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Abstract

Data informativity is a crucial property to ensure the consistency of the prediction error estimate. This property has thus
been extensively studied in the open-loop and in the closed-loop cases. In this paper, we consider data informativity in the
case of dynamic network identification. In particular, we derive a number of data informativity conditions for the prediction
error identification of a particular module of a dynamic network using a direct identification approach. An optimal experiment
design approach is also proposed to distinguish between the different situations leading to data informativity.

Key words: Dynamic network identification, data informativity, Optimal experiment design

1 Introduction

We consider in this paper the prediction error identi-
fication of a single module of a dynamical network[10,5].
By module, we mean the causal transfer function be-
tween two nodes of this network. The considered network
is subject to a number of exogenous excitations. Among
these exogenous excitations, we distinguish, on the one
hand, the (unknown) process noises vk acting on (some
of) the nodes of the network and, on the other hand,
known excitation signals rk that can be added at some
nodes to increase the informativity of the data for iden-
tification purpose [5]. In order to identify a single mod-
ule of that network, we can consider, like in closed-loop
identification, either a direct identification of the mod-
ule [5] or an indirect identification of this module (i.e.,
the model of the module is back-computed from an iden-
tified model of a closed-loop representation of the net-
work [10,11]). In this paper, we will consider the direct
approach and, in particular, the full input approach in-
troduced in [5]. When the to-be-identified module is the
module between Node i and Node j, this full input ap-
proach consists in also identifying all the other modules
influencing Node j. The latter is done in order to guaran-
tee the consistency of the prediction error estimate of the
desired module. To guarantee this consistency, [5] im-
poses another important condition, namely a condition

on the power spectrum matrix of the data used for the
identification. This condition ensures that these data are
informative with respect to (wrt.) the model structure
M i.e., it ensures that the prediction error is different
for different models in M [13]. There are however two
drawbacks with the particular data informativity condi-
tion proposed in [5]. First, this condition is independent
of the model structure (i.e., of the model order) and is
therefore conservative. Moreover, as also pointed out in
[8], it is difficult to interpret this condition in order to
determine at which node an excitation signal rk has to
be added and what are the conditions on its power spec-
trum to ensure data informativity. In [8,6], preliminary
steps are made to tackle these two drawbacks. In this
paper, we extend these preliminary results by giving a
necessary and sufficient condition for data informativity
(a condition that takes the model order into account).
The form of this rather complex data informativity con-
dition allows the use of the framework introduced in [4]
to check whether this condition holds in practice and
what measures have to be taken in order to increase the
informativity of the data when we face a situation where
we do not have data informativity. This possibility is
the main difference between the necessary and sufficient
data informativity condition proposed in this paper and
the one introduced in [8]. Based on this necessary and
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sufficient condition, we also derive a number of simpler
data informativity conditions. These conditions are in-
dependent of the model order and are thus conservative,
but, unlike the one in [5], it is quite easy to interpret
these conditions in order to determine at which node an
excitation signal has to be added to ensure data infor-
mativity.

Using these data informativity conditions, we can de-
termine a set of situations in which the addition at cer-
tain nodes of excitation signals with given power spec-
tra lead to a consistent estimate of the to-be-identified
module, i.e. to an estimate that converges to the true
value of the module when the number of data tends to
infinity. All these situations are thus equivalent when the
number of data tends to infinity. However, for a finite
data set, the respective accuracy in all these situations
can be much different. In order to distinguish between
these situations, we propose to use optimal experiment
design. In particular, we will determine the particular
excitation pattern that leads to a given accuracy of the
desired module with the smallest excitation power. The
use of optimal experiment design for this purpose was
first introduced in our paper [2] where a very specific
type of networks is considered, namely the interconnec-
tion of simple closed-loop systems. We here extend this
work towards the generic network description in [5]. It
is to be noted that, in [14], a similar problem is also con-
sidered, but for an indirect identification approach.

In this paper, we analyze the data informativity for
the direct identification of a module in a network. The
present paper is also related to the notion of network
identifiability (see e.g., [10,7,11,16]). In a nutshell, these
works derive conditions on the excitation pattern in
order to be able to uniquely retrieve certain modules of
the network from closed-loop representations of this net-
work. By closed-loop representations of the network, we
mean the matrix transfer functions between the exoge-
nous signals vk and rk and (some of) the node measure-
ments wk. In this paper, we show that the conditions
for network identifiability and the conditions to guar-
antee the data informativity for a direct identification
approach are rather similar when we restrict attention
to excitations signals rk that are filtered white noises.

Notations: In this paper, vectors of discrete-time signals
and matrices/vectors of discrete-time transfer functions
will be denoted with a bar: x̄(t) and X̄(z) (t represents
the sample number and z denotes both the Z-transform
variable and the shift operator). We denote by xi(t)
(resp. Xik(z)) the ith entry of the vector of signals x̄(t)
(resp. the (i, k)-entry of the matrix of transfer functions
X̄(z)). To define parts of x̄(t) and X̄(z), we will use cal-
ligraphic symbols such as X , Y to denote set of indexes
corresponding to the entries of x̄(t) or corresponding to
the rows and columns of X̄(z). The cardinality of a set of
indexes X will be denoted by nX . For a vector of signals
x̄(t), x̄X (t) is the vector of dimension nX obtained by
only conserving the entries in X (x̄X (t) = (x1(t), x2(t))
for X = {1, 2}). For a matrix of transfer functions X̄(z),

we will denote by X̄X ,Y(z) the part of X̄(z) obtained by
only conserving the rows in X and the columns in Y. As
an example, if X = {1, 2} and Y = {2, 3}, we have:

X̄X ,Y(z) =

(
X̄12(z) X̄13(z)

X̄22(z) X̄23(z)

)

When X or Y are singletons, we use the following short-
hand notation for X̄X ,Y(z): X̄i,Y(z) when X = {i} and
X̄X ,k(z) when Y = {k}. Using these notations, we have
that w̄X (t) = X̄X ,Y(z)x̄Y(t) for any sets X and Y when
w̄(t) = X̄(z)x̄(t). In addition, the matrix In denotes the
identity matrix of dimension n and diag(a1, ..., an) de-
notes the matrix of dimension n× n:

a1 0 0

0
. . . 0

0 0 an


For a matrixA,AT denotes the transpose ofA andA∗ its
conjugate transpose. Finally, for a quasi-stationary sig-

nal x(t), Ēx(t)
∆
= limN→∞

1
N

∑N
t=1Ex(t) (E is the ex-

pectation operator) and ⊗ denotes the Kronecker prod-
uct.

2 Network description

In this paper, we consider the problem of identi-
fying a single module of a stable dynamic network.
This dynamic network is made up of Nmod nodes
that are each characterized by a scalar valued mea-
surable signal wk(t) (k = 1, ..., Nmod). The vector
w̄(t) = (w1(t), w2(t), ..., wNmod(t))T obeys the following
equation [5]:

w̄(t) = Ḡ0(z) w̄(t) + r̄(t) + H̄0(z)ē(t)︸ ︷︷ ︸
=v̄(t)

(1)

Ḡ0(z) =


0 G0,12(z) ... G0,1Nmod(z)

G0,21(z) 0 ... G0,2Nmod(z)

... ... ... ...

G0,Nmod1(z) G0,Nmod2(z) ... 0


(2)

H̄0(z) = diag (H0,1(z), H0,2(z), ...,H0,Nmod(z)) (3)

where all the non-zero entries in (2) are proper transfer
functions and where r̄(t) = (r1(t), r2(t), ..., rNmod(t))T

is a vector of external excitation signals that can be
freely chosen by the user, e.g., for identification pur-
poses (r̄(t) = 0 in normal operations). In (1), the vec-
tor v̄(t) = (v1(t), v2(t), ..., vNmod(t))T represents the pro-
cess noise acting on the network. This process noise
is modeled as v̄(t) = H̄0(z)ē(t) where H̄0(z) is a di-
agonal transfer matrix with diagonal elements H0,k(z)
(k = 1, ..., Nmod) that are all stable, inversely stable and
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monic and where ē(t) = (e1(t), e2(t), ..., eNmod(t))T with
ek(t) (k = 1, ..., Nmod) being zero-mean white noise sig-
nals of variance σ2

ek
(k = 1, ..., Nmod). The covariance

matrix Eē(t)ēT (t) of ē(t) will be denoted by 1 Σ0. We
will not impose any constraint on Σ0 i.e., Σ0 is neither
required to be diagonal nor strictly positive definite.

Let us also make the following additional standard
assumptions on the network:
Assumption 1 Consider the network described by (1)-
(2)-(3). We assume that ē(t) is independent of r̄(t) and is
also such that Eē(t)ēT (t− τ) = 0 for all τ 6= 0. We also
assume that the closed-loop description S̄0(z) = (INmod−
Ḡ0(z))−1 of the network is well-posed 2 and stable so that
the network can also be expressed as

w̄(t) = S̄0(z) (r̄(t) + v̄(t)) . (4)

The above description of the network allows for some
elements vk(t) of v̄(t) to be identically zero 3 . We indeed
just have to choose σ2

ek
= 0 and H0,k(z) = 1 in this case.

