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SOME NONASYMPTOTIC RESULTS ON RESAMPLING IN HIGH
DIMENSION, I: CONFIDENCE REGIONS1

BY SYLVAIN ARLOT, GILLES BLANCHARD2 AND ETIENNE ROQUAIN

CNRS ENS, Weierstrass Institut and UPMC University of Paris 6

We study generalized bootstrap confidence regions for the mean of a ran-
dom vector whose coordinates have an unknown dependency structure. The
random vector is supposed to be either Gaussian or to have a symmetric and
bounded distribution. The dimensionality of the vector can possibly be much
larger than the number of observations and we focus on a nonasymptotic
control of the confidence level, following ideas inspired by recent results in
learning theory. We consider two approaches, the first based on a concentra-
tion principle (valid for a large class of resampling weights) and the second on
a resampled quantile, specifically using Rademacher weights. Several inter-
mediate results established in the approach based on concentration principles
are of interest in their own right. We also discuss the question of accuracy
when using Monte Carlo approximations of the resampled quantities.

1. Introduction.

1.1. Goals and motivations. Let Y := (Y1, . . . ,Yn) be a sample of n ≥ 2 i.i.d.
observations of an integrable random vector in R

K , with dimensionality K possi-
bly much larger than n and unknown dependency structure of the coordinates. Let
μ ∈ R

K denote the common mean of the Yi . Our goal is to find a nonasymptotic
(1 − α)-confidence region G(Y,1 − α) for μ, of the form

G(Y,1 − α) = {x ∈ R
K |φ(Y − x) ≤ tα(Y)},(1)

where φ : RK → R is a function which is fixed in advance (measuring a kind of
distance, e.g., an �p-norm for p ∈ [1,∞]), α ∈ (0,1), tα : (RK)n → R is a possibly
data-dependent threshold and Y = 1

n

∑n
i=1 Yi ∈ R

K is the empirical mean of the
sample Y.

The point of view developed in the present work focuses on the following goal:

• obtaining nonasymptotic results, valid for any fixed K and n, with K possibly
much larger than the number of observations n, while
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• avoiding any specific assumption on the dependency structure of the coordinates
of Yi (although we will consider some general assumptions over the distribution
of Y, namely symmetry and boundedness or Gaussianity).

In the Gaussian case, a traditional parametric method based on the direct esti-
mation of the covariance matrix to derive a confidence region would not be appro-
priate in the situation where K � n, unless the covariance matrix is assumed to
belong to some parametric model of lower dimension, which we explicitly do not
want to posit here. In this sense, the approach followed here is closer in spirit to
nonparametric or semiparametric statistics.

This point of view is motivated by some practical applications, especially neu-
roimaging [8, 18, 26]. In a magnetoencephalography (MEG) experiment, each ob-
servation Yi is a two- or three-dimensional brain activity map, obtained as a dif-
ference between brain activities in the presence or absence of some stimulation.
The activity map is typically composed of about 15,000 points; the data can also
be a time series of length between 50 and 1000 such maps. The dimensionality
K can thus range from 104 to 107. Such observations are repeated from n = 15
up to 4000 times, but this upper bound is seldom attained [32]; in typical cases,
one has n ≤ 100 � K . In such data, there are strong dependencies between loca-
tions (the 15,000 points are obtained by pre-processing data from 150 sensors) and
these dependencies are spatially highly nonhomogeneous, as noted by [26]. More-
over, there may be long-distance correlations, for example, depending on neural
connections inside the brain, so that a simple parametric model of the dependency
structure is generally not adequate. Another motivating example is given by mi-
croarray data [14], where it is common to observe samples of limited size (say,
less than 100) of a vector in high dimension (say, more than 20,000, each dimen-
sion corresponding to a specific gene) and where the dependency structure may be
quite arbitrary.

1.2. Two approaches to our goal. The ideal threshold tα in (1) is obviously the
(1 − α) quantile of the distribution of φ(Y − μ). However, this quantity depends
on the unknown dependency structure of the coordinates of Yi and is therefore
itself unknown.

The approach studied in this work is to use a (generalized) resampling scheme in
order to estimate tα . The heuristics of the resampling method (introduced in [11],
generalized to exchangeable weighted bootstrap by [23, 28]) is that the distribution
of the unobservable variable Y−μ is “mimicked” by the distribution, conditionally
on Y, of the resampled empirical mean of the centered data. This last quantity is
an observable variable and we denote it as follows:

Y〈W−W 〉 := 1

n

n∑
i=1

(Wi − W)Yi = 1

n

n∑
i=1

Wi(Yi − Y) = (Y − Y)〈W 〉,(2)
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where (Wi)1≤i≤n are real random variables independent of Y, called the re-
sampling weights, and W = n−1 ∑n

i=1 Wi . We emphasize that the weight family
(Wi)1≤i≤n itself need not be independent.

In Section 2.4, we define in more detail several specific resampling weights
inspired both by traditional resampling methods [23, 28] and by recent statistical
learning theory. Let us give two typical examples reflecting these two sources:

• Efron’s bootstrap weights. W is a multinomial random vector with parameters
(n;n−1, . . . , n−1). This is the standard bootstrap.

• Rademacher weights. Wi are i.i.d. Rademacher variables, that is, Wi ∈ {−1,1}
with equal probabilities. They are closely related to symmetrization techniques
in learning theory.

It is useful to observe at this point that, to the extent that we only consider resam-
pled data after empirical centering, shifting all weights by the same (but possibly
random) offset C > 0 does not change the resampled quantity introduced in (2).
Hence, to reconcile the intuition of traditional resampling with what could possibly
appear as unfamiliar weights, one could always assume that the weights are trans-
lated to enforce (for example) weight positivity or the condition n−1 ∑n

i=1 Wi = 1
(although, of course, in general, both conditions cannot be ensured at the same
time simply by translation). For example, Rademacher weights can be interpreted
as a resampling scheme where each Yi is independently discarded or “doubled”
with equal probability.

Following the general resampling idea, we investigate two distinct approaches
in order to obtain nonasymptotic confidence regions:

• Approach 1 (“concentration approach,” developed in Section 2).
The expectations of φ(Y − μ) and φ(Y〈W−W 〉) can be precisely compared

and the processes φ(Y−μ) and EW [φ(Y〈W−W 〉)] concentrate well around their
respective expectations, where EW denotes the expectation operator with respect
to the distribution of W (i.e., conditionally on Y).

• Approach 2 (“direct quantile approach,” developed in Section 3).
The 1 − α quantile of the distribution of φ(Y〈W−W 〉) conditionally on Y is

close to the 1 − α quantile of φ(Y − μ).

Regarding the second approach, we will restrict ourselves specifically to Rade-
macher weights in our analysis and rely heavily on a symmetrization principle.

1.3. Relation to previous work. Using resampling to construct confidence re-
gions is a vast field of study in statistics (see, e.g., [4, 9, 11, 15, 16, 27]). Avail-
able results are, however, mostly asymptotic, based on the celebrated fact that the
bootstrap process is asymptotically close to the original empirical process [31].
Because we focus on a nonasymptotic viewpoint, this asymptotic approach is not
adapted to the goals we have fixed. Note, also, that the nonasymptotic viewpoint
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can be used as a basis for an asymptotic analysis in the situation where the di-
mension K grows with n, a setting which is typically not covered by standard
asymptotics.

The “concentration approach” mentioned in the previous subsection is inspired
by recent results coming from learning theory and relates, in particular, to the
notion of Rademacher complexity [20]. This notion has been extended in the recent
work of Fromont [13] to more general resampling schemes and this latter work has
had a strong influence on the present paper.

On the other hand, what we called the “quantile approach” in the previous sub-
section is strongly related to exact randomization tests (which are based on an
invariance of the null distribution under a given transformation; the underlying
idea can be traced back to Fisher’s permutation test [12]). Namely, we will only
consider symmetric distributions; this is a specific instance of an invariance with
respect to a transformation and will allow us to make use of distribution-preserving
randomization via sign reversal. Here, the main difference with traditional exact
randomization tests is that, since our goal is to derive a confidence region, the
vector of the means is unknown and, therefore, so is the exact invariant transfor-
mation. Our contribution to this point is essentially to show that the true vector
of the means can be replaced by the empirical one in the randomization, at the
cost of additional terms of smaller order in the threshold thus obtained. To our
knowledge, this gives the first nonasymptotic approximation result on resampled
quantiles with an unknown distribution mean.

Finally, we contrast the setting studied here with a strand of research studying
adaptive confidence regions (in a majority of cases, �2-balls) in nonparametric
Gaussian regression. A seminal paper on this topic is [22] and recent work includes
[17, 21, 29] (from an asymptotic point of view) and [3, 5, 6, 19] (which present
nonasymptotic results). Related to this setting and ours is [10], where adaptive
tests for zero mean are developed for symmetric distributions, using randomization
by sign reversal. The setting considered in these papers is that of regression on
a fixed design in high dimension (or in the Gaussian sequence model) with one
observation per point and i.i.d. noise. This corresponds (in our notation) to n = 1,
while the K coordinates are assumed independent. Despite some similarities, the
problem considered here is of a different nature: in the aforementioned works, the
focus is on adaptivity with respect to some properties of the true mean vector,
concretized by a family of models (e.g., linear subspaces or Besov balls in the
Gaussian sequence setting); usually, an adaptive estimator performing implicit or
explicit model selection relative to this collection is studied and a crucial question
for obtaining confidence regions is that of empirically estimating the bias of this
estimator when the noise dependence structure is known. In the present paper, we
do not consider the problem of model selection, but the focus is on evaluating the
estimation error under an unknown noise dependence structure (for the “naive”
unbiased estimator given by the empirical mean).
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1.4. Notation. We first introduce some notation that will be useful throughout
the paper.

