Fig. 1 of Ref. [96] during the domain wall propagation observed by optical

microscopy [17, 48, 49, 72, 73, 77, 93, 96–109]. Following the process in heating from LS to

HS phase, we also find local clusters of HS molecules (blue and red dots) around the corners,

but in contrast to the case of the cooling branch, a large homogeneous region appears (see

left panels of Fig. 9) as is observed with periodic boundary conditions (PBC) thus meeting

the previous investigations of Nishino et al. [91], who pointed out the crucial role of the

surface in the emergence of macroscopic domains nucleation in the elastic models. It is

important to mention in passing, that years ago an hybrid model combining short-range

Ising coupling and elastic long-range interactions was proposed by Nakada et al. [110] who
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demonstrated that an inhomogeneous configuration (lattice and spin degrees of freedom)

are also observed at critical temperature Tc when the SCO atoms interact in a lattice with

periodic boundary conditions.

A possible reason for this difference on cooling and heating processes originates from the

energy and entropy gain. In the cooling process at low temperatures, the energy stability

is more important than the entropy gain and the nucleation from the corner is the most

favorable. However, in the heating process at high temperatures, the entropy gain becomes

more important and the configuration may change uniformly, which can be seen in the inner

part of the system. This obviously indicates that the system, once in the saturated HS

phases, the HS units interacted magnetically.

Furthermore, following the same procedure as that developed in Ref. [50], the nucleation

and growth processes from the corners in our model can be explained by simple energetic

considerations. During HS → LS transition for example, let us start from a lattice with

a saturated HS states and consider a nucleus made of a single LS site. The energy cost

associated with the creation of an LS nucleus at the corner, edge and center of the HS

lattice defined by ∆E = E(LS)− E(HS) reads as:

∆ECorner(HS → LS) = −(∆− kBT ln(g)) + 2J0 + 4(A0 +B0)R2
1 (15)

∆EEdge(HS → LS) = −(∆− kBT ln(g)) + 3J0 + 2(3A0 + 4B0)R2
1 (16)

∆ECenter(HS → LS) = −(∆− kBT ln(g)) + 4J0 + 8(A0 + 2B0)R2
1 (17)

The analysis of these equations clearly shows that while the system wins electronic energy

(especially at very low temperature) during the spin-flip from HS to LS, it also faces to an

energy barrier originating from the magnetic and the elastic interactions, whose contributions

can be easily identified in the previous equations. The interesting point here is that magnetic

and the ligand-field energies compete (in the case of ferromagnetic interactions) and it is

clearly seen that the magnetic interactions stabilize the HS phase, by increasing the energy

barrier. Moreover, both of these contributions increase when going from corner to edge and

then to a bulk site. As a result, the probability of appearance of a LS state along the cooling

process (∼ e−β∆E) is higher for corner atoms. This justifies the nucleation and growth of

spin domains from corner of lattice. For LS → HS transition, similar considerations have

been developed. We start form a LS lattice in which we flip a corner, edge or central site
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form LS to HS. The following energy barriers are found for each case as:

∆ECorner(LS → HS) = ∆− kBT ln(g) + 4(A0 +B0)R2
1 + 64(A1 + 2B1)R4

1 (18)

∆EEdge(LS → HS) = ∆− kBT ln(g) + 2(3A0 + 4B0)R2
1 + 32(3A1 + 8B1)R4

1 (19)

∆ECenter(LS → HS) = ∆− kBT ln(g) + 8(A0 + 2B0)R2
1 + 128(A1 + 4B1)R4

1 (20)

in which the elastic energy part remains unchanged because of its positive character with

a weak additional term in R4
1, while the ligand-field contributions changed its signs and

the magnetic part vanished. Adopting the same energetic reasoning, here again, the energy

barrier at the corner is the smallest one and so the nucleation will start from the corner sites.

Compared with the cooling process, the heating one shows large thermal fluctuations which

favor the probabilities of nucleation at the center and at the edges. However, nucleation

from the corners remains the most likely. This nucleation from the corners can be explained

by the fact that the SCO units located at the corners of the crystal relax the elastic stresses

more easily on the surface because of their smaller number of neighbors.