In this paper, we will suppose that we know which vk(t)
are equal to zero and which vk(t) are not equal to zero.
For the sequel, let us denote by V the set of indexes k
corresponding to nodes such that σ2

ek
6= 0 i.e., the set of

nodes where ek(t) 6= 0 and vk(t) 6= 0. Using the notations
introduced at the end of Section 1, v̄V(t) (resp. ēV(t))
corresponds to the non-zero elements of v̄(t) (resp. ē(t))
and we have that v̄V(t) = H0,V,V(z)ēV(t). In the sequel,
the covariance matrix EēV(t)ēTV (t) of ēV(t) will be de-
noted by Σ0,V ≥ 0. For the sequel, it is important to note
that this covariance matrix (as any other positive semi-
definite matrix) can be decomposed as Σ0,V = Ξ0,VΞT0,V
where Ξ0,V is a matrix with nV rows and a number of
columns equal to the rank of Σ0,V (see e.g. [7]).

Note also that, similarly to v̄(t), the excitation vec-
tor r̄(t) that we use for identification purpose can also
contain zero elements. Let us thus denote R the set of
indexes k corresponding to nodes such that rk 6= 0.

Remark. Even though the assumption that H̄0(z) is
diagonal is restrictive, the possibility of spatial correla-
tion between the elements of ē(t) allows to generate a
large class of disturbances v̄(t) having as power spec-
trum Φv̄(ω) = H̄0(ejω)Σ0H̄

∗
0 (ejω) (recall that Σ0 ≥ 0

can have non-zero off-diagonal terms). Note also that,
since Σ0 is not assumed strictly positive definite, the
matrix (3) is not the unique monic, stable and inversely
stable matrix that allows to model the random vector
v̄(t) with the aforementioned spectrum [7]. This non-
uniqueness is here not a problem since the identification

1 The variance σ2
ek (k = 1, ..., Nmod) of the white noise en-

tries ek of ē(t) are the diagonal elements of Σ0.
2 Note that the well-possedness of the square matrix S̄0(z)
implies that S0(ejω) is full row rank at (almost) all frequen-
cies ω.
3 This can e.g. be the case if wk represents the output of a
controller.

procedure of the next section will only require that, for
a given k where σ2

e,k 6= 0, vk(t) can be uniquely repre-

sented as vk(t) = H0,k(z)ek(t) with a stable, inversely
stable and monic transfer function H0,k and this prop-
erty obviously holds.

3 Identification of a single moduleG0,ji(z) of the
network

As already mentioned, our objective is to use predic-
tion error identification to accurately identify a single
module of the matrix Ḡ0(z), sayG0,ji(z). We will use for
this purpose the Multiple Input Single Output (MISO)
approach introduced in [5] and consisting in identifying
a model of all the (unknown) elements in the jth row
of Ḡ0(z) and a model of H0,j(z). Before presenting this
identification approach in more detail, let us introduce
some concepts related to the jth row of Ḡ0(z). This row
can contain entries G0,jk(z) that are known to be identi-
cally zero, entries G0,jk(z) that are both known and not
equal to zero and, finally, entries G0,jk(z) that are un-
known. For the sequel, we need to define two additional
set of indexes related to these types of elements: K is the
set of indexes k corresponding to entries G0,jk(z) that
are both known and not equal to zero, while D is the set
of indexes k corresponding to unknown entries G0,jk(z).

Let us now present the MISO identification problem
considered in this paper. For this purpose, let us define,
using the notations introduced at the end of Section 1,
the signal yj(t) as follows:

yj(t)
∆
= wj(t)− rj(t)− Ḡ0,j,K(z) w̄K(t). (5)

Since Ḡ0,j,K(z) is a row vector containing the known non-
zero elements of the jth row of Ḡ0(z), the signal yj(t) is
a computable quantity that obeys (see (1)):

yj(t) = Ḡ0,j,D(z) w̄D(t) +H0,j(z) ej(t) (6)

where Ḡ0,j,D(z) is a row vector of dimension nD con-
taining the unknown elements of the jth row of Ḡ0(z).
As already mentioned, the identification approach will
pertain to the identification of a model of Ḡ0,j,D(z)
and a model of H0,j(z) and, as evidenced by (6),
this identification will be performed using a data set
ZN = {yj(t), w̄D(t) | t = 1...N}. Note that (6) has the
classical form of a data-generating system in MISO (pre-
diction error) identification since the measurable output
yj(t) is made up of the combination of an unknown
stochastic disturbance H0,j(z)ej(t) and of a contribu-
tion of the known input w̄D(t) through an unknown
vector of transfer functions Ḡ0,j,D(z). Since w̄D(t) may
be correlated with ej(t), we are moreover in a situation
that is very similar to direct closed-loop identification
[13]. As in direct closed-loop identification, we will here
also need in many cases 4 to require that Ḡ0,j,D(z) is
stable [13].

4 This additional assumption is not required if (6) is in the
ARX or the ARMAX form.
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Let us thus suppose that we have collected on the
network (1), the data set ZN = {yj(t), w̄D(t) | t =
1...N} and that we have defined a model structureM =
{Ḡj,D(z, θ), Hj(z, θ) | θ ∈ Θ} where Ḡj,D(z, θ) (resp.
Hj(z, θ)) is a model for Ḡ0,j,D(z) (resp. H0,j(z)) and Θ
is the set of all parameter vectors θ leading to a stable
Ḡj,D(z, θ) and to a monic, stable and inversely stable
Hj(z, θ). In the sequel, M is also assumed to have the
following property:
Assumption 2 The model structure M =
{Ḡj,D(z, θ), Hj(z, θ) | θ ∈ Θ} has the property that
there exists a unique parameter vector θ0 ∈ Θ such that
Ḡj,D(z, θ0) = Ḡ0,j,D(z) and Hj(z, θ0) = H0,j(z).

Using the data set ZN and the model structureM, we

can then obtain an estimate θ̂N of θ0 using the following
prediction error criterion [13]:

θ̂N = arg min
θ

1

N

N∑
t=1

ε2j (t, θ) (7)

εj(t, θ) = H−1
j (z, θ)

(
yj(t)− Ḡj,D(z, θ)w̄D(t)

)
. (8)

Using this estimate θ̂N , we obtain a model Ḡj,D(z, θ̂N )
of Ḡ0,j,D(z) and the sought model for G0,ji(z) is one of

the entries of Ḡj,D(z, θ̂N ) (since i necessarily lies in D).
The MISO identification problem (7)-(8) has been intro-
duced in [5]. In Appendix A, we compare this MISO ap-
proach with a Multiple Input Multiple Output (MIMO)
approach consisting in identifying Ḡ0(z) and H̄0(z) en-
tirely.

In the sequel, we will determine the conditions under

which θ̂N is a consistent estimate of θ0 which means that
θ̂N converges to θ0 with probability one when N → ∞.
The consistency of the estimate (7) can also equiva-
lently be established by proving that θ0 is the unique
minimum of Ēε2j (t, θ) [13]. We will prove this in two

steps, i.e. we will first prove that θ0 minimizes Ēε2j (t, θ)
and then we will determine the conditions under which
this minimum is unique. The results will depend on
whether there is noise present in Node j. Let us thus
suppose that this is indeed the case. The simpler case
vj(t) = ej(t) = 0 will briefly be treated in Appendix B.

Assumption 3 In the network (1), the variance σ2
ej of

the noise ej at Node j is such that σ2
ej 6= 0 (j ∈ V).

As shown in the following proposition, θ0 is a mini-
mum of Ēε2j (t, θ) under Assumptions 1, 2 and 3 if we add
a delay condition similar to the one required for the di-
rect closed-loop identification method [13] (see also [5]).

Proposition 1 Consider the stable MISO system (6)
that is an element of a network (1) satisfying Assump-
tions 1 and 3 as well as the sets V and D defined in
Sections 2 and 3, respectively. Consider the prediction
error (8) computed based on data collected on this net-
work and a model structureM satisfying Assumption 2.

Then, θ0 is a minimum of Ēε2j (t, θ) if, for all θ, all the

entries of the vector of transfer functions (Ḡ0,j,D(z) −
Ḡj,D(z, θ))S̄0,D,V(z) are either zero or contain at least
one delay. Moreover, all (eventual) other minimizers θ∗

of Ēε2j (t, θ) are such that εj(t, θ
∗) = εj(t, θ0) = ej(t).