• A boldface letter indicates a matrix. This will almost exclusively concern the
K × n data matrix Y. A superscript index such as Yi indicates the ith column
of a matrix.

• If μ ∈ R
K , Y − μ is the matrix obtained by subtracting μ from each (column)

vector of Y. Similarly, for a vector W ∈ R
n and c ∈ R, we denote W − c :=

(Wi − c)1≤i≤n ∈ R
n.

• If X is a random variable, then D(X) is its distribution and Var(X) is its vari-
ance. We use the notation X ∼ Y to indicate that X and Y have the same distri-
bution. Moreover, the support of D(X) is denoted by supp D(X).

• We denote by EW [·] the expectation operator over the distribution of the weight
vector W only, that is, conditional on Y. We use a similar notation, PW , for the
corresponding probability operator and EY,PY for the same operations condi-
tional on W . Since Y and W are always assumed to be independent, the opera-
tors EW and EY commute by Fubini’s theorem.

• The vector σ = (σk)1≤k≤K is the vector of the standard deviations of the data:
∀k,1 ≤ k ≤ K , σk := Var1/2(Y1

k).
• � is the standard Gaussian upper tail function: if X ∼ N (0,1), ∀x ∈ R, �(x) :=

P(X ≥ x).
• We define the mean of the weight vector W := 1

n

∑n
i=1 Wi , the empirical mean

vector Y := 1
n

∑n
i=1 Yi and the resampled empirical mean vector Y〈W 〉 :=

1
n

∑n
i=1 WiYi .

• We use the operator | · | to denote the cardinality of a set.
• For two positive sequences (un)n and (vn)n, we write un = �(vn) when

(unv
−1
n )n stays bounded away from zero and +∞.

Several properties may be assumed for the function φ : RK → R used to define
confidence regions of the form (1):

• Subadditivity: ∀x, x′ ∈ R
K,φ(x + x′) ≤ φ(x) + φ(x′).

• Positive homogeneity: ∀x ∈ R
K,∀λ ∈ R

+, φ(λx) = λφ(x).
• Boundedness by the �p-norm, p ∈ [1,∞]: ∀x ∈ R

K , |φ(x)| ≤ ‖x‖p , where
‖x‖p is equal to (

∑K
k=1 |xk|p)1/p if p < ∞ and maxk{|xk|} for p = +∞. Note,

also, that all of the results in this paper are still valid with any normalization of
the �p-norm [in particular, it can be taken to be equal to (K−1 ∑K

k=1|xk|p)1/p

so that the �p-norm of a vector with equal coordinates does not depend on the
dimensionality K].

Finally, we introduce the following possible assumptions on the generating distri-
bution of Y:

(GA) The Gaussian assumption: the Yi are Gaussian vectors.
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(SA) The symmetric assumption: the Yi are symmetric with respect to μ, that is,
(Yi − μ) ∼ (μ − Yi).

(BA) (p,M) the boundedness assumption: ‖Yi − μ‖p ≤ M a.s.

In this paper, we primarily focus on the Gaussian framework (GA), where the
corresponding results will be more accurate. In the sequel, when considering (GA)
and the assumption that φ is bounded by the �p-norm for some p ≥ 1, we will
additionally always assume that we know some upper bound on the �p-norm of σ .
The question of finding an upper bound for ‖σ‖p based on the data is discussed in
Section 4.1.

2. Confidence region using concentration.

2.1. Main result. We consider here a general resampling weight vector W , that
is, an R

n-valued random vector W = (Wi)1≤i≤n independent of Y and satisfying
the following properties: for all i ∈ {1, . . . , n}, E[W 2

i ] < ∞ and n−1 ∑n
i=1 E|Wi −

W | > 0.
In this section, we will mainly consider an exchangeable resampling weight vec-

tor, that is, a resampling weight vector W such that (Wi)1≤i≤n has an exchangeable
distribution (in other words, it is invariant under any permutation of the indices).
Several examples of exchangeable resampling weight vectors are given in Sec-
tion 2.4, where we also address the question of how to choose between different
possible distributions of W . An extension of our results to nonexchangeable weight
vectors is proposed in Section 2.5.1.

Four constants that depend only on the distribution of W appear in the results
below (the fourth one is defined only for a particular class of weights). They are
defined as follows and computed for classical resamplings in Table 1:

AW := E|W1 − W |;(3)

BW := E

[(
1

n

n∑
i=1

(Wi − W)2

)1/2]
;(4)

CW :=
(

n

n − 1
E[(W1 − W)2]

)1/2

;(5)

DW := a + E|W − x0|
(6)

if, for all i, |Wi − x0| = a a.s. (with a > 0, x0 ∈ R).

Note that these quantities are positive for an exchangeable resampling weight vec-
tor W and satisfy

0 < AW ≤ BW ≤ CW

√
1 − 1/n.

Moreover, if the weights are i.i.d., we have CW = Var(W1)
1/2. We can now state

the main result of this section.
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TABLE 1
Resampling constants for some classical resampling weight vectors

Efron 2(1 − 1
n )n = AW ≤ BW ≤

√
n−1
n , CW = 1

Efron, n → +∞ 2
e = AW ≤ BW ≤ 1 = CW

Rademacher 1 − 1
n = AW ≤ BW ≤

√
1 − 1

n , CW = 1 ≤ DW ≤ 1 + 1√
n

Rademacher, n → +∞ AW = BW = CW = DW = 1

rho(q) AW = 2(1 − q
n ), BW =

√
n
q − 1

CW =
√

n
n−1

√
n
q − 1, DW = n

2q
+ |1 − n

2q
|

rho(n/2) AW = BW = DW = 1, CW =
√

n
n−1

Leave-one-out 2
n = AW ≤ BW = 1√

n−1
, CW =

√
n

n−1 , DW = 1

Regular V -fcv AW = 2
V

≤ BW = 1√
V −1

, CW = √
n(V − 1)−1, DW = 1

THEOREM 2.1. Fix α ∈ (0,1) and p ∈ [1,∞]. Let φ : RK → R be any func-
tion which is subadditive, positive homogeneous and bounded by the �p-norm, and
let W be an exchangeable resampling weight vector.

1. If Y satisfies (GA), then

φ(Y − μ) <
EW [φ(Y〈W−W 〉)]

BW

+ ‖σ‖p�
−1

(α/2)

[
CW

nBW

+ 1√
n

]
(7)

holds with probability at least 1 − α. The same bound holds for the lower de-
viations, that is, with inequality (7) reversed and the additive term replaced by
its opposite.

2. If Y satisfies (SA) and (BA) (p,M) for some M > 0, then

φ(Y − μ) <
EW [φ(Y〈W−W 〉)]

AW

+ 2M√
n

√
log(1/α)(8)

holds with probability at least 1 − α. If, moreover, the weight vector satisfies
the assumption of (6), then

φ(Y − μ) >
EW [φ(Y〈W−W 〉)]

DW

− M√
n

√√√√1 + A2
W

D2
W

√
2 log(1/α)(9)

holds with probability at least 1 − α.

Inequalities (7) and (8) give regions of the form (1) that are confidence regions
of level at least 1 − α. They require knowledge of some upper bound on ‖σ‖p

(resp., M) or a good estimate of it. We address this question in Section 4.1.
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In order to obtain some insight into these bounds, it is useful to compare them
with an elementary inequality. In the Gaussian case, it is true for each coordinate
k,1 ≤ k ≤ K , that the following inequality holds with probability 1 − α: |Yk −
μk| < σk√

n
�

−1
(α/2). By applying a simple union bound over the coordinates and

using the fact that φ is positive homogeneous and bounded by the �p-norm, we
conclude that the following inequality holds with probability at least 1 − α:

φ(Y − μ) <
‖σ‖p√

n
�−1

(
α

2K

)
=: tBonf(α),(10)

which is a minor variation on the well-known Bonferroni bound. By compari-
son, the main term in the remainder part of (7) takes a similar form, but with K

replaced by 1: the remainder term is dimension-independent. Naturally, the “di-
mension complexity” has not disappeared, but will be taken into account in the
main resampled term instead. When K is large, the bound (7) can improve on
the Bonferroni threshold if there are strong dependencies between the coordinates,
resulting in a significantly smaller resampling term.

By way of illustration, consider an extreme example where all pairwise coordi-
nate correlations are exactly 1, that is, the random vector Y is made of K copies of
the same random variable so that there is, in fact, no dimension complexity. Take
φ(X) = supi Xi (corresponding to a uniform one-sided confidence bound for the
mean components). Then the resampled quantity in (7) is equal to zero and the
obtained bound is close to optimal (up to the two following points: the level is di-
vided by a factor of 2 and there is an additional term of order 1

n
). By comparison,

the Bonferroni bound divides the level by a factor of K , resulting in a significantly
worse threshold. In passing, note that this example illustrates that the order n−1/2

of the remainder term cannot be improved.
If we now interpret the bound (7) from an asymptotic point of view [with K(n)

depending on n and ‖σ‖p = �(1)], then the rate of convergence to zero cannot be
faster than n−1/2 (which corresponds to the standard parametric rate when K is
fixed), but it can be potentially slower, for example, if K increases exponentially
with n. In the latter case, the rate of convergence of the Bonferroni threshold is
always strictly slower than n−1/2. In general, as far as the order in n is concerned,
the resampled threshold converges at least as fast as Bonferroni’s, but whether it is
strictly faster depends once again on the coordinate dependency structure.

