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Abstract

Shallow water propagation can be described using modal theory. For low frequency sources, propa-

gated signals are composed of a few dispersive modes, each of them propagating with its own frequency-

dependent wavenumber. Modal estimation, and particularly wavenumber estimation, is of great interest

in seabed characterization but classically requires a large and dense horizontal line array (HLA). The

compressed sensing (CS) paradigm, which allows one to reduce the number of sensors, has been used

to overcome this limitation. However, CS performance is directly linked to the discrete basis used in the

process and is known to degrade with basis mismatch. To mitigate this issue, the current paper proposes a

physics-based grid-free approach to perform wavenumber estimation using a HLA with a limited number

of sensors and a single broadband source. The proposed method has three main features: it starts with

a speed correction to prevent wavenumber aliasing (using water sound speed at the array location), it

then embeds physical prior (the modal dispersion relation) at the core of the CS framework, followed

by a CS grid-free approach. The performance of the method is quantified on simulated data using the

Jaccard’s distance. The method is then applied successfully on experimental data from the 2017 Seabed

Characterization Experiment.

Index Terms

Underwater acoustics, compressed sensing, normal mode propagation, Seabed Characterization Ex-

periment, SBCEX17.

May 27, 2021 DRAFT



2

T. Paviet-Salomon, C. Dorffer and A. Dremeau are with Lab-STICC, ENSTA Bretagne, UMR CNRS 6285, Brest, France

(e-mail: angelique.dremeau@ensta-bretagne.fr,clement.dorffer@ensta-bretagne.fr,thomas.paviet-salomon@ensta-bretagne.org). J.

Bonnel is with the Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole,

Massachusetts 02543, USA (e-mail: jbonnel@whoi.edu). B. Nicolas is with Univ Lyon, INSA-Lyon, UJM-Saint Etienne, CNRS,

Inserm, Creatis UMR 5220, U1206, F-69601, Lyon, France. T. Chonavel is with Lab-STICC, IMT Atlantique, UMR CNRS 6285,

Brest, France (thierry.chonavel@imt-atlantique.fr). D. Tollefsen is with the Norwegian Defence Research Establishment (FFI),

Defence Systems Division, Horten NO-3191, Norway (e-mail: dag.tollefsen@ffi.no). P. Wilson is with The Walker Department

of Mechanical Engineering & Applied Research Laboratories, University of Texas at Austin, Austin, Texas 78712, USA (e-

mail: pswilson@mail.utexas.edu). D. Knobles is with Knobles Scientific and Analysis, LLC, Austin, Texas 78731, USA (e-mail:

dpknobles@kphysics.org)

May 27, 2021 DRAFT



3

I. INTRODUCTION1

In shallow-water environments (water depth D < 200 m), the acoustic propagation of a low-frequency2

(f < 100 Hz) signal is conveniently described by normal mode theory. Under this assumption, the signal3

is modeled by the sum of a small number of propagating modes (less than ten in this work). The modes4

are fully characterized by their frequency-dependent wavenumbers and amplitudes. These two modal5

features have been extensively used as input data for inverse problems, such as source localization [1],6

[2] and/or environmental estimation [3], [4]. As a result, modal estimation is an important topic for ocean7

acoustics. The present paper focuses on modal wavenumber estimation.8

When range aperture is available, wavenumber estimation is similar to spectral analysis in the spatial9

dimension. Assuming that the signal is collected on a long horizontal line array (HLA) with a source10

in the endfire direction, the easiest way to estimate the wavenumber spectrum is to compute a spatial11

Fourier transform (SFT) in the horizontal dimension. Further, if the source is broadband, one can also12

compute a second Fourier transform in the temporal dimension (TFT) to obtain a frequency-wavenumber13

(f-k) diagram, which fully characterizes modal dispersion [5], [6].14

The main drawback of this simple procedure is that it suffers from the traditional limitations of the15

Fourier-based spectral analysis. In our context, a large horizontal aperture and a large number of sensors16

(i.e. a long and dense HLA) are required to properly resolve the modal wavenumbers. To mitigate17

this issue, the SFT can be replaced by more advanced spectral estimation methods. Pioneer studies18

successfully replaced the SFT with an auto-regressive (AR) estimator [7], [8]. Since the propagation19

in shallow-water environments is described by a small number of modes, considering sparse models20

constitutes an interesting alternative. These models are in particular involved in the compressed sensing21

(CS) paradigm [9] which, as it will be emphasized in the following, is of particular interest here, but has22

been more broadly exploited in underwater acoustics (e.g. [10], [11]). CS has first been used to estimate23

modal wavenumber in ocean acoustics by Le Courtois et al. [12]. Interestingly, CS has also been used to24

estimate modal wavenumber in other scientific fields, e.g. structural health monitoring using Lamb waves25

[13], [14]. A special issue of the Journal of The Acoustical Society of America is dedicated to CS in26

acoustics, and the editorial introduction [15] includes a comprehensive review of CS.27

Traditionally, CS algorithms expand the signal on the elements of a finite basis, i.e. a discrete grid.28

When the components of the signal do not match the grid, basis mismatch occurs, which degrades the29

CS performances [16]. Off-grid CS approaches have been proposed to mitigate this issue [17], [18].30

They have been notably applied to underwater acoustic problems, such as plane wave beamforming31

[19] or modal estimation using a vertical line array (VLA) and a source at multiple ranges [20]. Later,32

May 27, 2021 DRAFT



4

Paviet-Salomon et al. [21] proposed to use grid-free CS to perform modal wavenumber estimation using33

a single broadband source and a small number of sensors. As in Ref. [22], they further embedded a34

physical assumption, the dispersion relation, within the CS framework to relate wavenumbers from one35