Proof. Using (6), (8) can be rewritten as εj(t, θ) =

H−1
j (z, θ)

(
∆̄Gj,D(z, θ)w̄D(t) +H0,j(z)ej(t)

)
where

∆̄Gj,D(z, θ) = Ḡ0,j,D(z)− Ḡj,D(z, θ). Using (4) and the
sets R and V defined at the end of Section 2, we have
also that w̄D(t) = S̄0,D,R(z)r̄R(t) + S̄0,D,V(z)v̄V(t).
This leads to:

εj(t, θ) = ej(t) + s1(t, θ) + s2(t, θ) (9)

s1(t, θ) =
∆̄Gj,D(z, θ)

Hj(z, θ)
S̄0,D,R(z)r̄R(t)

s2(t, θ) =
∆Hj(z, θ)

Hj(z, θ)
ej(t) +

∆̄Gj,D(z, θ)

Hj(z, θ)
S̄0,D,V(z)v̄V(t)

where ∆Hj(z, θ) = H0,j(z) − Hj(z, θ). Recall that
v̄V(t) = H̄0,V,V(z)ēV(t). Due to the delay condition
in the statement of Proposition 1, to the assump-
tions on ē(t) in Assumption 1 and to the fact that
H0,j(z) is monic, we have that Ē(ej(t)s1(t, θ)) =
Ē(ej(t)s2(t, θ)) = Ē(s1(t, θ)s2(t, θ)) = 0 and thus:

Ēε2j (t, θ) = σ2
ej + Ēs2

1(t, θ) + Ēs2
2(t, θ) (10)

where σ2
ej is the variance of ej(t). Since Ēs2

1(t, θ0) =

Ēs2
2(t, θ0) = 0, it is clear that θ0 minimizes Ēε2j (t, θ).
It is also clear that all eventual other minimizers θ∗

of Ēε2j (t, θ) should also be characterized by Ēs2
1(t, θ∗) =

Ēs2
2(t, θ∗) = 0. By virtue of (9), we have thus also that

all eventual other minimizers θ∗ of Ēε2j (t, θ) should have
the property that εj(t, θ

∗) = εj(t, θ0) = ej(t).

Let us now consider the conditions under which θ0 is
the unique minimum of Ēε2j (t, θ). Due to the property
stated at the end of Proposition 1, this will be the case
if, for each θ ∈ Θ such that Ē(εj(t, θ) − εj(t, θ0))2 = 0,
we have θ = θ0. Due to Assumption 2, this condition
will be respected if, for each (Ḡj,D(z, θ), Hj(z, θ)) ∈M
such that Ē(εj(t, θ)− εj(t, θ0))2 = 0, we have

Ḡ0,j,D(z)− Ḡj,D(z, θ) = 0 and H0,j(z)−Hj(z, θ) = 0
(11)

This property is generally called data informativity in
the literature [13]. Let us formally define this notion.
For this purpose, let us introduce the following notation
using (8):

εj(t, θ) = W̄ (z, θ)x̄(t) =
(
Wy(z, θ), W̄w(z, θ)

)( yj(t)

w̄D(t)

)
(12)
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Wy(z, θ) = H−1
j (z, θ) and W̄w(z, θ) = −H−1

j (z, θ)Ḡj,D(z, θ)
(13)

Definition 1 Consider the data x̄(t) = (yj , w̄
T
D(t))T

collected on a network (1) satisfying Assumptions 1 and 3
and the condition in the statement of Proposition 1. Con-
sider also a model structureM satisfying Assumption 2.
Define the set:

∆W̄ = { ¯∆W (z) = W̄ (z, θ)− W̄ (z, θ0) | θ ∈ Θ} (14)

Then, the data x̄(t) = (yj , w̄
T
D(t))T are said to be infor-

mative wrt.M when, for all ¯∆W (z) ∈∆W̄, we have:

Ē
(

¯∆W (z)x̄(t)
)2

= 0 =⇒ ¯∆W (z) = 0 (15)

We can summarize the above discussion in the follow-
ing proposition whose proof is straightforward.

Proposition 2 Consider the stable MISO system (6)
that is an element of a network (1) satisfying Assump-
tions 1 and 3. Consider the prediction error (12) com-
puted based on data x̄(t) = (yj , w̄

T
D(t))T collected on this

network and a model structure M satisfying Assump-
tion 2. Then, θ0 is the unique minimum of Ēε2j (t, θ) if, in
addition to the delay condition in the statement of Propo-
sition 1, the data x̄(t) = (yj , w̄

T
D(t))T are informative

wrt.M (see Definition 1).

In the sequel, we will derive conditions that will al-
low us to verify that the data x̄(t) = (yj , w̄

T
D(t))T

are informative wrt. M. For this purpose, we will first
rewrite x̄(t) in an appropriate manner. Recall that
yj(t) = wj(t) − rj(t) − Ḡ0,j,K(z)w̄K(t). Using the fact
that wj(t) = S̄0,j,R(z)r̄R(t) + S̄0,j,V(z)v̄V(t), the fact
that w̄K(t) = S̄0,K,R(z)r̄R(t) + S̄0,K,V(z)v̄V(t) and the
fact that w̄D(t) = S̄0,D,R(z)r̄R(t) + S̄0,D,V(z)v̄V(t), it is
clear that we have that:

x̄(t) =

(
yj(t)

w̄D(t)

)
= T̄0,V(z)v̄V(t) + (T̄0,R(z)−M)r̄R(t)

whereM is a matrix of dimension (1+nD)×nR such that
M r̄R(t) = (rj(t), 0, ..., 0)T and where, for any set X ,
T̄0,X (z) is a matrix of transfer functions of dimension
(1 + nD)× nX given by

T̄0,X (z) =

 1 −Ḡ0,j,K(z) 0

0 0 InD


︸ ︷︷ ︸

=L̄(z)


S̄0,j,X (z)

S̄0,K,X (z)

S̄0,D,X (z)

 (16)

Using the expressions above, we can rewrite ¯∆W (z)x̄(t)
(see Definition 1) in the following way:

¯∆W (z)x̄(t) = sē(t) + sr̄(t) (17)

sē(t) = ∆̄W (z) T̄0,V(z) H̄0,V,V(z) ēV(t) (18)

sr̄(t) = ¯∆W (z)
(
T̄0,R(z)−M

)
r̄R(t) (19)

4 Necessary and sufficient condition for data in-
formativity

We have now all the elements to derive the following
proposition that gives a necessary and sufficient condi-
tion for data informativity. We will see that data infor-
mativity can be obtained by adding a quasi-stationary
excitation signal rk(t) at a number of nodes, but also
in certain situations, using the sole excitation of the
process noises vk(t) i.e., r̄(t) = 0 (the so-called costless
identification [3,4]).

Proposition 3 Consider the network (1) described in
Section 2 and satisfying Assumptions 1 and 3. Consider
also the sets V and R defined at the end of Section 2.
Consider finally Definition 1 and observe that we have
expression (17) for ∆̄W (z)x̄(t) with (18) and (19). Then,
in the case where the excitation vector r̄(t) is equal to zero,
the data x̄(t) = (yj , w̄

T
D(t))T are informative wrt. M if

and only if, for all ¯∆W (z) ∈∆W̄,

∆̄W (z) T̄0,V(z) H̄0,V,V(z) Ξ0,V = 0 =⇒ ∆̄W (z) = 0 (20)

where Ξ0,V is such that Σ0,V = Ξ0,VΞT0,V (see the end of

Section 2).

In the case where r̄(t) 6= 0, the data x̄(t) =
(yj , w̄D(t))T are informative wrt. M if and only if, for
all ¯∆W (z) ∈∆W̄,

 ∆̄W (z) T̄0,V(z) H̄0,V,V(z) Ξ0,V = 0

Ē
(
∆̄W (z) (T̄0,R(z)−M) r̄R(t)

)2
= 0

=⇒ ∆̄W (z) = 0

(21)

Before proving this proposition, let us give the fol-
lowing corollary that considers the case of networks for
which Σ0,V is strictly positive definite i.e., the case of
networks where ēV(t) is a full rank vector of signals.

Corollary 1 Consider the framework of Proposi-
tion 3 and suppose that Σ0,V > 0. In this case, the
necessary and sufficient conditions (20) and (21) re-
main of course valid, but equivalent (and simpler)
necessary and sufficient conditions can be obtained
by replacing ¯∆W (z) T̄0,V(z) H̄0,V,V(z) Ξ0,V = 0 by

¯∆W (z) T̄0,V(z) = 0 in both (20) and (21).
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Proof of Proposition 3 and of Corollary 1. Let
us consider Definition 1. Since we have (17) with (18)
and (19) and since ē(t) is independent of r̄(t) (see As-
sumption 1), the left hand-side of (15) is equivalent to{

Ēs2
ē(t) = 0

Ēs2
r̄(t) = 0

(22)

Let us first give the proof of Proposition 3 when the
rank p of Σ0,V can be smaller than nV i.e. p ≤ nV . Since

Σ0,V = Ξ0,VΞT0,V with Ξ0,V ∈ RnV×p, we can rewrite

ēV(t) as ēV(t) = Ξ0,V ēunit(t) where the power spec-
trum matrix Φēunit(ω) of ēunit(t) is equal to the iden-
tity matrix Ip > 0 at all ω. Consequently, Ēs2

ē(t) = 0
is equivalent to ¯∆W (z) T̄0,V(z) H̄0,V,V(z) Ξ0,V = 0. In
other words, the left hand side of (15) is thus equiva-
lent to the left hand side of (21). Consequently, using
Definition 1, (21) is indeed a necessary and sufficient
data informativity condition. Finally, observe that (20)
is equivalent to (21) for the case r̄R(t) = 0 and is there-
fore the necessary and sufficient data informativity con-
dition in the costless case. The proof of Corollary 1 fol-
lows from a similar reasoning. Since Σ0,V > 0, the power
spectrum matrix of H̄0,V,V(z) ēV(t) is guaranteed to be
strictly positive definite at (almost) all ω. Consequently,
Ēs2

ē(t) = 0 is here equivalent to ¯∆W (z) T̄0,V(z) = 0 and
this leads to the desired result.