F. Isothermal relaxation near the hysteresis loop

Here, we investigated the nonequilibrium properties of the system, at various tempera-

tures (T = 30, 45, 50 and 54 K) near the thermal hysteresis loop of Fig. 7a using an elastic

constant, A0 = 8000 K.nm−2. Interesting relaxation dynamics of metastable states are ob-

tained according to values of model parameters. In experiments, after photo-irradiation to

a long-lived HS state, by means of Light Induced Excited Spin State Trapping (LIESST)

[26, 111–113], even that saturates HS fraction, nHS, the relaxation process is visualized at

low temperatures or by rapid quenching of the high temperature stable HS state. Using the

same algorithm described in Sec. III, we performed the simulations starting from, a fully HS

state, on a square lattice (L = 32), and used 25 independent runs. The obtained results are

illustrated in Fig. 10, where the magnetization m, (panel a) and the HS fraction nHS, (panel

b) evolve according to the Monte-Carlo steps (MCS). Typical one-step relaxation curves are

obtained and the behavior of m, and nHS bear some resemblance. At low temperatures,

from the hysteresis loop, sigmoidal curves are observed. From the outside to the interior of

the loop, one remarks that the relaxation time increases when the temperature increases as

reported in literature [50, 77, 79, 80]. This counter-intuitive behavior, where the relaxation
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process of a metastable (or unstable) state slows down as the temperature increases, is due

to the proximity of the lower branch of the thermal hysteresis, in which the HS state is

thermodynamically stable, and so it has a long-lifetime.

In the next, Fig. 11 shows some transient states, taken also along the relaxation curves,

at different simulation times, and temperatures T = 50 K and T = 54 K. Horizontally,

snapshots are obtained at the same coverage or concentration nLS(= 1 − nHS) of LS units

excepted for panels c(t3) and e(t7). Vertically, they correspond to the same simulation

temperature T . The same qualitative characteristics of clustering of LS domains were also

observed in isothermal relaxation processes, from the metastable HS phase at the vicinity

of the thermal hysteresis loop (see Fig. 11). On the other hand, all HS units have the

same probability to switch, from HS state to LS state during HS → LS transition, followed

by volume decrease. Very close to the thermal hysteresis loop (see right panels of Fig.

11 where T = 54 K), one gets uniform aggregates of HS states, with some isolated LS

units almost in their edges at the initial stage of the relaxation process. It is clear that,

according to previous elastic model with open boundary conditions on 2D circular crystal,

Nishino et al.[114] show that homogeneous macroscopic nucleation events occurred with long-

range interactions for which single domain nucleation appears along the relaxation processes.

As for the homogenous transformation of the magnetic system, while the magneto-elastic

coupling contains both short and long-range effects, as we explained the long range effects

of J(rij) depend on the quantity α(rij−RHH
eq ) which is negligible in the HS region where the

magnetic interactions are acting. Here, at different simulation times and fixed temperature,

LS units are created and the domain growth is clearly observed from the corners as well as

at the edges of the lattice configuration. Domain growth occurs in the diagonal directions,

and a few one appears somewhere at the edges as previously observed in right panels of Fig.

9 (on cooling process). This happens by the way of the low cost energetic associated with

the creation of an LS nucleus at the edges and mostly from the corners. These results are

consistent and show good agreement.

V. CONCLUSION

Deformable lattice SCO model with ferromagnetic interactions is presented. It allows to

reproduce thermal and spatio-temporal behaviors of SCO solids and Prussian Blue Analogs
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(PBAs). The system of SCO compounds study is mapped on the Blume-Emery-Griffiths

model with three-states (S = ±1, 0), where S = ±1 denote the magnetic HS state and S = 0

is associated to the diamagnetic LS state. These atoms interact elastically with their nn

and nnn via anharmonic springs, whose elastic constants depend on their distances. More-

over, the nn sites also interact magnetically with an exchange interaction, whose value is a

function of the instantaneous distance between the spin states. As a result, the magnetic

interaction between the spin states depends on the elastic properties of the lattice. In the

magnetic ordering, only HS atoms, with S = ±1 interact in the HS phase, while the spin-

transition occurs between HS (S = ±1) and LS (S = 0) states. Finite-size effects have been

detected at finite temperature on the model. This mapping allowed us to construct the phase

diagrams of the model, from which gradual and first-order transitions are obtained, and on

which the effects of the model interaction parameters are analyzed. The thermal dependence

of the lattice configuration is studied upon heating and cooling along the thermal hysteresis

loop with model parameters. This characterized the evolution of the system at a constant

temperature, and revealed the mechanism of the nucleation and growth processes of the HS

and LS phases as well as the organization of the magnetic state. The isothermal low temper-

ature relaxation of the metastable HS states is also studied for which macroscopic nucleation