However, if the coordinates are only “weakly dependent,” then the threshold (7)
can be more conservative than Bonferroni’s by a multiplicative factor, while the
Bonferroni threshold can sometimes be essentially optimal (e.g., with φ = ‖ · ‖∞,
all of the coordinates independent and with small α). This motivates the next re-
sult, where we assume, more generally, that an alternate analysis of the problem
can lead to deriving a deterministic threshold tα such that P(φ(Y − μ) > tα) ≤ α.
In this case, we would ideally like to take the “best of two approaches” and con-
sider the minimum of tα and the resampling-based thresholds considered above. In
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the Gaussian case, the following proposition establishes that we can combine the
concentration threshold corresponding to (7) with tα to obtain a threshold that is
very close to the minimum of the two.

PROPOSITION 2.2. Fix α, δ ∈ (0,1), p ∈ [1,∞] and take φ and W as in The-
orem 2.1. Suppose that Y satisfies (GA) and that tα(1−δ) is a real number such that
P(φ(Y−μ) > tα(1−δ)) ≤ α(1− δ). Then, with probability at least 1−α, φ(Y−μ)

is less than or equal to the minimum of tα(1−δ) and

EW [φ(Y〈W−W 〉)]
BW

+ ‖σ‖p√
n

�−1
(

α(1 − δ)

2

)
+ ‖σ‖pCW

nBW

�−1
(

αδ

2

)
.(11)

The important point to note in Proposition 2.2 is that, since the last term of (11)
becomes negligible with respect to the rest when n grows large, we can choose
δ to be quite small [typically δ = �(1/n)] and obtain a threshold very close to
the minimum of tα and the threshold corresponding to (7). Therefore, this result
is more subtle than just considering the minimum of two thresholds each taken at
level 1 − α

2 , as would be obtained by a direct union bound.
The proof of Theorem 2.1 involves results which are of interest in their

own right: the comparison between the expectations of the two processes
EW [φ(Y〈W−W 〉)] and φ(Y − μ) and the concentration of these processes around
their means. These two issues are, respectively, examined in the two next Sec-
tions 2.2 and 2.3. In Section 2.4, we provide some elements for an appropriate
choice of resampling weight vectors among several classical examples. The final
Section 2.5 tackles the practical issue of computation time.

2.2. Comparison in expectation. In this section, we compare E[φ(Y〈W−W 〉)]
and E[φ(Y − μ)]. We note that these expectations exist in the Gaussian (GA) and
the bounded (BA) cases, provided that φ is measurable and bounded by an �p-
norm. Otherwise (in particular, in Propositions 2.3 and 2.4), we assume that these
expectations exist.

In the Gaussian case, these quantities are equal up to a factor that depends only
on the distribution of W .

PROPOSITION 2.3. Let Y be a sample satisfying (GA) and let W be a re-
sampling weight vector. Then, for any measurable positive homogeneous function
φ : RK → R, we have the following equality:

BW E[φ(Y − μ)] = E
[
φ

(
Y〈W−W 〉)].(12)

If the weights are such that
∑n

i=1(Wi −W)2 = n, then the above equality holds for
any function φ (and BW = 1).
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For some classical weights, we give bounds or exact expressions for BW in
Table 1. In general, we can compute the value of BW by simulation. Note that in
a non-Gaussian framework, the constant BW is still of interest, in an asymptotic
sense: Theorem 3.6.13 in [31] uses the limit of BW when n goes to infinity as a
normalizing constant.

When the sample is only assumed to have a symmetric distribution, we obtain
the following inequalities.

PROPOSITION 2.4. Let Y be a sample satisfying (SA), W an exchangeable
resampling weight vector and φ : RK → R any subadditive, positive homogeneous
function.

(i) We have the following general lower bound:

AW E[φ(Y − μ)] ≤ E
[
φ

(
Y〈W−W 〉)].(13)

(ii) If the weight vector satisfies the assumption of (6), then we have the fol-
lowing upper bound:

DW E[φ(Y − μ)] ≥ E
[
φ

(
Y〈W−W 〉)].(14)

The bounds (13) and (14) are tight (i.e., AW/DW → 1 as n → ∞) for some
classical weights; see Table 1. When Y is not assumed to have a symmetric dis-
tribution and W = 1 a.s., Proposition 2 of [13] shows that (13) holds with AW

replaced by E(W1 − W)+. Therefore, assumption (SA) allows us to get a tighter
result (e.g., twice as sharp with Efron or Rademacher weights). It can be shown
(see [1], Chapter 9) that this factor of 2 is unavoidable in general for a fixed n when
(SA) is not satisfied, although it is unnecessary when n goes to infinity. We con-
jecture that an inequality close to (13) holds under an assumption less restrictive
than (SA) (e.g., concerning an appropriate measure of skewness of the distribution
of Y1).

2.3. Concentration around the expectation. In this section, we present con-
centration results for the two processes φ(Y − μ) and EW [φ(Y〈W−W 〉)].

PROPOSITION 2.5. Let p ∈ [1,∞], Y be a sample satisfying (GA) and
φ : RK → R be any subadditive function, bounded by the �p-norm.

(i) For all α ∈ (0,1), with probability at least 1 − α, we have

φ(Y − μ) < E[φ(Y − μ)] + ‖σ‖p�−1(α/2)√
n

(15)

and the same bound holds for the corresponding lower deviations.
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(ii) Let W be an exchangeable resampling weight vector. Then, for all α ∈
(0,1), with probability at least 1 − α, we have

EW

[
φ

(
Y〈W−W 〉)] < E

[
φ

(
Y〈W−W 〉)] + ‖σ‖pCW�−1(α/2)

n
(16)

and the same bound holds for the corresponding lower deviations.

The bound (15) with a remainder in n−1/2 is classical; this order in n cannot be
improved, as seen, for example, by taking K = 1 and φ to be the identity function.
The bound (16) is more interesting because it illustrates one of the key properties
of resampling, the “stabilization effect”: the resampled expectation concentrates
much faster to its expectation than the original quantity. This effect is known and
has been studied asymptotically (in fixed dimension) using Edgeworth expansions
(see [15]); here, we demonstrate its validity nonasympotically in a specific case
(see also Section 4.2 below for additional discussion).

In the bounded case, the next proposition is a minor variation of a result by
Fromont. It is a consequence of McDiarmid’s inequality [25]; we refer the reader
to [13] (Proposition 1) for a proof.

PROPOSITION 2.6. Let p ∈ [1,∞], M > 0, Y be a sample satisfying (BA)
(p,M) and φ : RK → R be any subadditive function bounded by the �p-norm.

(i) For all α ∈ (0,1), with probability at least 1 − α, we have

φ(Y − μ) < E[φ(Y − μ)] + M√
n

√
log(1/α)(17)

and the same bound holds for the corresponding lower deviations.
(ii) Let W be an exchangeable resampling weight vector. Then, for all α ∈

(0,1), with probability at least 1 − α, we have

EW

[
φ

(
Y〈W−W 〉)] < E

[
φ

(
Y〈W−W 〉)] + AWM√

n

√
log(1/α)(18)

and the same bound holds for the corresponding lower deviations.

2.4. Resampling weight vectors. In this section, we consider the question of
choosing an appropriate exchangeable resampling weight vector W when using
Theorem 2.1 or Corollary 2.2. We define the following resampling weight vectors:

1. Rademacher. Wi i.i.d. Rademacher variables, that is, Wi ∈ {−1,1} with equal
probabilities.

2. Efron (Efron’s bootstrap weights). W has a multinomial distribution with para-
meters (n;n−1, . . . , n−1).
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3. Random hold-out(q) [rho(q) for short], q ∈ {1, . . . , n}. Wi = n
q
1i∈I , where I is

uniformly distributed on subsets of {1, . . . , n} of cardinality q . These weights
may also be called cross-validation weights or leave-(n − q)-out weights.
A classical choice is q = n/2 (assuming n is even). When q = n − 1, these
weights are called leave-one-out weights. Note that this resampling scheme is
a particular case of subsampling.

As noted in the Introduction, the first example is common in learning theory,
while the second is classical in the framework of the resampling literature [23,
28]. Random hold-out weights have the particular quality of being related to both:
they are nonnegative, satisfy

∑
i Wi = n a.s. and originate with a data-splitting

idea (choosing I amounts to choose a subsample) upon which the cross-validation
idea has been built. This analogy motivates the “V -fold cross-validation weights”
(defined in Section 2.5), in order to reduce the computational complexity of the
procedures proposed here.

For these classical weights, exact or approximate values for the quantities AW ,
BW , CW and DW [defined by (3) to (6)] can easily be derived (see Table 1). Proofs
are given in Section 5.3, where several other weights are considered. Now, to use
Theorem 2.1 or Corollary 2.2, we have to choose a particular resampling weight
vector. In the Gaussian case, we propose the following accuracy and complexity
criteria:

• First, relation (7) suggests that the quantity CWB−1
W can be proposed as an ac-

curacy index for W . Namely, this index enters directly into the deviation term
of the upper bound (while we know from Proposition 2.3 that the expectation
term is exact) so that the smaller this index is, the sharper the bound.

• Second, an upper bound on the computational burden of exactly computing the
resampling quantity is given by the cardinality of the support of D(W), thus
providing a complexity index.

