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ABSTRACT
Personal DataManagement Systems (PDMS) are flourishing, boosted
by legal and technical means like smart disclosure, data portabil-
ity and data altruism. A PDMS allows its owner to easily collect,
store and manage data, directly generated by her devices, or re-
sulting from her interactions with companies or administrations.
PDMSs unlock innovative usages by crossing multiple data sources
from one or many users, thus requiring aggregation primitives.
Indeed, aggregation primitives are essential to compute statistics
on user data, but are also a fundamental building block for machine
learning algorithms. This paper proposes a protocol allowing for
secure aggregation in a massively distributed PDMS environment,
which adapts to selective participation and PDMSs characteristics,
and is reliable with respect to failures, with no compromise on
accuracy. Preliminary experiments show the effectiveness of our
protocol which can adapt to several contexts with varying PDMSs
characteristics in terms of communication speed or CPU resources
and can adjust the aggregation strategy to the estimated selective
participation.

CCS CONCEPTS
• Computer systems organization → Architectures; • Infor-
mation systems→ Data management systems.
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1 INTRODUCTION
The new privacy-protection regulations (e.g., GDPR) and smart
disclosure initiatives in the last decade have boosted the develop-
ment and adoption of Personal Data Management Systems (PDMSs)
[2]. A PDMS (e.g., Cozy Cloud, Nextcloud, Solid) is a data platform
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allowing users to easily collect, store and manage into a single place
data directly generated by user devices (e.g., quantified-self data,
smart home data, photos) and data resulting from user interactions
(e.g., social interaction data, health, bank, telecom). Users can then
leverage the power of their PDMS to benefit from their personal
data for their own good and in the interest of the community [7].

Consequently, the PDMS paradigm leads to an important shift
in the personal data ecosystem since data becomes massively dis-
tributed, at the user-side. It also holds the promise of unlocking
innovative usages. An individual can now cross her data from dif-
ferent data silos, e.g., health records and physical activity data.
Moreover, individuals can cross data within large communities of
users, e.g., to compute statistics for epidemiological studies or to
train a machine learning model (ML) for recommender systems
or automatic classification of user data. However, these exciting
perspectives should not eclipse the security issues –user data must
be kept private– and the right for any PDMS user to consent, or
not, in participating in each computation.

Aggregation primitives (e.g., sum or average) are obviously es-
sential to compute basic statistics on user data but are also a fun-
damental building block for machine learning algorithms. Thus,
to enable such new usages, we need scalable, privacy-preserving
protocols implementing data aggregation primitives with selective
(i.e., consenting) participants. Ideally, the proposed protocol should
provide an accurate result that fully takes advantage of high-quality
data available in PDMSs. Efficiency (i.e., protocol latency and total
load of the system) is of prime importance and the protocol should
adapt to several contexts: the PDMSs could be limited by their com-
munication speed or by their computation power. Finally, given the
scale of such decentralized aggregation, such protocols must also
be robust to node failures. To summarize, our goal is to propose an
aggregation protocol for basic aggregate functions that fulfills the
following properties:

• fully decentralized and highly scalable, with the number of
participants.

• privacy-preserving, i.e., it protects the confidentiality of user
data.

• accurate, i.e., it does not require a trade-off between accuracy
and privacy.

• adaptable, i.e, it can adapt to a large spectrum of computation
selectivity values (reflecting the subset of contributor nodes)
and system configurations (network and cryptographic la-
tency).

• reliable, i.e., it handles node failures or voluntary disconnec-
tions.
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The rest of this paper is organized as following. After discussing
the related works w.r.t. the required properties in Section 2, we
introduce the considered architecture and threat model in Section
3. Sections 4 and 5 focus on the proposed protocol and preliminary
results. Section 6 concludes with future issues.

2 RELATEDWORKS
Secure aggregation is an intense research area since many years
and many approaches were proposed: secure multi-party computa-
tion (SMC) and (fully) homomorphic threshold encryption (HTE),
(local) differential privacy and gossip-based protocols. However,
the existing solutions are not adapted to the PDMS context and fail
to cover all the required properties listed above.

HTE and SMC-based solutions [4, 6, 9, 10] generally target ap-
plications in which central servers orchestrate and coordinate the
participating nodes (e.g. federated learning). Such solutions are not
scalable with a large number of participants and a fully decentral-
ized setting such as in the PDMS context (e.g., the server(s) load is
linear [9] or quadratic [6] with the number of participants).

