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Abstract 11 

Perceptual confidence is an evaluation of the validity of our perceptual decisions. We present here 12 

a complete generative model that describes how confidence judgments result from some 13 

confidence evidence. The model that generates confidence evidence has two main parameters, 14 

confidence noise and confidence boost. Confidence noise reduces the sensitivity to the confidence 15 

evidence, and confidence boost accounts for information used for confidence judgment which was 16 

not used for the perceptual decision. The opposite effect of these two parameters creates 17 

confidence metamers, where the confidence in a perceptual decision is the same in spite of 18 

differences in confidence noise and confidence boost. When the data set is rich enough, both of 19 

these parameters can be recovered, thus allowing us to estimate the extent to which confidence is 20 

generated in parallel or serially to the perceptual decision. We also describe a novel measure of 21 

confidence efficiency relative to the ideal confidence observer, as well as the estimate of one type 22 

of confidence bias. Finally, we apply the model to the confidence forced-choice paradigm, a 23 

paradigm that provides objective estimates of confidence, and we discuss how each parameter of 24 

the model can be recovered using this paradigm. 25 

Keywords: meta-perception, visual confidence, modelling, efficiency, confidence forced-choice 26 
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1. Introduction 27 

Metacognition is the ability of individuals to monitor and regulate their own cognitive processes 28 

(Nelson & Narens, 1990). Therefore, in the case of perception, metaperception is the ability of 29 

individuals to monitor and control their perceptual decisions (Mamassian, 2020). When making a 30 

choice, a key expression of metacognition is the confidence associated with the decision. Correctly 31 

inferring our own level of performance is clearly important for an individual, as confidence might be 32 

used to regulate learning (e.g. Hainguerlot et al., 2018), allocate resources to a particular task (e.g. 33 

van den Berg et al., 2016), compare different tasks (de Gardelle & Mamassian, 2014) and prioritize 34 

them (Aguilar-Lleyda et al., 2020). Perceptual confidence, and more broadly metacognition, has 35 

been extensively reviewed elsewhere (e.g. Fleming et al., 2012; Yeung & Summerfield, 2012; 36 

Meyniel et al., 2015; Mamassian, 2016; Pouget et al., 2016). 37 

One issue of primary importance in metaperception is whether confidence judgments are based on 38 

the same information as that used for the perceptual decisions. Even though confidence is an 39 

evaluation of the validity of our perceptual decisions, it is plausible that the computation of 40 

confidence involves some information that is processed in parallel to (e.g. Fleming & Daw, 2017) 41 

or after (e.g. Pleskac & Busemeyer, 2010) the perceptual decision. The difficulty in establishing the 42 

extent to which confidence is processed along a parallel stream of information is that there are 43 

other factors that affect the quality of confidence judgments. In particular, the computation of 44 

confidence might rest on degraded perceptual information (e.g. Bang et al., 2019). Therefore, it is 45 

important to have a good theoretical framework within which the different factors that contribute to 46 

confidence are clearly defined. 47 

There are currently two main frameworks used for the study of confidence, one based on Signal 48 

Detection Theory (SDT), and the other based on evidence accumulation (for a review, see 49 

Mamassian, 2016). The SDT framework (Green & Swets, 1966) has been exceedingly successful 50 

for modelling choice tasks, also referred to as Type 1 tasks, and it also formed the basis for 51 

discussing confidence judgments, also known as Type 2 judgments (Clarke et al., 1959; Galvin et 52 

al., 2003). However, this framework is silent about how Type 2 judgments are actually made. The 53 

primary aim of the present manuscript is to provide a complete generative model for perceptual 54 

confidence judgments that is grounded in SDT. With this generative model, we have three main 55 

objectives that we briefly introduce next. These objectives focus on the separation of serial and 56 

parallel processing of confidence, a measure of confidence efficiency that is defined at the 57 

metacognitive level, and an estimate of one critical form of confidence bias. 58 

Our model of confidence is based on the idea that confidence judgments are based on the current 59 

perceptual decision and some decision variable that we call confidence evidence. Confidence 60 

evidence is obtained from two possible streams of information processing. Through the serial 61 
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stream, confidence evidence is just a duplicate of the sensory evidence that is used for the 62 

perceptual decision, albeit, with additional sources of inefficiencies to duplicate this sensory 63 

information. This stream of processing is present is all models of confidence. In contrast, through 64 

the parallel stream, confidence evidence has novel access to the physical stimulus, independently 65 

from the processing that led to the perceptual decision. Note that a similar distinction between 66 

hierarchical and dual-channel models can be found in other theoretical frameworks (e.g. 67 

Maniscalco & Lau, 2016). The first objective of our modelling effort is thus to clarify the respective 68 

contributions of the serial and parallel streams to confidence judgments, both theoretically and 69 

empirically.  70 

Figure 1 illustrates our modelling approach and provides the links between the different variables 71 

of the model. All the notations of the model are summarized in Table 1. We highlight in particular 72 

two components in relation to the serial and parallel streams of processing. The first component is 73 

the confidence noise which characterizes the inefficiency of the confidence evidence computation 74 

relative to the ideal confidence observer. The second component is the confidence boost which 75 

characterises the relative contribution of the parallel stream to confidence evidence. The reason 76 

why this latter component is called confidence boost is because new evidence from the stimulus 77 

will augment the information present at the Type 2 level and boost metacognitive efficiency 78 

towards a super-ideal level.  79 

Confidence boost and confidence noise have opposite effects on Type 2 performance, and it is 80 

difficult to properly estimate both of them in practice. Yet, it is important to have at our disposal an 81 

overall measure of Type 2 efficiency. Defining such a measure has been challenging in the past 82 