These two criteria are estimated in Table 2 for classical weights. For any ex-
changeable weight vector W , we have CWB−1

W ≥ [n/(n − 1)]1/2 and the cardinal-

TABLE 2
Choice of the resampling weight vectors: accuracy/complexity trade-off

Resampling CW B−1
W (accuracy) |suppD(W)| (complexity)

Efron ≤ 1
2 (1 − 1

n )−n −−−−→
n→∞

e
2

(2n−1
n−1

) = �(n−1/24n)

Rademacher ≤ n/(n − 1)−−−−→
n→∞ 1 2n

rho(n/2) =
√

n
n−1 −−−−→

n→∞ 1
( n
n/2

) = �(n−1/22n)

Leave-one-out =
√

n
n−1 −−−−→

n→∞ 1 n

Regular V -fcv =
√

n
V −1 V
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ity of the support of D(W) is larger than n. Therefore, the leave-one-out weights
satisfy the best accuracy/complexity trade-off among exchangeable weights.

2.5. Practical computation of the thresholds. In practice, the exact computa-
tion of the resampling quantity EW [φ(Y〈W−W 〉)] can still be too complex for the
weights defined above. In this section, we consider two possible ways to address
this issue. First, it is possible to use nonexchangeable weights with a lower com-
plexity index and for which the exact computation is tractable. Alternatively, we
propose to use a Monte Carlo approximation, as is often done in practice to com-
pute resampled quantities. In both cases, the thresholds have to be made slightly
larger in order to keep a rigourous nonasymptotic control on the level. This is de-
tailed in the two paragraphs below.

2.5.1. V -fold cross-validation weights. In order to reduce the computation
complexity, we can use “piecewise exchangeable” weights: consider a regular par-
tition (Bj )1≤j≤V of {1, . . . , n} (where V ∈ {2, . . . , n} and V divides n) and define
the weights Wi = V

V −11i /∈BJ
with J uniformly distributed on {1, . . . , V }. These

weights are called the (regular) V -fold cross-validation weights (V -fcv for short).
By applying our previous results to the process (Ỹj )1≤j≤V , where Ỹj :=

V
n

∑
i∈Bj

Yi is the empirical mean of Y on block Bj , we can show that Theorem 2.1
can be extended to (regular) V -fold cross-validation weights with the following re-
sampling constants:

AW = 2

V
, BW = 1√

V − 1
, CW =

√
n

V − 1
, DW = 1.

Additionally, when V does not divide n and the blocks are no longer regular, Theo-
rem 2.1 can also be generalized, but the constants have more complex expressions
(see Section 10.7.5 in [1] for details). With V -fcv weights, the complexity index is
only V , but we lose a factor [(n − 1)/(V − 1)]1/2 in the accuracy index. With
regard to the accuracy/complexity trade-off, the most accurate cross-validation
weights are leave-one-out (V = n), whereas the 2-fcv weights are the best from
the computational viewpoint (but also the least accurate). The choice of V is thus
a trade-off between these two terms and depends on the particular constraints of
each problem.

However, it is worth noting that as far as the bound of inequality (7) is con-
cerned, it is not necessarily indispensable to aim for an accuracy index close to 1.
Namely, this will result in a corresponding deviation term of order n−1, while
there is, additionally, another unavoidable deviation term or order n−1/2 in the
bound. This suggests that an accuracy index of order o(n1/2) would actually be
sufficient (as n grows large). In other words, using V -fcv with V “large” [e.g.,
V = �(log(n))] would result in only a negligible loss of overall accuracy as com-
pared to leave-one-out. Of course, this discussion is specific to the form of the



64 S. ARLOT, G. BLANCHARD AND E. ROQUAIN

bound (7). We cannot formally exclude the possibility that a different approach
could lead to a different conclusion, unless it can be proven that the deviation
terms in (7) cannot be significantly improved, an issue we do not address here.

2.5.2. Monte Carlo approximation. When using a Monte Carlo approxima-
tion to evaluate EW [φ(Y〈W−W 〉)], we randomly draw a number B of i.i.d. weight

vectors W 1, . . . ,WB and compute 1
B

∑B
j=1 φ(Y〈Wj−Wj 〉). This method is quite

standard in the bootstrap literature and can be improved in several ways (see, e.g.,
[15], Appendix II).

On the one hand, the number B of draws of W should be taken small enough so
that B times the computational cost of evaluating φ(Y〈Wj−Wj 〉) is still tractable.
On the other hand, the number B should be taken large enough to make the Monte
Carlo approximation accurate. In our framework, this is quantified more precisely
by the following proposition (for bounded weights).

PROPOSITION 2.7. Let B ≥ 1 and W 1, . . . ,WB be i.i.d. exchangeable re-
sampling weight vectors such that W 1

1 − W 1 ∈ [c1, c2] a.s. Let p ∈ [1,∞] and
φ : RK → R be any subadditive function bounded by the �p-norm. If Y is a fixed
sample, then, for every β ∈ (0,1),

EW

[
φ

(
Y〈W−W 〉)] ≤ 1

B

B∑
j=1

φ
(
Y〈Wj−Wj 〉) + (c2 − c1)

√
log(β−1)

2B
‖σ̃‖p(19)

holds with probability at least 1 − β , where σ̃ denotes the vector of average ab-
solute deviations to the median, σ̃ := (( 1

n

∑n
i=1|Yi

k − Mk|))1≤k≤K [Mk denoting a
median of (Yi

k)1≤i≤n].

As a consequence, Proposition 2.7 suggests an explicit correction of the concen-
tration thresholds taking into account B bounded weight vectors. For instance, with
Rademacher weights, we can use (19) with c2 − c1 = 2 and β = γα [γ ∈ (0,1)].
Then, in the thresholds built from Theorem 2.1 and Proposition 2.2, one can re-
place EW [φ(Y〈W−W 〉)] by its Monte Carlo approximation at the cost of changing

α into (1 − γ )α and adding B−1
W

√
2 log((γ α)−1)

B
‖σ̃‖p to the threshold.

As n grows large, this remainder term is negligible in comparison to the main
one when B is (for instance) of order n2. In practical applications, B can be cho-
sen as a function of Y because (19) holds conditionally on the observed sample.
Therefore, we can use the following strategy: first, compute a rough estimate test,α
of the final threshold [e.g., if φ = ‖ · ‖∞ and Y is Gaussian, take the Bonferroni
threshold (10)]. Then choose B � t2

est,α‖σ̃‖2
p log((γ α)−1).

3. Confidence region using resampled quantiles.

3.1. Main result. In this section, we consider a different approach to construct-
ing confidence regions, directly based on the estimation of the quantile via resam-
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pling. Once again, since we aim for a nonasymptotic result for K � n, the standard
asymptotic approaches cannot be applied here. For this reason, we base the pro-
posed results on ideas coming from exact randomized tests and consider here the
case where Y1 has a symmetric distribution and where W is an i.i.d. Rademacher
weight vector, that is, weights are i.i.d. with P(Wi = 1) = P(Wi = −1) = 1/2.

The resampling idea applied here is to approximate the quantiles of the dis-
tribution D(φ(Y − μ)) by the quantiles of the corresponding resampling-based
distribution:

D
(
φ

(
Y〈W−W 〉)|Y) = D

(
φ

(
(Y − Y)〈W 〉)|Y)

.

For this, we take advantage of the symmetry of each Yi around its mean. For a
function φ, let us define the resampled empirical quantile by

qα(φ,Y) := inf
{
x ∈ R|PW

(
φ

(
Y〈W 〉) > x

) ≤ α
}
.(20)

The following lemma, close in spirit to exact test results, is easily derived from the
“symmetrization trick,” that is, from taking advantage of the distribution invariance
of the data via sign reversal.

LEMMA 3.1. Let Y be a data sample satisfying assumption (SA) and
φ : RK → R be a measurable function. The following then holds:

P
(
φ(Y − μ) > qα(φ,Y − μ)

) ≤ α.(21)

Of course, since qα(φ,Y − μ) still depends on the unknown μ, we cannot use
this threshold to get a confidence region of the form (1). It is, in principle, pos-
sible to build a confidence region directly from Lemma 3.1 by using the duality
between tests and confidence regions, but this would be difficult to compute and
not of the desired form (1). Therefore, following the general philosophy of re-
sampling, we propose replacing the true mean μ by the empirical mean Y in the
quantile qα(φ,Y − μ). The following main technical result of this section gives a
nonasymptotic bound on the cost of performing this operation.

THEOREM 3.2. Fix δ,α0 ∈ (0,1). Let Y be a data sample satisfying assump-
tion (SA). Let f : (RK)n → [0,∞) be a nonnegative function. Let φ : RK → R

be a nonnegative, subadditive and positive homogeneous function. Define φ̃(x) :=
max(φ(x),φ(−x)). The following holds:

P
(
φ(Y − μ) > qα0(1−δ)(φ,Y − Y) + γ1(α0δ)f (Y)

)
(22)

≤ α0 + P
(
φ̃(Y − μ) > f (Y)

)
,

where γ1(η) := 2B(n,η/2)−n
n

and B(n, η) := max{k ∈ {0, . . . , n}|2−n ∑n
i=k

(n
i

) ≥ η}
is the upper quantile function of a Binomial(n, 1

2) variable.
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In this result, the resampled quantile term qα0(1−δ)(φ,Y − Y) should be inter-
preted as the main term of the threshold and the rest, involving the function f , as a
remainder term. In the usual resampling philosophy, one would only consider the
main term at the target level, that is, α0 = α and δ = 0. Here, the additional re-
mainder terms are introduced to account rigorously for the validity of the result in
a nonasymptotic setting. These remainder terms have two effects: first, the resam-
pled quantile in the main term is computed at a “shrunk” error level α0(1 − δ) < α

and, secondly, there is an additional additive term in the threshold itself.
The role of the parameters δ, α0 and f is to strike a balance between these

effects. Generally speaking, f should be an available upper bound on a quantile
of φ̃(Y − μ) at a level α1 � α0. On the left-hand side, f appears in the threshold
with the factor γ1, which can be more explicitly bounded by

γ1(α0δ) ≤
(

2 log(2/(α0δ))

n

)1/2

,(23)

using Hoeffding’s inequality. The above result therefore transforms a possibly
coarse “a priori” bound f on quantiles into a more accurate quantile bound based
on a main term estimated by resampling and a remainder term based on f multi-
plied by a small factor.