Local differential privacy (LDP) has gained significant momen-
tum in the recent years addressing problems such as machine learn-
ing [14] or basic statistics based on range queries [8]. However, LDP
requires more noise than classical DP [1], either affecting accuracy
or requiring a large number of participants to reduce the impact of
noise, contradicting adaptability to selective participation.

Gossip-based protocols are scalable, fully decentralized, reliable
and have an adjustable accuracy. Unfortunately, classical gossip-
based protocols do not protect the user privacy. In [5], participants
collectively learn a machine learning model in a privacy preserving
way by gossiping differentially private models, impacting accuracy.
In [12], participants introduce noise in the first iterations and grad-
ually remove it in subsequent iterations. This approach makes such
solutions unreliable w.r.t. node failures. Finally, we are not aware
of gossip protocols tolerating selective participation and trivial
adaptations produce inaccurate results.

3 SYSTEM OVERVIEW AND THREAT MODEL
In this section, we introduce first the system architecture and the
related concepts. We then present the considered threat model for
the proposed secure protocol.

3.1 System Architecture
P2P network.We envision a fully distributed Peer-to-Peer (P2P)
system relying only on PDMSs, thus requiring an efficient com-
munication overlay. Distributed Hash Tables (DHT) are structured
overlays which enable a logarithmic scalability with the number of
nodes. Our protocol is currently built on top of the Chord DHT [13].
Each node has an Id obtained by hashing a static property of the
node and stores a fingertable (FT) to route Chord messages. FT is a
table with a number of entries equal to the size of the Id space in
bits. IfX is a node Id, the ith entry of the FT contains the IP address
of the node whose Id is closest but lower than X + 2i . Routing is
done by searching in the FT the closest entry to the target address
and transmitting recursively the message until it reaches its target,
with a worse case of O(loд(N )) message complexity, where N is
the number of DHT nodes.

Computationmodel. An aggregate computation can be triggered
by any node, called querier. The querier broadcasts the computation
and each node consents or not to contribute, and in the positive case
is called contributor. The ratio between the number of contributors
and total number of nodes defines the selectivity σ , 0 < σ ≤ 1.
Finally, each node (contributor or not) is a potential data processor
and is then called aggregator.

3.2 Threat Model
We consider the honest-but-curious threat model, in which, an at-
tacker can access, without altering, the data manipulated by the
attacked nodes, then called leaking nodes. The rationale behind the
honest-but-curious model is that a PDMS can hold the entire digital
life of her owner and therefore needs to be highly protected against
privacy threats. Recent works [3] indicate that Trusted Execution
Environments (TEEs) are prime candidates to offer this protection
since they guarantee that executed code and manipulated data can-
not be observed. In our context, this property allows sharing data
between PDMS nodes without breaking data confidentiality.

We thus consider that each PDMS is protected by a secure hard-
ware solution, such as Intel SGX or ARM TrustZone, providing a
TEE. Such a hardware protection makes attacks difficult to pro-
duce, but since no security measure is unbreakable, we consider
that some PDMS owners have succeeded in tampering their PDMS.
Since attackers may collude and thus, de facto, control more than
one PDMS, the worst-case attack is represented by the maximum
number of colluding nodes controlled by a single “attacker”, i.e., C
leaking nodes.

Additionally, the TEE of each PDMS is equipped with a trust-
worthy certificate. Thus, any node can verify the authenticity of
other participants by checking their certificate. This prevents Sybil
attacks (i.e., forging nodes to master a large portion of the system).

Finally, attackers can also observe the communications between
the nodes, thus requiring secure communication channels (e.g., TLS)
to protect sensitive data exchanges.

Our objective is to provide a protocol that fully protects the
confidentiality of the contributors’ data and all the intermediary
results, with high and tunable probability, the final result not being
confidential. Also, we consider that being a contributor for a given
computation is not a sensitive information.

4 PROPOSED PROTOCOL
In the protocol overview, we analyze the properties listed in Sec-
tion 1 and present the main ideas and techniques behind each
property and its impact on the protocol. Due to space constraints,
we cannot describe in detail the proposed protocol and thus discuss
some identified key elements of the protocol under the form of
questions/answers, considering first the privacy aspects and then
the efficiency perspective.