(Fleming & Lau, 2014), but a significant step forward was obtained thanks to the meta-83 

computation recently (Maniscalco & Lau, 2012). This methodological tool allows experimenters to 84 

measure metacognitive abilities without confounds from Type 1 performance. However, one key 85 

characteristic of this measure is that it uses the metric of the Type 1 task, rather than of the Type 2 86 

task. The second objective of our modelling effort is thus to offer a measure of Type 2 efficiency 87 

that is really anchored to the Type 2 level of processing. 88 

The third objective of our modelling effort is to be able to detect some confidence biases. In our 89 

model, we focus on one particular type of confidence biases, where an over-confidence represents 90 

an over-estimation of -estimate of the sensory 91 

noise. This type of confidence biases is difficult to detect because all the confidence judgments for 92 

a particular task are affected. When confidence is compared across two distinct tasks, we can 93 

obtain an estimate of the over-confidence for one task relative to the other. This kind of confidence 94 

comparison forms the basis of the confidence forced-choice paradigm. In this procedure, 95 

participants complete two Type 1 decisions on distinct stimuli, and then indicate which decision 96 

was associated with the greater confidence (Barthelmé & Mamassian, 2009; de Gardelle & 97 
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Mamassian, 2015). We apply our generative model to the confidence forced-choice paradigm and 98 

discuss how reliably each parameter of the model can be estimated in this paradigm. 99 

 100 

 101 

Figure 1. Overall framework for perceptual and confidence decision making. For Type 102 

1 processing (in blue), the perceptual decision is based on sensory evidence that is an 103 

estimate of the physical stimulus. Sensory evidence is corrupted by sensory noise. For 104 

Type 2 processing (in purple), the confidence judgment is based on confidence 105 

evidence that is a combination of information processed in serial (orange) and parallel 106 

(green) streams. The serial stream duplicates the sensory evidence whereas the 107 

parallel stream allows for another look at the physical stimulus. Confidence evidence is 108 

corrupted by confidence noise. It is also normalized by an estimate of sensory noise 109 

that is possibly corrupted by a confidence bias, and it is compared to a confidence 110 

criterion that possibly differs from the sensory criterion. Finally, the signed confidence 111 

evidence is the magnitude of the confidence evidence that acquires a negative sign if 112 

the perceptual decision is incompatible with confidence evidence. See text for details. 113 

 114 

As we compute confidence efficiency, we will see that the same confidence efficiency level can be 115 

achieved as a trade-off between confidence noise and confidence boost. The values of confidence 116 
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noise and boost which give rise to the same confidence efficiency form a family that we call 117 

confidence metamers. 118 

 119 
Notation Meaning Domain 

 Stimulus strength  

 Sensory evidence  

 Confidence evidence  

 Signed confidence evidence  

 
Sensory noise (standard deviation of normal distribution) that 

drives perceptual sensitivity 

 

 Sensory criterion that drives bias in the perceptual decision  

 Perceptual decision based on sensory evidence  

 Pseudo perceptual decisions based on confidence evidence  

 
Confidence choice, i.e. interval chosen as more confident with 

respect to the self-consistency of the perceptual decision 

 

 Confidence noise (standard deviation)  

 
Confidence criterion against which confidence evidence is 

evaluated 

 

 
Confidence boost, i.e. the fraction of super-ideal confidence 

performance 

 

 Confidence bias in over-   

 Interval bias in favour of interval 1 in a confidence pair  

 Joint distribution of sensory evidence in confidence pair  

 
Joint distribution of confidence evidence  conditional on 

sensory evidence  in confidence pair 

 

 
Joint distribution of sensory and confidence evidence (its 

covariance matrix is ) 

 

 
Mean of the distribution of confidence evidence conditional on 

a particular value of sensory evidence  

 

 Equivalent confidence noise (standard deviation)  

 Confidence efficiency  

 120 

Table 1. Notations used in this manuscript. 121 

 122 
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Our manuscript is organized as follows. In the next two sections, we define what we mean by 123 

confidence in this manuscript, and then review briefly the confidence forced-choice paradigm. In 124 

section 4, we define the confidence ideal and super-ideal observers, which will help us determining 125 

the different ways confidence computation can be inefficient. We then detail our generative model 126 

in sections 5 and 6, describing how confidence evidence is linked to sensory evidence, and in 127 

sections 7 and 8, we apply this model to the confidence forced-choice paradigm. Section 9 128 

introduces the notion of confidence metamers and explains how confidence efficiency is computed. 129 

We finish by showing the robustness of the parameter estimation (section 10), including the 130 

confidence bias (section 11), and illustrate in section 12 how the model can be fitted to real data by 131 

re-analysing one of our previous studies. Finally, section 13 presents a discussion of our approach. 132 

2. Defining Confidence as Subjective Self-Consistency 133 

We start by formally defining confidence in a perceptual decision as the subjective estimation 134 

made by an observer that her decision is self-consistent. Here, self-consistency refers to an 135 

agreement between the current perceptual decision and the most frequent decision made by the 136 

observer for a given stimulus and experimental conditions. Perceptual confidence is thus an 137 

estimation of the probability that the same decision would be made again, given the same physical 138 

stimulus and experimental conditions. In terms of Signal Detection Theory (SDT), self-consistency 139 

relates to perceptual sensitivity, disregarding perceptual bias.  140 

Note that our definition slightly departs from the classic definition of confidence as an estimate of 141 

perceptual accuracy (i.e. probability of being correct). The difference between the two definitions is 142 

best illustrated by considering cases of perceptual illusions due to a sensory bias. In such cases, 143 

observers can be consistently incorrect in their decisions but still relatively confident in their 144 

perception. By focusing on self-consistency, rather than accuracy, our definition does not force us 145 

to call all observers overconfident in this case, which may be desirable given that the bias arises 146 

here at the perceptual level and not at the metacognitive level per se. If we follow the classic 147 

definition of confidence, however, we would have to conclude that the observer is overconfident 148 

because she is both incorrect and very confident. 149 

Our definition -consistency aligns with other works. 150 

In meta-memory, Koriat (2012) has highlighted that confidence may reflect the consensuality of 151 

 chosen by other individuals, rather than just whether 152 

 is also reminiscent of one 153 

particular type of overconfidence discussed in the literature. Three types of overconfidence are 154 

sometimes distinguished, namely the overestimation overplacement relative 155 

to others, and the overprecision (Moore & Healy, 2008). Our definition of 156 
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confidence as subjective self-consistency naturally fits with overprecision. In other words, with our 157 

definition, an individual would be overconfident in a perceptual task if she overestimates her own 158 

sensitivity in this task. By contrast, the traditional definition of confidence as the subjective 159 

probability of being correct corresponds to overconfidence being  160 

accuracy. Note that in the SDT framework, these two definitions would be equivalent if all decision 161 

criteria are neutral. However, as detailed below, our modelling approach will allow for any criteria, 162 

including criteria that differ between Type 1 and Type 2 evaluation of the evidence.  163 