In order to get a clearer insight, let us consider an example of specific choices
for the parameters δ,α0 and f in the Gaussian case. First, choose δ = �(n−γ )

and α0
α

= 1 − �(n−γ ) for some γ > 0, say γ = 1. This way, the main term is
the resampled quantile at level α0(1 − δ) = α(1 − �(n−γ )). For the choice of f ,
let us choose Bonferroni’s threshold (10) at level α1 = (α − α0) = �(n−γ ) so
that the overall probability control in (22) is really at the target level α. Then
fBonf(Y) ≤ �((log(Knγ )/n)1/2) and, using (23), we conclude that the remain-
der term is bounded by �(log(Knγ )/n). This is indeed a remainder term with
respect to the main term which is of order at least �(n−1/2) as n grows [assuming
that the dimension K(n) grows subexponentially with n].

There are other possibilities for choosing f , depending on the context: the Bon-
ferroni threshold can be correspondingly adapted to the non-Gaussian case when
an upper bound on the tail of each coordinate is available. This still makes the re-
mainder term directly dependent on K and a possibly more interesting idea is to
recycle the results of Section 2 (when the data is either Gaussian or bounded and
symmetric) and plug in the thresholds derived there for the function f .

Finally, if the a priori bound on the quantiles is too coarse, it is possible to iterate
the process and estimate smaller quantiles more accurately by again using resam-
pling. Namely, by iteration of Theorem 3.2, we obtain the following corollary.

COROLLARY 3.3. Fix J a positive integer, (αi)i=0,...,J−1 a finite sequence in
(0,1) and δ ∈ (0,1). Consider Y, f , φ and φ̃ as in Theorem 3.2. The following
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then holds:

P

(
φ(Y − μ) > qα0(1−δ)(φ,Y − Y)

+
J−1∑
i=1

γiqαi(1−δ)(φ̃,Y − Y) + γJ f (Y)

)
(24)

≤
J−1∑
i=0

αi + P
(
φ̃(Y − μ) > f (Y)

)
,

where, for k ≥ 1, γk := n−k ∏k−1
i=0 (2B(n, αiδ

2 ) − n).

The rationale behind this result is that the sum appearing inside the probability
in (24) should be interpreted as a series of corrective terms of decreasing order of
magnitude because we expect the sequence γk to be sharply decreasing. From (23),
this will be the case if the levels are such that αi � exp(−n).

The conclusion is that even if the a priori available bound f on small quantiles
is not sharp, its contribution to the threshold can be made small in comparison
to the (more accurate) resampling terms. The counterpart to be paid is the loss in
the level and the additional terms in the threshold; for large n, these terms decay
very rapidly, but for small n, they may still result in a nonnegligible contribution;
in this case, a precise tuning of the parameters J, (αi), δ and f is of much more
importance and also more delicate.

At this point, we should also mention that the remainder terms given by The-
orem 3.2 and Corollary 3.3 are certainly overestimated, even if f is very well
chosen. This makes the theoretical thresholds slightly too conservative in general
(particularly for small values of n). From simulations not reported here (see [2]
and Section 4.3 below), it even appears that the remainder terms could be (almost)
unnecessary in standard situations, even for n relatively small. Proving this fact
rigorously in a nonasymptotic setting, possibly with some additional assumption
on the distribution of Y, remains an open issue. Another interesting open problem
would be to obtain a self-contained result based on the symmetry assumption (SA)
alone [or a negative result proving that (SA) is not sufficient for a distribution-free
result of this form].

3.2. Practical computation of the resampled quantile. Since the above results
use Rademacher weight vectors, the exact computation of the quantile qα requires,
in principle, 2n iterations and is thus too complex as n becomes large. Parallel
to what was proposed for the concentration-based thresholds in Section 2.5, one
can, as a first solution, consider a blockwise Rademacher resampling scheme or,
equivalently, applying the previous method to a block-averaged sample, at the cost
of a (possibly substantial) loss in accuracy.
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A possibly better way to address this issue is by means of Monte Carlo quantile
approximation, on which we now focus. Let W denote an n × B matrix of i.i.d.
Rademacher weights (independent of all other variables) and define

q̃α(φ,Y,W) := inf

{
x ∈ R

∣∣∣∣ 1

B

B∑
j=1

1
{
φ

(
Y〈Wj 〉) ≥ x

} ≤ α

}
,

that is, q̃α is defined in the same way as qα , except that the true distribution PW

of the Rademacher weight vector is replaced by the empirical distribution con-
structed from the columns of W, P̃W = B−1 ∑B

j=1 δWj ; note that the strict in-

equality φ(Y〈W〉) > x in (20) was replaced by φ(Y〈Wj 〉) ≥ x for technical reasons.
The following result then holds.

PROPOSITION 3.4. Consider the same conditions as in Theorem 3.2, except
that the function f can now be a function of both Y and W. We have

PY,W
(
φ(Y − μ) > q̃α0(1−δ)(φ,Y − Y,W) + γ (W, α0δ)f (Y,W)

)
≤ α̃0 + PY,W

(
φ̃(Y − μ) > f (Y,W)

)
,

where α̃0 := �Bα0�+1
B+1 ≤ α0 + 1

B+1 and γ (W, η) := max{y ≥ 0| 1
B

∑B
j=1 1{|Wj | ≥

y} ≥ η} is the (1 − η)-quantile of |W | under the empirical distribution P̃W.

Note that, for practical purposes, we can choose f (W,Y) to depend on Y only
and use another type of bound to control the last term on the right-hand side, as in
the earlier discussion. The above result tells us that if, in Theorem 3.2, we replace
the true quantile by an empirical quantile based on B i.i.d. weight vectors and the
factor γ1 is similarly replaced by an empirical quantile of |W |, then we lose at most
(B + 1)−1 in the corresponding covering probability. Furthermore, it can easily be
seen that if α0 is taken to be a positive multiple of (B + 1)−1, then there is no loss
in the final covering probability (i.e., α̃0 = α0).

4. Discussion and concluding remarks.

4.1. Estimating ‖σ‖p . In the concentration approach and in the Gaussian
case, the derived thresholds depend explicitly on the �p-norm of the vector of
standard deviations σ = (σk)k (an upper bound on this quantity can also be used).
While we have left aside the problem of determining this parameter if no prior
information is available, it is possible to estimate σ by its empirical counterpart

σ̂ :=
(√√√√1

n

n∑
i=1

(Yi
k − Yk)2

)
1≤k≤K

.

Interestingly, the quantity ‖σ̂‖p enjoys the same type of concentration property as
the resampled expectations considered in Section 2.3 so that we can derive, by a
similar argument, a dimension-free confidence bound for ‖σ‖p , as follows.
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PROPOSITION 4.1. Assume that Y satisfies (GA). Then, with probability at
least 1 − δ,

‖σ‖p ≤
(
Cn − 1√

n
�−1

(
δ

2

))−1

‖σ̂‖p,(25)

where Cn =
√

2
n


(n/2)

((n−1)/2)

.

It can easily be checked via Stirling’s formula that Cn = 1 −O(n−1), so replac-
ing ‖σ‖p by the above upper bound does not make the corresponding thresholds
significantly more conservative.

A similar question holds for the parameter M in the bounded case. In practical
applications, an absolute bound on the possible data values is often known (e.g.,
from physical or biological constraints). It can also be estimated, but it seems
harder to obtain a rigorous nonasymptotic control on the level of the resulting
threshold in the general bounded case.

A different, and potentially more important, problem arises if the vector of vari-
ances σ is not constant. Since the confidence regions proposed in this paper are
isotropic, they will—inevitably—tend to be conservative when the variances of
the coordinates are very different. The standard way to address this issue is to con-
sider studentized data. While this would solve this heteroscedasticity issue, it also
renders void the assumption of independent data points—a crucial assumption in
all of our proofs. Therefore, generalizing our results to studentized observations is
an important, but probably challenging, direction for future work.

4.2. Interpretation and use of φ-confidence regions. We have built high-
dimensional confidence regions taking the form of “φ-balls” [where φ can be
any �p-norm with p ≥ 1, but more general choices are possible, such as φ(x) =
supk(xk)+]. Such confidence regions in very high dimension are certainly quite
difficult to visualize and one can ask how they are to be interpreted. In our opinion,
the most intuitive and interesting interpretation again comes from learning theory,
by regarding φ as a type of loss function. In this sense, a φ-confidence region is an
upper confidence bound on some relevant loss measure of the estimator Y to the
target μ. Additionally, in the particular case when φ = supk(xk)+ or φ = ‖ · ‖∞,
the corresponding regions can be interpreted as simultaneous confidence intervals
over all coordinate means.

The results presented here can also provide confidence intervals for the �p-
risk (i.e., the averaged φ-loss) for the estimator Y of the mean vector μ. Indeed,
combining (12) and Proposition 2.5(ii), we derive that for a Gaussian sample Y
and any p ∈ [1,∞], the upper bound

E‖Y − μ‖p <
EW [‖Y〈W−W 〉‖p]

BW

+ ‖σ‖pCW

nBW

�−1(α/2),(26)
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holds with probability at least 1 − α and a similar lower bound holds. It is worth
noting that the rate CW/(nBW) is close to n−1 for most of the weights, meaning
that resampling provides a much better estimate of E‖Y − μ‖p than ‖Y − μ‖p

itself. This stabilization effect of resampling is well known in standard asymptotic
settings (see, e.g., [15]).

