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ABSTRACT

Background and objective: E-health is a growing research topic, especially with the
expansion of the Internet of Things (IoT). Miniaturized wearable sensors are auspi-
cious tools for biomedicine and healthcare systems. In this paper, we present D-
SORM, a sensor fusion-based digital solution intended to assist clinicians and improve
their diagnosis by providing objective measurements and automatic recognition. The
aim is to supply an interface for remote monitoring to the medical staff.
Methods: D-SORM platform estimates the wearable device attitude based on its ac-
quired data, and visualizes it in real-time using a graphical user interface (GUI). It also
integrates two modules which serve two different medical applications. The first one
is arm tele-rehabilitation, where sessions are done online. The practitioner gives the
instructions while wearing the device, and the patient has to reproduce the gestures.
A processing unit is dedicated to compute statistical features and calculate the success
rate. The second one is human motion tracking for elderly care. A novel machine
learning architecture is proposed, based on feature fusion, to predict the activities of
daily living.
Results: The rehabilitation mechanism was tested under supervised conditions, by
performing a set of movements. D-SORM provides extra information and objective
measurements, thus facilitates the diagnosis of clinicians. The human activity recog-
nition is also validated using a public dataset. With D-SORM, an efficiency ranging
from 97.7% to 99.65% is ensured under unsupervised conditions.
Conclusion: The proposed design constitutes a digital clinical tool for medical teams
allowing remote health monitoring. It overcomes geographical barriers while provid-
ing faster and highly accurate assessment.

1. Introduction
E-health is the use of communication technolo-

gies for healthcare [33]. It ensures remote deliv-
ery of wellness programs and services, using in-
formation and communication technologies for di-
agnosis, treatment, and prevention of disease and
injuries. The healthcare systems are shifting to-
wards this practice of caring, especially during the
covid-19 pandemic which we are currently facing,
since the provider and the patient are not physically
present in the same place. This process has been
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used in the past [27] and is currently a trending re-
search topic to overcome geographical barriers, es-
pecially with the occurrence of the population ag-
ing phenomenon. In the past two decades, a wide
range of medical applications have been developed
using Internet of Things (IoT) and wearable tech-
nologies [35, 14]. The vital signs monitoring ap-
proaches are broadly used in the medical context.
Measurements of body temperature [26], heart rate
[34], blood pressure [5], and respiration rate [8] are
critical for people suffering from chronic diseases.
Indoor positioning [31, 13] is also a priority for
health management, particularly for elderly care. In
this case, older adults suffering from dementia, or
vulnerable subjects who regularly fall, are found in a
timely manner. These techniques are based on tech-
nologies such as Infrared Ray, RFID, Wifi/WLAN,
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to name a few. More recently, the surveillance of
human motion and gesture recognition via wearable
sensors, have emerged as robust tools for a wide-
range of healthcare applications [1, 4].

This present work proposes a new digital solu-
tion to assist and improve the diagnosis of clinicians
by visualizing the human’s movements and provid-
ing objective measurements, using a user-friendly
interface. This paper describes the workflow of the
system, and presents the experimental frame to val-
idate the efficiency of the processing units.
1.1. Related Work

To monitor physiological signals, an inertial
system is needed, which consists of one or more
sensors. The widely used sensing devices are 3D
accelerometers, measuring the acceleration, 3D gy-
roscopes, measuring the angular velocity, and 3D
magnetometers, measuring magnetic fields. By fus-
ing data from the aforementioned sensors, informa-
tive features could be computed to recognize and
monitor human gestures. This constitutes the basis
of different assistive healthcare solutions, like tele-
rehabilitation (TR), fall detection, and activity mon-
itoring, to deliver therapy and/or recommendations.
Jamwal et al. [11] developed a wearable ankle robot
to ensure remote rehabilitation programs, with a li-
brary of exercises creating virtual reality. BrÃĳck-
ner et al. [3] presented an onboard inertial sensor
fusion approach for home based stroke rehabilita-
tion. A wearable platform was proposed, featuring
an interface and a sound synthesis toolkit linked to
wireless hearing aids. Pierleoni et al. [25] tackled
fall detection by forming an attitude heading ref-
erence system (AHRS). Alarms generated by their
algorithm are sent via the Bluetooth module, and
a mobile application was developed to make pre-
recorded phone calls after receiving alarms from the
sensor node. Furthermore, He et al. [10] created
an alerting system which distinguishes falls from
activities of daily living (ADLs). As soon as the
system detects a fall, an alarm is sent to caregivers
to provide timely and accurate help for the elderly.
Human activity recognition (HAR) [23, 2] is an-
other application which serves health purposes. It
has been widely discussed in the past two decades,
and is still an active research area [36]. Tracking
ADLs continuously allows the detection of abnor-
mal events, progressive weakening in elderly, and

constitutes the basis of prevention systems (like fall
and/or frailty prevention). Besides, the recognition
of physical activities provides daily reports consist-
ing of important metrics like the number of steps
and the movement intensity [20].