phenomena was also identified. Compared to the previous elastic models, the present model

has the advantage of producing a richer landscape of phase transitions according to the

interaction between the magnetic, and the lattice subsystems. In particular, we found that

the magnetic interaction act in an efficient way on the elastic properties of the lattice, by

changing the thermal evolution of the average lattice bond-length in the HS state, while

their effect is very limited on the HS fraction. All these results suggest that the electro-

elastic models can be extended to investigate the problem of magneto-elastic interactions

in PBAs and other related SCO materials with magnetic interactions. Extensions of this

model considering antiferro-magnetic interactions instead of ferromagnetic ones, or other

lattice topology leading to magnetic frustration might constitute an interesting extension of

this work.
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”Institut de Mathématiques et de Sciences Physiques (IMSP)” for the clusters and super-

computers on which the calculations reported here have been performed. K. B. acknowledges

23



the University Paris-Saclay, University of Versailles, the ANR project Mol-CoSM N° ANR-

20-CE07-0028-02 and CNRS for the financial support.

24



Figure Captions

Figure 1: Lattice configuration showing the atomic links between a site i (red ball)

connected to black and bue balls, representing the nn and nnn sites, respectively. The

equilibrium bond-length between nn (nnn) SCO sites is Req(Si, Sj) (R′eq(Si, Sj)).

Figure 2: Thermal behavior of (a): HS fraction nHS, (b): magnetization m, (c): mag-

netic susceptibility χ, and (d): average intermolecular distance < d > between nn SCO

molecules, for four system sizes: 8× 8, 12× 12, 16× 16 and 16× 24 showing the finite-size

effects on the model. Inset in panel (c) represents log(χmax) as function of log(N−0.5) (black

curve), and its corresponding linear regression (red curve). χmax denotes the first peak height

of χ, and N is the total number of SCO sites. Inset in panel (d) illustrates the correlation

between nHS and < d >, for different system sizes considered, when temperature increases.

The used parameters for all panels are: A0 = 2.103 K.nm−2, J0 = 50 K,α = 100 K.nm−1

and ∆ = 450 K, and g = 150.

Figure 3: Some thermal behaviors of the model for 16 × 16 system and varying the

values of the elastic constant A0 with fixed other parameters. (a): HS fraction nHS, (b):

magnetization m, (c): magnetic susceptibility χ, and (d): average intermolecular distance

< d > between nn SCO molecules. The curves show that one moves from a continuous

behaviors to the appearance of discontinuities, which are first-order transitions, when A0

increases. For large values of A0, the magnetic susceptibility χ, presents two peaks, where

the fisrt one corresponds to the first-order spin-transition, and the second one is attributed to

the order-desorder transition. For all panels, other values of used parameters are: J0 = 50 K,

α = 100 K.nm−1, ∆ = 450 K and g = 150.

Figure 4: Some thermal behaviors of the model for 16×16 system and varying magnetic

coupling interaction J0 with fixed other parameters. (a): HS fraction nHS, (b): magneti-

zation m, (c): magnetic susceptibility χ, and (d): average intermolecular distance < d >

between nn SCO molecules. Second- and first-order transitions are obtained for selected

values of J0, and the curves shift to low temperatures by increasing J0 values as obtained in

ours previous works [78, 79]. Two peaks appear in the magnetic susceptibility behavior at

high values of J0, whereas only one depicted for its low values (see panel c). For all panels,

other values of considered model parameters are: A0 = 103 K.nm−2, α = 100 K.nm−1,

∆ = 450 K and g = 150.
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Figure 5: Some thermal behaviors of the model for 16 × 16 system and varying the

magneto-elastic coupling α with fixed other parameters. (a): HS fraction nHS, with inset

that is the corresponding phase diagram, (b): magnetization m, (c): magnetic susceptibility

χ, and (d): average intermolecular distance < d > between nn SCO molecules. Second-

and first-order transitions are obtained, for selected values of α, and the curves shift to

low temperatures by increasing α values. Two peaks appear in the magnetic susceptibil-

ity behaviors, at any values of α (see panel c). Dia-Ferro and Ferro-Para-magnetic phase

transitions occurred as displayed the inset phase diagram in panel (a). For all panels, other

values of considered model parameters are: A0 = 103 K.nm−2, J0 = 60 K, ∆ = 450 K and

g = 150.