3. Confidence Forced-Choice 164 

In this manuscript, we focus on the confidence forced-choice paradigm. One key advantage of this 165 

procedure is to bypass the rating scale typically used to measure confidence, and to focus directly 166 

on the internal confidence, eliminating the need for participants to maintain a constant mapping 167 

between internal confidence and ratings. In this paradigm, participants indicate which of two 168 

intervals produces the highest feeling of confidence, where each interval consists of a stimulus, 169 

and a decision made on that stimulus. A confidence trial is thus composed of two stimuli, two 170 

perceptual decisions, and the confidence comparison choice between these two decisions.  171 

Let us consider a typical use of the confidence forced-choice paradigm around a psychophysical 172 

experiment. In this example, the perceptual task is to indicate whether the dots of a random-dot 173 

kinematogram stimulus are moving to the right or to the left relative to a reference direction. Stimuli 174 

differ in strength, manipulated from trial to trial in how much the motion direction deviates from the 175 

reference. Stimulus strength affects how well observers can discriminate the direction of motion, as 176 

represented by the psychometric function (Figure 2A). The slope of the psychometric function 177 

reflects the sensitivity of the observer in the perceptual task.  178 

To examine how confidence relates to perceptual sensitivity, we can analyse separately the 179 

perceptual decisions associated with higher and lower confidence in each confidence trial. We can 180 

then replot the psychometric function separately for these confidence-chosen and for confidence-181 

declined decisions (Figure 2B). In the example of the figure, these two new psychometric functions 182 

are distinct, the one for the confidence-chosen decisions presents a steeper slope than the one for 183 

the confidence-declined decisions, or than the original one estimated over all trials (Figure 2A). 184 

This property is a signature of meta-perception, as it indicates that participants were able to pick 185 

the interval that led to a better performance, at least for some trials. If the participants gave their 186 

metacognitive judgments at random, as if they were not able to judge the quality of their perceptual 187 

decisions, the psychometric functions for chosen and declined decisions would overlap completely. 188 

In contrast, when the observer is using all the information she can use for her confidence 189 

judgment, the gain in the slope of the psychometric functions is strictly larger than zero.  190 
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 191 

 192 

Figure 2. Psychometric functions. (A) Original psychometric function. The 193 

psychometric function links stimulus strength to perceptual decision, here the 194 

proportion of dots moving rightward. The solid line is a cumulative Gaussian fit to the 195 

psychometric functions. The standard deviation of the best fit determines its slope 196 

(here , a good approximation of the parameter  used in the simulation).  197 

(B) Psychometric function split by confidence. Trials judged to have higher confidence 198 

are sorted out and a new psychometric function is plotted for these trials only (green 199 

points). The remaining trials have been declined for confidence (red points). Dots size 200 

is proportional to the number of trials in this condition. For the psychometric function 201 

based on the chosen trials for confidence, the best fit gives a slope of . The gain in 202 

the slope of the psychometric functions from the unsorted (grey dashed curve) to the 203 

chosen (green curve) trials is therefore . The parameters used to 204 

generate this and the following figures are provided in Table 2. 205 

 206 

Even though it is simple and natural to use the gain in the slope of psychometric functions as an 207 

index of metacognitive ability (see, e.g. Barthelmé & Mamassian, 2009; De Martino et al., 2013; de 208 

Gardelle & Mamassian, 2014, 2015), we introduce later the confidence efficiency as an alternative 209 

descriptor of confidence sensitivity. Indeed, the comparison of psychometric functions actually 210 

discards important information about which confidence pairs were presented to participants. The 211 

full data set includes not only how a given perceptual trial falls into the confidence-chosen or 212 

confidence-declined set, but also how the confidence comparison choice depends on the two trials 213 

within a pair, which may have different stimulus strengths and different decisions. In the example 214 

of the simulated experiment shown in Figure 2, there were 7 possible stimulus strengths and two 215 

possible perceptual decisions ( R  or L ) for each interval in a confidence pair, leading to 196 (7 x 7 216 

x 2 x 2)  possible combinations. In each of these combinations, we can measure the probability 217 



10 

 

that interval 1 is associated with a greater confidence than interval 2. These confidence choice 218 

probabilities are illustrated in Figure 3. 219 

 220 

 221 

Figure 3. Confidence choice probabilities for each combination of stimulus strengths. 222 

Each panel shows the probability of choosing the first interval as the more confident 223 

one given the stimulus strength presented in the first interval (x-axis) and in the 224 

second interval (coloured lines). The different panels correspond to the four different 225 

pairs of perceptual decisions across the two intervals (e.g. responses  and 226 

 in the top left panel). Dot size is proportional to the number of trials obtained in 227 

the simulation for this particular combination of stimulus strengths and Type 1 228 

responses. Dotted lines link points that have the same stimulus strength in the second 229 

interval. The solid curves show the best fitted model described later in the manuscript. 230 

In this plot, parameters are those listed in Table 2, except .  231 

 232 

From the simulations shown in Figure 3, we see that confidence depends on the interaction 233 

between stimulus strength and perceptual decision, as typically found in empirical data. To better 234 

illustrate this pattern, let us focus on one subset where the stimulus strength in the second interval 235 

. This subset corresponds to the middle blue 236 

line in the two top panels, which are replotted on Figure 4 but in different colours. Specifically, self-237 
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consistent perceptual decisions are shown in green, and self-inconsistent decisions in red. Here, 238 

self-consistent decisions correspond to respo239 

are above the sensory criterion (0.25) As expected, the probability of 240 

choosing the first interval with greater confidence is always larger for self-consistent than for self-241 

inconsistent decisions. In addition, as stimulus strength deviates more from the sensory criterion, 242 

confidence increases for self-consistent decisions, and decreases for self-inconsistent decisions. 243 