Even though health informatics has been a
trending research topic, interfaces serving the med-
ical staff during their examination have received lit-
tle attention. Moreover, there are still some con-
cerns which need to be improved and fully ad-
dressed. Detecting and localizing falls or abnormal
events are important to provide immediate help to
the older person. Nevertheless, the clinician must
be able to observe the succession of ADLs which
led to this abnormal event in order to assess the
health status of the subject and to deliver needed
recommendations. Furthermore, he might need to
visualize the human motion for an efficient assess-
ment. Additionally, simplifying the user interface
and interactions should also be targeted.
1.2. Workflow and Main Contributions

D-SORM (Digital SOlution for Remote Moni-
toring) is a platform that is based on the orienta-
tion estimation of a wearable inertial system and
could be used in a clinical environment. It en-
sures a smooth visualization of the human move-
ments in a 3D space. D-SORM operates under su-
pervised and unsupervised conditions, while fea-
turing two modes, namely live and replay mode.
In other words, the orientation can be estimated
by processing (a) acquired data in real-time (live
mode) while being connected to the wearable de-
vice, or (b) stored data which were already acquired
prior to a certain event. The device attitude can
be exploited following two different ways to serve
two medical applications. The first module is arm
tele-rehabilitation (TR). With one or more devices
placed on the patientâĂŹs arm, this unit computes
statistical features to quantify the similarity between
the simulated gestures and the ground truth (GT),
in order to evaluate the progress of the patient and
provide some feedback. The second module is ac-
tivity monitoring for elderly care. The performed
ADLs are recognized accurately, using one wear-
able device placed on the trunk of the human body,
thanks to a novel and highly efficient machine learn-
ing architecture, which outperforms state-of-the-art
methods. All these instructions and commands are
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Figure 1: A flow diagram illustrating the applications of the proposed approach, as well as the workflow of
D-SORM.

manipulated using a graphical user interface (GUI)
which is very simple to handle. It is worth mention-
ing that all the aforementioned operations, consti-
tuting the process of this solution, are done without
revealing the identity of the patient/elderly respect-
ing his privacy. Note that arm TR is needed for in-
jury and/or illness treatment, caused by a stroke/fall
for example, while HAR serves elderly care like
frailty/fall prevention, by tracking the physical func-
tion of the person. Hence, D-SORM considers both
curative and preventive approaches. Figure 1 illus-
trates the workflow of this solution, and the need for
such approach in the medical context.
The main contributions of this work are fourfold:

• Proposal of a sensor fusion-based algorithm
to visualize the sensing unit in a 3D space.

• Proposal of a low-cost technique to analyze
the performed gestures for an arm TR mod-
ule.

• Proposal of a novel HAR system for health
monitoring and elderly care.

• Development of a user-friendly GUI,

featuring live and replay modes, under
(un)supervised conditions.

The remainder of the paper is organized as fol-
lows. Section II recalls the state-of-the-art in atti-
tude estimation and describes some important oper-
ations needed for this task. Section III presents the
sensor fusion technique and 3D visualization pro-
cess. The proposed techniques regarding the two
telemedicine applications are explained in details
in section IV. The experimental results are shown
in section V before concluding the paper in section
VI.

2. Orientation Estimation:
State-of-the-Art

2.1. Euler angles and Gimbal lock
To represent the 3D orientation of a body in re-

gard to a fixed coordinate system, the Euler angles
are generally considered. Those angles are denoted
as  , �, and �. In the literature, the notion of gim-
bals has been introduced in mathematics to mea-
sure these angles. A gimbal is a ring which rotates
around an axis. Hence, three gimbals are nested
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one within another to ensure 3D rotations. There-
fore, the orientation is described as three axial ro-
tations with Euler angles, i.e. applying a fixed set
of successive rotations (each rotation around a spe-
cific axis). This operation can cause an issue called
Gimbal lock. This phenomenon occurs in certain
situations, where two gimbals line up (the axes of
two gimbals become parallel). This leads to the loss
of one degree of freedom, and additional rotations
from this point might lead to unexpected outcomes.
A solution to this problem is the use of quaternions
representation as described below.
2.2. Quaternions

Quaternions are a 4-dimensional extension of
the complex numbers [15]. They can represent the
orientation of a body in three-dimensional space,
and produce a 3D rotation. A quaternion q is equal
to a + bi + cj + dk, where i, j, k are fundamental
quaternion units. a is called the real part and the
rest (bi + cj + dk) is called the vector part. The
conjugate q̄ is equal to q after multiplying the vec-
tor part by -1. The multiplication rules regarding
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Figure 2: The sensing device with its corresponding
frame (D as right superscript) and the Earth frame
(E as right superscript).

this representation are as follows:
⎧⎪⎪⎨⎪⎪⎩

i2 = j2 = k2 = −1
ij = −ji = k
jk = −kj = i
ki = −ik = j

Two fundamental units beingmultiplied together do
not commute, since one is the negation of the other.