As we will see in the sequel, the framework that we re-
cently developed in [4] allows to verify whether the data
informativity conditions of Proposition 3 (and of Corol-
lary 1) are satisfied for a given network configuration, for
a given M, for given noise and excitation pattern (i.e.,
for given V and R) and for a given rR(t) that can be a
vector of multisines or a vector of filtered white noises.
However, let us first derive, from the above necessary
and sufficient conditions, some alternative and simpler
data informativity conditions. As opposed to the condi-
tions in Proposition 3 and Corollary 1, these conditions
will only be sufficient, but they will be very simple to
verify in practice.

5 Simple (but only sufficient) data informativ-
ity conditions

As was done in Proposition 3, let us first consider the
costless identification case i.e., the case where r̄(t) = 0.
For the sake of simplicity, let us also consider that
Σ0,V > 0 (like in Corollary 1).

Proposition 4 Consider the network (1) described in
Section 2 with Σ0,V > 0 and satisfying Assumptions 1
and 3. Consider the set V defined at the end of Section 2
and a model structureM satisfying Assumption 2. Then,
in the case where the excitation vector r̄(t) is chosen equal
to zero, the data x̄(t) = (yj , w̄

T
D(t))T are informative

wrt.M if
(i) the set V describing the nodes where a distur-

bance vk is present is such that, at (almost) all
frequencies ω, T̄0,V(ejω) is full row rank i.e.,
rank(T̄0,V(ejω)) = 1 + nD.

Proof. If T̄0,V(ejω) is full row rank at (almost) all fre-
quenciesω, it is clear that the identity ¯∆W (z) T̄0,V(z) = 0
implies that the vector ¯∆W (z) = 0. The result of
Proposition 4 thus follows from Corollary 1.

Let us now consider the case where, besides the cost-
less excitation of vk(t) (k ∈ V), we also add, at the nodes
k ∈ R, external excitations rk that will be assumed to
be filtered white noises (no multisines).

Proposition 5 Consider the network (1) described in
Section 2 with Σ0,V > 0 and satisfying Assumptions 1
and 3. Consider the sets V and R defined at the end of
Section 2 and a model structure M satisfying Assump-
tion 2. Then, the data x̄(t) = (yj , w̄

T
D(t))T are informa-

tive wrt.M if the following conditions all are satisfied:
(ii) the setR describing the nodes where an excitation sig-

nal rk is present is chosen in such a way that the set of
indexes U = V ∪ R has the property that, at (almost)
all frequencies ω, rank(T̄0,U (ejω)) = 1 + nD

(iii) the power spectrum matrix Φr̄R(ω) of the excitation
vector r̄R(t) is such that Φr̄R(ω) > 0 at almost all ω

(iv) If j ∈ R, the excitation signal rj is uncorrelated with
the other elements of r̄R(t).

Proof. See Appendix C.

Remark. Condition (i) and Condition (ii) involve a rank
condition on the matrix T̄0,X (ejω) withX = V orX = U .
As will be shown in the sequel, it can be useful in practice
to reformulate these conditions as rank conditions on a
part of the matrix S̄0(ejω). Let us first consider the fairly
classical case where K = ∅ i.e., Ḡ0,j,K = 0. When K = ∅,
we have (see (16)):

T̄0,X (ejω) =

(
S̄0,j,X (ejω)

S̄0,D,X (ejω)

)
(23)

Consequently, T̄0,X (ejω) is full row rank at (almost) all ω
if and only if S̄0,{j}∪D,X (ejω) is full row rank at (almost)

all ω. Let us now consider the case where Ḡ0,j,K 6= 0.
Since L̄(ejω) in (16) is full row rank, T̄0,X (ejω) is full row
rank at (almost) all ω if S̄0,{j}∪K∪D,X (ejω) is full row
rank at (almost) all ω. A less conservative condition can
also be found if we exclude pathological cases. Let us
indeed note that the first row of T̄0,X (ejω) (see (16)) is a
linear combination of 1+nK row vectors i.e., S̄0,j,X (ejω)
and S̄0,k,X (ejω) with k ∈ K:
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T̄0,X (ejω) =

 S̄0,j,X (ejω)−
∑
k∈K

G0,jk(ejω)S̄0,k,X (ejω)

S̄0,D,X (ejω)


Consequently, except in pathological cases, T̄0,X (ejω)

is full row rank at (almost) all ω if any of the 1 + nK
matrices S̄0,{l}∪D,X (ejω) with l ∈ {j}∪K is full row rank
at (almost) all ω. When comparing this result with the
one when K = ∅, we observe the advantage of having
known elements in the jth row of Ḡ0(z).

Until now, we have used Definition 1 to derive the
data informativity conditions. We can also however use
the equivalent definition presented above Definition 1.
This allows to derive an additional informativity con-
dition where we can relax both the condition on Σ0,V
(Σ0,V can be rank deficient as in Section 2) and the
conditions on the excitation vector r̄R (Condition (iv)
is no longer required).

Proposition 6 Consider the framework of Proposi-
tion 5, but with Σ0,V ≥ 0. Then, the data x̄(t) =
(yj , w̄

T
D(t))T are informative wrt.M if Conditions (iii)

and (v) are both satisfied:
(v) the setR describing the nodes where an excitation sig-

nal rk is present is chosen in such a way that, at (al-
most) all frequencies ω, rank(S̄0,D,R(ejω)) = nD.

Proof. See Appendix D.

The matrices T̄0,V(ejω), T̄0,U (ejω) and S̄0,D,R(ejω) in-
volved in Conditions (i), (ii) and (v) are functions of
the unknown matrix S̄0(ejω). One could thus consider to
check Conditions (i), (ii) and (v) by replacing S̄0(z) =
(INmod − Ḡ0(z))−1 by any stable models of S̄0(z) ob-
tained by replacing the entries of Ḡ0(z) by any full-
order models of these entries. However, this approach is
not necessary here. Indeed, if we recall the remark be-
low Proposition 5, we observe that Conditions (i), (ii)
and (v) can all be checked by verifying that a subma-
trix S̄0,X ,Y(ejω) of S̄0(ejω) (X and Y are some sets of
indexes) has a rank equal to nX at (almost) all ω. This is
important since [11] proposes a simple approach to ver-
ify such a condition. It is indeed shown in [11] that we
can verify whether rank(S̄0,X ,Y(ejω)) = nX at almost
all ω by checking if there are nX vertex-disjoint paths
from the nodes k ∈ Y to the nodes l ∈ X . The latter is
a topological property of the graph of the network (see
below) and it will therefore be very easy in practice to
check and to interpret the data informativity conditions
given in this section. It is to be noted that the equiva-
lence between the rank property and the property on the
number of vertex-disjoint paths can only be proven in a
generic sense. By this, we in a nutshell mean that patho-
logical cases are excluded (see [11] for more details).

As explained in e.g., [11], the graph of the network can
be obtained by drawing a directed edge from Node k to
Node l ifG0,lk(z) 6= 0. A path from Node k to Node l 6= k
is a series of adjacent edges that starts in Node k and
ends in Node l. Since rk and vk have a direct influence
on wk, there is always a path from Node k to Node k.
Finally, vertex-disjoint paths are paths that do not pass
through the same nodes/vertexes.

Fig. 1. Graph representation of (24). Each circle represents
a node and the edges represent the structure of Ḡ0(z).

Example 1 Let us consider a network described by
Nmod = 3 nodes and the following matrix Ḡ0(z):

Ḡ0(z)
∆
=


0 0 G0,13(z)

0 0 0

G0,31(z) G0,32(z) 0

 (24)

The graph of this network is represented in Figure 1. In
this figure, we see that there is no path from Node 1 to
Node 2 and no path from Node 3 to Node 2, but there e.g.,
exists a path from Node 3 to Node 1 and from Node 2
to Node 1. Let us now e.g., choose Y = {2, 3} and X =
{1, 2} and let us observe that that there are two vertex-
disjoint paths from the nodes k ∈ Y to the nodes l ∈ X
i.e., the path 2→ 2 (since r2/v2 has a direct influence on
w2) and the path 3 → 1. If Y = {2, 3} and X = {1, 3},
there is only one vertex-disjoint path from the nodes k ∈
Y to the nodes l ∈ X e.g., the path 3 → 3. The other
paths from the nodes k ∈ Y to the nodes l ∈ X (i.e., the
path 2→ 3→ 1, the path 2→ 3 and the path 3→ 1) all
contain Node 3 and are thus not vertex disjoint with the
path 3→ 3.

Since, for any k, there is always a path from Node k
to Node k, it is clear that X ⊆ Y is a sufficient con-
dition to have nX vertex-disjoint paths from the nodes
k ∈ Y to the nodes l ∈ X and thus, generically, to have
rank(S̄0,X ,Y(ejω)) = nX at almost all ω. Let us use this
property to interpret Conditions (i) and (ii) and let us for
simplicity restrict attention to the classical case where
K = ∅. As shown in the remark below Proposition 5,
when K = ∅, Condition (i) is respected if and only if
rank(S̄0,{j}∪D,V(ejω)) = 1 + nD at (almost) all ω. Us-
ing the property described at the beginning of this para-
graph, among all the cases where this condition holds,
we have e.g., the case where ({j} ∪D) ⊆ V. Since j ∈ V
(Assumption 3), ({j} ∪D) ⊆ V entails that, besides the
nonzero vj , a nonzero vk has also to be present at at
least all the nodes k ∈ D.

