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Abstract 

We consider theoretically the influence of the flexoelectric coupling on the spatial distribution 

and temperature behavior of spontaneous polarization for several types of stable domain structure in thin 

ferroelectric films, such as stripe domains and vortices. Finite element modelling (FEM) for BaTiO3 

films and analytical calculations within the Landau-Ginzburg-Devonshire approach reveals that an out-

of-plane polarization component can be very sensitive to the flexoelectric coupling for periodic quasi-

2D stripe domains and 3D vortex-antivortex structures. However, the influence is rather different for 

these structures. The flexoelectric coupling increases significantly the amplitude of a small out-of-plane 

polarization component in the stripe domains, and the “up” or “down” direction of the component is 

defined by the sign of the flexoelectric coefficients. Concerning the vortex-antivortex pairs, their 

antivortices with in-plane anti-сirculation have smooth wide dipolar cores through the entire film, whose 

shape and other features are almost insensitive to the coupling. The vortices with in-plane vorticity have 

spike-like cores with an out-of-plane quadrupolar moment induced by the flexoelectric coupling. The 

cores are located near the film-dead layer interfaces. FEM results corroborated by analytical calculations 

prove that a change of the flexoelectric coefficient sign leads to a reorientation of the core axial 

polarization, making the flexo-sensitive 3D vortices similar to the recently introduced “flexons” in 

cylindrical nanoparticles. The relatively wide temperature range (from 200 to 400 K) of the flexo-

sensitive vortices’ existence gives us the hope that they can be observed experimentally in thin 

ferroelectric films by scanning probe and nonlinear optical microscopy methods. 
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I. Introduction 

Since its appearance and until now, nanoscale ferroics (ferromagnets, ferroelectrics, ferroelastics) 

have been the main object of fundamental research on the physical nature of long-range order of polar, 

magnetic, and structural properties [1, 2, 3]. The leading role is played by the emergence of a domain 

structure of long-range order parameters, such as electric polarization, magnetization, and 

(anti)ferrodistortion, and its interaction with the surface of a nanoferroic [4, 5].  

In the case of ferroelectrics, which we discuss here, the long-range order of the domains is 

governed by both electrostatic fields and the distribution of strain fields and their gradients. A strong and 

spatially extended gradient of elastic fields generated by the surface, domain walls, and/or other 

inhomogeneities creates a sufficiently large flexoelectric polarization, which is proportional to this 

gradient (this phenomenon is a direct flexoelectric effect) [6]. On the other hand, the electrical 

polarization gradient gives rise to an inhomogeneous strain (inverse flexoelectric effect) [7]. The 

thermodynamic description of the flexoelectric effect is given by Lifshitz invariants [8, 9].  

The flexoelectric effect exists in all ferroics [6-9], in contrast to the flexomagnetic [10] and 

flexomagnetoelectric [11, 12] effects, the existence of which is critically sensitive to the presence of time 

inversion and its connection with other operations of point symmetry of a particular material [13, 14]. 

The influence of the flexoelectric effect on the macroscopic properties of ferroics (as well as any other 

materials) is relatively small [6-9]. However, in nanosized and nanostructured ferroics, the influence of 

the flexoelectric effect on their polar, magnetic, electronic properties and phase transitions can be 

significant and may lead to fundamental changes in their properties [15, 16, 17]. This size-dependence 

of the effect arises from the gradients of physical quantities playing a leading role in such nanosystems 

[18, 19].  

Recently, it was predicted theoretically that a decrease in the correlation-gradient polarization 

energy leads to a significant increase in the polarization gradient, which in turn leads to spontaneous 

bending of otherwise uncharged domain walls in thin multiferroic films [20] and ferroelectric 

nanoparticles [21]. Such domain walls can form meandering [20] and/or labyrinthine [21] structures. 

Later, similar structures were discovered experimentally in thin BiFeO3 and Pb(Zr0.4Ti0.6)O3 films by 

HR-STEM [22] and PFM [23] methods, respectively, and corroborated by ab initio calculations [23]. 

However, the influence of flexo-effects on the morphology of domain structures in thin films has not yet 

been studied systematically. 

Most published experimental studies of flexoelectric phenomena in proper [24, 25, 26] and 

incipient [27, 28] ferroelectrics, atomistic quantum-mechanical [29, 30] and first-principles calculations 

[31, 32, 33, 34] are overwhelmingly aimed at determining the magnitude of the flexoelectric coefficients 

[28-34] and the structure of the flexoelectric tensor [35, 36]. The majority of the phenomenological 



3 
 

papers on this topic are devoted to the influence of the flexo-effects on the macroscopic properties and 

phase transitions of the ferroic film as a whole (see e.g. Refs.[37, 38, 39] and refs therein), and only a 

few of them address the actual influence of the flexoelectric effect on the structure of domain walls [40, 

41, 42, 43, 44]. The main result of the papers [40 - 44] is the prediction that the flexoelectric effect 

induces the appearance of a small but sufficiently strong polarization component perpendicular to the 

plane of the nominally uncharged domain wall of the ferroic, resulting in an effective  “charging”  of the 

wall. PFM and cAFM experiments registering the conductivity of nominally uncharged domain walls in 

ferroelectrics and multiferroics confirm the theoretical predictions [45, 46, 47]. Non-Ising and chiral 

ferroelectric domain walls have been revealed by nonlinear optical microscopy [48].  

Note that only a few works analyze the influence of the flexoelectric coupling on the curled 

vortex-like domain structures in ferroelectric thin films [49] and nanoparticles [50, 51]. Namely, using 

machine learning and phase-field modeling, Li et at. [49] analyze the role of flexoelectricity on polar 2D 

vortices in a PbTiO3/SrTiO3 superlattice. The axis of these vortices is parallel to the film surface, and the 

flexoelectric coupling influences their details in a quantitative way, but not sharply or critically. The 

influence of flexoelectricity on polarization vortices in spherical [50] and cylindrical [51] core-shell 

ferroelectric nanoparticles can be significant because it can induce a small axial polarization of the vortex 

core. Analytical calculations and simulations [51] have proven that a change of the flexoelectric 

coefficient sign leads to a reorientation of the axial polarization of the vortex and that an anisotropy of 

the flexoelectric coupling critically influences the vortex core formation and its related domain 

morphology. Here we consider the influence of the flexoelectric coupling on the spatial distribution and 

temperature behavior of the spontaneous polarization for several types of stable domain structures in thin 

BaTiO3 films, such as periodic quasi-2D stripe domains and arrays of 3D vortex-antivortex pairs, whose 

axes are perpendicular to the film surface. 