The �p-risk is also related to the leave-one-out estimation of the prediction risk.
Indeed, consider using Y for predicting a new data point Yn+1 ∼ Y1 [independent
of Y = (Y1, . . . ,Yn)]. The corresponding �p-prediction risk is given by E‖Y −
Yn+1‖p . In the Gaussian setting, this prediction risk is proportional to the �p-risk:
E‖Y − μ‖p = (n + 1)1/2

E‖Y − Yn+1‖p , so the previous resampling estimator of
the �p-risk also leads to an estimator of the prediction risk. In particular, using
leave-one-out weights and denoting by Y(−i), the mean of the (Yj , j �= i,1 ≤ j ≤
n), our results prove that the leave-one-out estimator

1

n

n∑
i=1

∥∥Y(−i) − Yi
∥∥
p

correctly estimates the prediction risk [up to the factor (1 − 1/n2)1/2 � 1].
Finally, another important field of application is hypothesis testing. When φ =

supk(xk)+ or φ = ‖·‖∞, the thresholds derived here can be used to derive multiple
testing procedures for the value of the mean of each coordinate. This question
is extensively developed in the companion paper [2]. It is also possible to take
advantage of the generality of our results, where φ is allowed to be any �p-norm
with p ≥ 1, for single global hypothesis testing. The confidence regions can be
used straightforwardly to test several single global hypotheses, such as μ = μ�

against ‖μ − μ�‖p ≥ R > 0. Depending on particular features of the problem,
having the choice between different functions φ allows us to take into account
specific forms of alternative hypotheses in the construction of the threshold.

4.3. Simulation study. In the companion paper [2] (Section 4), a simulation
study compares the thresholds built in this paper and Bonferroni’s threshold, us-
ing φ = ‖ · ‖∞, considering Gaussian data with different levels of correlations and
assuming the coordinate variance σ to be constant and known. Without entering
into details, its general conclusions are as follows. First, all of the thresholds pro-
posed in the present paper can improve on Bonferroni’s when the correlations are
strong enough. Even though our thresholds are seen to be more conservative than
the “ideal” one (i.e., the true quantile), they all exhibit adaptivity to the correla-
tions, as expected from their construction. However, when the vector coordinates
are close to being independent, the proposed thresholds are somewhat more con-
servative than Bonferroni’s (the latter being essentially optimal in this case).

The second observation made on the simulations is that the quantile approach
generally appears to be less conservative than the concentration approach. How-
ever, the remaining advantage of the concentration approach is that it can be com-
bined with Bonferroni’s threshold (using Proposition 2.2) so that one can almost
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take “the less conservative of the two” and only suffer a negligible loss if the Bon-
ferroni threshold turns out to be better. Also, recall that the concentration threshold
can be of use for the remainder terms of the quantile threshold.

Finally, we also tested the resampled quantile without remainder term (i.e., tak-
ing the raw resampled quantile of the empirically centered data at the desired level,
without modification). Although this threshold is not theoretically justified in the
present work, it appeared to be very close to the ideal threshold in the performed
simulations. This supports the conjecture that the remainder terms in the theoretical
threshold could either be made significantly smaller or, possibly, even completely
dropped in some cases.

4.4. Comparing nonasymptotic and asymptotic approaches. Although simu-
lations have shown that the various thresholds proposed here can outperform Bon-
ferroni’s when significant correlations are present, we have also noticed that these
thresholds are generally noticeably more conservative than the ideal ones (the true
quantiles), especially for small values of n. Moreover, taking into account other
sources of error such as the estimation of ‖σ‖p as above, or Monte Carlo approx-
imations, will result in even more conservative thresholds. The main reason for
this additional conservativeness is that our control on the level is nonasymptotic,
that is, valid for every fixed K and n. In this sense, it would be somewhat un-
fair to compare the thresholds proposed here to those of “traditional” resampling
theory that are only proved to be valid asymptotically in n and for fixed K . The
nonasymptotic results derived here can nevertheless also be used for an asymp-
totic analysis, in a setting where K(n) is a function of n, and possibly rapidly (say,
exponentially) growing. This type of situation seems to have been only scarcely
touched by existing asymptotic approaches. In this sense, in practical situations,
we can envision “cheating” somewhat and replacing the theoretical thresholds by
their leading component [under some mild assumptions on the growth of K(n)]
as n tends to infinity. From a theoretical point of view, an interesting avenue for
future endeavors is to prove that the thresholds considered here, while certainly not
second order correct, are at least asymptotically optimal under various dependency
conditions.

5. Proofs.

5.1. Confidence regions using concentration. In this section, we prove all of
the statements of Section 2 except computations of resampling weight constants
(made in Section 5.3).

5.1.1. Comparison in expectation.

PROOF OF PROPOSITION 2.3. Denoting by � the common covariance matrix
of the Yi , we have D(Y〈W−W 〉|W) = N (0, (n−1 ∑n

i=1(Wi − W)2)n−1�) and the
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result follows because D(Y − μ) = N (0, n−1�) and φ is positive homogeneous.
This last assumption is, of course, unnecessary if it holds that

∑n
i=1(Wi −W)2 = n

a.s. �

PROOF OF PROPOSITION 2.4. By independence between W and Y, ex-
changeability of W and the positive homogeneity of φ, for every realization of Y,
we have

AWφ(Y − μ) = φ

(
E

[
1

n

n∑
i=1

|Wi − W |(Yi − μ)|Y
])

.

Then, by convexity of φ,

AWφ(Y − μ) ≤ E

[
φ

(
1

n

n∑
i=1

|Wi − W |(Yi − μ)

)∣∣∣∣∣Y
]
.

We integrate with respect to Y and use the symmetry of the Yi with respect to
μ and, again, the independence between W and Y to show, finally, that

AW E[φ(Y − μ)] ≤ E

[
φ

(
1

n

n∑
i=1

|Wi − W |(Yi − μ)

)]

= E

[
φ

(
1

n

n∑
i=1

(Wi − W)(Yi − μ)

)]
= E

[
φ

(
Y〈W−W 〉)].

The point (ii) is proved via the following chain of inequalities:

E
[
φ

(
Y〈W−W 〉)] ≤ E

[
φ

(
1

n

n∑
i=1

(Wi − x0)(Yi − μ)

)]

+ E

[
φ

(
1

n

n∑
i=1

(x0 − W)(Yi − μ)

)]

= E

[
φ

(
1

n

n∑
i=1

|Wi − x0|(Yi − μ)

)]

+ E

[
φ

(
1

n

n∑
i=1

|x0 − W |(Yi − μ)

)]

≤ (a + E|W − x0|)E[φ(Y − μ)].
In the second line, we used, as before, the symmetry of the Yi with respect to μ,
together with the independence of W and Y. In the last inequality, we used the
assumption |Wi − x0| = a a.s. and the positive homogeneity of φ. �



RESAMPLING CONFIDENCE REGIONS IN HIGH DIMENSION 73

5.1.2. Concentration inequalities.

PROOF OF PROPOSITION 2.5. Here, we use concentration principles fol-
lowing closely the approach in [24], Section 3.2.4. The essential ingredient is
the Gaussian concentration theorem of Cirel’son, Ibragimov and Sudakov ([7]
and recalled in [24], Theorem 3.8), stating that if F is a Lipschitz function on
R

N with constant L, then, for the standard Gaussian measure on R
N , we have

P(F ≥ E[F ] + t) ≤ 2�(t/L).
Let us denote by A a square root of the common covariance matrix of the Yi .

If ζi is a K-dimensional, standard normal vector, then Aζi has the same distribu-
tion as Yi − μ. For all ζ ∈ (RK)n, we let T1(ζ ) := φ( 1

n

∑n
i=1 Aζi) and T2(ζ ) :=

E[φ( 1
n

∑n
i=1(Wi −W)Aζi)]. If we endow (RK)n with the standard Gaussian mea-

sure, then T1 (resp., T2) has the same distribution as φ(Y−μ) [resp., φ(Y〈W−W 〉)].
From the Gaussian concentration theorem recalled above, in order to reach the

conclusion, we therefore only need to establish that T1 (resp., T2) is a Lipschitz
function with constant ‖σ‖p/

√
n (resp., ‖σ‖pCW/n) with respect to the Euclidean

norm ‖ · ‖2,Kn on (RK)n. Let ζ, ζ ′ ∈ (RK)n and denote by (ak)1≤k≤K the rows
of A. Using the fact that φ is 1-Lipschitz with respect to the �p-norm (because it
is subadditive and bounded by the �p-norm), we get

|T1(ζ ) − T1(ζ
′)| ≤

∥∥∥∥∥1

n

n∑
i=1

A(ζi − ζ ′
i )

∥∥∥∥∥
p

=
∥∥∥∥∥
(〈

ak,
1

n

n∑
i=1

(ζi − ζ ′
i )

〉)
k

∥∥∥∥∥
p

.

For each coordinate k, by the Cauchy–Schwarz inequality and since ‖ak‖2 = σk ,
we deduce that ∣∣∣∣∣

〈
ak,

1

n

n∑
i=1

(ζi − ζ ′
i )

〉∣∣∣∣∣ ≤ σk

∥∥∥∥∥1

n

n∑
i=1

(ζi − ζ ′
i )

∥∥∥∥∥
2

.