Similarly, as shown in the remark below Proposition 5,
when K = ∅, Condition (ii) is respected if and only

7



if rank(S̄0,{j}∪D,U (ejω)) = 1 + nD at (almost) all ω.
Among all the cases where this condition holds, we have
e.g., the case where ({j} ∪ D) ⊆ U . The latter entails
that a nonzero excitation signal rk is applied at at least
all the nodes k such that k ∈ D and k 6∈ V. Note that this
particular choice forR is equivalent to the data informa-
tivity condition proposed in Theorem 2 in [6] (when this
result is particularized to the case of a diagonal H̄0(z)),
but is only one of many other possible choices to satisfy
Condition (ii).

Let us now disgress a bit by comparing the above re-
sults with the results of network identifiability [16]. It is
indeed to be noted that similar rank conditions as the
ones in this section are the conditions proposed in [16]
to check that a network is identifiable or that part of
a network is identifiable. Let us recall this notion: the
part (Ḡ0,j,D(z), H0,j(z)) of the network (1) is said iden-
tifiable if we can uniquely retrieve (Ḡ0,j,D(z), H0,j(z))
from the power spectrum of S̄0(z)v̄(t) and the closed-
loop transfer matrix between r̄R(t) and w̄(t) (which is a
part of S̄0(z)). Using the results of [16], a sufficient con-
dition for this to hold is that rank(S̄0,D,Q(ejω)) = nD
at (almost) all ω (Q = R∪ (V\{j})). It is clear that this
condition is very close to Condition (ii) of Proposition 5
(see the remark below this proposition). Moreover, if, be-
sides the other conditions of Proposition 5, we also sup-
pose that ej(t) is uncorrelated with the other elements of
ēV(t), we can replace Condition (ii) by the condition that
rank(S̄0,D,Q(ejω)) = nD at (almost) all ω (see Appendix
E). This thus indicates that, for filtered white noises
rk, the notion of network identifiability is closely related
to the notion of data informativity for the identification
method of Section 3. To understand this, it is useful to
observe that, when r̄R is made up of filtered white noises,
there is in a way an equivalence between, on the one
hand, the information in the measurements w̄(t) and, on
the other hand, the information in the power spectrum
of S̄0(z)v̄(t) and in the closed-loop transfer matrix be-
tween r̄R(t) and w̄(t) (see (4)). Consequently, the notion
of network identifiability is very close to the notion of
being able to uniquely retrieve (Ḡ0,j,D(z), H0,j(z)) from
the measurements w̄(t) (i.e. the data informativity for
the identification method of Section 3). Indicating this
close relationship for filtered white noise excitation vec-
tors is a contribution of the present paper.

As a final remark in this section, let us stress that all
the data informativity conditions in this section are in-
dependent of the model structure M (i.e. they are in-
dependent of the model order) which directly indicates
their conservatism. These conditions also exclude the
case where the excitation vector r̄R(t) is e.g., made of
multisines. These shortcomings will be alleviated by re-
considering the necessary and sufficient conditions of
Proposition 3 (and of Corollary 1).

6 Using the necessary and sufficient conditions
of Proposition 3

We can verify the rather complex necessary and suf-
ficient conditions in Proposition 3/Corollary 1 by fol-

lowing an approach similar to the one in [4]. Indeed,
Lemma 6 in [4] can be used to derive a left factoriza-
tion of ¯∆W (z) i.e., ¯∆W (z) = Q−1(z)Υ(z) with Υ(z) a
row polynomial vector and Q(z) a scalar transfer func-
tion (corresponding to the least common factor of the
denominator of all the entries of ¯∆W (z)). Focusing first
on the condition (20), we can also derive a right factor-
ization N(z)V −1(z) of T̄0,V(z)H̄0,V,V(z)Ξ0,V with N(z)
and V (z) polynomial matrices. The condition (20) is
thus equivalent to Υ(z)N(z) = 0 =⇒ Υ(z) = 0. Using
a similar approach as in Section 6 of [4], we can rewrite
this condition as δTA = 0 =⇒ δ = 0 for a given matrix
A that can be constructed with Υ(z) and N(z) and for
a real vector of coefficients δ such that δ = 0 is equiv-
alent with Υ(z) = 0 (and thus with ¯∆W (z) = 0). We
can thus verify the data informativity condition (20) by
checking if the matrix A is full row rank.

Let us now consider the second equation on the left
hand side of (21) and let us first suppose that r̄R(t) is
filtered white noise. More particularly, let us suppose
that r̄R(t) is generated as r̄R(t) = F (z)q̄(t) with F (z) a
known matrix of transfer functions of dimension nR×nq
and a vector q̄(t) of dimension nq such that Φq̄(ω) > 0
at all frequencies ω. Then, the second equation on the
left hand side of (21) can be replaced by

¯∆W (z)
(
T̄0,R(z)−M

)
F (z) = 0 (25)

if F (ejω) is not full row rank at (almost) all ω,
while this second equation can be replaced with

¯∆W (z)
(
T̄0,R(z)−M

)
= 0 if F (ejω) is full row rank

at (almost) all ω. Let us focus on the most general
condition (25) in the sequel. Using the factorization
Q−1(z)Υ(z) of ∆̄W (z) and a factorization N2(z)V −1

2 (z)
of
(
T̄0,R(z)−M

)
F (z), we have that (25) is equivalent

to Υ(z)N2(z) = 0. Using the same approach discussed in
the previous paragraph, we can rewrite Υ(z)N2(z) = 0
as δTB = 0 with the same δ as in the previous paragraph
and with a matrix B that depends on Υ(z) and N2(z).

Let us now suppose that each element of r̄R is a mul-
tisine and let us show that the second equation on the
left hand side of (21) can also be rewritten as δTB = 0
for a given matrix B. Using T̄0,R(z), we can compute the
vector of signals d̄(t) = (T̄0,R(z)−M) r̄R(t). This vector
d̄(t) is also made up of multisines and these multisines
have the general expression given in equation (3) in [4].
Using the factorization Q−1(z)Υ(z) of ¯∆W (z), the sec-
ond equation of the left-hand side of (21) is equivalent
to Ē(Υ(z)d̄(t))2 = 0 and, as shown in Section 7 in [4],
we can also rewrite Ē(Υ(z)d̄(t))2 = 0 as δTB = 0.

If r̄R contains both filtered white noises and multi-
sines, we can also rewrite the second equation on the
left hand side of (21) as δTB = 0 for a given matrix B.
Indeed, using the approaches described in the previous
two paragraphs and the fact that the multisines and the
filtered white noises are independent, a matrix B1 can
be constructed for the multisine part of r̄R and a matrix
B2 can be constructed for the filtered white noise part
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of r̄R. The matrix B is then given by B = (B1, B2).
Based on the above analysis, we have shown that the

data informativity condition (21) is equivalent to:{
δTA = 0

δTB = 0
=⇒ δ = 0 (26)

and we can verify whether (26) holds by checking that
the matrix (A B) is full row rank 5 .

Note that the number of columns in B are related to
the number of sinusoids in r̄R (for multisne r̄R) or to
the complexity of F (z) and to how large nq is (for fil-
tered white noise r̄R). Consequently, if we face a situ-
ation where we do not have data informativity, we can
easily determine what measures have to be taken in or-
der to increase the informativity of the data (see Section
8 of [4] for more details).

The matricesA and B discussed above are functions of
the coefficients of the unknown matrix S̄0(z) (see (16)).
As mentioned in the previous section, we can neverthe-
less check the data informativity in a generic manner by
replacing S̄0(z) = (INmod−Ḡ0(z))−1 by any stable mod-
els of S̄0(z) obtained by replacing the entries of Ḡ0(z) by
any full-order models of these entries. The models of the
entries of Ḡ0(z) does not need to be accurate, but they
should be full-order. Consequently, to verify the data in-
formativity using Proposition 3, we need to know the
orders of all the entries of Ḡ0(z) and not only the entries
in its jth row (see Assumption 2).

7 First numerical illustration

Let us consider a network (1) with Nmod = 3 nodes
where Ḡ0(z) is given by:

Ḡ0(z)
∆
=


0 0 0.5z−1

0.5z−1 0 0.5z−1

0.5z−1 0.5z−1 0

 (27)

and where H̄0(z) = I3 and Σ0 = diag(0, 0.1, 0). Let us
also assume that j = 2 and that there is no known ele-
ment in the second row of Ḡ0(z) (K = ∅) i.e., the iden-
tification procedure of Section 3 pertains to the consis-
tent identification ofG0,21(z) andG0,23(z) (sinceH0,j =
1). This means that D = {1, 3}, while V = {2} and
Σ0,V = 0.1. We also observe that Assumption 3 is re-
spected.