 

II. Problem Statement 

Using a finite element modelling (FEM) and Landau-Ginzburg-Devonshire (LGD) 

phenomenological approach combined with electrostatic equations and elasticity theory, we model the 

polarization, internal electric field, elastic stresses, and strains in a thin BaTiO3 film. We consider a 

BaTiO3 film [001] sandwiched between two ultra-thin paraelectric dead layers with a high relative 

dielectric permittivity. A top electrode and conducting substrate are in contact with the layers, and the 

voltage is applied between the conductors (see Fig. 1a). The dead layers are required for the 

thermodynamic stability of the domain structure. Only a single-domain distribution is stable in the case 

of perfect electric contact between the ferroelectric film surfaces and ideal conducting electrodes. The 

film thickness varies from 4 to 20 nm, and the thickness of each dead layer varies from 0 to 0.8nm. The 

relative dielectric permittivity is 300. 
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For most cases, we impose a slight tensile strain 0 < 𝑢𝑚 <0.25% at the interface BaTiO3 film – 

substrate. The strain leads to the disappearance of the metastable orthorhombic phase and shifts the 

temperatures of structural and polar transitions [52]. Also, the strain supports a rhombohedral 

ferroelectric phase in a single-domain film at temperatures below 360 K. At the same conditions, the 

formation of in-plane domains is favorable in the film due to depolarization effects. The transition from 

the rhombohedral to the tetragonal phase occurs at a temperature above 360 K, while the transition from 

the tetragonal ferroelectric to the paraelectric cubic phase occurs above 420 K (see Fig. 1b). 

An LGD free energy functional 𝐺 of the BaTiO3 film includes a Landau energy – an expansion 

on 2-4-6 powers of the polarization components 𝑃𝑖, 𝐺𝐿𝑎𝑛𝑑𝑎𝑢; a polarization gradient energy, 𝐺𝑔𝑟𝑎𝑑; the 

electrostatic energy, 𝐺𝑒𝑙; an elastic, electrostriction contribution 𝐺𝑒𝑠, a flexoelectric contribution, 𝐺𝑓𝑙𝑒𝑥𝑜; 

and a surface energy term, 𝐺𝑆 [37, 39]. The free energy functional, the Euler-Lagrange equations obtained 

from its variation, a mathematical formulation of the electrostatic and elastic sub-problem, and FEM 

simulation details are given in Appendix A of Supplementary Materials. The ferroelectric, dielectric, 

and elastic properties of the BaTiO3 [001] are listed in Table AI therein.  

For the initial distribution of the polarization in the film, we used either a periodic 90-degree 

zigzag pattern of in-plane domain stripes or a regular arrangement of crossed 90-degree domain walls in 

the XZ-plane (see Fig. A1a-c in Appendix A). When we used a purely random noise as the initial 

distribution of polarization at room temperature, it relaxed to in-plane a-domain stripes without any flux-

closure at the film surfaces. This circumstance can indicate that a-domain stripes are the energetic ground 

state configuration for a film in the rhombohedral phase. In fact, the energy density of the periodic stripe 

domains is -1.560 MPa, while the energy density of the vortex-antivortex pairs is -1.373 MPa (for the 

same polarity of antivortex cores) or -1.368 MPa (for the opposite polarity of antivortex cores) for a 10-

nm BaTiO3 film at room temperature. 
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FIGURE 1. (a) The ferroelectric film placed between two paraelectric dead layers with a very high dielectric 

permittivity. Dead layers thickness is 0.8 nm and relative dielectric permittivity is 300. The mismatch strain exists 

at the interface “dead layer 1 – conducting substrate”. The coordinate frame we are using is shown in the bottom 

left corner. (b) Phase diagram of a thick single-domain BaTiO3 film on a rigid substrate. PE and FE denote the 

paraelectric and ferroelectric phases, respectively. Indices “c”, “r” and “aa” corresponding to the tetragonal c-

phase with an out-of-plane polarization, rhombohedral phase all three components of polarization, and a-phase 

with two in-plane components of polarization, respectively.  

 

III. Flexoelectric Coupling Influence on the Polarization Distribution 

Our FEM studies revealed that the out-of-plane polarization component 𝑃𝑦 can be very sensitive to the 

flexoelectric coupling (shortly: “flexocoupling”) for both stripe domains and vortices. However, the 

influence is rather different for each of them. 

The influence of the flexocoupling on the in-plane periodic stripe domains in a 5-nm BaTiO3 film 

is shown in Fig. 2. The dependence of the polarization magnitude 𝑃 = |�⃗� | on 𝐹𝑖𝑗 is negligible, and thus 

Fig. 2a is the same for positive, zero, and negative 𝐹𝑖𝑗. This happens because the value of 𝑃 is governed 

by the in-plane polarization components, 𝑃𝑥 and 𝑃𝑧, and the amplitude of 𝑃𝑥 (about 20 C/cm2) is almost 

flexo-insensitive (see Fig. 2e). Although the flexocoupling modulates the amplitude of 𝑃𝑧, the modulation 

amplitude is very small (less than 0.6 C/cm2) in comparison with its almost constant value ~19 C/cm2 

(see Fig. 2g). The flexocoupling significantly increases the amplitude of a small out-of-plane polarization 

component 𝑃𝑦 (from 0.1 C/cm2 to 0.4 C/cm2), and the “up” or “down” direction of 𝑃𝑦 is defined by 

the sign of flexocoupling coefficients 𝐹𝑖𝑗. The amplitude of 𝑃𝑦 is proportional to the strength |𝐹𝑖𝑗|. This 

effect is illustrated qualitatively in Fig. 2b, 2c and 2d plotted for negative, zero and positive 𝐹𝑖𝑗, 

respectively. The quantitative influence of 𝐹𝑖𝑗 on 𝑃𝑦 is clearly seen from z-profiles of 𝑃𝑦 in Fig. 2f, which 
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are calculated at the film top surface for negative (blue curves), zero (black curves), and positive (red 

curves) flexoelectric coefficients 𝐹𝑖𝑗. Note that the small value of 𝑃𝑦 at 𝐹𝑖𝑗 = 0 results from the 

electrostrictive coupling, and its phase depends on the initial conditions in the case. 