This is expected from a participant who displays meta-perception, although the exact form of this 244 

X-pattern varies across experimental conditions and models of confidence (Sanders et al., 2016; 245 

Adler & Ma, 2018; Rausch & Zehetleitner, 2019). 246 

 247 

Figure 4. Choice probabilities for self-consistent and inconsistent decisions. The plot 248 

shows the same data as in Figure 3, for one particular sensory stimulus and 249 

perceptual decision in interval 2. Self-consistent perceptual decisions are shown in 250 

green, and self-inconsistent decisions in red. The probability of choosing the first 251 

interval with greater confidence is larger for self-consistent than for self-inconsistent 252 

decisions. In addition, as stimulus strength deviates more from the sensory criterion, 253 

confidence increases for self-consistent decisions, and decreases for self-inconsistent 254 

decisions. The resulting X-pattern is symmetric about the vertical axis passing through 255 

the sensory criterion. 256 

 257 

We are now interested in modelling the sensitivity with which participants can estimate their 258 

confidence in their perceptual decisions. The model will attempt to replicate all 196 different 259 

probabilities that interval 1 is the winner of the confidence decision in Figure 3. In particular, we are 260 

interested in describing the ideal confidence observer that is using the exact same information for 261 

confidence judgments as the perceptual decisions, so that we can compare human meta-262 

perceptual sensitivity to this ideal confidence observer. Along the way, we will also define a super-263 
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ideal confidence observer that maximizes confidence performance. Unless otherwise noted, the 264 

parameters in the figures take the default values shown in Table 2. 265 

 266 

Parameter Meaning Figure Value Ideal Value 

 Examples of stimulus strengths   

 Stimulus strengths for a complete simulated experiment   

 
Sensory evidence in intervals 1 and 2 of a confidence pair 

where stimulus strengths are  

  

 
Perceptual decisions in intervals 1 and 2 of a confidence 

pair where stimulus strengths are  
  

 Sensory noise (standard deviation)   

 
Sensory criterion that drives bias in the perceptual 

decision 

  

 Confidence noise (standard deviation)   

 Confidence criterion   

 Confidence boost   

 
Confidence bias in over-

sensitivity 

  

 Interval bias in favour of interval 1 in a confidence pair   

 Number of confidence pairs in a simulation   

 267 

Table 2. Unless explicitly stated in the figure caption, the parameter values used in the 268 

figures are the ones in this table. In the last column are shown the values 269 

corresponding to the ideal observer and ideal confidence observer. 270 

 271 

4. Ideal Confidence Observer 272 

In this section, we present how the perceptual decision is derived from sensory evidence. By 273 

analogy, we introduce the confidence evidence that will be the basis for the confidence judgment. 274 

The approach is based on Signal Detection Theory (Green and Swets, 1966) and ideal observer 275 

principles (Barlow, 1962; Geisler, 1989). In the next section, we will generalize this model of 276 

confidence by considering several ways in which actual confidence judgments can deviate from 277 

optimal ones. 278 
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4.a. Perceptual Decisions 279 

We consider here a perceptual task in which a stimulus has to be categorized as R ) or 280 

L ). In a typical psychophysical experiment, there will be a range of stimuli with different 281 

levels of difficulty that we represent by the stimulus strength . For illustrative purposes, we first 282 

consider two such stimuli, A and B, that belong to categories R  and L  respectively (Figure 5). 283 

 284 

 285 

Figure 5. Sensory evidence in a perceptual discrimination task. Stimuli to be 286 

discriminated belong to two categories R ) and L ). The distribution of 287 

sensory evidence for two stimuli A and B is in blue and orange, respectively. On each 288 

trial, the participant has access to one sample of the stimulus category presented on 289 

that trial (a sample  from stimulus A is shown by the blue triangle). All sensory 290 

evidence to the right of sensory criterion , represented by the blue shaded area, are 291 

assigned to the R  category. 292 

 293 

Because of sensory noise, the observer only has access to some noisy sensory evidence . We 294 

assume that on average the observer has an unbiased estimate of the sensory strength, so the 295 

mean of  is . For simplicity, we further assume that the sensory noise is normally distributed, 296 

with common variance  for all stimuli, such that a sensory noise sample  for one particular trial 297 

follows the distribution . 298 

The sensory evidence on one trial is then 299 

   , (1) 300 
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where  if stimulus A was presented, and  if stimulus B was presented instead. A 301 

perceptual decision (Type 1 decision ) consists in comparing the sensory evidence against a 302 

sensory criterion , namely  303 

   . (2) 304 

The most frequent Figure 5 to the right of the 305 

sensory criterion is larger than 0.5 because ). Therefore, when stimulus A is presented, the 306 

perceptual decision will be self- . We present other properties of self-307 

consistency in Appendix A. 308 

4.b. Ideal Confidence Observer  309 

Now that we have modelled perceptual decisions, we can consider confidence (Type 2) judgments. 310 

We start with the important case of the ideal confidence observer that will be used as a reference 311 

to compare human confidence judgments. The ideal confidence observer is ideal for its confidence 312 

judgment but suboptimal for its perceptual decision. In other words, this particular observer has the 313 

same sensory sensitivity and biases as the human observer, and thus is similarly subject to 314 

sensory noise and sensory criterion shifts as the human observer. However, it is ideal in the sense 315 

that it is able to judge optimally which of two perceptual decisions is more likely to be self-316 

consistent based on the same sensory information that has been used to reach the perceptual 317 

decisions. In other words, for the ideal confidence observer, the confidence evidence will be 318 

entirely determined by the sensory evidence.  319 

From Figure 5, we see that the perceptual decision is more likely to be self-consistent when the 320 

sensory evidence  is further away from the sensory criterion  (for a formal description of the 321 

probability of being self-consistent, see Appendix A). Therefore, from the point of view of the ideal 322 

confidence observer, the distance of the sensory evidence to the perceptual decision boundary is a 323 

good decision variable to estimate confidence (Galvin et al., 2003). We follow this tradition with 324 

one particular twist. To be able to estimate confidence sensitivity irrespective of the sensory 325 

sensitivity of the observer for the current task, we normalize the distance to the decision boundary 326 

by the sensory noise. As can be seen in Appendix D, this step alleviates apparent contradictions 327 

such that sensory noise increases metacognitive efficiency (Bang et al., 2019). In summary, we 328 

define the ideal confidence evidence to be 329 

   . (3) 330 
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Because confidence evidence has been normalized by sensory noise, it is a unit-free measure of 331 

confidence. In other words, it is not bound to the stimulus dimension that is relevant for a task (e.g. 332 

the angle in degrees of motion direction if the task of the observer is to estimate motion direction). 333 