Therefore, we get

|T1(ζ ) − T1(ζ
′)| ≤ ‖σ‖p

∥∥∥∥∥1

n

n∑
i=1

(ζi − ζ ′
i )

∥∥∥∥∥
2

≤ ‖σ‖p√
n

‖ζ − ζ ′‖2,Kn,

using the convexity of x ∈ R
K �→ ‖x‖2

2, and we obtain (i). For T2, we use the same
method as for T1 to obtain

|T2(ζ ) − T2(ζ
′)| ≤ ‖σ‖pE

∥∥∥∥∥1

n

n∑
i=1

(Wi − W)(ζi − ζ ′
i )

∥∥∥∥∥
2

(27)

≤ ‖σ‖p

n

√√√√√E

∥∥∥∥∥
n∑

i=1

(Wi − W)(ζi − ζ ′
i )

∥∥∥∥∥
2

2

.



74 S. ARLOT, G. BLANCHARD AND E. ROQUAIN

Note that since (
∑n

i=1(Wi −W))2 = 0, we have E(W1 −W)(W2 −W) = −C2
W/n.

We now develop ‖∑n
i=1(Wi − W)(ζi − ζ ′

i )‖2
2 in the Euclidean space R

K :

E

∥∥∥∥∥
n∑

i=1

(Wi − W)(ζi − ζ ′
i )

∥∥∥∥∥
2

2

= C2
W(1 − n−1)

n∑
i=1

‖ζi − ζ ′
i ‖2

2 − C2
W

n

∑
i �=j

〈ζi − ζ ′
i , ζj − ζ ′

j 〉

= C2
W

n∑
i=1

‖ζi − ζ ′
i ‖2

2 − C2
W

n

∥∥∥∥∥
n∑

i=1

(ζi − ζ ′
i )

∥∥∥∥∥
2

2

.

Consequently,

E

∥∥∥∥∥
n∑

i=1

(Wi − W)(ζi − ζ ′
i )

∥∥∥∥∥
2

2

≤ C2
W

n∑
i=1

‖ζi − ζ ′
i‖2

2 = C2
W‖ζ − ζ ′‖2

2,Kn.(28)

Combining expression (27) and (28), we find that T2 is ‖σ‖pCW/n-Lipschitz. �

REMARK 5.1. The proof of Proposition 2.5 is still valid under the weaker
assumption (instead of exchangeability of W ) that E[(Wi − W)(Wj − W)] can
only take two possible values, depending on whether or not i = j .

5.1.3. Main results.

PROOF OF THEOREM 2.1. The case (BA) (p,M) and (SA) is obtained by
combining Propositions 2.4 and 2.6. The (GA) case is a straightforward conse-
quence of Proposition 2.3 and the proof of Proposition 2.5 (considering the Lip-
schitz function T1 − T2). �

PROOF OF PROPOSITION 2.2. From Proposition 2.5(i), with probability at
least 1 − α(1 − δ), φ(Y − μ) is less than or equal to the minimum of tα(1−δ) and

E[φ(Y−μ)]+ ‖σ‖p�
−1

(α(1−δ)/2)√
n

(since both of these thresholds are deterministic).
In addition, Propositions 2.3 and 2.5(ii) give that with probability at least 1 −
αδ, E[φ(Y − μ)] ≤ EW [φ(Y〈W−W 〉)]

BW
+ ‖σ‖pCW

BW n
�

−1
(αδ/2). The result follows by

combining the last two expressions. �

5.1.4. Monte Carlo approximation.

PROOF OF PROPOSITION 2.7. The idea of the proof is to apply McDiarmid’s
inequality (see [25]) conditionally on Y. For any realizations W and W ′ of the
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resampling weight vector and any ν ∈ R
k , we have∣∣φ(

Y〈W−W 〉) − φ
(
Y〈W ′−W ′〉)∣∣ ≤ φ

(
Y〈W−W 〉 − Y〈W ′−W ′〉)

≤ c2 − c1

n

∥∥∥∥∥
(

n∑
i=1

|Yi
k − νk|

)
k

∥∥∥∥∥
p

since φ is subadditive, bounded by the �p-norm and Wi − W ∈ [c1, c2] a.s.
The sample Y being deterministic, we can take νk equal to a median Mk of

(Yi
k)1≤i≤n. Since W 1, . . . ,WB are independent, McDiarmid’s inequality gives

(19). �

5.1.5. Estimation of the variance.

PROOF OF PROPOSITION 4.1. We use the same notation and approach based
on Gaussian concentration as in the proof of Proposition 2.5. Writing Yi − μ =
Aζi , we upper bound the Lipschitz constant of ‖σ̂‖p as a function of ζ =
(ζ1, . . . , ζn): given ζ, ζ ′ ∈ (RK)n, we have

‖σ̂ (ζ )‖p − ‖σ̂ (ζ ′)‖p ≤ ‖σ̂ (ζ ) − σ̂ (ζ ′)‖p

≤
∥∥∥∥∥
(

1

n

n∑
i=1

〈ak, (ζi − ζ ) − (ζ ′
i − ζ

′
)〉2

)1/2

k

∥∥∥∥∥
p

≤ ‖σ‖p√
n

(
n∑

i=1

‖(ζi − ζ ) − (ζ ′
i − ζ

′
)‖2

2

)1/2

.

We then additionally have

n∑
i=1

‖(ζi − ζ ) − (ζ ′
i − ζ

′
)‖2

2 =
n∑

i=1

‖ζi − ζ ′
i ‖2

2 − n‖ζ − ζ
′‖2

2 ≤ ‖ζ − ζ ′‖2
2,Kn,

allowing us to conclude that ‖σ̂ (ζ )‖p has Lipschitz constant ‖σ‖p√
n

. Concerning the

expectation, observe that for each coordinate k, the variable
√

nσ̂k/σk has the same
distribution as the square root of a χ2(n− 1) variable. Elementary calculations for
the expectation of such a variable lead to E[σ̂k] = Cnσk . We finally conclude that
with probability at least 1 − δ, the following inequality holds:

Cn‖σ‖p = ‖E[σ̂ ]‖p ≤ E[‖σ̂‖p] ≤ ‖σ̂‖p + ‖σ‖p√
n

�−1
(

δ

2

)
.

Solving this inequality in ‖σ‖p yields the result. �
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5.2. Quantiles. Recall the following inequality coming from the definition of
the quantile qα : for any fixed Y,

PW

(
φ

(
Y〈W 〉) > qα(φ,Y)

) ≤ α ≤ PW

(
φ

(
Y〈W 〉) ≥ qα(φ,Y)

)
.(29)

PROOF OF LEMMA 3.1. We introduce the notation Y • W = Y · diag(W) for
the matrix obtained by multiplying the ith column of Y by Wi , i = 1, . . . , n. We
then have

PY
(
φ(Y − μ) > qα(φ,Y − μ)

)
= EW

[
PY

(
φ

(
(Y − μ)〈W 〉) > qα

(
φ, (Y − μ) • W

))]
(30)

= EY
[
PW

(
φ

(
(Y − μ)〈W 〉) > qα(φ,Y − μ)

)] ≤ α.

The first equality is due to the fact that the distribution of Y satisfies assumption
(SA), hence the distribution of (Y−μ) is invariant under multiplying by (arbitrary)
signs W ∈ {−1,1}n. In the second equality, we used Fubini’s theorem and the fact
that for any arbitrary signs W , as above, qα(φ, (Y − μ) • W) = qα(φ,Y − μ).
Finally, the last inequality follows from (29). �

PROOF OF THEOREM 3.2. Write γ1 = γ1(α0δ) for short and define the event

E := {Y|qα0(φ,Y − μ) ≤ qα0(1−δ)(φ,Y − Y) + γ1f (Y)}.
We then have, using (30),

P
(
φ(Y − μ) > qα0(1−δ)(φ,Y − Y) + γ1f (Y)

)
≤ P

(
φ(Y − μ) > qα0(φ,Y − μ)

) + P(Y ∈ E c)(31)

≤ α0 + P(Y ∈ E c).

We now concentrate on the event E c. Using the subadditivity of φ and the fact

that (Y − μ)〈W 〉 = (Y − Y)〈W 〉 + W(Y − μ), we have, for any fixed Y ∈ E c,

α0 ≤ PW

(
φ

(
(Y − μ)〈W 〉) ≥ qα0(φ,Y − μ)

)
≤ PW

(
φ

(
(Y − μ)〈W 〉) > qα0(1−δ)(φ,Y − Y) + γ1f (Y)

)
≤ PW

(
φ

(
(Y − Y)〈W 〉) > qα0(1−δ)(φ,Y − Y)

)
+ PW

(
φ

(
W(Y − μ)

)
> γ1f (Y)

)
≤ α0(1 − δ) + PW

(
φ

(
W(Y − μ)

)
> γ1f (Y)

)
.

For the first and last inequalities, we have used (29) and for the second inequality,
the definition of E c. From this, we deduce that

E c ⊂ {
Y|PW

(
φ

(
W(Y − μ)

)
> γ1f (Y)

) ≥ α0δ
}
.
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Now, using the positive homogeneity of φ and the fact that both φ and f are
nonnegative, we have

PW

(
φ

(
W(Y − μ)

)
> γ1f (Y)

)
= PW

(
|W | > γ1f (Y)

φ(sign(W)(Y − μ))

)

≤ PW

(
|W | > γ1f (Y)

φ̃(Y − μ)

)

= 2PBn

(
1

n
(2Bn − n) >

γ1f (Y)

φ̃(Y − μ)

)
,

where Bn denotes a Binomial(n, 1
2) variable (independent of Y). From the last two

displays and the definition of γ1, we conclude that E c ⊂ {Y|φ̃(Y − μ) > f (Y)},
which, substituted back into (31), leads to the desired conclusion. �

PROOF OF COROLLARY 3.3. Define the function

g0(Y) = q(1−δ)α0(φ,Y − Y) +
(

J−1∑
i=1

γiq(1−δ)αi
(φ̃,Y − Y) + γJ f (Y)

)

and, for k = 1, . . . , J ,

gk(Y) = γ −1
k

(
J−1∑
i=k

γiq(1−δ)αi
(φ̃,Y − Y) + γJ f (Y)

)

with the convention that gJ = f . For 0 ≤ k ≤ J − 1, applying Theorem 3.2 with
the function gk+1 yields the relation

PW

(
φ(Y − μ) > gk(Y)

) ≤ αk + PW

(
φ(Y − μ) > gk+1(Y)

)
.