(temporal) frequency to the next. The method was successfully validated on data simulated in a Pekeris36

waveguide [21].37

In the present article, we extend the work of Paviet-Salomon et al. [21]. The method is improved by38

implementing a frequency-dependent shift of the wavenumber spectra. This processing, which effectively39

creates an equivalent baseband version of the spatial signal thanks to a speed correction, is traditionally40

used for seismic applications [5], [6]. Here, it prevents wavenumber aliasing and thus allows wavenumber41

estimation over a relatively wide frequency band. On the other hand it modifies the dispersion relation42

that is used at the core of the CS framework.43

In the present work, the performances of the proposed method is benchmarked on realistic simulations,44

and shown to be superior to the state of the art. The method is also applied on experimental marine data45

collected during the 2017 Seabed Characterization Experiment (SBCEX17) [23]. This article considers46

a combustive sound source (CSS) signal recorded on a HLA with an aperture of 1 km. The proposed47

method allows the estimation of the wavenumbers of the four first modes from 10 Hz to 100 Hz using as48

few as 10 sensors. These experimental results, obtained on SBCEX17 data collected on the New England49

Mud Patch, illustrate the method’s robustness to complex environments with vertical stratification. Indeed,50

the New England Mud Patch features a complex layered seafloor. It notably has a layer of mud whose51

upper part is believed to be slower than water [24], [25], which clearly impacts the propagating modes52

[26].53

The remainder of the paper is organized as follows. Section II briefly introduces modal propagation,54

and focuses on the dispersion relation which will be at the core of the proposed method. Section III55

reviews the CS framework. It then describes on-grid and off-grid methods. Section IV presents the56

proposed wavenumber estimation procedure. First, Sec. IV-A reviews speed correction, a process that57

prevents wavenumber aliasing. Then, Sec. IV-B details the physics-based grid-free wavenumber tracking58

algorithm. Lastly, Sec IV-C introduces the Jaccard distance, a suitable metric to assess the performances of59

the method. Applications are presented in Sec. V, which covers a simulated benchmark and comparison60

with the state-of-the-art, as well as experimental results obtained using data from the 2017 Seabed61

Characterization Experiment. Section VI summarizes and concludes the article.62
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II. ACOUSTIC PROPAGATION IN DISPERSIVE SHALLOW WATER ENVIRONMENTS63

A. Received signal64

This paper focuses on low-frequency (f < 100 Hz) acoustic propagation in shallow water (D < 200 m).65

In this context, as stated in Sec. I, the propagation is described by the modal theory. Consider a frequency-66

domain signal s(f) emitted by a source at depth at zs. The received pressure on a sensor located at the67

distance r and depth z can be written as [27, Chap 5]:68

y(f, r) ' Qs(f)√
r

M(f)∑
m=1

Am(f, zs, z)e
−jrkrm(f) + n(f, r), (1)

where Q is a constant factor, M(f) is the number of propagating modes at frequency f , krm(f) is the69

horizontal wavenumber of the mth mode, and Am(f, zs, z) is its amplitude. The quantity n(f, r) stands70

for the TFT of the measurement noise. Modal attenuation is usually included in Eq. (1) as the imaginary71

part of krm. Here, the associated term e−r=[krm(f)] is included in Am, so that krm can be considered a72

real number.73

We consider a HLA and a source in the endfire direction (i.e. the source is aligned with the array).74

The geometrical attenuation factor 1/
√
r in Eq. (1) can be compensated for if the source position is75

known. As a result, the only significant range-dependence in Eq. (1) is within the phase of the modes.76

Note that this is still a fair assumption even if the source position is unknown, as long as it is in the77

endfire direction. Indeed, most of the range variability in Eq. (1) is driven by the complex exponential78

e−jrkrm(f), and the 1/
√
r can be considered as constant along the HLA, provided that the source/array79

distance is large enough. As a result y(f, k), the SFT of y(f, r), provides a direct measurement of the80

wavenumber spectrum (i.e. with peaks at krm(f)). For a broadband source, y(f, k) is called a f-k diagram81

[5]. Figure 1 presents a simulated f-k diagram. The simulation has been run for a Pekeris waveguide82

representative of a classical shallow water scenario. For consistency, the environmental parameters are83

the same as those used in Refs. [21], [22]: water depth D = 130 m, sound speed cwater = 1500 m/s84

and density ρwater = 1 g/cm3; basement sound speed cbas = 2000 m/s and density ρbas = 2 g/cm3. The85

f-k diagram was obtained using the FT of data simulated on a long and dense HLA with 240 regularly86

spaced sensors, with sensor spacing ∆r = 25 m (the array length is nearly 6 km).87

B. Dispersion relation88

In any environment, the horizontal wavenumbers krm are linked to their vertical counterparts kzm by89

the dispersion relation. At a given frequency f , this relation is90 (
2πf

c

)2

= krm(f)2 + kzm(f)2, (2)
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Fig. 1. Simulated f-k diagram in a Pekeris waveguide.

where c is the speed of the sound. Note that in theory, both kzm(f) and c are depth dependent. This is91

ignored here, as was done in previous studies [21], [22], [28] that use the dispersion relation to guide92

modal estimation. Indeed, the potential impact of this assumption is small enough that it can be embedded93

into noise and/or other uncertainties.94

As suggested by Le Courtois and Bonnel [12], one can discretize the frequency axis (with f = ν∆f ,95

ν ∈ N and ∆f the size of a frequency bin) and relate the wavenumbers attached to two successive96

frequency indices using97

krm[ν + 1]2 = krm[ν]2 + (2ν + 1)