This property is useful when comparing confidence across tasks (de Gardelle & Mamassian, 334 

2014). Further motivation for this choice of ideal confidence evidence is presented in Appendix A.  335 

4.c. Super-Ideal Confidence Observer  336 

In contrast to the ideal confidence observer, the super-ideal confidence observer has access to the 337 

original stimulus, and not just the noisy sensory evidence used to make the perceptual decision. 338 

This scenario can actually lead to better performance than the ideal confidence observer, thus the 339 

term super-ideal  confidence observer. This extreme scenario is interesting to consider because 340 

confidence judgments are often performed after perceptual decisions, and thus can benefit from a 341 

more extensive analysis (e.g. Pleskac & Busemeyer, 2010) or second look at the stimulus. 342 

Confidence evidence for the super-ideal confidence observer is now 343 

   . (4) 344 

Note that we still normalize the stimulus strength  relative to the sensory noise  and sensory 345 

criterion so as to obtain a unit-free measure of confidence that still reflects the potential 346 

perceptual bias of the observer. 347 

5. Generative Model of Confidence Evidence  348 

In the previous section, we have described the ideal and super-ideal confidence observers. We 349 

now consider four ways in which human confidence judgments can deviate from the ideal 350 

confidence observer. First, human observers can behave partially as the super-ideal confidence 351 

observer, thereby boosting their confidence sensitivity. Second, they can display some confidence 352 

noise that is impairing their ability to use their confidence evidence. Third, human observers can be 353 

inaccurate in their estimate of the sensory sensitivity, thereby generating over- or under-354 

confidence. Finally, human observers can be inaccurate in their estimate of the sensory bias, 355 

thereby creating potential conflicts between sensory and confidence decisions. We now examine 356 

these four cases in turn. 357 
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5.a. Confidence Boost 358 

We define confidence boost, noted , the fraction of the super-ideal confidence observer that 359 

contributes to the human confidence evidence. If , then the human observer is just like the 360 

super-ideal confidence observer, and if , then the human observer behaves just like the ideal 361 

confidence observer. Confidence evidence now becomes a mixture of the evidence from the 362 

super-ideal and ideal confidence observers, namely 363 

   . (5) 364 

This expression can be rewritten as 365 

     366 

   . (6) 367 

The effect of confidence boost on the psychometric function is shown in Figure 6A. This 368 

psychometric function should be compared to the one with the default parameters in Figure 2B. 369 

When confidence boost increases, we observe a steeper psychometric function for the confidence-370 

chosen trials. In other words, the observer is better able to discriminate correct from incorrect 371 

perceptual decisions. This is not surprising as the confidence boost reflects the ability of the 372 

observer to use more information at the metacognitive level. 373 

5.b. Confidence Noise 374 

Just like sensory noise corrupts the sensory evidence, we introduce confidence noise that corrupts 375 

the confidence evidence. We model confidence noise as a zero-mean normal distribution with 376 

variance , such that a confidence noise sample  follows the distribution . We 377 

assume that confidence noise is additive and independent of sensory evidence, so the new 378 

confidence evidence becomes  379 

   . (7) 380 

Because confidence noise is unrelated to the sensory evidence, it is unit-less, and comparable 381 

across different tasks (see e.g. de Gardelle & Mamassian, 2014). The effect of confidence noise 382 

on the psychometric function is shown in Figure 6B. When the confidence noise increases, we 383 

obtain a shallower psychometric function for the confidence chosen trials. In other words, the 384 

observer is less able to discriminate correct from incorrect perceptual decisions. 385 

 386 
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 387 

Figure 6. Influence of different model parameters on the psychometric functions. In 388 

these plots, the parameters are those listed in Table 2, except for one parameter. (A) 389 

The confidence boost is increased to . (B) The confidence noise is increased 390 

to . (C). The confidence bias is increased to . (D). The confidence 391 

criterion is increased to .  392 

 393 

5.c. Confidence Bias 394 

Sensory evidence needs to be scaled to generate the confidence evidence such that the latter is 395 

task-independent and unit-free. This is achieved by normalizing confidence evidence relative to the 396 

sensory sensitivity, and consequently, confidence evidence is a good proxy for the probability of 397 

being self-consistent in the perceptual decision (see again Appendix A). From the ideal confidence 398 

observer perspective, this scaling factor should be the inverse of the sensory noise ( ). We 399 

represent by  the confidence bias which stands as a deviation away from this ideal scaling (this 400 

corresponds to replacing  with ). Values of  larger than  indicate over-confidence, and 401 
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values smaller than  under-confidence. Taking into account this misestimate of the sensory 402 

sensitivity leads to a new confidence evidence 403 

   . (8) 404 

The effect of confidence bias on the psychometric function is shown in Figure 6C. We observe that 405 

the psychometric function for the confidence chosen trials is not affected by the confidence bias 406 

(Figure 6C is identical to Figure 2B). This is not surprising since this parameter scales the 407 

confidence evidence in both intervals in the same way. Even though the effects of confidence bias 408 

are invisible here, we present below a condition where this confidence bias can be partially 409 

estimated (see section 11). 410 

5.d. Confidence Criterion 411 

Finally, human observers can use a criterion against which they measure their confidence that is 412 

distinct from the sensory criterion. We represent by  the deviation of the confidence criterion 413 

away from the sensory criterion. Ideally this parameter is zero ( ), but when it is not, the 414 

confidence evidence becomes 415 

   . (9) 416 

The effect of confidence criterion on the psychometric function is shown in Figure 6D. When the 417 

confidence criterion deviates from the sensory criterion, the point of subjective equality (PSE) for 418 

the confidence-chosen decisions (green curve) becomes different from the PSE for the original 419 

psychometric function (grey curve). The shift in PSE is coming from the inconsistency between the 420 

perceptual decision and what we will call the pseudo perceptual decision  (see section 6.c), for a 421 

range of sensory values near the sensory criterion.  422 

6. Covariation of Sensory and Confidence Evidence  423 

Because of noise at the perceptual level or at the confidence level, sensory evidence and 424 

confidence evidence will vary across trials, even when the stimuli and the responses are the same. 425 