Let us underline that the flexocoupling influence on 𝑃𝑖 revealed in this work and shown in Fig. 2, 

is in a qualitative agreement with the earlier predictions for the flexocoupling-induced Néel component 

of polarization at a “nominally uncharged” single domain wall in a bulk rhombohedral BaTiO3 [43] and 

BiFeO3 [41]. However, the flexocoupling influence on the periodic stripe a-domains in thin films is 

quantitatively different from that found in the case of single walls in a bulk rhombohedral material [41-

43]. Using the results of Ref. [41], an approximate analytical expression for the Néel-type component  

𝑃𝑦 ≈
𝜀0𝜀𝑏𝑓𝑄

1+2𝛽𝜀0𝜀𝑏

𝜕𝑃𝑥
2

𝜕𝑧
+

𝜀0𝜀𝑏𝑞𝑃𝑥

1+2𝛽𝜀0𝜀𝑏
(𝑃𝑠

2 − 𝑃𝑥
2)                                (1) 

can be used as an estimate in the vicinity of the domain walls. Here the first term has flexoelectric nature, 

and the second term originates from electrostriction coupling. Constants 𝑓𝑄 ≈ 𝐹12
𝑄11𝑠12−𝑠11𝑄12

𝑠11
2 −𝑠12

2 , 𝛽 ≈

𝑎1 + (𝑎12 + 𝑄44
2 2𝑠44⁄ )𝑃𝑠

2, and 𝑞 ≈ −
𝑄11𝑠12−𝑠11𝑄12

𝑠11
2 −𝑠12

2 𝑄44, where 𝐹12 is the flexoelectric coefficient, 𝑄𝑖𝑗 

are electrostriction coefficients, 𝑠12 are elastic compliances, 𝑎1 and 𝑎12 are LGD expansion coefficients, 

𝑃𝑠 is the spontaneous polarization, 𝜀𝑏 is a background permittivity [53], and 𝜀0 is the vacuum permittivity 

(see Table AI). 
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FIGURE 2. Regular stripe domains inside a thin strained BaTiO3 film. Polarization magnitude 𝑃 (a) and out-of-

plane component 𝑃𝑦 calculated for negative (b), zero (c) and positive (d) flexoelectric coefficients 𝐹𝑖𝑗. (e)-(g) 

Polarization z-profiles calculated at the film top surface for negative (blue curves), zero (black curves) and positive 

(red curves) flexoelectric coefficients 𝐹𝑖𝑗. The film thickness is 5 nm, mismatch strain 𝑢𝑚=0.2%, and the 

temperature 𝑇 is 300 K. The dependence of 𝑃 on 𝐹𝑖𝑗 is negligible and not shown in the figure. Arrows in the plot 

(a) show the direction of polarization vector.  
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 The influence of the flexocoupling on a periodic lattice of polarization vortices and antivortices 

is shown in Figs. 3-5 and Figs. B1-3 (in the Supplement) for a 9-nm BaTiO3 film stretched with a misfit 

strain 0.1%. The computation cell, which translates periodically, is a rectangular parallelepiped 

consisting of two vortices separated by two antivortices (see Fig. 3 and Fig. B1). The vortex and 

antivortex can be topologically distinguished by the winding number 𝑊 = ∮
𝛼(𝜑)

2𝜋
𝑑𝑆, that is the 

normalized line integral on a closed loop S over the 𝛼(𝜑) that the in-plane component of the polarization 

�⃗�  encloses with the x-axis [54]. The winding number counts the number of vortex (𝑊 = +1) and 

antivortex (𝑊 = −1) structures within the loop 𝑆 (see Figs. 6a-c).  

Besides topological aspects, vortices and antivortices also differ concerning their energy. 

Although the correlation energy is similar in both cases, vortex structures are virtually divergence-free, 

such that they tend to form spontaneously in inhomogeneous structures to reduce the dipolar energy. By 

contrast, antivortices display strong divergences, leading to a distinct distribution of bound charges and 

a corresponding increase in dipolar energy. This behavior is known from magnetic structures, and the 

situation in ferroelectrics is analogous: here the divergence 𝑑𝑖𝑣 �⃗�  is relatively small in the vortex core 

case and quite significant in the antivortex one (see Fig. A1d in Appendix A). Because of these 

differences in energy, individual antivortices tend to dissolve in magnetic systems, and particular 

geometric shapes are required to stabilize them [55]. Antivortex structures typically occur for topological 

reasons as they form a link between two neighboring vortices with equal circulation. In magnetic 

structures, such situations are well-known in the form of “cross-tie” domain walls [56], which are 

essentially linear chains of alternating vortex-antivortex structures. However, we are not aware of a 

generalization of cross-tie domain wall structures to two-dimensional checkerboard-type vortex-

antivortex arrays.  

It appears that the dependence of the polarization magnitude 𝑃 on 𝐹𝑖𝑗 is very weak, and so the 

images in Fig. 3d and 4c, as well as 𝑃-profiles shown in Figs. 5a and 5b, are almost 𝐹𝑖𝑗-independent. In 

contrast to the magnitude, the distribution of the out-of-plane polarization component 𝑃𝑦 does depend on 

𝐹𝑖𝑗, i.e., it is “flexo-sensitive”, but the sensibility is only significant for a vortex region (as will be shown 

below). 

The antivortex has a wide and smooth dipolar core, whose rounded rectangular-like shape and 

other features are weakly sensitive to the flexocoupling (see Figs. 3a-c and Fig. B2a-c). The direction of 

the component 𝑃𝑦 in the antivortex core is defined by initial conditions (compare Fig. 4a and 4b), but not 

by the 𝐹𝑖𝑗 structure. The magnitude of 𝑃𝑦 in the antivortex core is relatively high, reaching (10 – 

15) C/cm2 for thin films (see Fig.  5c,e,g).  