Figure 6: Thermal phase diagram of the model in the reduced parameters

(A0R
2
1/J0, T/J0), and (J0/A0R

2
1, T/A0R

2
1) planes for 16 × 16 system, with selected val-

ues of J0 (panels a,b), and A0 (panels c,d), respectively. Three phases are found: dia- para-

and ferro-magnetic phases. Lines with solid circular dots (solid square dots) denote the

equilibrium temperature T1/2 (the first-order spin-transition temperature Tfo (first peak of

χ)), whereas that with open circular dots are associated to order-desorder transition tem-

perature TC (second peak of χ). Large domain of ferromagnetic phase appears when the

magnetic coupling interaction J0 increases, and the phase diagram does not show tricritical

points anywhere. Other model parameters values are: α = 100 K.nm−1, ∆ = 450 K and

g = 150.

Figure 7: Thermal hysteresis loop of the HS fraction, nHS, at the vicinity of first-order

transition for selected values of A0, and J0, respectively in panel (a) and (b). The system size

is 32×32. The loop area increases with the elastic constant A0, where their center is almost

fixed in temperature. Whereas, for increasing J0 values, the loop area increases and shifts

to left for low temperatures. The inset in panel (b) shows thermal hysteresis loop of the

magnetization m, for J0 = 100 K. A, B, C, D, E, F , G, and H are the positions of lattice

configurations of Fig. 9 on the upward, and backward branches, at different temperatures

associated respectively to T1 = 26 K, T2 = 54 K, T3 = 74 K, T4 = 75 K, T5 = 76 K,

T6 = 126 K, T7 = 56 K, and T8 = 55 K. We take ∆ = 450 K and g = 150 with other

model parameters which are written in panels.

Figure 8: Phase diagram of 32× 32 system, as function of A0R
2
1/J0, showing the depen-

dence of limiting temperatures of hysteresis loops (T1/2↑, T1/2↓), and the associated equilib-
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rium temperature approximated by T1/2 =
(
T1/2↑ + T1/2↓

)
/2 for J0 = 50 K (panel a) and

J0 = 80 K (panel b). The corresponding hysteresis width ∆T are displayed in panel (c)

and show increasing of loop area with A0R
2
1. Other values used for model parameters are:

α = 100 K.nm−1, ∆ = 450 K and g = 150.

Figure 9: Snapshots of lattice configuration for 32 × 32 system, along the thermal

hysteresis loop of Fig. 7a, with A0 = 8.103 K.nm−2, during heating (left panels) and cooling

(right panels) processes, at different temperatures T1 = 26 K, T2 = 54 K, T3 = 74 K,

T4 = 75 K, T5 = 76 K, T6 = 126 K, T7 = 56 K, and T8 = 55 K. Green clusters are

associated to those of LS units whereas, red (spin +1), and blue (spin −1) dots ones consist

of HS unit clusters. It clear that the nucleation and growth process start from corners, and

edges with deformations, and then propagated through the crystal. Values considered for

other model parameters are: J0 = 50 K, α = 100 K.nm−1, ∆ = 450 K and g = 150.

Figure 10: Isothermal relaxation curves of 32× 32 system, near the thermal hysteresis

loop of Fig. 7a, for A0 = 8.103 K.nm−2, at different temperatures: T = 30, 45, 50,

and 54 K. Relaxation time increases with temperature, and concave curves are got, from

its initial stage. Red circular dots in panel (b) indicate the position, of spatio-temporal

configurations in Fig 11, along the relaxation curves for T = 50, and 54 K. Other model

parameters are the same in Fig. 7a with A0 = 8.103 K.nm−2.

Figure 11: Snapshots of lattice configuration, along the relaxation process for two tem-

peratures, T = 50 K (left panels), and T = 54 K (right panels) at different simulation

times: t1 = 27, t2 = 496, t3 = 1080, t4 = 2980, t5 = 52, t6 = 1528, t7 = 2386, and

t8 = 8456 MCS. Colors have the same meaning as in Fig. 9. Horizontal panels correspond

to the same coverage nLS of LS fraction, excepted for c(t3) and e(t7) configurations, while

the configurations of vertical panels have been taken at the same temperature T . LS nuclei

are formed from corners and edges, and grow to coalesce at high coverage. In (a), (b),

(c), (d), and (e), respectively, 5, 23, 96, 99, and 53 percents of lattice are occupied by LS

units. Values considered for other model parameters are: A0 = 8.103 K.nm−2, J0 = 50 K,
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α = 100 K.nm−1, ∆ = 450 K and g = 150.
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