We will now characterise this variation, by defining the joint distribution of sensory and confidence 426 

evidence. This will allow us to produce summary statistics that will be useful for presenting the full 427 

model of the confidence comparison task. We note that previous models of confidence have 428 

discussed the joint distribution between sensory and confidence evidence (Fleming & Daw, 2017). 429 

However, it is important to appreciate that our definition is different from these previous studies 430 
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because our joint distribution is derived from a generative model based on the introduction of 431 

confidence noise and confidence boost instead of being an arbitrary bivariate distribution function.  432 

6.a. Joint distribution for sensory and confidence evidence 433 

Taking into account all the possible deviations from the ideal confidence observer, the confidence 434 

evidence is following Equation 9 above. This evidence is normally distributed with mean 435 

  . (10) 436 

In addition, we note that confidence noise is independent of sensory evidence. This allows us to 437 

characterize the variance of the distribution of confidence evidence as 438 

  . (11) 439 

 440 

 441 

Figure 7. Joint distribution of sensory and confidence evidence. On each trial, the 442 

participant has access to one sensory sample  (blue arrow) and one confidence 443 

sample  (green arrow) of the joint distribution . The blue distribution shown in 444 

Figure 5 is the marginal distribution of the sensory evidence. The green distribution in 445 

the right-hand panel is the distribution of confidence evidence for the particular 446 

sensory sample  (it is the cross-section of the joint distribution along the blue 447 

line). The mean of this distribution is  (see below, Equation 17), and its 448 

spread is the confidence noise . The strength of the confidence evidence on that 449 

particular trial is given by the magnitude of the sample  (distance away from zero). 450 
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 451 

Because both the sensory and confidence evidence are normally distributed, their joint distribution 452 

 is a bivariate normal distribution. An example of this joint distribution is shown in Figure 7. 453 

The mean of the joint distribution  is obtained from the mean of the sensory evidence and 454 

the mean of the confidence evidence (see Equation 10) 455 

   . (12) 456 

The covariance between  and  is obtained from Equation 9 457 

   , (13) 458 

so that the covariance matrix  of the joint distribution  is  459 

   . (14) 460 

It is worth noting the special case of the ideal confidence observer. In this case, , , 461 

, and the covariance matrix reduces to 462 

   . (15) 463 

The determinant of this covariance matrix is zero, indicating that there is a direct mapping between 464 

sensory evidence and confidence evidence: this is expected since without confidence noise, 465 

confidence and sensory evidence are perfectly correlated. 466 

One other special case of interest is the super-ideal confidence observer ( ) corrupted with 467 

some confidence noise, where the covariance matrix is 468 

   . (16) 469 

This covariance matrix is now diagonal, indicating that confidence and sensory evidences are 470 

independent. Here, the joint distribution  has its main axes oriented along the sensory and 471 

confidence evidence axes. In other words, for a noisy super-ideal confidence observer, confidence 472 

evidence depends only on the stimulus strength and is independent from the sensory evidence for 473 

the current trial. 474 
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6.b. Confidence Evidence Conditional on Sensory Evidence 475 

On any perceptual trial of a confidence pair, the observer first gets some sensory evidence, 476 

performs a perceptual decision based on this sensory evidence, and then estimates the confidence 477 

that this decision is self-consistent. Therefore, we need to estimate the distribution of confidence 478 

evidence for one particular value of sensory evidence  (Figure 7, right-hand panel). This 479 

distribution of confidence evidence is  and corresponds to a section of the joint distribution 480 

. This conditional distribution is normally distributed, and its mean (that we denote 481 

 for later use) and variance can be inferred from the mean and the covariance matrix of 482 

the joint distribution  (Equations 12 and 14) 483 

     . (17) 484 

As expected, we see that the variance of the confidence evidence, once the sensory evidence is 485 

known, is just the variance of the confidence noise. The mean is a biased and scaled version of 486 

the sensory evidence . It is biased towards the representation of the original stimulus  when the 487 

parameter  is larger than zero, i.e. when the human confidence observer is behaving a bit like the 488 

super-ideal confidence observer. The scaling involves the parameter  that is responsible for a 489 

proper calibration of confidence judgments, such that  corresponds to over-confidence. 490 

6.c. Pseudo-Perceptual Decision 491 

The confidence evidence is the basis to judge whether the perceptual decision is self-consistent. 492 

One might be tempted to just use the absolute value of confidence evidence for this judgment, 493 

where larger absolute values reflect better chances to be self-consistent. However, this choice 494 

would disregard the actual perceptual decisions that were taken. Critically, to decide whether the 495 

perceptual decision is self-consistent, we need to evaluate whether the confidence evidence is 496 

consistent with the perceptual decision. For this purpose, we introduce the pseudo perceptual 497 

decision  that corresponds to the perceptual decision that would have been taken if the 498 

confidence evidence was used instead of the sensory evidence. By similarity to the definition of 499 

perceptual decisions in Equation 2 above, the pseudo perceptual decision is thus defined as 500 

   . (18) 501 

When the pseudo perceptual decision  is distinct from the perceptual decision , this can be 502 

taken as an alert signal that the perceptual decision might be invalid. Therefore, we can define a 503 
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new variable that reflects the diminished trust that the perceptual decision was valid when  is 504 

distinct from . We define the signed confidence evidence as 505 

   . (19) 506 

This signed confidence evidence is useful to estimate the probability that the perceptual decision is 507 

self-consistent given the current confidence evidence and perceptual decision, 508 