The vortex has a very prolate asymmetrical spike-like quadrupolar core, whose polarity is defined 

by the sign of 𝑃𝑦, is controlled by the flexocoupling (compare blue and reddish vortex cores in Figs. 3a-
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c and the quadrupolar areas inside dotted ellipses in Figs. 4d-f). The sign of 𝐹𝑖𝑗 determines the sign of 

the polarization and its value in the vortex core, as it is seen from the color images in Figs. 4d-f, and 

especially from the 𝑦-profiles in Fig. 5d, 5f and 5h calculated for 𝐹𝑖𝑗 < 0, 𝐹𝑖𝑗 = 0 and 𝐹𝑖𝑗 > 0, 

respectively. The vortex core polarization becomes significantly smaller for 𝐹𝑖𝑗 = 0 (see Fig. 5f). At the 

nominal values of 𝐹𝑖𝑗 (listed in Table AI) the maximal polarization in the vortex core reaches (1 – 

1.5) C/cm2, depending on the film surface (see Fig. 5d, 5f and 5h). An axial asymmetry of the 

quadrupolar core is due to different elastic boundary conditions at the mechanically free top surface, 

where the normal stress is absent, and at the bottom surface clamped to a rigid substrate with a mismatch 

strain. The asymmetry is clearly seen by comparing the small and high-contrast reddish part with the 

smooth and more extended blue part of the quadrupolar core in Figs. 4d and 4f, as well as from the 

comparison of solid and dashed curves in Figs. 5d and 5h. Notably that the transformation 𝐹𝑖𝑗 → −𝐹𝑖𝑗 

inverts the vortex core (𝑃𝑦 → −𝑃𝑦) with respect to the y-axis. 
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FIGURE 3. The XZ-sections of the polarization out-of-plane component 𝑃𝑦 at the film top surface calculated for 

negative (a), zero (b) and positive (c) flexoelectric coefficients 𝐹𝑖𝑗. The XZ-sections of the polarization magnitude 

𝑃 (d) and hydrostatic stress 𝜎 (e, f), which are almost flexo-independent. Arrows show polarization direction in 

the vortex-antivortex region. The thickness of BaTiO3 film is 9 nm, mismatch strain 𝑢𝑚=0.1%, and 𝑇 = 300 K.  
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In general, the difference in the behavior of the antivortex and vortex cores (shown in Figs. 3a-c 

and Fig. 4) can be explained by the difference of elastic fields in the regions. The hydrostatic stress, 𝜎 =

𝜎11 + 𝜎22 + 𝜎33, shown in Fig. 3e (at the film top surface) and 3f (at the film bottom surface), and in 

Fig. B3 (at both surfaces), is well-localized in the antivortex and vortex regions. The stress is maximal 

and positive in the vortex core at the film top surface, where it is significantly smaller than the stress in 

the antivortex core. The situation is opposite at the film bottom surface, where 𝜎 is maximal and negative 

in the antivortex region, and it becomes positive and significantly smaller in magnitude in the vortex 

region. The spatial distribution of a dilatational strain, 𝑢 = 𝑢11 + 𝑢22 + 𝑢33, is very similar to the stress, 

and thus not shown here. Although the components of elastic stress and strain are virtually independent 

on the 𝐹𝑖𝑗 value, their gradients convoluted with flexoelectric coefficients lead to the flexo-sensitivity of 

the vortices. 

 

 
FIGURE 4. The 𝜉𝑌-sections of the out-of-plane polarization component 𝑃𝑦 for different seedings (a-b) and the 

magnitude 𝑃 (c), which are almost flexo-independent. Flexo-sensitive 𝜁𝑌-sections of the 𝑃𝑦 calculated for negative 

(d), zero (e) and positive (f) flexoelectric coefficients 𝐹𝑖𝑗. Coordinates 𝜉 = (𝑥 + 𝑧)/√2 and 𝜁 = (𝑥 − 𝑧)/√2. 

Arrows in the plots (a)-(c) show polarization direction. The thickness of BaTiO3 film is 9 nm, mismatch strain 

𝑢𝑚=0.1%, and 𝑇 = 300 K.  
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FIGURE 5. Profiles of the flexo-independent antivortices (left column) and flexo-sensitive vortices (right column) 

at the top (solid curves) and bottom (dashed curves) surfaces of a thin strained BaTiO3 film. (a)-(b) Flexo-

independent 𝜉- and 𝜁-profiles of the polarization magnitude 𝑃. (c)-(h) Flexo-sensitive 𝜉- and 𝜁-profiles of the out-
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of-plane polarization component 𝑃𝑦 for negative (blue curves), zero (black curves) and positive (red curves) 

flexoelectric coefficients 𝐹𝑖𝑗. Coordinates 𝜉 = (𝑥 + 𝑧)/√2 and 𝜁 = (𝑥 − 𝑧)/√2. The film thickness is 9 nm, 

mismatch strain 𝑢𝑚=0.1%, and 𝑇 = 300 K.  

 

The behavior of the flexo-sensitive polarization vortex is qualitatively the same as the flexon-type 

polarization in cylindrical nanoparticles [51]. We argue that the flexo-sensitive vortex cores can be 

interpreted as a manifestation of “flexons” [51] in thin films. To ascertain this conjecture, a topological 

index of these structures is calculated and analyzed below.  

The topological index 𝑛(𝑦) =
1

4𝜋
∫ 𝑝 [

𝜕𝑝 

𝜕𝑥
×

𝜕𝑝 

𝜕𝑧
] 𝑑𝑥𝑑𝑧

𝑆
 [57], where 𝑝 =

�⃗� 

𝑃
 is the unit polarization 

orientation and the integration is performed over the vortex cross-section 𝑆 = {𝑥, 𝑧}, quantifies the 

chirality of the polarization structure. Using the method explained in Appendix D of Ref.[51], the 

approximate y-dependence of the topological index is  

𝑛(𝑦) ≈ −
𝑃𝑦(𝑥=0,𝑦,𝑧=0)

2𝑃(𝑥=0,𝑦,𝑧=0)
.                                                  (2) 

Similarly to the flexon discussed in Ref.[51], 𝑛(𝑦) is a normalized profile of the out-of-plane polarization 

component, and the coordinate origin is placed in the vortex axis. Note that the expression (2) is an 

approximation since the distribution of 𝑃𝑦(𝑥, 𝑦, 𝑧) is not fully axially symmetric with respect to the vortex 

axis. The axial asymmetry appears in the form of a square mesh between the vortices (see e.g., Fig. 3). 

Although 𝑃𝑦 is nonzero for 𝐹𝑖𝑗 = 0 due to the electrostriction coupling, two Bloch points (𝑃 = 0) located 

symmetrically under the film surfaces exist for that case (see Fig. 6d). The depth profile of 𝑃𝑦 becomes 

asymmetric with respect to the film surfaces for 𝐹𝑖𝑗 ≠ 0, and only one Bloch point exists in this case (see 

Fig. 6e). The transformation 𝐹𝑖𝑗 → −𝐹𝑖𝑗 leads to the transformation 𝑃𝑦 → −𝑃𝑦 (compare red and blue 

curves in Fig. 6e). Hence, the sign of 𝑃𝑦, and so the sign of 𝑛(𝑦), is defined by the sign of 𝐹𝑖𝑗, since the 

flexo-induced contribution to the polarization component 𝑃𝑦 significantly dominates over the 

electrostriction contribution. The result corroborates the “flexon” character [51] of the vortex 

polarization. The dependence 𝑛(𝑦) is shown in Fig. 6e for zero, positive and negative 𝐹𝑖𝑗, respectively. 