(
2π∆f

c

)2

+ ε[ν], (3)

where krm[ν] = krm(ν∆f ) and ε[ν] = kzm[ν + 1]2 − kzm[ν]2.98

In shallow-water environments, the vertical wavenumbers kzm weakly depend on the frequency [27,99

Chap. 5]. As a result, the quantity ε is smaller than the other terms of the equation and can be neglected.100

This hypothesis has successfully been used in previous studies that took advantage of Eq. (3) at the core101

of modal estimation scheme [21], [22], [28]. In the present paper, Eq. (3) will be used as a physical prior102

to enhance wavenumber recovery using an off-grid CS algorithm.103

III. COMPRESSED SENSING104

A. Sparse representation105

Using the discretized framework presented in Sec. II-B, we further assume that the received signal106

has been measured on a HLA with L elements. The received signal y(f, r) is now denoted using yν , a107
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column vector of size L. Assuming that the horizontal wavenumber space is discretized into a grid of108

size N , Eq. (1) can be expressed as109

yν = Daν + nν , (4)

where D ∈ CL×N is a dictionary made up of (spatial) Fourier component, aν ∈ CN is the wavenumber110

spectrum at the (temporal) frequency ν (i.e. the transposed version of the νth line of the f-k diagram111

of interest) and nν ∈ CL is the additive noise along the HLA. The (l, n)th element of D is defined as112

dnl = e−jrlκn , where rl is the distance between the lth sensor and the source, and κn is the nth element113

of the wavenumber search grid. Note that Eq. (4) requires knowledge about the HLA configuration114

(i.e. sensor spacing), but does not require the source/array distance to be known, provided that the115

source is at the endfire direction. In this case, rl can be referenced to the first sensor of the HLA (i.e.116

r1 = 0). The resulting solution is similar to the one obtained using the absolute source/array distance,117

up to a multiplicative phase shift. Note that the nth column of D will be noted dκn hereinafter, i.e.118

dκn = [1, . . . , e−jrLκn ]T .119

The discrete wavenumber spectrum aν can be estimated through the SFT of yν , which is equivalent to120

a least-square estimation process. However, since the number of propagating modes is small, most of the121

elements of aν are null. As a result, the use of sparse recovery (SR) is well adapted to estimate aν [12],122

[22]. Within this framework, D is seen as an overcomplete dictionary (i.e. L � N ) while aν contains123

many zero entries. The corresponding SR problem can be expressed as124

âν = argmin
aν

‖yν −Daν‖22, subject to ‖aν‖0 ≤Mν , (5)

with ||aν ||0 the l0 pseudonorm of aν which simply counts the numbers of non-zero entries of aν and125

Mν the maximum number of modes expected to propagate at frequency ν.126

B. On-grid CS algorithm127

Eq. (5) is a combinatorial problem, and many heuristic methods have been developed to solve it.128

They can roughly be divided into three families. A first group of methods replaces the l0-norm by a129

lp-norm (with 0 < p ≤ 1). This leads to a relaxed problem which can be solved efficiently by standard130

optimization procedures. A well-known approach is the Basis Pursuit (BP) [29]. A second group of131

methods are greedy algorithms which build up the sparse vector aν from successive greedy decisions.132

One of the most popular versions of such algorithms is Orthogonal Matching Pursuit (OMP) [30]. The133

last group of methods are Bayesian algorithms that express the sparse representation as the solution of134

a Bayesian inference problem. Different Bayesian methods consider different prior models, estimation135

problems and statistical tools to solve them [31], [32].136
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Various on-grid CS methods have been used to estimate wavenumbers in ocean acoustics, including an137

iterative reweighted least squares method [12] and two Bayesian approaches [22], [28]. Interestingly, the138

two Bayesian approaches [22], [28] use the dispersion relation Eq. (3) to connect horizontal wavenumbers139

from one frequency to the next. However, Ref. [28] assumes that the number of modes is constant over140

the bandwidth of interest and that the ε[ν] term in Eq. (3) can be fully neglected. These two assumptions141

restrict the modal recovery to a limited bandwith (in Ref. [28], the provided examples were limited to142

a 20 Hz bandwidth, which kept the number of modes constant). On the other hand, Ref. [22] also uses143

Eq. (3) with ε[ν] = 0 to predict wavenumber at frequency ν + 1, but it introduces freedom around144

the predictions to account for ε[ν] 6= 0. The associated drawback is that the method includes several145

parameters that must be tuned by hand.146

In the present article, we consider an off-grid CS method that also relies on the dispersion relation147

Eq. (3). We will later see that the proposed method enables tracking the wavenumbers over a relatively148

wide bandwidth, while the number of modes does not need to be known a priori. Before that, traditional149

off-grid CS is briefly presented.150

C. Off-grid CS algorithm151

On-grid CS methods have known limitations that notably occur when the non-zero coefficients of aν152

do not match the grid points. This issue, called basis-mismatch [33], [16], can be mitigated by using a153

very fine grid. However, this raises questions about the coherence of the grid (which in turns impacts154