To describe an orientation, the quaternion
should be of unit length: qo = cos(�) + sin(�)(rxi+
ryj+ rzk), assuming that rx2+ ry2+ rz2 = 1. Three
observations can be noted:

• by left-multiplying every point in the space
by qo, we rotate two circles, namely (a) the
one passing by 1 and rxi+ ryj + rzk, and (b)the one perpendicular to it (these two circles
are orthogonal).

• by left-multiplying every point by q̄o, we ro-tate these two circles in opposite directions.
• by right-multiplying by q̄o, we only negate therotation direction of circle (a).

Hence, left-multiplying by qo and right-multiplying
by q̄o will cancel rotation (a) while doubling rotation(b) (rotation by 2�).

Now, let us project these representations to our
actual situation. Figure 2 illustrates a body (like the
wearable device) in a three-dimensional space. FD
denotes the device frame while FE that of the earth.
Suppose that a certain point of this body is repre-
sented by a three dimensional vector #. Moreover, a
certain orientation DEq of a frameE relative to frame
D is done through a rotation of angle � around an
axis d̃ defined in D:

D
Eq = [q1 q2 q3 q4]

#D and #E are the description of the vector # as
a pure quaternion in frame D and frame E respec-
tively, i.e. a value of 0 is inserted as a first element
to make it a quaternion. Based on the previous re-
marks, the 3D rotation is ensured using the follow-
ing equation:

#E = D
Eq ⊗ #D ⊗

D
E q̄ (1)

with: D
Eq = [cos �2 − d̃x sin

�
2 − d̃y sin

�
2 −

d̃z sin
�
2 ] and⊗ the quaternion product.
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Consequently, Euler angles describe this orientation
achieved by sequential rotations of  around zE , �around yE , and � around xE [15, 16]:
⎧⎪⎨⎪⎩

 = Atan2(2q2q3 − 2q1q4, 2q21 + 2q22 − 1)
� = −sin−1(2q2q4 + 2q1q3)
� = Atan2(2q3q4 − 2q1q2, 2q21 + 2q42 − 1)

(2)

Accordingly, quaternions can solve the Gimbal
lock issue. Applying quaternions can be seen as a
direct transformation from a certain orientation to
another one, rather than breaking this transforma-
tion into a series of rotations.
2.3. Orientation Filter

Accelerometers and gyroscopes, constituting an
inertial measurement unit (IMU), are able to track
translational and rotational movements. Hence, this
unit measures the attitude relative to the direction of
gravity. A MARG (Magnetic, Angular Rate, Grav-
ity) sensor is the combination of an IMU and a tri-
axial magnetometer. Here, a complete measure-
ment of orientation is provided, relative to the direc-
tion of gravity and the earth magnetic field. Conse-
quently, we consider MARG sensors in our study.

In the literature, the Kalman filter became the
cornerstone for the greater part of orientation sys-
tems [7, 19, 28]. Now, despite their high accu-
racy, the complex implementation and high com-
putational complexity of such systems are major
drawbacks. To operate in real-time, a very low
latency is required for orientation estimation ap-
proaches. Besides, other approaches have been pro-
posed to estimate the orientation. Mahony et al.
[18] proposed an algorithm which employs a non-
linear complementary filter. Fourati et al. [6] com-
bined a quaternion-based nonlinear filter with the
Levenberg Marquardt Algorithm. The algebraic
quaternion algorithm (AQUA) has been also dis-
cussed [32]. In 2011, Madgwick et al. proposed
a computaionally efficient MARG orientation filter
[17], based on an optimised gradient descent algo-
rithm (GDA). It exploits quaternion representation.
A detailed explanation of this algorithm is out of the
scope of this paper, but we can sum it up in three
steps. In the first step, data is read from the MARG
sensor. Then, the GDA is applied to compute ori-
entation increment (gradient step) using accelera-
tion data, and magnetometer data for magnetic dis-

A G M A G M A G  A G M 

 

Acquisition Cycle (� ) 

Acquisition Cycle (�!) 