For this network, we will prove, via the approach
of Section 6, that a consistent estimate of the trans-
fer functions G0,21(z), G0,23(z) can be obtained via
the (costless) excitation of the noise v2(t) = e2(t).
To prove this result, we observe that we are here in

5 Note that this rank condition on (A B) is generally only
a sufficient condition for (26) to hold since the vector δ does
not always cover the whole vectorial space [4]. However, the
introduced conservatism is generally much lower than with
the sufficient conditions of Section 5 as shown in the examples
of Section 7 and 8.

the conditions of Corollary 1 since Σ0,V = 0.1 >
0. We can thus factorize ¯∆W (z) T̄0,V(z) instead
of ¯∆W (z) T̄0,V(z) H̄0,V,V(z) Ξ0,V . For this pur-
pose, let us observe, using (23), that T̄0,V(z) =
(S̄0,22(z), S̄0,12(z), S̄0,32(z))T . This permutation of the
second column of S̄0(z) can be factorized asN(z)V −1(z)
with:

N(z) =
(

1− 0.25z−2 0.25z−2 0.5z−1
)T

and V (z) = (1 + 0.309z−1)(1 + 0.5z−1)(1 − 0.808z−1).
Recall now that we consider here that j = 2. Us-
ing (27), a model structureM satisfying Assumption 2
is M = {Ḡ2,D(z, θ) =

(
θ1z
−1 θ2z

−1
)
, H2(z, θ) = 1}

(θ = (θ1, θ2)T ). Using (13), the left factorization
Q−1(z)Υ(z) of ∆̄W (z) is here also directly given by
Q(z) = 1 and Υ(z) =

(
0, δθ1z

−1, δθ2z
−1
)

(with
δθ1 = θ1 − θ0,1 and δθ2 = θ2 − θ0,2).

Defining δ = (δθ1, δθ2)T , we observe, as mentioned in
Section 6, that δ = 0 is indeed equivalent to ¯∆W (z) =
Υ(z) = 0. Moreover, the term Υ(z)N(z) discussed in
Section 6 can be written successively as follows:

Υ(z)N(z) =
(
0 δθ1z

−1 δθ2z
−1)


1− 0.25z−2

0.25z−2

0.5z−1



Υ(z)N(z) = δT

 0.25z−3

0.5z−2


Υ(z)N(z) = δT

 0 0.25

0.5 0


︸ ︷︷ ︸

=A

 z−2

z−3



Consequently, it is clear that Υ(z)N(z) = 0 is equiva-
lent to δTA = 0. Since A is full row rank, we have that
δTA = 0 implies δ = 0 and we have thus data infor-
mativity under the sole excitation of the unknown dis-
turbance v2(t). The data informativity property is con-
firmed by performing an identification with a large N
in these conditions (i.e. r̄(t) = 0 and V = {2}) and by

observing that θ̂N is indeed a very close estimate of θ0.
We can thus prove the data informativity using Corol-
lary 1 and the procedure listed in Section 6 while it is
not possible to do so using Proposition 4 (T̄0,V(z) be-
ing a permutation of the second column of S̄0(z), it can
therefore not be full row rank). This shows the useful-
ness of the procedure of Section 6 to check the necessary
and sufficient conditions of Section 4.

8 Second numerical illustration

We consider here a network with Ḡ0(z) given by (24)

with G0,31(z) = 0.173z−1

A0(z) and G0,32(z) = 0.259z−1

A0(z) ,
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G0,13(z) = 0.3 G0,32(z) (A0(z) = 1 − 0.741z−1). More-
over, v̄(t) = (I3 ⊗ 1

A0(z) )ē(t) with ē(t) a white noise

vector of covariance matrix Σ0 = diag(0, 0, 0.1). We
observe that the network is in ARX form.

Let us assume that j = 3 and that K = ∅ i.e., we want
to identify consistently the transfer functions G0,31(z),
G0,32(z) and H3,0(z). This means that D = {1, 2}, while
V = {3} and Σ0,V = 0.1. We observe that Assumption 3
is respected. In this network, we do not have informa-
tivity with the sole excitation of v3(t). Indeed, w2(t) is
equal to zero when r2(t) = v2(t) = 0, and it will there-
fore be impossible to identify G0,32(z). However we will
prove that we obtain data informativity by e.g., adding
to Node 2 a signal r2(t) = cos(ω0t) with an arbitrary
frequency ω0, say ω0 = 0.1. Let us prove this using the
procedure of Section 6.

Since K = ∅, we have, using (23), that T̄0,V(z) =
(S̄0,33(z), S̄0,13(z), S̄0,23(z))T . This permutation of the
third column of S̄0(z) can be factorized as N(z)V −1(z)
with:

N(z) =


1− 1.482z−1 + 0.5488z−2

0.0778z−1 − 0.0576z−2

0


and V (z) = 1 − 1.482z−1 + 0.5354z−2. Since j = 3, a

model structureM satisfying Assumption 3 is described
by H3(z, θ) = 1/(1 + az−1) and:

Ḡ3,D(z, θ) =

(
b1z
−1

1 + az−1

b2z
−1

1 + az−1

)
We have thus θ = (a, b1, b2)T . Using (13), the left

factorization Q−1(z)Υ(z) of ¯∆W (z) is here given by
Q(z) = 1 and Υ(z) =

(
δaz−1, δb1z

−1, δb2z
−1
)
. Defin-

ing δ = (δa, δb1, δb2)T , the term Υ(z)N(z) discussed
in Section 6 has the following expression:

Υ(z)N(z) = δT


1 1.482 0.5488

0 0.0778 −0.0576

0 0 0


︸ ︷︷ ︸

=A


z−1

z−2

z−3

 (28)

Since the matrix A is not full row rank 6 , we cannot
infer data informativity with the sole excitation of v3(t),
which, as mentioned above, is an expected result.

Let us thus compute the matrix B when we have
r2(t) = cos(ω0t) and r1(t) = r3(t) = 0 (i.e. R =
{2}). Consequently, d̄(t) = (T̄0,R(z) − M) r2(t) =

6 If we do not wish to identify G0,32(z) (e.g., because this
transfer function is known i.e., K = {2}), we then have
informativity with the sole excitation of v3(t). Indeed, it can
be proven that, in this case, A reduces to the first two rows
of the matrixA given in (28) and this matrix is full row rank.

T̄0,R(z) r2(t) (since rj=3(t) = 0). Using (23), T̄0,R(z) =
(S̄0,32(z), S̄0,12(z), S̄0,22(z))T i.e., a permutation
of the second column of S̄0(z). Let us compute
the frequency response of T̄0,R(z) for ω0 = 0.1:
T̄0,R(ejω0) = (0.94−0.53 j, 0.19−0.24 j, 1)T Let us now
rewrite the term Υ(z)d̄(t) using δ = (δa, δb1, δb2)T :
Υ(z)d̄(t) = δT (d1(t − 1), d2(t − 1), d3(t − 1))T . Using
Euler formula and the expression of T̄0,R(ejω0), we can
write:

Υ(z)d̄(t) = δT B

 0.5 ejω0t

0.5 e−jω0t



B =


(0.94− 0.53 j) e−jω0 (0.94 + 0.53 j) ejω0

(0.19− 0.24 j) e−jω0 (0.19 + 0.24 j) ejω0

e−jω0 ejω0


Using this expression, Ē(Υ(z)d̄(t))2 = 0 is equivalent

to δTB = 0 (see also Section 7 of [4]).
Let us now consider (A B) to asses the data informa-

tivity. Since the rank of the matrix (A B) is equal to 3,
we can thus conclude that we will get a consistent esti-
mate of G0,31(z), G0,32(z) and H3,0(z) using an excita-
tion r2(t) = cos(0.1t) and the noise disturbance v3(t).
The data informativity property can here also be con-
firmed by performing an identification with a large N
in these conditions (i.e. r̄(t) = (0, cos(0.1t), 0)T and

V = {3}) and by observing that θ̂N is indeed a very close
estimate of θ0. It is also clear that, due to the above
result, data informativity will also be obtained if r2 is
made up of more than one sinusoid and if r1 and r3 are
also multisines (at other frequencies than the sinusoids
in r2). This indeed only add more columns to B. Using
the procedure of Section 6, we can also prove that we
have data informativity when r2 is filtered white noise.

It is to be noted that we cannot use the conditions
in Section 5 to derive the above results. Indeed, those
results do not pertain to multisines and, even when r2

is filtered white noise, the data informativity can also
not be inferred for R = {2} from Propositions 5 or 6.
Indeed, since 1 + nD = 3 and nU = 2, T̄0,U (z) is a ma-
trix of dimension 3 × 2 and thus Condition (ii) is not
satisfied. Moreover, since nD = 2 > nR = 1, Con-
dition (v) is also not satisfied. We can however infer
the data informativity from these sufficient results when
R = {1, 2} or R = {2, 3} and when the two excitation
signals in r̄R are mutually independent filtered white
noises (to be sure to satisfy both Conditions (iii) and
(iv)). Let us first consider R = {1, 2}. For this R, we
have that U = R ∪ V = {j} ∪ D. Using (23), we have
thus that rank(T̄0,U (ejω)) = rank(S̄0,U,U (ejω)). From
the discussion below Example 1 in Section 5, it is clear
that T̄0,U (ejω) is full row rank at all ω (i.e. Condition
(ii) is respected). Let us now consider R = {2, 3}. Since
U = R ∪ V = R, we have that T̄0,U (ejω) is a matrix
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of dimension 3 × 2 and Condition (ii) cannot be sat-
isfied. However, we can nevertheless infer the data in-
formativity for R = {2, 3} from Proposition 6 since
rank(S̄0,D,R(ejω)) = nD = 2 at all frequencies. The lat-
ter can be checked by computing the rank of S̄0,D,R(ejω)
at each frequency (we have here access to S̄0) or by ob-
serving that there are indeed two vertex-disjoint pathes
from R = {2, 3} to D = {1, 2} (see Example 1 in Sec-
tion 5).