Therefore, we get

PW

(
φ(Y − μ) > g0(Y)

) ≤
J−1∑
i=0

αi + P
(
φ̃(Y − μ) > f (Y)

)
as announced. �

PROOF OF PROPOSITION 3.4. Let us first prove that an analog of Lemma 3.1
holds with qα0 replaced by q̃α0 . First, we have

EWPY
(
φ(Y − μ) > q̃α0(φ,Y − μ,W)

)
= EW ′EWPY

(
φ

(
(Y − μ)〈W ′〉) > q̃α0

(
φ, (Y − μ) • W ′,W

))
= EYPW,W ′

(
φ

(
(Y − μ)〈W ′〉) > q̃α0

(
φ,Y − μ,W ′ • W

))
,



78 S. ARLOT, G. BLANCHARD AND E. ROQUAIN

where W ′ denotes a Rademacher vector independent of all other random variables
and W ′ • W = diag(W ′) · W denotes the matrix obtained by multiplying the ith
row of W by W ′

i , i = 1, . . . , n. Note that (W ′,W ′ • W) ∼ (W ′,W). Therefore, by
definition of the quantile q̃α0 , the latter quantity is equal to

EYPW,W ′

(
1

B

B∑
j=1

1
{
φ

(
(Y − μ)〈Wj 〉) ≥ φ

(
(Y − μ)〈W ′〉)} ≤ α0

)
≤ �Bα0� + 1

B + 1
,

where the last step comes from Lemma 5.2 (see below).
The rest of the proof is similar to the one of Theorem 3.2, where PW is replaced

by the empirical distribution based on W, P̃W = 1
B

∑B
j=1 δWj . Thus, (29) becomes,

for any fixed Y,W,

P̃W
[
φ

(
Y〈W 〉) > q̃α0(φ,Y,W)

] ≤ α0 ≤ P̃W
[
φ

(
Y〈W 〉) ≥ q̃α0(φ,Y,W)

]
.

The role of E is then taken by

Ẽ := {
Y,W|q̃α0(φ,Y − μ,W) ≤ q̃α0(1−δ)(φ,Y − Y,W) + γf (Y,W)

}
,

where we write γ = γ (W, α0δ) for short. We then have, similarly to (31),

PY,W
(
φ(Y − μ) > q̃α0(1−δ)(φ,Y − Y) + γf (Y,W)

) ≤ �Bα0� + 1

B + 1
+ PY,W(Ẽ c)

and follow the proof of Theorem 3.2 further, we obtain

Ẽ c ⊂
{

Y,W
∣∣∣P̃W

[
|W | > γf (Y,W)

φ̃(Y − μ)

]
≥ α0δ

}
,

which gives the result. �

We have used the following lemma which essentially reproduces Lemma 1
of [30], with a minor strengthening. While the proof was left to the reader in [30],
because it was considered either elementary or common knowledge, we include a
succinct proof below for completeness.

LEMMA 5.2 (Minor variation of Lemma 1 of [30]). Let Z0, Z1, . . . ,ZB be
exchangeable real-valued random variables. Then, for all α ∈ (0,1),

P

(
1

B

B∑
j=1

1{Zj ≥ Z0} ≤ α

)
≤ �Bα� + 1

B + 1
≤ α + 1

B + 1
.

The first inequality becomes an equality if Zi �= Zj a.s. For example, it is the case
if the Zi’s are i.i.d. variables from a distribution without atoms.
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PROOF. Let U denote a random variable uniformly distributed in {0, . . . ,B}
and independent of the Zi’s. We then have

P

(
1

B

B∑
j=1

1{Zj ≥ Z0} ≤ α

)

= P

(
B∑

j=0

1{Zj ≥ Z0} ≤ Bα + 1

)

= PUP(Zi)

(
B∑

j=0

1{Zj ≥ ZU } ≤ Bα + 1

)

= P(Zi)PU

(
B∑

j=0

1{Zj ≥ ZU } ≤ �Bα� + 1

)
≤ �Bα� + 1

B + 1
.

Note that the last inequality is an equality if the Zi’s are a.s. distinct. �

5.3. Exchangeable resampling computations. In this section, we compute
constants AW , BW , CW and DW [defined by (3) to (6)] for some exchangeable
resamplings. This implies all of the statements in Table 1. We first define several
additional exchangeable resampling weights (normalized so that E[Wi] = 1):

• Bernoulli(p), p ∈ (0,1): pWi i.i.d. with a Bernoulli distribution of parameter
p. A classical choice is p = 1

2 .
• Efron(q), q ∈ {1, . . . , n}: qn−1W has a multinomial distribution with parame-

ters (q;n−1, . . . , n−1). A classical choice is q = n.
• Poisson(μ), μ ∈ (0,+∞): μWi i.i.d. with a Poisson distribution of parameter

μ. A classical choice is μ = 1.

Note that Y〈W−W 〉 and all of the resampling constants are invariant under trans-
lation of the weights so that Bernoulli(1/2) weights are completely equivalent to
Rademacher weights in this paper.

LEMMA 5.3. 1. Let W be Bernoulli(p) weights with p ∈ (0,1). We then have

2(1 − p)(1 − 1
n
) = AW ≤ BW ≤

√
1
p

− 1
√

1 − 1
n

, CW =
√

1
p

− 1 and DW ≤ 1
2p

+
| 1

2p
− 1| +

√
1−p
np

.

2. Let W be Efron(q) weights with q ∈ {1, . . . , n}. We then have 2(1 − 1
n
)q =

AW ≤ BW ≤
√

n−1
q

and CW =
√

n
q

.

3. Let W be Poisson(μ) weights with μ > 0. We then have AW ≤ BW ≤
1√
μ

√
1 − 1

n
and CW = 1√

μ
. Moreover, if μ = 1, we get 2

e
− 1√

n
≤ AW .
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4. Let W be Random hold-out(q) weights with q ∈ {1, . . . , n}. We then have AW =
2(1 − q

n
), BW =

√
n
q

− 1, CW =
√

n
n−1

√
n
q

− 1 and DW = n
2q

+ |1 − n
2q

|.

PROOF. We consider the following cases:

General case. First, we only assume that W is exchangeable. Then, from the
concavity of

√· and the triangular inequality, we have

E|W1 − E[W1]| −
√

E(W − E[W1])2

(32)

≤ E|W1 − E[W1]| − E|W − E[W1]| ≤ AW ≤ BW ≤
√

n − 1

n
CW .

Independent weights. When we suppose that the Wi are i.i.d., we get

E|W1 − E[W1]| −
√

Var(W1)√
n

≤ AW and CW = √
Var(W1).(33)

Bernoulli. First, we have AW = E|W1 − W | = E|(1 − 1
n
)W1 − Xn,p| with

Xn,p := 1
n
(W2 + · · · + Wn). Since W1 and Xn,p are independent and Xn,p ∈

[0, (n − 1)/(np)] a.s., we obtain

AW = pE

[(
1 − 1

n

)
1

p
− Xn,p

]
+ (1 − p)E[Xn,p] = 1 − 1

n
+ (1 − 2p)E[Xn,p].

The formula for AW follows since E[Xn,p] = (n − 1)/n. Second, note that the
Bernoulli(p) weights are i.i.d. with Var(W1) = p−1 − 1, E[W1] = 1 and E|W1 −
1| = p(p−1 − 1) + (1 − p) = 2(1 − p). Hence, (32) and (33) lead to the bounds
for BW and CW . Finally, the Bernoulli(p) weights satisfy the assumption of (6)
with x0 = a = (2p)−1. Then

DW = 1

2p
+ E

∣∣∣∣W − 1

2p

∣∣∣∣ ≤ 1

2p
+

∣∣∣∣1 − 1

2p

∣∣∣∣ + E|W − 1|

≤ 1

2p
+ 1

p

∣∣∣∣1

2
− p

∣∣∣∣ +
√

1 − p

np
.

Efron. We have W = 1 a.s. so that CW =
√

n
n−1 × Var(W1) = √

n/q . If, more-
over, q ≤ n, then Wi < 1 implies that Wi = 0 and AW = E|W1 − 1| = E[W1 − 1 +
21{W1 = 0}] = 2P(W1 = 0) = 2(1 − 1

n
)q . The result follows from (32).

Poisson. These weights are i.i.d. with Var(W1) = μ−1, E[W1] = 1. Moreover,
if μ ≤ 1, Wi < 1 implies that Wi = 0 and E|W1 − 1| = 2P(W1 = 0) = 2e−μ. With
(32) and (33), the result follows.

Random hold-out. These weights are such that {Wi}1≤i≤n takes only two val-
ues, with W = 1. Then AW , BW and CW can be directly computed. Moreover,
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they satisfy the assumption of (6) with x0 = a = n/(2q). The computation of DW

is straightforward. �
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