- . Computing this probability is complex because it rests on the knowledge 509 

of all the parameters in our model. Whereas prior work has assumed that observers would be able 510 

to use this knowledge (Fleming & Daw, 2017), here we propose instead that human observers only 511 

have access to the current level of confidence evidence and what they decided perceptually. 512 

Therefore, we propose that the observer is computing the confidence probability defined as  513 

 , (20) 514 

where  is the cumulative of the standard normal distribution. In Appendix A, we show that the 515 

confidence probability is a reasonable proxy for the probability of being self-confident given the 516 

current confidence evidence and perceptual decision. 517 

7. Comparing Confidence Across Two Perceptual Decisions 518 

In the confidence forced-choice paradigm, two intervals are presented to the observer who has to 519 

choose the one for which she feels more confident that her perceptual decision was self-520 

consistent. Therefore, we need to compare confidence across the two perceptual decisions of a 521 

confidence pair. 522 

7.a. Joint Sensory Evidence and Joint Confidence Evidence in a Confidence Pair 523 

Typically, the stimuli presented in the two intervals are independent from each other, so that we 524 

can assume that the sensory evidence in the two intervals is uncorrelated. Likewise, we assume 525 

that the confidence evidence in the two intervals is also uncorrelated. It is convenient to represent 526 

sensory and confidence evidence across the two intervals as joint probability distributions (Figure 527 

8). 528 

 529 
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 530 

Figure 8. Joint distributions of sensory and confidence evidence across the two 531 

intervals of a confidence pair. (A) Joint distribution for the sensory evidence . 532 

In this example, stimulus  is presented in interval 1 ( ) and stimulus  is 533 

presented in interval 2 ( ), and are associated with the same level of sensory 534 

noise ( . The joint distribution of the sensory evidence is shown as a 535 

contour plot in blue. A sample of this joint distribution is shown as a blue dot that has 536 

coordinates  for interval 1 and  for interval 2. The perceptual decisions  and  537 

associated with this sample are both in favour of response . (B) Joint distribution for 538 

the confidence evidence conditional on sensory evidence . Because 539 

the perceptual decisions were  for both intervals, the joint confidence distribution is 540 

likely to have its centre in the upper-right quadrant (contour plot in green). The pseudo 541 

perceptual decisions  and  are shown for the confidence evidence space.  542 

 543 

The joint distribution  for the sensory evidence across the two intervals is a bivariate 544 

normal distribution (Figure 8A) with mean and covariance 545 

     . (21) 546 

The joint distribution is the confidence evidence conditional on the sensory 547 

evidence across the two intervals (Figure 8B). It is a bivariate normal distribution with mean and 548 

covariance matrix 549 
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     .  (22) 550 

where the off-diagonal elements of the covariance matrix are zero because confidence evidence 551 

was assumed to be uncorrelated across intervals. The mean values are computed from Equation 552 

17. 553 

7.b. Confidence Decision Rule 554 

The final step in choosing the interval in the confidence forced-choice paradigm is to decide on a 555 

confidence decision rule. This decision rule uses the confidence evidence in both intervals to 556 

select the interval the observer believes her perceptual decision is more self-consistent than the 557 

other. To take into account the perceptual decision in the confidence judgment, we rely on the 558 

signed confidence judgment  described above (Equation 19). We define the choice of the 559 

confidence interval  between intervals 1 and 2 as follows 560 

   . (23) 561 

According to this Equation, the confidence choice will be the interval for which the confidence 562 

evidence is the largest in magnitude, except if there is a mismatch between  and , in which 563 

case the confidence choice will be the other interval. The impact of the inconsistency between  564 

and  is illustrated in Figure 9A. This figure is reproduced from the previous example where the 565 

perceptual decisions were  in both intervals (Figure 8). Following Equation 23, interval 1 will be 566 

chosen if the confidence evidence lies in the contiguous half space in the lower-right. Applying the 567 

confidence decision rule to the other three scenarios of the perceptual decisions in intervals 1 and 568 

2 also leads to contiguous half-spaces that are consistent with a confidence choice in favour of one 569 

interval (Figure 9B). 570 
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 571 

Figure 9. Confidence decision rule. (A) Joint distribution for the confidence evidence 572 

conditional on sensory evidence  when  and  are both consistent 573 

with percept . This plot is a replica of Figure 8B where eight different sectors are 574 

identified from the comparison of the signed confidence evidence across the two 575 

intervals. Sectors that lead to choosing interval 1 as more confident are shown in 576 

purple ( ), and those favouring interval 2 in cyan ( ). Confident choices in 577 

favour of interval 1 lie in a contiguous half-space located in the lower-right of the 578 

confidence evidence space. (B) Confidence choices for each of the four possible 579 

combinations of perceptual decisions across the two intervals. Labels of each panel 580 

correspond to the perceptual decisions in each interval (e.g.  581 

indicates that response category  was chosen in interval 1 and  in interval 2). The 582 

scenario illustrated in part (A) of the figure is shown in the upper-583 

right panel. 584 

 585 

7.c. Interval Bias 586 

We have to consider one last aspect of the confidence forced-choice paradigm. It is plausible that 587 

participants will display some consistent bias in choosing the first or the second interval in all the 588 

confidence trials. This type of interval bias has been found to be significant in some individuals, 589 

and when it was present, it was relatively stable within individuals (de Gardelle & Mamassian, 590 

2015). If we denote by  the bias in favour of interval 1, then we can rewrite Equation 23 as follows 591 
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   . (24) 592 

When there is a bias to choose interval 1 over interval 2 ( ), interval 1 might be preferred over 593 

interval 2 even when the perceptual decision in interval 2 was better than the one in interval 1. This 594 

leads to worse discriminability of chosen decisions in interval 1 as compared to interval 2 (Figure 595 

10). 596 

 597 

Figure 10. Effect of interval bias on psychometric function. In these simulations, there 598 

was a bias for the first interval ( ). The other parameters are listed in Table 2. 599 

Plotting conventions are those of Figure 6. 600 

 601 

The new division of confidence evidence space where intervals 1 and 2 are chosen should take 602 

into account this interval bias (Appendix B). 603 

8. Integrated Model for a Confidence Pair 604 

So far, we have considered what is happening on a single confidence pair. In order to make 605 

predictions from our model, we need to integrate all possible samples with their respective 606 

distributions. This is equivalent to simulating our model with an infinite number of trials. 607 