Since the value 𝑃(0, 𝑦, 0) coincides with |𝑃𝑦(0, 𝑦, 0)| at the vortex axis, and 𝑃𝑦(0, 𝑦, 0) = 𝑃(0, 𝑦, 0) =

0 in the Bloch point, the topological index jumps in that point from -½ to +½ (red curve in Fig. 6e), or 

from +½ to -½ (blue curve in Fig. 6e), depending on the 𝐹𝑖𝑗 sign. In any case, 𝑛(𝑦) = ±1 2⁄  at the film 

surfaces. The result demonstrates the surface localization of the flexo-sensitive vortices, similarly to the 

“edge” localization of flexons in cylindrical nanoparticles [51]. The topological index, which can be 

interpreted as the degree to which a structure is chiral, changes sign from one surface to the other, and 

changes sign upon reversal of the sign of 𝐹𝑖𝑗. Since |𝑃𝑦|~|𝐹12|, the index 𝑛(𝑦) increases in magnitude 
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with increasing absolute value of |𝐹𝑖𝑗|. These properties make obvious the clear correlation between the 

flexocoupling and the formation of chiral polar vortices in thin ferroelectric films. 

 

 
FIGURE 6. (a) A ferroelectric vortex (𝑊 = +1) and (b) antivortex (𝑊 = −1), whose topology can be 

distinguished by the winding number 𝑊 (c). Part (c) is redrawn from Ref. [54]. (d-e) Depth profiles of the out-of-

plane polarization component 𝑃𝑦 (solid curves) and magnitude 𝑃 (dotted curves) calculated at the vortex axis for 

zero (black curves, d), negative (blue curves, e) and positive (red curves, e) flexoelectric coefficients 𝐹𝑖𝑗. Circles 

are Bloch points, where 𝑃 = 0. (f) The y-profile of the polarization’s topological index 𝑛(𝑦) for zero (black dotted 

lines), positive (solid red lines), and negative (solid blue lines) 𝐹𝑖𝑗. The film thickness is 9 nm, mismatch strain 

𝑢𝑚=0.1%, and 𝑇 = 300 K. 

 

To the best of our understanding, the experiment [46] indicates the possible existence of flexo-

sensitive vortices. However, most phase-field simulations (see e.g., [58]) either did not include the 

flexoelectric effect, or they reveal other trends [49]. Indeed, the flexo-sensitive vortices are “hidden” by 

flexo-insensitive antivortices, whose out-of-plane polarization is much higher. Moreover, when we 

increase the transverse size of the computational cell, the core of the antivortex becomes a complex 

structure resembling an r-phase domain. Still, the polarization remains strictly vertical in the core region, 

as for the c-phase domain. 
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To define the temperature interval, where the flexo-sensitive stripes or vortices are stable or meta-

stable, we performed FEM studies of the polarization distribution in the film in the temperature range 

from 200 K to 440 K. A stripe-domain configuration with a flexo-sensitive out-of-plane polarization 

component 𝑃𝑦 is stable at temperatures lower than 415 K; at higher temperatures it becomes faint as the 

film transforms to the paraelectric phase.  

A vortex-like configuration with a flexo-sensitive out-of-plane polarization component 𝑃𝑦 is 

metastable at temperatures lower than 410 K (we use the word “metastable” here to underline that the 

domain stripes have lower energy). The flexo-insensitive antivortex core disappears above 320 K. The 

dipolar core of the vortex gradually disappears above 415 K, when the vortex-antivortex structure 

transforms into a circular vortex-antivortex structure without both cores, which exists up to the 

paraelectric transition at about 420 K. The relatively wide temperature range (200 < 𝑇 < 410 K) of the 

flexo-sensitive vortices meta-stability gives us the hope that the domain morphology can be observed 

experimentally in thin ferroelectric films by PFM, cAFM [45-47] and nonlinear optical microscopy [48] 

methods. 

The disappearance of antivortex cores when the temperature is decreased below (315 – 320) K is 

related to the transition from the monoclinic r-phase (with all three polarization components) to the 

orthorhombic a-phase (with two in-plane components of polarization). The monoclinic-orthorhombic 

transition occurs at about 340 K for thick films; and its temperature decrease to 320 K in thin films with 

dead layers is caused by the depolarization field arising from the layers.  

 

IV. Conclusion 

In this theoretical work, we have considered the influence of the flexocoupling on the spatial 

distribution and the temperature behavior of the ferroelectric polarization for different types of stable 

domain structures in thin ferroelectric films, such as periodic stripe domains and arrays of vortex-

antivortex pairs. Our FEM simulations and analytical calculations reveal that an out-of-plane polarization 

component can be very sensitive to the flexocoupling for both stripe domains and vortices. However, the 

influence is rather different. Namely, the flexocoupling significantly increases the amplitude of a small 

out-of-plane polarization component in the stripe domains. The “up” or “down” direction of this out-of-

plane component depends on the sign of the flexocoupling coefficients. The vortex has a spike-like 

quadrupolar core controlled by the flexocoupling, whereas the antivortex has a wide smooth dipolar core, 

whose shape and other features are weakly insensitive to the coupling. The origin of the flexo-sensitive 

vortex is due to the system’s tendency to minimize its elastic and electrostatic energy, because a vortex 

domain wall (in fact, a flux-closure domain) creates a much weaker depolarization field compared to the 

field of a charged domain wall. 
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We interpret the flexo-sensitivity of the vortex cores as a variant of the effects that stabilize the 

recently revealed “flexons” [51] in thin films. To the best of our knowledge, such flexo-sensitive vortices 

have not been reported previously, while several experiments [46, 49] suggest their existence.  