4.1 Protocol Overview
Scalability: The DHT achieves de facto a fully decentralized and
efficient architecture for inter-nodes communication. Achieving
a scalable aggregation process requires multiple aggregators, ar-
ranged in a tree structure. Building and broadcasting this aggrega-
tion tree can be very costly since the tree itself can be large. We
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thus employ a divide-and-conquer approach to parallelize the tree
construction and diffusion and use the finger table structure to
minimize communications. Finally, we reduce the knowledge (and
thus the diffusion) of the tree to the minimal part strictly necessary
to perform the aggregation: basically, each node of the tree only
knows its parent(s) and its children.
Privacy and accuracy: We use a secret sharing scheme (without
threshold) in which each contributor splits its data into s shares,
making them unreadable unless someone collects all s shares. s
is computed such that the probability to obtain s shares for an
attacker, controlling C nodes, is inferior to a security threshold
α (e.g., α = 10−6). Each ith share has the value xi = x + ϵi such
that

∑n
i=1 ϵi = 0, where x is the private value. This way, shares

from different contributors can be aggregated separately and if
no share is missing (the reliability is discussed below), the final
result will be equal to the exact sum of all private data. Hence, our
protocol provides also, by construction, accurate results. Note that
the protocol works for complex values of x , such as an array or a
matrix, which is useful for advanced aggregations, e.g., training a
naive Bayes ML model.
Adaptability: The number of aggregators (i.e., the tree fan-out and
its height) is tuned as a function of the number of contributors,
the communication costs (i.e., the latency to send a message be-
tween two nodes) and the processing costs (i.e., the asymmetric
cryptographic costs to secure a communication or to sign or verify
a signature, which is, by far, the most important processing costs).
This allows the protocol to always offer near-optimal performance
(i.e., aggregation latency) and achieve adaptability w.r.t. the com-
putation selectivity and PDMSs characteristics. Furthermore, our
protocol can also be conveniently configured to offer the desired
trade-off between the latency and the total cost of the aggrega-
tion, which are conflicting optimization objectives as discussed in
Section 5.
Reliability: Handling failures and disconnections is mainly im-
plemented at two levels. First, the aggregators in the last level of
the tree (just above the leaves) execute a synchronization protocol
to make sure that contributors have sent all the s shares before
disconnection and remove the shares for the contributors that have
sent less than s shares. This ensures that the aggregation result
stays accurate despite contributors failure. Second, a list of backup
aggregators is created before the tree creation. Its size depends on
the observed node failure/disconnection ratio. In case an aggrega-
tor fails, it is automatically replaced with a backup node during
the aggregation process (the parents monitor their children). This
allows the protocol to be robust to node failures and avoids losing
aggregation subtree results.

4.2 Privacy Issues
What is the impact of the secret sharing on the aggregation tree?
Considering s shares for each contributor and partial results leads to
build s separate aggregation trees, with exactly the same structure,
to avoid inferences from an attacker on any of the intermediate
results. The final sum of the shares is done by the querier (tree root).
A simple means to construct such trees is to consider that each
node of the tree is a group of s nodes (see Figure 1 with s = 2). The
protocol to build the tree is described in Section 4.3 considering

that, at each step, s nodes are selected instead of one. To make this
selection efficient, each node in the DHTmaintains a cache with the
addresses of the s − 1 successor nodes that will form the aggregator
group.

How is the number of shares computed? An attacker could cleverly
locate her controlled nodes in the DHT to obtain the s shares of
a group (typically controlling a node and its s − 1 successors). We
avoid this attack by reusing the concept of imposed location that we
proposed in [11]: the node Id in the DHT is computed by hashing the
public key from the PDMS certificate (see Section 3.2). The nodes are
then uniformly distributed in the DHT space and the PDMS owner
(here the attacker) cannot influence this placement: the uniform
distribution also applies to leaking nodes. As a consequence, s can
be easily computed and is minimal when s = ⌈log(α)/log(C/N )⌉.

Do contributors/aggregators have to check the correctness of the
received query? Basically, the answer is yes. Indeed, a trivial attack
would be to impersonate s aggregators (at the bottom of the tree)
and ask a set of contributors for their shares, with the same protocol.
If no control is done, the contributor cannot distinguish a real query
from a fake query. To avoid such an attack, every aggregator must
check the signature of the incoming query using the public key of
the sender, having previously checked the validity of the sender’s
certificate. Since all the nodes are honest but curious, they must
follow the protocol and thus cannot create a specific query that
would lead to the disclosure of certain data.