CS performance) and also may induce numerical instabilities.155

These concerns led to the development of grid-free setting methods. Practically, a grid-free version156

of the relaxed version of Eq. (5) can be obtained by replacing the l1 norm (only valid in a finite157

dimensional setting) by the total variation norm [34]. Although the underlying theory is complex, off-158

the-shelf toolboxes such as the CVX software (ConVeX: a library for convex optimization) [35] are159

available to solve the problem. This approach was notably used to estimate wavenumbers (and modal160

depth functions) considering a VLA and a source at multiple ranges [20]. However, the main drawback161

of this procedure is its high computational cost.162

Simultaneously, a continuous version of OMP has been proposed in Ref. [17] while a continuous163

version of BP has been proposed in Ref. [36]. The approach is based on the idea of interpolating the164

dictionary components in between existing grid points. However, an expensive computational cost is still165

associated with those methods. Rather, we will use a traditional OMP method, coupled with gradient166

descent performed after each OMP step [37]. The main advantage of this method is to obtain a continuous167

behavior while being simple, it barely increases the computational cost of the considered SR method. It168
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was previously used in our context (estimation of modal wavenumbers with a HLA) on data simulated169

in a Pekeris waveguide [21].170

IV. WAVENUMBER ESTIMATION171

This section describes the proposed method to estimate modal wavenumbers. A modified dispersion172

relation that will be used within the CS framework is first presented.173

A. Dispersion relation after speed correction174

In any waveguide, the modal wavenumbers are known to be contained within the interval [ 2πf
cmax

, 2πf
cmin

],175

where cmax and cmin are the maximal and minimal sound speed in the environment [27, Chap. 5]. At any176

frequency, the wavenumber support of the signal is limited to a relatively narrow (wavenumber) band:177

the spatial signal is said to be a bandpass signal. A small sensor spacing is thus required to prevent178

wavenumber aliasing. An example of an aliased f-k diagram is presented in Fig. 2a. The simulated179

environment is the same as in Fig. 1, except that the frequency now goes up to 200 Hz. One can see180

that above 60 Hz, wavenumbers are aliased. This is because for f > 60 Hz, the maximal wavenumber181

value 2πf
cmin

is above the (spatial) Nyquist frequency ks = 1
2∆r , with ∆r the (spatial) sampling rate (i.e.182

the sensor spacing).183

Aliasing can be prevented by reducing the spacing between sensors, but this is not always possible at184

sea. Since the wavenumber spectrum is a bandpass signal, aliasing can also be prevented by translating185

the modal spectrum toward smaller wavenumber (i.e. baseband processing). Mathematically, this is done186

by time-shifting the received data using cmin sound speed, which in the frequency domain corresponds187

to188

ỹ(f, r) = e

(
jr 2πf

cmin

)
y(f, r), (6)

with ỹ(f, r) the shifted signal. The wavenumber support of ỹ becomes [ 2πf
cmax
− 2πf

cmin
, 0], which drastically189

reduces the Nyquist frequency. This process is common in geophysics [5], [38], [39] and has also found190

applications in ocean acoustics [6], [40]. It will be called speed correction hereafter. Speed correction191

is applied on the simulated Pekeris example, and the result is presented in Fig. 2b. One can see that192

wavenumbers can now be recovered without aliasing up to 200 Hz.193

Although the speed correction process is simple, it modifies the dispersion relation. The original194

wavenumbers krm[ν] and their shifted versions k̃rm[ν] are linked through195

krm[ν] = k̃rm[ν] + γν, (7)
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Fig. 2. a) : Frequency-wavevumber diagram in the same configuration as in Fig. 1, except that frequency goes to 200 Hz:

wavenumber are aliased for f > 60 Hz. b) : f-k diagram in the same configuration, but after speed correction: there is no

aliasing.

with γ = 2π∆f

cmin
. Using Eq. (7) into Eq. (3), the discretized dispersion relation becomes196

(k̃rm[ν + 1] + γ(ν + 1))2 = (k̃rm[ν] + γν)2 + (2ν + 1)γ2 + ε[ν]. (8)

Assuming that ε[ν] = 0, the wavenumber at frequency ν + 1 can be predicted using197

k̃pred
rm [ν + 1] = −γ(ν + 1) +

√
(k̃rm[ν] + γν)2 + (2ν + 1)γ2. (9)

Note that in the proposed method, the (incorrect) assumption ε[ν] = 0 will be mitigated by looking for198

wavenumbers in a small interval centered around the predicted value k̃pred
rm [ν + 1].199

B. Tracking modes200

As stated in the introduction, the tracking method proposed in this article is largely similar to the one201

in Ref. [21]. The only difference is that we now work after speed correction. As a result, the physical202

prior that is embedded into the grid-free CS algorithm is now Eq. (8), instead of Eq. (3). This enables203

tracking wavenumbers in configurations where sensor spacing is large and creates wavenumber aliasing.204

In such situation, the method from Ref. [21] cannot be used. Note that if sensor spacing is small enough205
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to prevent aliasing without speed correction, then the proposed method gives result similar to the method206

in Ref. [21]. The proposed method is summarized below.207

The proposed procedure starts at ν = 1 with a traditional OMP step, evaluating the most correlated208

atom of the dictionary D with the signal yν . This step is then completed by a detection operation, which209

compares the resulting correlation to a given threshold T0. If selected, a mode is considered to propagate210

and the dispersion relation (8) is used to predict the interval in which the wavenumber of this mode is211

likely to be at the next frequency. The current estimate, as well as the predicted wavenumber at the next212

frequency, are then refined by a gradient-descent step, respectively based on the selected atom and within213

the predicted interval. For the predicted wavenumber of mode m at the next frequency ν+ 1, a detection214

threshold Tm,ν+1 is again applied on its estimated amplitude to prevent the propagation of false alarms.215

All these steps are then repeated at the next frequency in order to detect possible new modes and to216

propagate those already predicted to higher frequencies.217

The overall procedure is summarized in the Algorithm 1. An important parameter is ξ in Eq. (11): it218

gives the algorithm freedom to look for k̃rm[ν + 1] around the predicted value k̃pred
rm [ν + 1]. In a given219

context, the value of ξ is empirically determined by simulations to maximize the method’s performances.220

Algorithm 1 Physics-based grid-free Orthogonal Matching Pursuit for data with speed correction.
0. Initialization :∀ν∈{1, .., F}, rν=yν , Sν=∅, I0,ν=∅, M=0.