The relatively wide temperature range (200 < 𝑇 < 410 K) in which the flexo-sensitive vortices 

are meta-stable gives us hope that these structures can be observed experimentally in thin ferroelectric 

films by PFM, cAFM, and nonlinear optical microscopy methods. However, in thin films, the PFM 

observation of the flexo-sensitive vortices is complicated by the presence of much higher contrast 

antivortices, which are flexo-insensitive. 
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Supplementary Materials 

APPENDIX A. Mathematical Formulation of the Problem and FEM Details 

A. Mathematical Formulation of the Problem 

The LGD free energy functional G additively includes a Landau expansion on powers of 2-4-6 of 

the polarization (𝑃𝑖), 𝐺𝐿𝑎𝑛𝑑𝑎𝑢; a polarization gradient energy contribution, 𝐺𝑔𝑟𝑎𝑑; an electrostatic 

contribution, 𝐺𝑒𝑙; the elastic, electrostriction, flexoelectric contributions, 𝐺𝑒𝑠+𝑓𝑙𝑒𝑥𝑜; and a surface energy, 

𝐺𝑆. It has the form: 

𝐺 = 𝐺𝐿𝑎𝑛𝑑𝑎𝑢 + 𝐺𝑔𝑟𝑎𝑑 + 𝐺𝑒𝑙 + 𝐺𝑒𝑠+𝑓𝑙𝑒𝑥𝑜 + 𝐺𝑆,                                      (A.1a) 

𝐺𝐿𝑎𝑛𝑑𝑎𝑢 = ∫ 𝑑3𝑟
𝑉𝑓

[𝑎𝑖𝑃𝑖
2 + 𝑎𝑖𝑗𝑃𝑖

2𝑃𝑗
2 + 𝑎𝑖𝑗𝑘𝑃𝑖

2𝑃𝑗
2𝑃𝑘

2],                              (A.1b) 

𝐺𝑔𝑟𝑎𝑑 = ∫ 𝑑3𝑟
𝑉𝑓

𝑔𝑖𝑗𝑘𝑙

2

𝜕𝑃𝑖

𝜕𝑥𝑗

𝜕𝑃𝑘

𝜕𝑥𝑙
,                                           (A.1c) 

𝐺𝑒𝑙 = −∫ 𝑑3𝑟
𝑉𝑓

(𝑃𝑖𝐸𝑖 +
𝜀0𝜀𝑏

2
𝐸𝑖𝐸𝑖) −

𝜀0

2
∫ 𝜀𝑖𝑗

𝑑𝐸𝑖𝐸𝑗𝑑
3𝑟

𝑉𝑑
,                   (A.1d) 

𝐺𝑒𝑠+𝑓𝑙𝑒𝑥𝑜 = −∫ 𝑑3𝑟
𝑉𝑓

[
𝑠𝑖𝑗𝑘𝑙

2
𝜎𝑖𝑗𝜎𝑘𝑙 + 𝑄𝑖𝑗𝑘𝑙𝜎𝑖𝑗𝑃𝑘𝑃𝑙 + 𝐹𝑖𝑗𝑘𝑙 (𝜎𝑖𝑗

𝜕𝑃𝑘

𝜕𝑥𝑙
− 𝑃𝑘

𝜕𝜎𝑖𝑗

𝜕𝑥𝑙
)]      (A.1e) 

𝐺𝑆 =
1

2
∫ 𝑑2𝑟
𝑆

𝑎𝑖𝑗
(𝑆)

 𝑃𝑖𝑃𝑗 .                                                       (A.1f) 

Here 𝑉𝑓 and 𝑉𝑑 are the film and dead layer volume, respectively. The coefficient 𝑎𝑖 linearly depends on 

temperature T, 𝑎𝑖(𝑇) = 𝛼𝑇[𝑇 − 𝑇𝐶], where 𝛼𝑇 is the inverse Curie-Weiss constant and 𝑇𝐶 is the 

ferroelectric Curie temperature renormalized by electrostriction and surface tension. Tensor components 

𝑎𝑖𝑗 are regarded as temperature-independent. The tensor 𝑎𝑖𝑗 is negatively defined for the BaTiO3 

undergoing the first order transition to the paraelectric phase. The higher nonlinear tensor 𝑎𝑖𝑗𝑘 and the 

gradient coefficients tensor 𝑔𝑖𝑗𝑘𝑙 are positively defined and regarded as temperature-independent. The 

following designations are used in Eq.(A.1e): 𝜎𝑖𝑗 is the stress tensor, 𝑠𝑖𝑗𝑘𝑙 is the elastic compliances 

tensor, 𝑄𝑖𝑗𝑘𝑙 is the electrostriction tensor, and 𝐹𝑖𝑗𝑘𝑙 is the flexoelectric tensor. 

 Allowing for the Khalatnikov mechanism of polarization relaxation [59], minimization of the free 

energy (A.1) with respect to polarization leads to three coupled time-dependent Euler-Lagrange 

equations for polarization components inside the film, 
𝛿𝐺

𝛿𝑃𝑖
= −𝛤

𝜕𝑃𝑖

𝜕𝑡
, where 𝑖 = 1, 2, 3.  The explicit form 

of the equations for a ferroelectric crystal with m3m parent symmetry is: 