Note that the choice R = {1, 3} does not lead to data
informativity. Indeed, for this choice ofR, w2(t) is equal
to zero (r2(t) = v2(t) = 0) and it will be impossible to
identify G0,32(z).

9 Optimal experiment design

Using the data informativity conditions of Propo-
sition 3, we can show that consistent estimates of
(Ḡ0,j,D(z), H0,j(z)) can be obtained for different sets
R and different types of excitation vectors r̄R(t) (mul-
tisines, filtered white noises, ...). This defines different
identification options. Since consistency is an asymp-
totic property, these results do not say anything about

the accuracy of the identified parameter vector θ̂N
(which defines the model of (Ḡ0,j,D(z), H0,j(z))) under
these different options. In this section, we will analyze

the accuracy of θ̂N and use optimal experiment design
to select an optimal R as well as an optimal signal
vector r̄R(t).

Since θ̂N is a consistent estimate of θ0 and εj(t, θ0) =

ej(t), the estimate θ̂N is also (asymptotically) nor-
mally distributed around θ0 with a covariance matrix

Pθ that is given by Pθ =
σ2
ej

N

(
Ēψj(t, θ0)ψTj (t, θ0)

)−1

with ψj(t, θ) =
dεj(t,θ)
dθ . Our initial goal was to identify

a model of G0,ji(z) = Gji(z, θ0) = Gji(z, θ0,ji) where
θ0,ji is a part of θ0. This means that we can always write
θ0,ji = S θ0 for some matrix S. Let us also define define

Pθ,ji as the covariance matrix of S θ̂N . We have then
Pθ,ji = SPθS

T .
We want to determine the excitation pattern R that,

for an identification experiment of duration N , yields an
acceptable covariance matrix Pθ,ji with the least excita-
tion power. For this purpose, we will first assume that
nR = Nmod i.e., R = {1, 2, ..., Nmod} and we will de-
termine the power spectrum matrix Φr̄ of the excitation
vector r̄(t) having the smallest power while guarantee-

ing that the estimate θ̂N obtained via an identification
experiment of duration N with this excitation has a co-
variance covariance matrix Pθ that satisfies the following
constraint Pθ,ji ≤ Radm where Radm specifies the de-
sired accuracy (a diagonal Radm e.g., allows to constrain

the standard deviations of each entries of S θ̂N [9]). We
thus require Radm − SPθST ≥ 0 and, using Schur com-
plement, this gives the following optimal experiment de-
sign problem:

min
Φr̄(ω)

trace

(
1

2π

∫ π

−π
Φr̄(ω) dω

)

subject to

(
Radm S

ST P−1
θ

)
≥ 0 (29)

This optimization problem is convex since, as will be
shown in the sequel, P−1

θ is an affine function of Φr̄(ω).
Note also that the objective function of the optimization
problem (29) has a l1-norm structure and it is frequently
observed that such objective functions, when minimized
under convex constraints, generate a sparse solution (see
e.g., [15]). Consequently, we can expect that the optimal
excitation vector r̄(t) will have some elements rk equal
to zero, determining in this way the optimal excitation
pattern Ropt.

Let us now derive the affine relation between Φr̄(ω)
and P−1

θ . Using the philosophy introduced in [8,2] and
denoting the dimension of θ by nθ, we have that

ψj(t, θ0) = Γ1(z, θ0) w̄D(t) + Γ2(z, θ0) ej(t)

where Γ1(z, θ) is a matrix of dimension nθ × nD whose

lth row is given by H−1
0,j (z)

dḠj,D(z,θ)
dθl

(θl is the lth entry

of θ ∈ Rnθ ) and Γ2(z, θ) is a vector of dimension nθ
whose lth entry is given by H−1

0,j (z)
dHj(z,θ)
dθl

. Using now

the fact that, for any set R, w̄D(t) = S̄0,D,R(z)r̄R(t) +
S̄0,D,V(z)H0,V,V(z)ēV(t), we can rewrite the previous
equation as follows:

ψj(t, θ0) = Γr̄(z, θ0)r̄R(t) + Γē(z, θ0)ēV(t)

with Γr̄(z, θ0) = Γ1(z, θ0)S̄0,D,R(z) and with Γē(z, θ0) =
Γ2(z, θ0) mT

j + Γ1(z, θ0)S̄0,D,V(z)H0,V,V(z) where the
column vector mj of dimension nV is a unit vector such
that mT

j ēV(t) = ej(t). As mentioned above, we here
choose R = {1, 2, ..., Nmod} for the experiment design
and we have thus r̄R(t) = r̄(t). Consequently,

P−1
θ = N

σ2
ej

(
Ēψj(t, θ0)ψTj (t, θ0)

)
= Rr̄(Φr̄(ω), θ0) +Rē(θ0)

Rr̄(Φr̄(ω), θ0) = N
σ2
ej

1
2π

∫ π
−π Γr̄(e

jω, θ0) Φr̄(ω) Γ∗r̄(e
jω, θ0) dω

Rē(θ0) = N
σ2
ej

1
2π

∫ π
−π Γē(e

jω, θ0) Σ0,V Γ∗ē(e
jω, θ0) dω

with Σ0,V the covariance matrix of ēV(t).
Since Φr̄(ω) is a variable of infinite dimension, we need

to choose a linear parametrization for Φr̄(ω) to solve the
convex optimization problem (29) [12,3,1]. We can e.g.,
choose the parametrization given in [1] and that corre-
sponds to filtered white noise r̄(t). However, in order to
simplify this complex optimization problem, we will here
restrict attention to a parametrization corresponding
to an excitation vector r̄(t) made up of mutually inde-
pendent white noises: Φr̄(ω) = diag(c1, c2, ..., cNmod) ∀ω
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where ck (k = 1, .., Nmod) is the to-be-determined vari-
ance of rk.

Remark. Like in all optimal experiment design prob-
lems,Pθ depends on the unknown θ0 (i.e. the true param-
eter vector describing H0,j(z) and Ḡ0,j,D(z)) and also
on the unknown matrices S̄0(z) and H̄0(z). Initial esti-
mates of these unknown quantities are thus necessary to
solve the optimization problem (29).

Numerical illustration. Let us consider the same
network as in Section 7. For that network, as pro-
posed above, we will solve (29) using Φr̄(ω) =
diag(c1, c2, c3) ∀ω where ck (k = 1, .., 3) is to-be-
determined variance of rk. Suppose that we are inter-
ested in identifying G0,21(z) = 0.5z−1 (i.e., j = 2 and
i = 1). As shown in Section 7, the model structure M
considered for this identification is M = {Ḡ2,D(z, θ)}
with Ḡ2,D(z, θ) = (θ1z

−1, θ2z
−1) (θ = (θ1, θ2)T ). We

suppose that the maximal allowed variance for the es-

timate θ̂N1 of the coefficient θ0,1 = 0.5 is Radm = 10−5.
In Section 7, we have proven that we have data infor-
mativity when r̄(t) = 0. Consequently, if we choose

N sufficiently large, the optimal spectrum Φoptr̄ (ω)
will be equal to zero (Ropt = ∅). This is possible be-
cause the matrix Rē(θ0) is strictly positive definite and
proportional to N . However, for N = 1000, we ob-
tain Φoptr̄ (ω) = diag(9.36, 0, 0) which corresponds to a
unique excitation signal on Node i = 1 . Consequently,
the optimal excitation pattern is Ropt = {i} = {1}.

If we are interested in identifying G0,23(z) = 0.5z−1

(j = 2 and i = 3), we observe the same phe-
nomenon since the optimal spectrum is given by
Φoptr̄ (ω) = diag(0, 0, 7.27) i.e., Ropt = {i} = {3}.
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A Comparison of the MISO approach with the
MIMO approach

Let Ḡ(z) denotes a model of the matrix Ḡ0(z)
(see (2)) and H̄(z) a model for the diagonal matrix
H̄0(z) (see (3)). Then, the prediction error ε̄(t) for the
one-step ahead predictor corresponding to the MIMO
data generating system (1) is given by [13]:

ε̄(t) = H̄−1(z)
(
w̄(t)− r̄(t)− Ḡ(z)w̄(t)

)
(A.1)

Indeed, when Ḡ(z) = Ḡ0(z) and H̄(z) = H̄0(z), ε̄(t) =
ē(t). Now, under our assumption of a diagonal H̄0 and
thus of a diagonal H̄(z), we observe that the jth element
of ε̄(t) is equivalent to (8).

Let us first suppose that Eej(t)ek(t) = 0 for all k 6= j.
Then, the standard MIMO prediction error criterion [13]
with the prediction error (A.1) is the sum of the criterion
1
N

∑N
t=1 ε

2
j (t) in (7)-(8) and of a criterion pertaining to

the models of the rows k 6= j of Ḡ0(z) and H̄0(z). Conse-
quently, if we suppose that all entries of Ḡ and H̄ are in-
dependently parametrized, besides the fact that (7)-(8)
is a much simpler identification problem, there is also no
disadvantage from an accuracy point-of-view to use (7)-
(8) instead of the MIMO criterion to obtain a model of
Ḡ0,j,D(z) and of H0,j(z).