For ν = 1 : F

1. Find new propagating wavenumber

κ̂n = argmax
κn

|〈rν , d̃κn 〉|, (10)

where d̃κn is the n-th column of D∪̄m∈{0,...,M}Im,ν made up of Fourier atoms not in ∪m∈{0,...,M}Im,ν .

If |〈rν , d̃κ̂n 〉| ≥ T0

– Set M = M + 1.

– Apply gradient-descent algorithm to refine previous estimate and get k̂rm[ν]. Set Sν = Sν ∪ k̂rm[ν].

– Compute corresponding coefficients and update residual : rν = yν −DSν âν,Sν with âν,Sν = D+
Sνyν , with D+

Sν the Moore-Penrose

pseudo-inverse matrix of DSν , dictionary made up of Fourier atoms specified by Sν .

2. If M > 1, propagate existing modes

For m = 1 : M − 1

– Apply gradient-descent on interval Im,ν and get k̂rm[ν]. If |〈rν ,dk̂rm[ν]〉| ≥ Tm,ν , set Sν = Sν ∪ k̂rm[ν].

– Compute corresponding coefficients and update residual : rν = yν −DSν âν,Sν with âν,Sν = D+
Sνyν .

3. Predict propagating intervals for next frequency

For all m ∈ {1, . . . ,M}, define

Im,ν+1 =
[
k̃pred
rm [ν + 1]− ξ; k̃pred

rm [ν + 1] + ξ
]
. (11)

Detection thresholds may depend on false alarm probabilities. More particularly, considering a Gaussian221

complex circular noise assumption with variance σ2, we can define T0 as222

T0 = σ
√
−2 log β0 (12)
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where β0 is a given false alarm probability considered for the detection of a new mode. We adopt a223

similar definition for Tm,ν , but we add further physical considerations. If a mode m is detected first at224

frequency νc,m with threshold T0, we know that the mode will still be present at higher frequencies,225

suggesting thus to decrease the threshold for increasing frequencies. This can be done by considering:226

Tm,ν = T0 −
ν−νc,m∑
i=1

(
1− T∞

T0

2− T∞
T0

)i
T0, (13)

where T∞ = σ
√
−2 log β∞ stands for a desired limit threshold depending on an asymptotic false alarm227

probability β∞ under the same Gaussian complex circular noise assumption. More details on the adopted228

strategy with regard to these thresholds can be found in [21].229

C. Performance of the algorithm : the Jaccard distance230

An interesting question arises in quantifying the performance of the proposed method. Since the mode231

number is not known a priori, it is important to account for mismatch between the estimated number of232

modes, the true number of modes, and the fact that this number may vary with frequency. As a result, the233

problem can be seen as the detection and tracking of an unknown number of targets. A relevant metric234

in this context is the Jaccard distance [18], [41], [42].235

The Jaccard distance DJ is built using traditional detection theory features: the true positive (TP), false236

negative (FN) and false positive (FP) rates. Here, the quantities TP, FN and FP are evaluated at every237

frequency of interest using an acceptance radius RJ . To explain the definition of TP, FN and FP, let us238

assume that we have a theoretical wavenumber ktheorm [ν] and an estimated wavenumber k̂r[ν]:239

• if [ktheorm [ν]−RJ , ktheorm [ν] +RJ ] contains a single estimated mode k̂r[ν], then k̂r[ν] is a TP;240

• if [ktheorm [ν]−RJ , ktheorm [ν]+RJ ] contains several estimated modes, then the closest k̂r[ν] from ktheorm [ν]241

is a TP while the others are FP (it is implicitely assumed that RJ is smaller than half of the smallest242

distance between all theoretical modes, i.e. the acceptance radii do not intercept);243

• if there is no estimated mode k̂r[ν] such that |ktheorm [ν]− k̂r[ν]| ≤ RJ then ktheorm [ν] is a FN.244

Mathematically, the Jaccard’s index JI is first defined245

JI =
TP

TP + FP + FN
(14)

and leads to the definition of the Jaccard distance246

DJ = 1− JI (15)

which is such that 0 < DJ < 1. Note that DJ = 0 means that TP = 1 and FP = FN = 0. On the other247

hand DJ = 1 means that TP = 0, while DJ � 0 means that FP and/or FN are much larger than TP.248
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Fig. 3. Performance of the estimation of modal wavenumbers in a simulated Pekeris waveguide using OMP: TP (left), FP

(middle) and DJ (right).

The relevance of the Jaccard distance is illustrated using data simulated in our Pekeris waveguide249

example. For the sake of simplicity, wavenumbers are estimated using a classical OMP method. OMP is250

an iterative algorithm, selecting a new wavenumber at each iteration. Two stopping criteria are classically251

considered for this algorithm: it can stop either when the estimated reconstruction error drops below a252

given threshold or when the number of non-zero coefficients achieves a given number. This latter criterion253

is very convenient in our context, because the number of iterations is equivalent to the number of modes254

to be recovered. Although practical, this requires accurate prior information about the number of modes255

at each frequency. On the other hand, the stopping criterion based on the energy of the residual is less256

demanding in terms of prior information. This criterion is similar to what is used in the proposed method.257

It will thus be used to illustrate the interest of the Jaccard distance.258

Estimation performance is illustrated in Fig. 3. The TP rate increases when the number of sensors259

increases (because more data makes the estimation easier), and increases when the frequency decreases260

