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Abstract. We study a likelihood ratio test for testing a general class of CHARN
models. The LAN property is established for the family of likelihoods under study. The
test is proved to be optimal.

Keywords. Times series, changepoint, likelihood ratio test, LAN, optimality.

Résumé. Nous étudions un test du rapport de vraissemblance pour tester une classe
générale de modéles CHARN. La propriété LAN est établie pour la famille des vraissem-
blances considérées. L’optimalité du test est prouvée.

Mots-clés. Séries chronologiques, rupture, test du rapport de vraisemblance, LAN,
optimalité.

1 Introduction

We consider X1, ..., X, observations generated by the CHARN model "Conditional Het-
eroskedastic Autoregressive Nonlinear" [T

Xt = T(p() +7© W(t), Xt—l) + V(Xt_1)5t7 teZ (1)

where (X;),., is a locally stationary ergodic process, (&¢),c; is a standard white noise
with knowing density function f, X; = (Xj,... ,Xt_d+1)T, T and V are real smooth

functions and V' > 0, pj € RP, v = (%T, e a%jﬂ)T and for every j =1,...,k+ 1,7, €
Rp, w(t) = (]1[7077-1)@), ]l[.,-hm)(t), cees ]]‘[Tk—lka)(t)’ 1[Tk77k+1)(t))T = (wl, .. ,wk+1) - {0, 1}k+1.

We assume that, for every j = 1,...,k, nj(n) represents the number of observations in
[Tj—1,75), 7o = 1 < 7 < .-+ < Tpy1 = n. We suppose that, as n — 400, n;(n) —
+o0 and ™ 5 ;. Fj is the disribution function of X; on [r;_1,7;). For every II =

(f,... 1) e RPD and © = (6] ,...,0],,) € R+,

OO =I110; + - + ;110,11



and for any 8 and 3 € RP(*+D),

B B Bi1b11
Bl,p Bl,p ﬁl,pﬁl,l’
BoB=pof= : 0 : = : € RPHY
Brt1,1 Br+1,1 Br+1,18k+1,1
5k+1,p BkJrl,p 5k+1,p6k+1,p

stands for the Hadamard product [2].
We aim to test

Hy:vy=r against H" :y=r,=n+ B/v/n, where 75 and 8 € Re(+D(9)

In this purpose, we used the likelihood ratio test.

Our primary goal is to verify that 7;, 7 = 1,...,k, are instants of change or not. This
work is preliminary to the construction of a method for testing weak changes.

The changepoint theory was started by Page [3]. He used the cumulative sum (CUSUM)
to detect the changepoints in the mean of independent observations. Since then, there
has been a lot of work on changepoints see, eg. [4], [5], [6], [7].

2 Asymptotics

In the present paper, we investigate the case where the functions 7, V and f are known,
as well as the nuisance parameter py.

2.1 Likelihood ratio test

The log-likelihood ratio test ©,, for Hy against H{”) , can be expressed as follow

©, =01, — O, + OP(1)7 (3)
where
1 n
*Om=—7= 2 { VX, 1)5TN(707Xt—l)ﬁbf[ft(%)]}
com=53 {377 M 0 X038, =58 M0 Xeca) 86 )]



o M(v0,Xi-1) = N(70, X4—1)N " (70, X¢-1)

o N(v,X¢—1) =w(t)o D, [T(’YO, Xt—l)}

° Ye+1

o D, [T(v0,X¢-1)] = (VM T(v0, X¢-1)],---, V [T(%axt—l)DT c Re(k+1)

oT oT oT ! .
o V.. [T(v,X-1)] = o 1(707Xt71)a — (70, X¢-1), - - - —(’Yo,th)) € RPis

; i i
the gradient of T" with espect to ;

o H(v0,Xi1) = w(t)w(t)" o Hy(v0, Xi-1)

Hl (%77 thl) O ce. O
cHE Xy = | 0 HelXe) 5 € R+ 1)xp(41)
: 0
0 o 0 M3, X
*T T
— (7, X¢o — (7, X4
8%2,1 (7 Xim) 07ip0%i1 (5 Xi-1)
o Hi(V,Xi1) = w; : : € M,(R) for i =
0*T 0’T
— (7, X — (7, X4
a%,ﬁ%,pw t 1) 8’}/1271)(7 t 1)
1,...,k+1.
where

Xy —T(po+vOw(t),X,1)
€t (7) - V(Xt—l) .

2.2 LAN property

After finding the expression of the likelihood ratio test, we must find its distribution. To
compute the distribution of the test under the null hypothesis, we need to establish the
LAN property stated in [5]. To do this, we proved that, under Hy,

O 10D ()
and
@171 n—T+>oo N(O7n(’70a5))’ (5)



where

k41
Zaj Z ﬁj hﬁ] mT]j,2 70)
1<h<m<p
1 or orT
I dF;(z) <
ia(0) = <f>/ ( ( ) 500050, )E () < oo,
/ gbf x)dxr < oo.
We considered the central sequence I1,,(7o, ) expressed as follow
(0. 8) = O, = \F Z {7 N 0 Xeodall Q
Based on the previous results and under Hy, we can write
0
T (Yo, 6)) fa (77(70, B) 77(%,6))
— N ; . 7
( @n —M 77(707/6) 77(707&) ( )
By returning to testing H, against H fn), we consider the following statistic of test:
Hn (/707 6)
Tn(70:8) = =7 8
(70 ) Wn(VO,ﬁ) ( )
where
i %n(’YOaﬁ) = ﬁn(?@aﬁ)?
k41 o
® (70, 8) = Zaj Z BinBimNiz2(V0),
J=1 1<h<m<p

o Tal0) = 1) | g e 00030 — (o) )

ni(n
e 7);2(70) is an estimator of 7;5(7y) and @, is an estimator of lim i )
n—+oo N

As n — +o0, under Hy, we have

Tn(70, 8) “% N(0,1).



From , by the Le Cam’s third lemma (proposition 4.2 in [5]), under Hl(n), we can write

IL.(70, 8) % N (1(70. 8), 1(70, B))-

We show that, when n — +o00, under Hy,

/ﬁn(fYOa 6) — W(PY(b B)

This convergence remains true under H fn) by contiguity.

)

By using Le cam’s third lemma, we conclude that under HYL ,as n —» 400,

IL,(70, 8) taw .
7_((70’6) —>N( (7075)71)

Then, under H{"), as n — +o0o, we have

Hn(VO;ﬁ) law
%n<7075) —>N(7T<7075)? 1)

We used in this section many mathematical tools in order to analyse the asymtotic be-
havior of our test under the null and the alternatives hypotheses.

2.3 Power of the test

To calculate the power of our test statistic , we need to derive the asymptotic cumulative

Hn(707 B)

distribution of ————-~.
T, (707 /8)

From simple computation, one has:

Hn(70a /6)
%n(/ym 6)

where @ is the cunulative distribution function of a standard Gaussian distribution and
2o 18 its (1 — «)-quantile, a € [0, 1].
By using section 4.4.3 of [5], the test based on T, (7o, ) is locally asymptotic optimal.

lim P(

L, am > Za’Hl(n)> =1- ®<Za - W(VO?ﬁ)))

3 Conclusion

The aim of the present work is a preliminary study to a new changepoint detection method
that we are currently investigating as a generalisation of Ngatchou-Wandji and Ltaifa [§].
The likelihood ratio test studied here is optimal. The LAN property is an important tool
to find the distribution of the test under the local alternatives.
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