4.3 Efficiency Issues
What is the divide-and-conquer approach to build the aggregation
tree? Assuming the querier knows the height h and the fan-out
f of the aggregation tree, it starts creating a tree assigning the
whole DHT to its successor(s). Recursively, each aggregator in the
tree (i.e., a parent node) is assigned to a DHT region that it will
subdivide and delegate to other aggregators in that region. When
an aggregator oversees a DHT region, it looks for f nodes that
are (almost) evenly spaced across the region. The node responsible
for finding peers is a parent aggregator, while the selected nodes
are child aggregators. Each child then becomes the parent of the
region between itself and the next sibling. This process goes on
until the height h is reached. At the last tree level, the tree leaves
(i.e., the contributors) are found by using a localized DHT broadcast
in the respective region. Contributors willing to participate reply
with their private data, after establishing a secure channel with
their aggregator parent. The aggregators at level d aggregate the
data they receive before sending them to the previous level of the
tree down to the root (i.e., the querier) which performs the final
aggregation to obtain the result. Figure 1 illustrates this process
with two nodes per group (blue and red) by using letters to represent
a group. The fan-out is 4 and the height is 3 (excluding the querier
Q). Q selects his successor, A, who is responsible of the whole DHT
and is the root of the tree. A uses its finger table to contact C, E and
B. C recursively contacts D. The second level of the tree is built.
Then B, E, C and D contact recursively the nodes for the second
level (the figure only shows what happens with E for readability).
When leaves are contacted, they send one share to each aggregators
of the group (i.e., blue and red) which are summed-up separately
in each aggregation tree and finally summed-up by Q.
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Figure 1: Building the aggregation tree based on DHT

How does an aggregator contribute? If a node selected as aggrega-
tor in the tree wishes to contribute, it can simply add its data to the
partial aggregate it computes before sending it to its parent. Note
that it will add it without splitting the data into shares since its par-
ent cannot guess this addition. To compute an average, we need to
count the number of contributors and thus, the aggregator will add
s to the count of share contributions: each aggregator accounts the
number of shares it received, and the total will be finally divided by
s to obtain the number of contributors. Consequently, aggregators
do not appear as leaves in the aggregation tree. Note that this is
not the case for backup nodes which must have the possibility to
appear as leaves of the tree in case they wish to contribute.

How are the tree fan-out f and heighth computed? At one extreme,
a binary tree (f = 2) distributes the query load on a maximum
number of aggregator nodes but increases the communications
costs, including the creation of many secure channels to transfer
the intermediate results. At the other extreme, a tree limited to a
unique aggregator (f = σ ×N ) minimizes the communications and
thus the number of secure channels (1 per contributor). It minimizes
the total system load induced by the query but concentrates most
of that load on this unique aggregator (that becomes overloaded by
asymmetric crypto operations for the communication decryption).
An "ideal" aggregation tree would be completely balanced, with
the same fan-out all along the tree. Moreover, this fan-out (and
thus the height of the tree) would be cleverly chosen to optimize
the query latency without impacting too much the total load. Note
that this depends on the PDMS characteristics, i.e., communication
speed or computation power. Finally, the tree height is simply
computed based on the number of contributors (σ ×N ) and the tree
fan-out. σ can be estimated, for instance by contacting all nodes
within a region of the DHT, and checking the ratio of nodes willing
to participate. Since nodes are uniformly distributed in the DHT
thanks to the hash of their public key, choosing a sample of the
population should give a good estimation of σ .

5 PRELIMINARY RESULTS
As in most evaluations of distributed systems [13], we implemented
a simulator allowing varying any parameter: number of nodes N ,
of colluding nodes C , security threshold α , selectivity σ , and β , a
ratio defined below. Our simulator captures two metrics: (i) for the
network utilization, we consider the number of exchanged messages
as the most important metric (compared to, e.g., the message size);
(ii) for the PDMS resource utilization, the simulator counts the
asymmetric cryptographic operations which are, by far, the most
expensive operations. The output of the simulator is the protocol
latency and total work. They depend on β , the relative cost of
one asymmetric cryptographic operation denoted crypt and the
latency when sending a message between two PDMSs denoted com.
Specifically, β = crypt/(crypt + com) with 0 ≤ β ≤ 1. However,
note that the two extremes values of β are not realistic, i.e., β = 0
when crypt = 0 or com = +∞, β = 1 when com = 0 or crypt = +∞.

Our protocol is adaptive to σ and β , thus called Adaptive in
this section. To measure the impact of these two parameters on the
aggregation costs, we compare the Adaptive protocol to two other
simplified versions. First, Full tree is a classical aggregation tree
that does not adapt to the query selectivity, i.e., it considers σ = 1:
a tree is created recursively until all nodes are included, but only
those willing to contribute will send back shares. Second, Single
level considers that β = 0, i.e., the communication cost is so high
that we must minimize it, thus concentrating all the computation
on a single group, collecting the shares from all participants, and
sending the results to the querier.