(because modal density decreases which also facilitates the estimation). On the other hand, the FP rate is261

high at very low frequencies (because the number of modes is very low, and thus a single false positive262

drastically increases the FP rate). The FP rate also tends to increase with the number of sensors. This is263

due to the chosen stopping criterion which implies an increasing number of iterations in OMP, and thus264

increases the likeliness to make false positive mistakes.265

May 27, 2021 DRAFT



14

Overall, the Jaccard distance DJ is consistent with the behavior of TP and FP. As an example, DJ is266

high (estimation performance is poor) when TP is small (e.g. for small number of sensors) and/or when267

FP is high (e.g. at very low frequencies). Also, when the sensor number is large enough, DJ is relatively268

constant, because TP and FP tend to compensate for each other. The Jaccard distance is thus a good269

metric to summarize global estimation performance and will be used in the following.270

V. APPLICATION271

In this section, the performance of the method is assessed on realistic simulations. The method is272

also applied on experimental marine data collected during the 2017 Seabed Characterization Experiment273

(SBCEX17). The considered applications focuses on low-frequency data (f < 100 Hz). In our context, this274

makes the number of modes relatively small (5 or less), which allows for modal estimation with a small275

number of sensors. This choice is consistent (and allows comparison) with previous modal estimation276

studies based on sparsity [12], [22], [28].277

This section starts with a description of SBCEX17, whose context will be used to define the simulated278

environment.279

A. SBCEX17280

The SBCEX17 was dedicated to the understanding of sound propagation in fine-grained sediment. It281

was a multi-year, multi-institutional and multi-disciplinary effort which took place on the New England282

Mud Patch (NEMP). The NEMP is located about 100 km south of Cape Cod. The area is characterized283

by a relatively flat bathymetry (water depth D ∼ 70–75 m) and a thick upper sediment layer of mud.284

A preliminary environmental survey was conducted in 2015. It notably included an intensive coring285

effort, as well as a high-resolution seismic survey. The main experiment took place in March-April 2017.286

It involved three research vessels, and many acoustic sources and receivers were deployed, covering287

frequencies from ∼ 10 Hz to 10 kHz. A previous special issue of the IEEE Journal of Oceanic Engineering288

is dedicated to SBCEX17. Its editorial introduction [23] provides a succint overview of SBCEX17.289

B. Experimental context290

The SBCEX data was collected on a long HLA (aperture ∼ 1 km). The considered source is a291

Combustive Sound Source deployed at 18:38 UTC on March 18 2017 at CSS station 29, located at292

(40.4983N, 70.5842W). The source signal is a powerful broadband impulse followed by several secondary293

impulses called bubble pulses [43]. Note that here, the specific source waveform does not matter as294

long as the source signal to noise ratio (SNR) is good enough in the frequency band of interest. The295
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receiving system is a 64 element HLA with a horizontal aperture of 1016 m deployed by the Norwegian296

Defence Research Establishment (FFI). The array orientation was roughly West-East, and the positions297

of the hydrophones at the HLA extremities are (40.4984N, 70.4677W) and (40.4983N, 70.4557W). The298

hydrophone spacing along the array is not uniform. The array elements have approximately logarithmic299

spacing (from 0.8 m to 72 m), with a symmetry around the array center and a higher density in the300

middle of the array. The specific source/array configuration has been chosen so that the source is in the301

endfire direction, and the distance between the source and the HLA is about 10 km. Note that in this302

context, the range variability along the HLA induced by the 1/
√
r term in Eq. (1) is negligible and can303

be ignored.304

C. Simulation framework305

First, the performance of the method is assessed using simulated data that mimics the experimental306

context. The environment is modeled using results from an inversion study performed using the HLA307

data [44]. The environment is modeled as follows:308

• water column: depth D = 65 m, sound speed gradient from 1468 m/s at the top of the layer to309

1469 m/s at the bottom;310

• sediment layer: thickness h = 5 m, sound speed csed = 1500 m/s, density ρsed = 1.6 g/cm3,311

attenuation αsed = 0.1 dB/λ;312

• basement: cbas = 1700 m/s, density ρbas = 2.0 g/cm3, attenuation αsed = 0.2 dB/λ.313

Acoustic propagation is simulated in this environment over 0-100 Hz using the normal mode code314

ORCA [45] with a frequency bin size of XX Hz, which led to simulation of YY frequencies. The315

environmental impulse response along the array is simulated in the range-frequency domain for a source316

at r = 10 km in the endfire direction. The array configuration mimics the experimental geometry. A bi-317

dimensional (2D) Gaussian white noise is added to the impulse response in the range-frequency domain,318

and the signal to noise ratio (SNR) is evaluated as the power of the (2D) range-frequency impulse response319

divided by the power of the (2D) range-frequency noise. Speed correction (see Sec. IV-A) is then applied320

with cmin = 1468 m/s. Finally, f-k diagrams are computed using four different methods:321

1) OMP: a traditional OMP algorithm;322

2) SoBaP: a soft Bayesian Pursuit method that uses the dispersion relation to relate wavenumbers323

from one frequency to the next [22];324

3) COMP: a grid-free OMP algorithm that uses gradient descent (COMP: Continuous OMP);325

4) CPOMP: the method proposed in this article (CPOMP: Continuous and Physics-based OMP, i.e.326

which uses the dispersion relation).327
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The methods OMP, SoBaP and COMP have been chosen as representative of the state-of-the-art. Note328

that OMP and COMP have been implemented here using the mode number as a stopping criterion (i.e. at329

frequency f , each algorithm looks for M(f) wavenumbers). This gives them a strong advantage over the330

proposed method, which automatically determines the mode number. For CPOMP, we set β0 = 0.001,331