𝛤
𝜕𝑃1

𝜕𝑡
+ 2𝑃1(𝑎1 − 𝑄12(𝜎22 + 𝜎33) − 𝑄11𝜎11) − 𝑄44(𝜎12𝑃2 + 𝜎13𝑃3) + 4𝑎11𝑃1

3 + 2𝑎12𝑃1(𝑃2
2 + 𝑃3

2) +

6𝑎111𝑃1
5 + 2𝑎112𝑃1(𝑃2

4 + 2𝑃1
2𝑃2

2 + 𝑃3
4 + 2𝑃1

2𝑃3
2) + 2𝑎123𝑃1𝑃2

2𝑃3
2 − 𝑔11

𝜕2𝑃1

𝜕𝑥1
2 − 𝑔44 (

𝜕2𝑃1

𝜕𝑥2
2 +

𝜕2𝑃1

𝜕𝑥3
2 ) =

−𝐹11
𝜕𝜎11

𝜕𝑥1
− 𝐹12 (

𝜕𝜎22

𝜕𝑥1
+

𝜕𝜎33

𝜕𝑥1
) − 𝐹44 (

𝜕𝜎12

𝜕𝑥2
+

𝜕𝜎13

𝜕𝑥3
) + 𝐸1  

(A.2a) 
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𝛤
𝜕𝑃2

𝜕𝑡
+ 2𝑃2(𝑎1 − 𝑄12(𝜎11 + 𝜎33) − 𝑄11𝜎22) − 𝑄44(𝜎12𝑃1 + 𝜎23𝑃3) + 4𝑎11𝑃2

3 + 2𝑎12𝑃2(𝑃1
2 + 𝑃3

2) +

6𝑎111𝑃2
5 + 2𝑎112𝑃2(𝑃1

4 + 2𝑃2
2𝑃1

2 + 𝑃3
4 + 2𝑃2

2𝑃3
2) + 2𝑎123𝑃2𝑃1

2𝑃3
2 − 𝑔11

𝜕2𝑃2

𝜕𝑥2
2 − 𝑔44 (

𝜕2𝑃2

𝜕𝑥1
2 +

𝜕2𝑃2

𝜕𝑥3
2 ) =

−𝐹11
𝜕𝜎22

𝜕𝑥2
− 𝐹12 (

𝜕𝜎11

𝜕𝑥2
+

𝜕𝜎33

𝜕𝑥2
) − 𝐹44 (

𝜕𝜎12

𝜕𝑥1
+

𝜕𝜎23

𝜕𝑥3
) + 𝐸2  

(A.2b) 

𝛤
𝜕𝑃3

𝜕𝑡
+ 2𝑃3(𝑎1 − 𝑄12(𝜎11 + 𝜎22) − 𝑄11𝜎33) − 𝑄44(𝜎13𝑃1 + 𝜎23𝑃2) + 4𝑎11𝑃3

3 + 2𝑎12𝑃3(𝑃1
2 + 𝑃2

2) +

6𝑎111𝑃3
5 + 2𝑎112𝑃3(𝑃1

4 + 2𝑃3
2𝑃1

2 + 𝑃2
4 + 2𝑃2

2𝑃3
2) + 2𝑎123𝑃3𝑃1

2𝑃2
2 − 𝑔11

𝜕2𝑃3

𝜕𝑥3
2 − 𝑔44 (

𝜕2𝑃3

𝜕𝑥1
2 +

𝜕2𝑃3

𝜕𝑥2
2 ) =

−𝐹11
𝜕𝜎33

𝜕х3
− 𝐹12 (

𝜕𝜎11

𝜕х3
+

𝜕𝜎22

𝜕х3
) − 𝐹44 (

𝜕𝜎13

𝜕𝑥1
+

𝜕𝜎23

𝜕𝑥2
) + 𝐸3  

(A.2c) 

The temperature-dependent Khalatnikov coefficient 𝛤 [60] determines the relaxation time of the 

polarization 𝜏𝐾 = 𝛤 |𝛼|⁄ . Consequently, 𝜏𝐾 typically varies in the range (10-9 – 10-6) seconds for 

temperatures far from TC. As argued by Hlinka et al. [61], we assumed that 𝑔44
′ = −𝑔12 in Eqs.(A.2). 

The boundary condition for polarization at the film-dead layer interface accounts for the flexoelectric 

effect:  

𝑎𝑖𝑗
(𝑆)

𝑃𝑗 + (𝑔𝑖𝑗𝑘𝑙
𝜕𝑃𝑘

𝜕𝑥𝑙
− 𝐹𝑘𝑙𝑖𝑗𝜎𝑘𝑙) 𝑛𝑗|

𝑥3=0,ℎ
= 0                                     (A.3) 

where n is the outer normal to the surface, i = 1, 2, 3. In our FEM studies, we use the so-called “natural” 

boundary conditions corresponding to 𝑎𝑖𝑗
(𝑆)

= 0. To model the film infinity in the lateral directions “1” 

and “2”, The periodic boundary conditions are valid at the sidewalls of the computation region. 

The electric field components 𝐸𝑖 in Eqs.(A.2) are derived from the electric potential 𝜑 in a 

conventional way, 𝐸𝑖 = −𝜕𝜑 𝜕𝑥𝑖⁄ . The potential 𝜑𝑓 satisfies the Poisson equation in the ferroelectric 

film (subscript "f"): 

𝜀0𝜀𝑏 (
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 +

𝜕2

𝜕𝑥3
2)𝜑𝑓 =

𝜕𝑃𝑖

𝜕𝑥𝑖
,        0 ≤ 𝑥3 ≤ ℎ.               (A.4a) 

The electric potential 𝜑𝑑 in the dead layer satisfies the Laplace equation (subscript "d"): 

𝜀0𝜀𝑒 (
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 +

𝜕2

𝜕𝑥3
2)𝜑𝑑 = 0,      − 𝑑 <  𝑥3 < 0 ∪ ℎ <  𝑥3 < ℎ + 𝑑.           (A.4b) 

 Equations (A.4) are supplemented with the continuity conditions for electric potential and the 

normal components of the electric displacements at the film surfaces: 

(𝜑𝑑 − 𝜑𝑓)|𝑥3=0,ℎ
= 0,   𝒏(𝑫𝑑 − 𝑫𝑓)|𝑥3=0,ℎ

= 0.                             (A.4a) 
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The voltage is fixed at the electrodes: 

  𝜑𝑑|𝑥3=−𝑑 = 0,   𝜑𝑑|𝑥3=ℎ+𝑑 = 𝑈.                                  (A.4c) 

and periodic boundary conditions for electric potential are valid at the sidewalls of the computation 

region. 

Elastic equations of state follow from the variation of the energy (A.1e) with respect to elastic 

stress, 
𝛿𝐺

δ𝜎𝑖𝑗
= −𝑢𝑖𝑗: 

𝑠𝑖𝑗𝑘𝑙𝜎𝑘𝑙 + 𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙 + 𝐹𝑖𝑗𝑘𝑙
𝜕𝑃𝑙

𝜕𝑥𝑘
= 𝑢𝑖𝑗,      0 ≤ 𝑥3 ≤ ℎ ,          (A.5a) 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑢𝑘𝑙 − 𝑞𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙 − 𝑓𝑖𝑗𝑘𝑙
𝜕𝑃𝑙

𝜕𝑥𝑘
,         0 ≤ 𝑥3 ≤ ℎ,           (A.5b) 

where 𝑢𝑖𝑗 is the strain tensor components related to the displacement components 𝑈𝑖 in the following 

way: 𝑢𝑖𝑗 = (𝜕𝑈𝑖/𝜕𝑥𝑗 + 𝜕𝑈𝑗/𝜕𝑥𝑖)/2.  