A G A G M A G M  A G M 

 

Acquisition Cycle 

Figure 3: The acquisition cycle when (i) all modal-
ities have the same sampling rate (�1) and (ii) the
magnetometer has a lower rate (�2). In this example,
AFs = GFs = 60 Hz and MFs = 40 Hz (for �2).

tortion compensation. The direction of the gyro-
scope measurement error is then computed using
numerical integration. The two aforementioned op-
erations constitute the second step. Both measure-
ments (from the second step) are fused in a third
step to estimate the attitude. Note that, convention-
ally, the direction of gravity ĝE defines the vertical
z-axis (eq. (3)), and the earth magnetic field b̂E is
considered to have components following the hori-
zontal x-axis and the vertical z-axis (eq. (4)) [16]:

ĝE = [0 0 0 1] (3)

b̂E = [0 bx 0 bz] (4)

3. Sensor Fusion and Real-time 3D
Visualization Algorithm
A MARG wearable device, consisting of three

sensors, is needed for the upcoming tasks. Those
sensors are (a) a tri-axialMEMS accelerometer with
a sampling frequency AFs and a measurement range
of ±8 g, (b) a tri-axial gyroscope with a sampling
rate GFs and an angular rate of ±2000 dps, and (c)
a tri-axial magnetometer with a sampling rate MFsand a full scale magnetic field of ±4 Gauss. Two
configurations (�i) are considered in this paper:

{
AFs = GFs = MFs (�1)
AFs = GFs > MFs (�2)

Sincemagnetometersmeasuremagnetic fields, their
sampling frequency could be relatively low com-
pared to the other two sensors which measure the
acceleration and the angular velocity (translational
and rotational movements). It is recommended to
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Figure 4: The orientation of the wearable sensor when
the subject is walking (left graph), when the human
body is hitting the ground during the impact phase of
the fall (right graph).

use the same sampling rate for the latter sensors.
Note that the targeted orientation filter achieves
similar levels of performance from a rate of 50 Hz
[16]. Figure 3 illustrates the order of data-points
acquisition (acquisition cycle) following both con-
figurations.

To display the wearable device in real-time, a
platform was developed. (x, z) is the plane of the
screen, and y is the axis perpendicular to the afore-
mentioned plane. The enclosure is symbolized by
a parallelepiped centered at the origin, by defining
the coordinates of 8 vertices Vi(xi; yi; zi), and con-
necting them using the mapM :

Vi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V1(−1; −0.25; −0.75)
V2(1; −0.25; −0.75)
V3(1; 0.25; −0.75)
V4(−1; 0.25; −0.75)
V5(−1; −0.25; 0.75)
V6(1; −0.25; 0.75)
V7(1; 0.25; 0.75)
V8(−1; 0.25; 0.75)

M =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V1 → V2 → V6 → V5
V2 → V3 → V7 → V6
V3 → V4 → V8 → V7
V4 → V1 → V5 → V8
V1 → V2 → V3 → V4
V5 → V6 → V7 → V8

Moreover, the faces of the created body are in-
dicated using the following labels (letters) in red
(see Figure 4): U stands for âĂŸupâĂŹ, D stands
for âĂŸdownâĂŹ, F stands for âĂŸfrontâĂŹ, B
stands for âĂŸbackâĂŹ, L stands for âĂŸleftâĂŹ,
R stands for âĂŸrightâĂŹ.

Acquired raw data are integers. The accelera-
tion values are multiplied by a constant CA to con-
vert them into g units, the angular velocity values
by CG to convert them into ◦∨́̄s, and the magnetic
field values by CM to transform them into Gauss.
These constants are equal to 2�∕2 , where � is the
sensor measurement range and  is the sensor res-
olution. Figure 5 illustrates the flowchart of the

proposed algorithm, and the corresponding instruc-
tions and commands are detailed below. The al-
gorithm begins by reading data, converting them,
and storing them in arrays. Quaternions Q are up-
dated using Madgwick’s orientation filter, and Eu-
ler angles are then calculated, when an acceleration
value is read (Type=’A’). After � acquisitions, the
3D graph is updated by rotating the midpoints be-
tween the opposite vertices and the labels around
the axes.
Algorithm 1 Real-time Orientation & 3D Visual-
ization
1: Define: Vi,M , CA, CG, CM , �, counter = 0
2: Initialize: Q (set to 0)
3: while true do
4: Read data-point (px; py; pz) from the sens-

ing device
5: if type = ’A’ then
6: Ax = px × CA; Ay = py × CA; Az =
pz × CA

7: Q ← Madgwick filter; Q ←
conjugate(Q)