We consider a network with N = 1, 000, 000 nodes, a quite large
attack level (C = 10, 000) and a high security threshold (α = 10−6)
and compare the above protocols in relative terms, i.e., dividing the
latency/total work of Full tree/Single Level by the one of Adaptive.

We first confirmed that the adaptive protocol is scalable. With
increasing values of N , we obtained a logarithmic increase of the
latency, thanks to the DHT and the divide-and-conquer approach.
We also verified that the number of colluding nodes C has a small
impact on the protocol latency, with reasonable values ofC w.r.t. N
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Figure 2: Latency and total work relatively to the Adaptive
strategy varying σ

in accordance with the considered threat model. Thus, in the rest
of this section, we focus on the adaptability feature of our protocol
and leave the evaluation of its reliability for future works. We vary
the selectivity σ (keeping β = 0.5) and the PDMSs characteristics
β (keeping σ = 0.01). The results are presented in Figures 2 and 3
(log scale on Y axis for all graphs and on X axis for selectivity only).

Let’s first focus on the Single Level protocol studied to show the
impact of an extreme strategy, i.e., concentrating all the load on a
single (group of) node(s). As expected, Single Level always provides
a better total work than Adaptive and Full tree. However, the latency
increases linearly with the number of participants leading rapidly
to prohibitive costs. Practically, Single Level is competitive only
if the selectivity is extremely high (i.e., tens to a few hundreds of
contributors) or β = 0 (i.e., unrealistic setting).

Execution based on aggregation trees (Full tree or Adaptive) are
much scalable for handling many contributors by distributing the
workload. Note that for a maximal selectivity, both approaches have
exactly the same latency, as their structure is identical. However,
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Figure 3: Latency and total work relatively to the Adaptive
strategy varying β

Full tree becomes more costly for both latency and total work as
soon as the selectivity is below 1. Indeed, the adaptive fan-out and
tree depth of Adaptive can reduce the latency up to a factor of 3
and especially the total work up to two orders of magnitude, which
indicates the importance of adapting the aggregation structure to
the computation and system settings.

In the last part of our experimental evaluation, we study in more
details the Adaptive protocol. In particular, we evaluate the impact
of the tree fan-out on the latency and the total work of the protocol
with different values of β while keeping σ = 0.01. The results are
presented in Figure 4 (log scale on the X axis for both graphs). As
above and to increase the readability, we represent relative values
for both the latency and the total work, i.e., the ratio between the
latency value (or the total work value) and its minimum observed
value.

As expected, increasing the fan-out, decreases the total work,
as the aggregation tree includes less nodes. This reduces the total
amount of communications (and hence reduces the number of
secure channels), but concentrates the cryptographic load on a
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Figure 4: Relative latency and relative total work w.r.t. the minimum value varying the fan-out

few nodes, leading generally to a higher latency. However, we
observed an exception to this behavior for small fan-out values.
In this case, the communication overhead required to construct
the tree leads to sub-optimal latency. With small values of β (i.e.,
the communication cost is larger than the cryptographic cost),
this overhead is more prominent. On the contrary, once the fan-
out increases, smaller values of β result in a decreased latency, as
the cryptographic operations, which are dominant, are relatively
cheaper.

Our results confirm that there is a sweet spot for the fan-out
depending on the PDMSs and network characteristics. The results
also indicate that, depending on the application requirements, the
fan-out can be adjusted to obtain a better trade-off between latency
and total work. For example, training a machine learning model
on user’s data may be less restricted in terms of latency than a
real-time traffic analysis. For instance, when β = 0.6, choosing a
fan-out of 8 leads to a total work only 3% higher than the optimal
value, while the latency is 32% larger than the optimal value.

6 CONCLUSION AND FUTUREWORKS
In this short paper, we made the first steps towards the design of
an aggregation protocol providing interesting properties: highly
scalable, privacy preserving, adaptable to selective participation, to
several system settings, with a tree-like structure enabling robust-
ness to failure; all this without compromise on the result quality.
This protocol could be a building block to compute statistics on
large communities of PDMS users or even to train ML algorithms.
There is still a long way to go before providing all the required
properties with efficient and secure protocols. Our next steps are
to focus on the reliability aspect, selectivity estimation, and perfor-
mance enhancements in the case of ML algorithms manipulating
large datasets and requiring many iterations on users’ data. This is
an exciting research agenda with innovative usages in perspective.
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