Equations (A.5) should be considered along with equations of mechanical equilibrium 

𝜕𝜎𝑖𝑗(𝒙) 𝜕𝑥𝑖⁄ = 0,                                            (A.6) 

compatibility equations, 𝑒𝑖𝑘𝑙 𝑒𝑗𝑚𝑛𝜕
2𝑢𝑙𝑛(𝒙) 𝜕𝑥𝑘𝜕𝑥𝑚⁄ = 0, which are equivalent to the mechanical 

displacement vector 𝑈𝑖 continuity [62]. The boundary conditions for elastic stresses and displacements 

at the film surfaces are conventional continuity of elastic displacement vector and normal stress 

components: 

(𝑈𝑖
𝑑 − 𝑈𝑖

𝑓
)|

𝑥3=0,ℎ
= 0,   (𝜎3𝑗

𝑑 − 𝜎3𝑗
𝑓
)|

𝑥3=0,ℎ
= 0.                             (A.7a) 

The boundary conditions for elastic stresses and displacements at the dead layer surfaces account for the 

free top surface and mismatch strain at the substrate electrode (𝑢11 = 𝑢22 = 𝑢𝑚): 

𝜎3𝑗
𝑑 |

𝑥3= ℎ+𝑑
= 0,   𝑈3

𝑑|
𝑥3=−𝑑

= 0,     𝑈1
𝑑|

𝑥3=−𝑑
= 𝑥1𝑢𝑚,   𝑈2

𝑑|
𝑥3=−𝑑

= 𝑥2𝑢𝑚.               (A.7b) 

 

B. Finite Element Modelling and Analytical Calculations Details 

FEM simulations are performed in COMSOL@MultiPhysics software, using electrostatics, solid 

mechanics, and general math (PDE toolbox) modules. The size of the computational region is not less 

than 4040160 nm3, and is commensurate with the cubic unit cell constant (about 0.4 nm) of BaTiO3 at 

room temperature. The minimal size of a tetrahedral element in a mesh with fine discretization is equal 
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to the unit cell size, 0.4 nm, the maximal size is 1.6 nm. The dependence on the mesh size is verified by 

increasing the minimal size to 0.8 nm. We verified that this only results in minor changes in the electric 

polarization, electric field, and elastic stress and strain, such that the spatial distribution of each of these 

quantities becomes less smooth (i.e., they contain numerical errors in the form of a small random noise). 

However, when using these larger cell sizes, all significant details remain visible, and more importantly, 

the system energy remains essentially the same with an accuracy of about 0.1%.  

LGD coefficients and other material parameters of BaTiO3 are listed in Table AI. Polarization 

components in the initial distribution, whose relaxation leads to the lateral grid of vortices and 

antivortices, are shown in Fig. A1. Note that we superimposed a slight random noise to prevent the 

formation of unstable equilibrium states arising from idealized initial conditions. 

 

Table AI. LGD coefficients and other material parameters of BaTiO3  

Coefficient Numerical value 

b, e b = 7 (core background)     e = 10 (surrounding) 

ai   (in mJ/C2) a1 = 3.34(T-381)105,    T = 3.34105            (a1 = -2.94107 at 298 K)    

aij   (in m5J/C4) a11 = 4.69(T-393)106–2.02108, a12 = 3.230108,  

(a11 = -6.71108 at 298 K) 

aijk  (in m9J/C6) 
a111 = -5.52(T-393)107+2.76109, a112 = 4.47109, a123 = 4.91109 

(at 298 K a111 = 82.8108, a112 = 44.7108, a123 = 49.1108) 

Qij  (m4/C2) Q11=0.11, Q12= -0.043, Q44=0.059 

sij   (in 10-12 Pa-1) s11=8.3, s12= -2.7, s44=9.24 

gij   (in 10-10m3J/C2) g11=5.0, g12= -0.2, g44= 0.2 

Fij (in 10-11m3/C) 

fij (in V) 

F11 = 2.4, F12 = 0.5, F44 = 0.6 (the first two values are recalculated from [a] 

values   f11 = 5.1, f12 = 3.3, f44 = 0.065 V. 

The equality 𝐹44 = 𝐹11 − 𝐹12 is valid in the isotropic case. 

 

[a] I. Ponomareva, A.K. Tagantsev, L. Bellaiche, Finite-temperature flexoelectricity in ferroelectric thin films from 

first principles, Phys. Rev. B 85 (2012) 104101. 

 

Analytical calculations are performed and visualized in the Mathematica 12.2 software 

(https://www.wolfram.com/mathematica). 

 

 

https://www.wolfram.com/mathematica
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Figure A1. (a)-(c) Polarization components in the initial distribution, whose relaxation leads to the lateral grid of 

vortices and antivortices. Two red spots in the plot (c) are the seeding of antivortex cores. Arrows in the plot (c) 

show the polarization direction. The small random component superimposed on the regular structure is not shown. 

(d) Polarization divergence is the relaxed structure consisting of two vortex-antivortex pairs (final state). 
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APPENDIX B. Supplementary Figures 

 
Figure B1. XZ-section of the out-of-plane polarization component 𝑃𝑦 at the film top (a-c) and bottom (d-f) 

surfaces calculated for negative (a,d), zero (b,e) and positive (c,f) flexoelectric coefficients 𝐹𝑖𝑗. Arrows in the plots 

show the direction of polarization in the vortex-antivortex region. The thickness of BaTiO3 film is 9 nm, mismatch 

strain 𝑢𝑚=0.1%, and the temperature is 300 K.  
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Figure B2. 𝜉𝑌-section (a-c) and 𝜁𝑌-section (d-f) of the 𝑃𝑦 calculated for negative (the top row), zero (the middle 

row) and positive (bottom row) flexoelectric coefficients 𝐹𝑖𝑗. Coordinates 𝜉 = (𝑥 + 𝑧)/√2 and 𝜁 = (𝑥 − 𝑧)/√2. 

Arrows in the plots (a)-(c) show the direction of polarization vector. The film thickness is 9 nm, mismatch strain 

𝑢𝑚=0.1%, and the temperature is 300 K.  
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Figure B3. XZ-section of hydrostatic stress 𝜎 at the film top (a-c) and bottom (d-f) surfaces calculated for negative 

(a,d), zero (b,e) and positive (c,f) flexoelectric coefficients 𝐹𝑖𝑗. Arrows in the plots show the direction of 

polarization vector. The film thickness is 9 nm, mismatch strain 𝑢𝑚=0.1%, and the temperature is 300 K.  
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