8: Estimate  , �, � from Q using (2)
9: if type = ’G’ then

10: Gx = px × CG; Gy = py × CG; Gz =
pz × CG

11: if type = ’M’ then
12: Mx = px ×CM ;My = py ×CM ;Mz =

pz × CM
13: counter← counter + 1
14: if counter = � then
15: B = patcℎ(Vi,M); Assign labels �
16: d1 =

V2+V7
2 ; d2 = V4+V7

2 ; d3 = V6+V8
217: rotate(B, d1, �); rotate(�, d1, �)

18: rotate(B, d2, �); rotate(�, d2, �)
19: rotate(B, d3,  ); rotate(�, d3,  )
20: counter = 0

Figure 4 illustrates the orientation of the wear-
able device during a forward fall while walking
caused by syncope (fainting). Two moments are
identified: the first one (left graph) represents the
orientation of the device while the subject waswalk-
ing, whereas the second one corresponds to the hit
on the floor.
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Figure 5: Flowchart for the proposed real-time orien-
tation & 3D visualization algorithm.

4. The Proposed Strategies for
Telemedicine

4.1. Towards Arm Tele-Rehabilitation
The output of the previous operations consists

of three time-series, representing the sequence of
Euler angles. The patterns of these signals are pro-
cessed to adjust, improve, and restore the functional
behavior of a subject. Tele-rehabilitation sessions
are then secured based on this technique. Both the
practitioner and the patient wear the same equip-
ment (one or multiple devices, depending on the
treatment) to begin the session. The former in-
structs the latter by performing the required move-
ments. Hence, the clinician’s signals constitute the
ground truth, denoted as GT, and those of the pa-
tient are denoted as RM. Afterwards, the similarity
of both signals is quantified. These measurements
are important to see if the subject was able to per-
form the demanded task, or if he needs another ses-
sion.

Two types of movement can be imposed by the
practitioner, namely (i) cyclic movements, where
recurrent movements are involved, and (ii) transi-
tional movements, where a switch from an initial
position to a final one occurs. In the first case, the
similarity is equal to the correlation between GT
and RM, as the ratio of the covariance to the prod-
uct of the standard deviations. In the second case,
the error is equal to the absolute value of the final
position �2 of GTminus that of RM over the change
in level �� between both positions (�2−�1). Hence,the similarity index �� is:

�� =
⎧⎪⎨⎪⎩

cov(�RM ,�GT )
��RM ��GT

, for cyclic movements

1 − |GT �2−RM�2�� |, for transtional movements
(5)

It is worth mentioning that the action occurs
over one or several axes. Figure 6 shows an ex-
ample for wrist-worn devices. We can see that � is
exclusively involved during the transition from po-
sition (1) to position (2) in Figure 6.a, while � is
the only one involved in Figure 6.b. Therefore, �
between �GT and �RM is computed for the first sce-
nario (raising the arm), while � between �GT and
�RM is calculated for the second scenario (rotating
the arm). Note that, for other movements, two or
three angles could be involved. Here, � is calcu-
lated for each affected angles (i.e. for each direc-
tion). Finally, a confidence interval (CI) is set by
the practitioner, depending on the difficulty of the
sessions/exercises and the resemblance of both sig-
nals. The assessment is based on the values of �,
and whether or not they belong to CI.
4.2. Towards Human Activity Recognition

The attitude of the device (estimated Euler an-
gles) over a period of time provides important clues
in recognizing physical activities. The successive
movements of the trunk should be exploited to ad-
dress the problem of HAR. The considered classes
are basic ADLs which are encountered during daily
routine of elderly, namely (C1) staying still, (C2)sitting-down/standing-up, (C3) lying-down/rising-
up, (C4) walking, (C5) climbing/descending stairs,
and (C6) falling. A 6-second window is chosen for
this task, i.e. a prediction is done after inspecting
the movements over 6 s. The chosen length is ade-
quate since smaller windows may exclude informa-
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Figure 6: The Euler angles estimated from a wrist-
worn device (a) while raising the arm (front view) and
(b) while rotating the arm (top view).

tive parts for the recognition, while larger ones may
contain several activities.

On the one hand, the recognition could be
done by extracting handcrafted time-domain and
frequency-domain features from raw signals, to feed
classifiers like k-Nearest Neighbors (KNN), Ran-
dom Forest (RF), and Deep Neural Network (DNN)
[22, 30, 36]. Moreover, Random Subspace (RS)
technique has been proposed to process Quater-
nions and Euler angles [37]. On the other hand,
deep learning techniques like Convolutional Neu-
ral Networks (CNN) [9, 12], and recurrent networks
like Long Short-Term Memory (LSTM) [24, 21]
have been also proposed. Here, the feature extrac-
tion is done automatically.