β∞ = 0.5 and ξ = 10−3.332

Beside, all the methods considered here rely on the construction of the dictionary D (see Sec.III-A).333

To construct this dictionary, one needs to sample the wavenumber axis with N elements. This is done334

by choosing a grid size and a maximum wavenumber value of interest. The grid size is defined as one335

fifth of the smallest value between 2 propagating modes over the frequency band of interest. Further,336

the maximum wavenumber value is computed considering the Nyquist theorem applied to the maximum337

space between two consecutive sensor (here ∆k = 5.10−4 rad/m and κn = −0.09 rad/m).338

D. Performance study339

A first set of simulations studies the impact of the number of sensors on the f-k diagram estimation340

for a given SNR (12 dB). For a given number of sensors, sensors are randomly selected, except for the341

two sensors at the extremities of the HLA which are always selected (these two sensors are on both ends342

of the HLA so that total aperture of the array is always the same). The obtained performance is shown343

in Fig. 4 for 2 different frequency bands: 0–50 Hz and 50–100 Hz. Clearly, performance increases with344

number of sensors for all the methods, and the proposed method (CPOMP) outperforms the state of the345

art. Performance gain is minimal in the 0–50 Hz band, because most methods (OMP, COMP, CPOMP)346

provide satisfactory results. However, at higher frequencies where more modes are propagating, the gains347

of the proposed method becomes evident, for all number of sensors. As an example, with 40 sensors,348

CPOMP has DJ < 0.1. This corresponds to an excellent f-k diagram recovery, as is illustrated at the end349

of this subsection. Interestingly, SoBaP which is supposed to be the most advanced of the state-of-the-art350

methods is the one with the worst performance. This is because SoBaP has been developed for data351

without speed correction. Although the SoBaP dispersion relation has been modified here to take into352

account the corrected dispersion relation, this is clearly not enough to correctly track wavenumbers. It is353

likely possible to further modify SoBaP to regain performance, but this is beyond the present scope.354

A second set of simulations studies the impact of SNR for a given number of sensors (32), and for355

SNR from 0 dB to 12 dB. Again, for a given simulation, sensor selection is random but for the HLA356

extremities which are always used. Results are shown in Fig. 5. Performance naturally increases as SNR357

increases for all the methods. Once again, CPOMP outperforms all the other methods, and SoBaP exhibits358

poor performance. In particular, CPOMP provides very satisfactory f-k reconstruction (DJ < 0.1) for359
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Fig. 4. Jaccard’s distance as a function of the number of sensors for a SNR of 12 dB.

SNR > 5 dB. Also, both in Figs. 4 and 5, the performance gain of COMP with respect to OMP is360

relatively small, while the performance gain of CPOMP with respect to COMP is more significant. This361

demonstrates the importance of including physics (the dispersion relation) at the core of any grid-free362

CS method.363

Fig. 5. Jaccard’s distance as a function of the SNR - using 32 sensors

The Jaccard distance DJ study fully characterizes the performance of the four methods. However, it is364
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difficult to relate a specific DJ value to an actual wavenumber tracking result. To mitigate this issue, an365

example of wavenumber tracking with 40 sensors and SNR = 12 dB is illustrated in Fig. 6. It is clear366

that in this configuration, CPOMP performs really well (DJ = 0.04). OMP (DJ = 0.13) and COMP367

(DJ = 0.13) also perform well, although they make a substantial number of false alarms. On the other368

hand, SoBaP (DJ = 0.71) suffers from false alarms and missed detections, which explains its poor DJ369

value.370

Fig. 6. Wavenumber estimation on simulated data with 40 sensors and a SNR of 12 dB. Black: true wavenumbers ; blue: OMP,

mallow: SoBaP, green: COMP, red: CPOMP.

E. Experimental results371

The proposed method is now applied to the experimental CSS data described in Sec. V-B. Speed372

correction is first applied on the data using cmin = 1459 m/s, a value empirically determined to time-373

align the data along the array. Wavenumber estimation is then performed using CPOMP and COMP.374

The objective here is to exclusively compare the proposed method (CPOMP) to the best method of the375

state-of-the-art (COMP).376

Wavenumbers are estimated using 10, 40 and 64 sensors. Experimental results are presented in Fig. 7.377

Since no perfect ground truth is available to assess the experimental performance, the CPOMP 64-sensor378
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estimation is used as a reference (black dots in Fig. 7) to visually evaluate the results. One can see that379

CPOMP is consistently better than COMP. With 40 sensors, CPOMP gives results that are comparable to380

the 64-sensor reference. This is consistent with the simulated study which shows that CPOMP performance381

is roughly constant between 40 and 64 sensors (see Fig. 4). Interestingly, CPOMP also provides a good382

wavenumber estimation using only 10 sensors, although the last mode is missed. On the other hand, the383

COMP estimation with 10 sensors suffers from the small number of sensors, which leads to a consequent384

number of false alarms.385

Fig. 7. (black) Recovery of CPOMP with 64 sensors, (green) recovery with COMP, (red) recovery with CPOMP

VI. CONCLUSION386

The article presents a physics-based grid-free CS method to estimate modal wavenumber using a387

broadband source and a HLA with a small number of sensors. The method is based on three ideas. First388

of all, the method benefits from speed correction, so that a range-frequency signal can be conveniently389

sampled without wavenumber aliasing. Second, the method uses a grid-free framework to mitigate known390