When ej is correlated with at least one of the other ek
(k 6= l) in ē(t), the low complexity of the MISO ap-
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proach (7)-(8) is still preferred, although then some ac-
curacy will be lost with respect to the MIMO criterion.

B Data informativity when j 6∈ V
The case j 6∈ V corresponds to vj(t) = ej(t) = 0. Con-

sequently, (6) is here given by yj(t) = Ḡ0,j,D(z)w̄D(t).
The identification criterion (7) can thus be considered
with εj(t, θ) = yj(t) − Ḡj,D(z, θ)w̄D(t) (Hj(z, θ) = 1).
The true parameter vector is obviously a minimum of
Ēε2j (t, θ) since Ēε2j (t, θ0) = 0. It is to be noted that, as
opposed to the case where j ∈ V, the latter property
holds even if there exist τ such that Eē(t)ēT (t− τ) 6= 0
and even if the delay condition in the statement of Propo-
sition 1 is not satisfied.

On the other hand, like in the case where j ∈ V,
the minimum θ0 of Ēε2j (t, θ) is unique if the data x̄(t)

are informative with respect to M = {Ḡj,D(z, θ)} (see
Definition 1). In the left hand side of (15), ∆̄W (z)x̄(t)
is here given by (Ḡj,D(z, θ) − Ḡj,D(z, θ0))w̄D(t) with
w̄D(t) = S̄0,D,R(z)r̄R(t)+S̄0,D,V(z)v̄V(t). Consequently,
using the shorthand notation ∆̄Gj,D(z) = Ḡj,D(z, θ) −
Ḡj,D(z, θ0), the necessary and sufficient condition (21)
for data informativity becomes:

 ∆̄Gj,D(z) S̄0,D,V(z) H̄0,V,V(z) Ξ0,V = 0

Ē
(
∆̄Gj,D(z) S̄0,D,R(z) r̄R(t)

)2
= 0

=⇒ ∆̄Gj,D(z) = 0

C Proof of Proposition 5

Let us construct, using r̄(t), the vector of signals r̄bis(t)
as: r̄bis(t) = (r1(t), ..., rj−1(t), 0, rj+1(t), ..., rNmod(t))T .
We can then rewrite (17) as ∆̄W (z)x̄(t) = srj (t) +
scomp(t) with

srj (t) = ¯∆W (z)
(
T̄0,{j}(z)− (1, 0..., 0)T

)
rj(t)

scomp(t) = ¯∆W (z) T̄0,U (z) ξ̄(t) (C.1)

where U = (R\{j}) ∪ V = R∪ V (recall that j ∈ V due
to Assumption 3) and where ξ̄(t) is a vector of dimension
nU containing the non-zero elements of r̄bis(t) + v̄(t).
Since srj (t) and scomp(t) are independent due to Condi-
tion (iv), the left hand side of (15) is equivalent to:{

Ēs2
rj (t) = 0

Ēs2
comp(t) = 0

(C.2)

and, similarly as in the proof of Proposition 4, we have
thus to prove that, under the conditions of Proposi-
tion 5, (C.2) implies that ¯∆W (z) = 0. For this purpose,
let us analyze the properties of the power spectrum ma-
trix Φξ̄(w) of ξ̄(t). The elements of the vector ξ̄(t) are
equal to vk (if k ∈ V and k 6∈ R\{j}), to vk+rk (if k ∈ V
and k ∈ R\{j}) or to rk (if k 6∈ V and k ∈ R\{j}). Due
to Σ0,V > 0, Condition (iii) and the fact that r̄(t) and
ē(t) are uncorrelated (see Assumption 1), the elements of

ξ̄(t) are thus linearly independent and we have thus that
Φξ̄(ω) > 0 at (almost) all ω. This together with Condi-
tion (ii) also implies that the power spectrum matrix of
the vector T̄0,U (z)ξ̄(t) in (C.1) is strictly positive definite
at (almost) all ω. Consequently, under the conditions of
Proposition 5, we have that the second equation of (C.2)
implies that ¯∆W (z) = 0. This concludes the proof.

D Proof of Proposition 6

An alternative formulation of Definition 1 is that the
data x̄(t) = (yj , w̄

T
D(t))T are informative wrt.M if and

only if we have (11) whenever Ē(εj(t, θ)− εj(t, θ0))2 = 0
for a given (Ḡj,D(z, θ), Hj(z, θ)) ∈ M. Due to (9),
εj(t, θ) − εj(t, θ0) = s1(t, θ) + s2(t, θ) and Ē(εj(t, θ) −
εj(t, θ0))2 = Ēs2

1(t, θ) + Ēs2
2(t, θ). Consequently, the

data x̄(t) = (yj , w̄
T
D(t))T are informative wrt.M if and

only if we have (11) whenever Ēs2
1(t, θ) = Ēs2

2(t, θ) = 0
for a given (Ḡj,D(z, θ), Hj(z, θ)) ∈ M. Let us con-
sider the expression for s1(t, θ). Due to Conditions (iii)
and (v), the power spectrum matrix of S̄0,D,R(z)r̄R(t)
is strictly positive definite at (almost) all frequencies.
Consequently, under the conditions of Proposition 6, we
have that Ēs2

1(t, θ) = 0 implies Ḡ0,j,D(z)− Ḡj,D(z, θ) =
0. This identity and the fact that Ēs2

2(t, θ) = 0 leads
to H0,j(z) − Hj(z, θ) = 0 show that the data x̄(t) =
(yj , w̄

T
D(t))T are indeed informative wrt. M under the

conditions of Proposition 6.

E Corollary to Proposition 5

Corollary 2 Consider the framework of Proposition 5
and suppose that ej(t) is uncorrelated with the other ele-
ments of ēV(t). Then, the data x̄(t) = (yj , w̄

T
D(t))T are

informative wrt.M if Conditions (iii) and (vi) are both
satisfied:

(vi) the setR describing the nodes where a excitation signal
rk is present is chosen in such a way that the set of
indexes Q = R ∪ (V\{j}) has the property that, at
(almost) all frequencies ω, rank(S̄0,D,Q(ejω)) = nD.

Proof. Let us recall that the data x̄(t) = (yj , w̄
T
D(t))T

are informative wrt. M if and only if we have (11)
whenever Ē(εj(t, θ) − εj(t, θ0))2 = 0 for a given
(Ḡj,D(z, θ), Hj(z, θ)) ∈ M. Let us also construct,
using v̄(t), the vector of signals v̄bis(t) as: v̄bis(t) =
(v1(t), ..., vj−1(t), 0, vj+1(t), ..., vNmod(t))T . If we use (9),
we can rewrite εj(t, θ) as εj(t, θ) − εj(t, θ0) = s3(t, θ) +
s4(t, θ) with:

s3(t, θ) =
∆̄Gj,D(z, θ)

Hj(z, θ)
S̄0,D,Q(z) ρ̄(t)

s4(t, θ) =
∆Hj(z, θ)

Hj(z, θ)
ej(t) +

∆̄Gj,D(z, θ)

Hj(z, θ)
S̄0,D,j(z)vj(t)

where Q = R∪ (V\{j}) and where ρ̄(t) is a vector of di-
mension nQ containing the non-zero elements of r̄(t) +
v̄bis(t). Since ej is independent of the other elements of

13



ēV(t), we have that s3(t, θ) and s4(t, θ) are independent
and therefore that Ē(εj(t, θ) − εj(t, θ0))2 = Ēs2

3(t, θ) +
Ēs2

4(t, θ). Consequently, the data x̄(t) = (yj , w̄
T
D(t))T

are informative wrt.M if and only if we have (11) when-
ever Ēs2

3(t, θ) = Ēs2
4(t, θ) = 0 for a given (Ḡj,D(z, θ),

Hj(z, θ)) ∈ M. To prove that this holds under the con-
ditions of Corollary 2, let us first analyze the properties
of the power spectrum matrix Φρ̄(w) of ρ̄(t). The ele-
ments of the vector ρ̄(t) are equal to vk (if k ∈ V\{j}
and k 6∈ R), to vk + rk (if k ∈ V\{j} and k ∈ R) or to
rk (if k 6∈ V\{j} and k ∈ R). Due to Σ0,V > 0, Con-
dition (iii) and the fact that r̄(t) and ē(t) are uncorre-
lated (see Assumption 1), the elements of ρ̄(t) are thus
linearly independent and we have thus that Φρ̄(ω) > 0
at (almost) all ω. This together with Condition (vi) also
implies that the power spectrum matrix of the vector
S̄0,D,Q(z)ρ̄(t) in the expression of s3(t, θ) is strictly pos-
itive definite at (almost) all ω. Consequently, under the
conditions of Corollary 2, we have that Ēs2

3(t, θ) = 0 im-
plies Ḡ0,j,D(z) − Ḡj,D(z, θ) = 0. This identity and the
fact that Ēs2

4(t, θ) = 0 leads to H0,j(z) − Hj(z, θ) = 0
show that the data x̄(t) = (yj , w̄

T
D(t))T are indeed in-

formative wrt.M under the conditions of Corollary 2.
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