In this paper, we present a novel recognition
process. It is based on feature fusion (both hand-
crafted and automatically learned features) and
a combination of several classification processes.
The patterns of Euler angles, resulting from the sen-
sor fusion technique (section III), feed LSTM. This
network is able to learn and remember over long se-
quences. It supports three parallel time-series of
input data, i.e.  , �, and �. This model learns
an internal representation of the aforementioned se-
quences by extracting features automatically and
mapping them to the six activity classes. It is de-
fined by a single layer of 100 units. Now, the orien-
tation of the trunk may not be sufficient for an ac-
curate identification. For example, the orientation

of the human body while falling can be similar to
the orientation while lying down in some situations.
The speed of the movement and the shock resulting
from the activity are an added value to increase the
reliability of the recognition process. Such param-
eters are derived from the acceleration of the trunk.
Hence, another deep learning module is added. It
consists of a CNN and takes acceleration signals as
input. CNN models usually deal with image clas-
sification problems, since they exploit the spatial
correlation in data. Thus, they are appropriate to
capture the shape of acceleration time-series. These
signals are re-arranged to constitute an activity im-
age of size 360ÃŮ3. Each column accounts for one
component of length 6 s × 60 Hz. This model is de-
fined by five convolutional layers, consisting of 16,
32, 64, 128, and 256 filters respectively. The filter
size of the first layer is 9 × 3, while the filter size of
the remaining layers is 9 × 1. Those layers are fol-
lowed by Max Pooling layer, to reduce overfitting
to the training data.
The benefit of deep learning techniques is their abil-
ity to learn automatically from raw data as men-
tioned before. They do not require strong exper-
tise in feature engineering. Nonetheless, the hand-
crafted features complement the learned features for
a better pattern knowledge. Now, these handcrafted
features are extracted from both data, i.e. Euler an-
gles and acceleration. Accordingly, the acceleration
magnitude ||a|| is first computed as

√
a2x + a2y + a2z.

Euler angles and ||a|| are split into three equal seg-
ments (2 s) without overlapping:

 i, �i, �i, ||a||i, for i = 1 → 3
The mean values of { i, �i, �i} and the standard de-viation of ||a||i are computed, resulting in 12 fea-
tures. Additionally, the correlation between each
pair of Euler angles { , �, �} is computed. The
same goes for each pair of {ax, ay, az}. The last
two operations result in 6 features. Finally, those
18 features are scaled using the sigmoid model. The
scaled feature vector feeds a third unit consisting of
three fully connected layers (Dense). The numbers
of neurons are 40, 20, and 10 respectively. The ac-
tivation function of these layers is âĂŸReLuâĂŹ.
The outputs of these three networks are concate-
nated, in order to feed the output layer including a
softmax function which generates a probability dis-
tribution over 6 classes to predict the output of the
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Figure 7: The proposed HAR mechanism, consisting of two deep learning networks (CNN & LSTM) and a
fully connected network (dense layers).

performed ADL. Figure 7 illustrates the diagram of
this identification technique.

5. Experiments
The proposed approaches were tested to validate

their efficiency and prove their biomedical interest.
A wrist-worn device developed by RF-Track soci-
ety (located in Cesson-Sévigné, France) was used to
perform some rehabilitation exercises under super-
vised conditions. The corresponding configuration
of the device is AFs = GFs = 60 Hz and MFs = 40
Hz. Moreover, we resorted to a public dataset called
FallAllD [29]. Three devices were consideredwhile
simulating ADLs, namely wrist-worn, waist-worn,
and necklace devices. Here, AFs = GFs = 238 Hz
and MFs = 80 Hz. The acceleration and angular
velocity signals were down-sampled by a factor of
4 (∼ 60 Hz) and magnetic fields by a factor of 2 (∼
40 Hz).
5.1. Tele-Rehabilitation Module

One subject has worn the device around the
wrist to test the first module. He played the role
of the healthcare provider as well as the patient for
an optimal evaluation. Two types of movements

Table 1
The median (MD), minimum (Min) and maximum
(Max) values of the reported similarity index � fol-
lowing two types of movement

Type of movement Median Min Max
Cyclic 0.71 0.26 0.87

Transitional 0.76 0.49 0.99

were considered: transitional and cyclic (recurrent).
He first generated a set of eight time-series (four
cyclic movements and four transitional ones) as be-
ing the practitioner, by performing several rehabili-
tation exercises under supervised conditions. These
signals were labeled as GT. In a first trial, he tried
to reproduce the exact same movements (labeled as
RM1). In a second trial, he poorly replicated these
gestures (RM2). When the subject is reproducing
the movements correctly (Trial 1), their patterns are
close to GT. This is not the case for Trial 2. For
each of the eight exercises, the similarity index was
computed between GT and RMi (i=1→2), dependingon the type of the movement.