CS drawbacks associated with basis mismatch. Last but not least, the method embeds physical information391

within the CS framework: it uses the dispersion relation (compensated for speed correction) to relate392

wavenumbers from one frequency to the other.393
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The proposed method has been benchmarked on simulations using the Jaccard distance as a performance394

metric. It was demonstrated that the method outperforms the state-of-the-art. Further, the method is395

experimentally validated on experimental data collected during SBCEX17. It notably allows a good396

estimation of modal wavenumbers from 0 to 100 Hz using as few as 10 sensors.397

Although the proposed method works with a small number of sensors, it still requires a large horizontal398

aperture. As a result, a potential application for the method is modal estimation using synthetic aperture,399

as obtained using a fixed receiver and a moving source. This context is particularly appealing for400

geoacoustic inversion, where estimated modal wavenumbers can be used as an input to estimate the401

seafloor geoacoustic properties [8], [46]. Following the CS paradigm, the proposed method can be used402

to collect fewer samples, but better ones. This has practical consequences for ocean acoustics, since the403

production of man-made source signal underwater is now considered as pollution [47]. Reducing the404

number of samples (which is equivalent to the number of source signals in a synthetic aperture context)405

is an important perspective to reduce the noise footprint of ocean acoustic experiments.406
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matching pursuit for modal estimation in ocean acoustics,” in ICASSP 2020-2020 IEEE International Conference on457

Acoustics, Speech and Signal Processing (ICASSP), pp. 4602–4606, IEEE, 2020.458

[22] A. Drémeau, F. Le Courtois, and J. Bonnel, “Reconstruction of dispersion curves in the frequency-wavenumber domain459

using compressed sensing on a random array,” IEEE Journal of Oceanic Engineering, vol. 42, no. 4, pp. 914–922, 2017.460

[23] P. S. Wilson, D. P. Knobles, and T. B. Neilsen, “Guest editorial an overview of the seabed characterization experiment,”461

IEEE Journal of Oceanic Engineering, vol. 45, no. 1, pp. 1–13, 2020.462

[24] J. Belcourt, C. W. Holland, S. E. Dosso, J. Dettmer, and J. A. Goff, “Depth-dependent geoacoustic inferences with dispersion463

at the new england mud patch via reflection coefficient inversion,” IEEE Journal of Oceanic Engineering, vol. 45, no. 1,464

pp. 69–91, 2019.465

[25] M. S. Ballard, K. M. Lee, A. R. McNeese, P. S. Wilson, J. D. Chaytor, J. A. Goff, and A. H. Reed, “In situ measurements466

of compressional wave speed during gravity coring operations in the new england mud patch,” IEEE Journal of Oceanic467

Engineering, vol. 45, no. 1, pp. 26–38, 2019.468

[26] J. Bonnel, S. Dosso, J. Goff, Y. Lin, J. Miller, G. Potty, P. Wilson, and D. Knobles, “Trans-dimensional geoacoustic469

inversion using prior information on range-dependent seabed layering,” IEEE Journal of Oceanic Engineering, 2021. in470

press (DOI: 10.1109/JOE.2021.3062719).471

[27] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, ch. 5,10. Springer Science472

& Business Media, 2011.473

[28] H. Niu, P. Gerstoft, E. Ozanich, Z. Li, R. Zhang, Z. Gong, and H. Wang, “Block sparse bayesian learning for broadband474

mode extraction in shallow water from a vertical array,” The Journal of the Acoustical Society of America, vol. 147, no. 6,475

pp. 3729–3739, 2020.476

[29] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM review, vol. 43, no. 1,477

pp. 129–159, 2001.478

[30] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with479

applications to wavelet decomposition,” in Proceedings of 27th Asilomar Conference on Signals, Systems and Computers,480

pp. 40–44, IEEE, 1993.481

[31] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: A strategy employed by v1?,” Vision482

Research, vol. 37, no. 23, pp. 3311–3325, 1997.483

[32] C. Fevotte and S. J. Godsill, “A bayesian approach for blind separation of sparse sources,” IEEE Transactions on Audio,484

Speech, and Language Processing, vol. 14, no. 6, pp. 2174–2188, 2006.485

[33] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to basis mismatch in compressed sensing,” IEEE486

Transactions on Signal Processing, vol. 59, no. 5, pp. 2182–2195, 2011.487

[34] E. J. Candès and C. Fernandez-Granda, “Towards a mathematical theory of super-resolution,” Communications on Pure488

and Applied Mathematics, vol. 67, no. 6, pp. 906–956, 2014.489

[35] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” 2014.490

[36] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, “Recovery of sparse translation-invariant signals with continuous basis491

pursuit,” IEEE Transactions on Signal Processing, vol. 59, no. 10, pp. 4735–4744, 2011.492

May 27, 2021 DRAFT



23

[37] P. Chen, Z. Cao, Z. Chen, and C. Yu, “Sparse off-grid doa estimation method with unknown mutual coupling effect,”493

Digital Signal Processing, vol. 90, pp. 1–9, 2019.494

[38] S. L. Freire and T. J. Ulrych, “Application of singular value decomposition to vertical seismic profiling,” Geophysics,495

vol. 53, no. 6, pp. 778–785, 1988.496

[39] G. Duncan and G. Beresford, “Median filter behaviour with seismic data 1,” Geophysical Prospecting, vol. 43, no. 3,497

pp. 329–345, 1995.498

[40] M. Nardin, F. Glangeaud, and D. Mauuary, “1-200 Hz wave propagation in shallow water,” in IEEE Oceanic Engineering499

Society. OCEANS’98. Conference Proceedings (Cat. No. 98CH36259), vol. 1, pp. 390–394, IEEE, 1998.500
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