Table 1 illustrates the median, minimum, and
maximum values of the resultant eight similarity in-
dices for each type of movement. � ranges between
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26% and 87% for cyclic movements, while that of
transitional movement goes from 49% to 99%. This
was expected since the second type of movement is
easier to mimic. This remark is important and gives
an idea regarding the choice of CI. In general, the
threshold for acceptance should be lower for cyclic
movements, where a similarity index around 80%
could be sufficient. A video is created to show some
examples regarding this module (see sub-section
5.4).
5.2. HAR Module

FallAllD dataset was used in this experiment,
taking both the necklace and waist-worn devices
into account (body trunk). For transient ADLs, i.e.
C2, C3, and C6, five 6-second windows were con-
sidered: the one centered on the transition moment,
and four others shifted by ± 500 ms and ± 1 s. Note
that C2 consisted of four transitional movements,
namely (i) walk-to-sit, (ii) stand-to-sit, (iii) sit-to-
stand, and (iv) sit-to-walk. Moreover, C6 consistedof falls without recovery, from three different initial
body postures, namely (i) fall while walking (stand-
ing), (ii) fall while sitting, and (iii) fall from bed
(lying). Now, for C1, the same body postures were
considered, i.e. (i) inactive while standing, (ii) in-
active while sitting, and (iii) inactive while lying.
These factors are important to fairly assess the dis-
crimination power of the proposed recognition pro-
cess. As for cyclic ADLs (C4 and C5), five ran-
dom 6-second windows were considered, since the
movements were recurrent. These operations re-
sulted in 8170 samples. This number is sufficient
to train deep learning models.

10-fold cross validation was applied to evalu-
ate the performance of our system. The networks
were first trained on 90% of data (randomly cho-
sen), using the RMSprop optimizer and the categor-
ical cross-entropy as a loss function. The number
of epochs was 12 and the batch size was equal to
64. The trained networks were then tested on the re-
maining 10% of data (unseen data) and the accuracy
was saved. This process was repeated 10 times. The
final achieved accuracy was denoted as the mean of
the aforementioned ten accuracy values.

Figure 8.a illustrates the confusion matrix of the
proposed model. The achieved accuracy is 97.7%.
The main confusion occurs between walking and
climbing/descending stairs. This was expected

since both classes are quite similar in terms of ac-
celeration and trunk orientation. Another notice-
able confusion is the one between using the stairs
and sitting-down/standing-up, particularly walk-to-
sit and sit-to-walk. When the subject is using the
stairs, the intensity of the movements significantly
decreases when he reaches the staircase landings.
This pattern resembles that of C2 to some extent.
To solve this issue, the number of DOF should be
increased, following two ways: either (a) by us-
ing another device located on the thigh or the an-
kle for example, since the movement of the leg
while using the stairs differs from walking and/or
sitting/standing, or (b) bymixingC4 andC5 into oneclass while adding another sensor, namely a barom-
eter, which can measure the difference in altitude
in a post-processing module. Figure 8.b illustrates
the confusion matrix after mixing C4 and C5. Theachieved accuracy in this 5-class model increases
up to 99.65%, and the confusion between classes is
negligible. In this case, when the output isC ′

4, baro-metric data are then checked to see whether the alti-
tude is increasing/decreasing in the sliding window
(using the stairs) or not (walking). Note that this 5-
class model could be sufficient for a wide-range of
medical applications.

 

Figure 8: The confusion matrix of (a) the 6-class
model and (b) the 5-class model after combining C4
and C5 into one class.
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Table 2
The experimental results comparing the computa-
tional load of orientation filters in terms of execution
time (s)

Filter EKF Mahony Madgwick AQUA Fourati
Time 1.03 0.28 0.17 0.26 0.82

5.3. Comparison with State-of-the-Art
Techniques

In this sub-section, we will compare our ap-
proach to state-of-the-art techniques, in order to
justify our choice regarding the orientation filter,
and the feature fusion architecture combining CNN,
Dense layers, and LSTM (CDL).
Orientation Estimation: we implemented the
aforementioned orientation filters in sub-section
2.3, namely Extended Kalman Filter (EKF), Ma-
hony,Madgwick, AQUA, and Fourati, using Python
3.6. The scripts were executed on an Intel(R)
Xeon(R) Gold 5118 2.3-GHz processor with 64 GB
RAM, to estimate quaternions of a human fall over
20 s. The execution time was measured in seconds.
Table 2 illustrates the results. Madgwick’s filter has
the fastest response, with an execution time equal
to 0.17 s. This filter outperforms all the others in
terms of complexity, including AQUA andMahony.
This low latency ensures small frame rate or frames
per second (fraps), thus a smooth 3D visualization.
As expected, Kalman filter requires high computa-
tional load, hence long execution time (1.03 s in this
case). The same remark holds for Fourati’s filter,
which has a faster response but still considerably
slow compared to Madgwick’s filter. This justifies
our choice of using this filter in our algorithm.
HAR technique: we tested the performance of
deep learning techniqueswhen applied individually,
particularly CNN and LSTM, as well as classical
machine learning classifiers, namely DNN, KNN,
RF, and RS. These methods were implemented us-
ing tensorflow library on Python 3.6. The input
of CNN and LSTM is raw data (time-series repre-
senting Euler angles). Besides, a large set of time-
domain and frequency-domain features (proposed
in [22, 30, 36]) were extracted from Euler angles
to feed DNN (same architecture as in [22]), KNN
(k=5), and RF (100 estimators). Since large fea-
ture vectors could mislead the machine, they were
subject to a feature selection/dimensionality reduc-

Table 3
The experimental results comparing HAR techniques
in terms of accuracy (%)

Classifier Input Accuracy (%)
CNN Raw data 92.67
LSTM Raw data 91.82
CDL Both 97.7
KNN Features 95.18
DNN Features 91.76
RF Features 94.12
RS Features 90.9

tion method to retain a small yet powerful sub-
set of features, before applying the classifiers. We
tested Principal Component Analysis (PCA), Step-
wise Multi-linear Regression (SMR), and Recur-
sive Feature Elimination (RFE) which uses RF in
the background to recursively eliminate weaker fea-
tures, and we retained the highest achieved accu-
racy for each pair “classifier & feature selection
method”. Finally, RS was fed using 14 features,
namely the values of quaternions and Euler angles
(7 components) over half windows (7 × 2). Ta-
ble 3 illustrates the corresponding accuracy for each
method, showing the superiority of the CDL fusion
technique reaching 97.7% accuracy. As expected,
the fusion between different types of features in-
crease the discrimination power of the classification
process.
5.4. Proof of Concept

This subsection illustrates the modules and
functionalities of D-SORM following different sce-
narios, as a proof of concept. The first scenario
covers the arm TR module. The ground truth sig-
nal GT and the patient’s replicated signals RM are
loaded via theGUI. The user (i.e. practitioner in this
case) can manipulate RM using buttons (arrows) to
see if both time-series overlap, and to calculate the
similarity index �, depending on the type of move-
ment (transitional or cyclic). A video named “D-
SORM_TR.mp4”, which visualizes this manipula-
tion, is attached to the manuscript.
The second scenario covers the replay mode of the
HAR module. A fall was simulated by a subject
while wearing the MARG sensing unit on his trunk.
Here, the clinician can analyze this incident by vi-
sualizing the successive movements. The wearable
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device is symbolized in a 3D space (Earth frame),
and the predicted activity class is displayed using
the proposed architecture. By using this GUI, the
user can jump forward/backward and handle the
speed of the visualization. A video named “D-
SORM_HAR.mp4”, which visualizes this manipu-
lation, is attached to the manuscript.
Finally, the third scenario occurs in real conditions
(live mode). A subject performs some ADLs. He
is wearing the device, which is connected to the PC
via Bluetooth dongle. The clinician is able to moni-
tor the subject’s gestures in real-time, with the HAR
system predicting the performed activity instanta-
neously. A third video named “D-SORM_RC.mp4”
is attached to the manuscript. It illustrates (1) the
movments of the subject, (2) the real-time data ac-
quisition, and (3) the screen of the PC, showing the
GUI.

6. Conclusion
This paper proposed a digital solution called D-

SORM for e-health remote monitoring. It is based
on a sensor fusion technique to analyze acquired
signals from wearable sensors. The orientation of
the device is estimated and visualized in real-time
using a GUI. This estimation, coupled with other
parameters, constitutes the basis of two biomedical
applications. For arm TR module, statistical fea-
tures are computed from Euler angles to quantify
the success rate of the patient in performing some
requiredmovements. For HARmodule, a novel ma-
chine learning architecture was developed to recog-
nize and track human motion. Euler angles and ac-
celeration signals feed a combination of deep learn-
ing and shallow learning networks to predict the ac-
tivity class.

The acceptability of D-SORM is to be consid-
ered in a future work after finalizing and releasing
the first version of the application. The frequency
of cyclic movements is going to be inspected in or-
der to add it as another feature to the TR module.
Since � is somewhat limited for this type of move-
ments, their frequency will add another dimension
to the clinical assessment.
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