We start with the joint distribution of confidence evidence conditional on the 608 

sensory evidence across the two intervals. Equation 22 provides the mean and covariance of this 609 

joint distribution. Following the confidence decision rule, the probability of choosing interval 1 as 610 

more confident can be evaluated by integrating over the relevant part of the confidence space, 611 

which depends on the perceptual decisions  (see Figure 9 and Appendix B). We need to 612 

consider separately the four cases corresponding to the 2 by 2 possible perceptual decisions 613 
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. As detailed above, when there is no interval bias ( ), this space is simply a half-space 614 

above or below one of the two diagonals (see Figure 9B). For instance, if both perceptual 615 

decisions are  (top-right panel in Figure 9B), we have 616 

   . (25) 617 

Obviously, the probability of choosing interval 2 as more confident is 1 minus this probability. With 618 

a change of variables that rotates the confidence space by  counter-clockwise, the double 619 

integral in Equation 25 can be reduced to a single integral 620 

   , (26) 621 

where  is the probability distribution function of the normal distribution with mean  and 622 

variance , and  is again the cumulative distribution function of the standard normal distribution. 623 

We can proceed similarly, for the three other cases to cover all possible pairs of perceptual 624 

decisions in intervals 1 and 2, 625 

   . (27) 626 

When there is an interval bias ( ), these conditional probabilities are still cumulative normal 627 

functions, but over a larger or smaller domain (see Appendix B). 628 

When we consider all the possible pairs of sensory evidence presented in the two intervals, we see 629 

that the sensory criteria divide the sensory space into four quadrants (see again Equation 2). 630 

Applying Equations 27 to the relevant quadrants produces the confidence choice map shown in 631 

Figure 11B.  632 

 633 
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 634 

Figure 11. Joint distribution of sensory evidence and confidence choice map. (A) Joint 635 

distribution of sensory evidence (replica of Figure 8A reproduced here for 636 

convenience). (B) Confidence choice map. The probability of choosing interval 1 as 637 

more confident is plotted for each pair of sensory evidence values in intervals 1 and 2. 638 

Parameters for this example are listed in Table 2. 639 

 640 

The final step to compute the integrated model is to combine the probability of getting a particular 641 

pair of sensory evidence values  with its associated probability of choosing interval 1 as 642 

more confident. The former is the joint distribution of sensory evidences across the two intervals 643 

(Figure 11A) and the latter is the confidence choice map (Figure 11B). In layman  terms, we need 644 

to multiply point by point Figure 11A with Figure 11B, and then integrate over the whole space. 645 

In formal terms, the probability of choosing interval 1 as more confident is 646 

        , (28) 647 

where  is the quadrant of the space of sensory evidence across the two intervals that is 648 

compatible with the pair of perceptual decisions . For instance, when , 649 

. We can easily compute a numerical approximation for this equation. The 650 

result for the different perceptual decisions forms a quadruplet of probabilities as shown in Figure 651 

12A. 652 

 653 
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 654 

Figure 12. Interval choice probabilities. (A) Quadruplet of confidence choice 655 

probabilities for a particular pair of stimuli in the two intervals. The probability of 656 

choosing interval 1 as more confidence is plotted for each pair of perceptual decisions 657 

in intervals 1 and 2. Labels for the bars correspond to the perceptual decisions in each 658 

response category  was chosen in interval 1 and  in 659 

interval 2). (B) Effect of confidence boost on interval choice probability. (C) Effect of 660 

confidence noise on interval choice probability when the confidence boost is . (D) 661 

Effect of confidence noise on interval choice probability when the confidence boost is 662 

. The four coloured dots in panels (C) and (D) have the same set of four values 663 

of interval choice probabilities, therefore the corresponding pairs of confidence boost 664 

and confidence noise are confidence metamers. All parameters, other than the 665 

confidence boost in panels (B), (C) and (D), and the confidence noise in panels (C) 666 

and (D), are listed in Table 2. 667 

 668 
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9. Confidence Metamers and Confidence Efficiency 669 

9.a. Confidence Metamers 670 

It is instructive to look at the effects of the two main parameters of the model, namely the 671 

confidence boost and the confidence noise while keeping the other parameters of the model 672 

constant (see Appendix C). Figure 12B illustrates how increasing confidence boost makes the 673 

probability of choosing interval 1 deviate from chance level (0.5), for each pair of perceptual 674 

decisions. Whether each of these probabilities tends towards 0 or 1 depends on the sign of 675 

 (Appendix C). 676 

Figures 12C and 12D illustrate the effect of confidence noise. As expected, increasing confidence 677 

noise makes confidence choices converge towards chance level. This convergence to chance 678 

level can be observed both when the confidence boost is small (Figure 12C) and large (Figure 679 

12D). 680 

Comparing Figures 12C and 12D, we can see that confidence boost and confidence noise have 681 

opposite effects on interval choice probability. In other words, different pairs of confidence boost 682 

and confidence noise trade off and can produce similar outcomes in terms of confidence choice 683 

probabilities. One such example is shown with dashed lines in Figures 12C and 12D. These lines 684 

indicate that for an arbitrary choice of confidence boost and confidence noise , 685 

one can find other pairs of confidence boost and confidence noise (for instance, ) 686 

that give rise to similar quadruplets of choice probabilities. We call these configurations confidence 687 

metamers. 688 

Confidence metamers are pairs of confidence boost and confidence noise that correspond to 689 

similar levels of confidence in that they generate very similar quadruplets of confidence choices for 690 

all pairs of perceptual decisions in a confidence forced-choice paradigm. Confidence metamers 691 

highlight the difficulty in separating out the contribution of confidence boost and confidence noise 692 

in confidence judgments. However, one benefit of this concept is that it will allow us to define a 693 

confidence efficiency that combines the contributions of confidence boost and confidence noise. 694 

9.b. Confidence Efficiency 695 

Given quadruplets of confidence choices, sets of confidence metamers are obtained by choosing 696 

the value of confidence boost and searching for the confidence noise that best approximates the 697 

confidence choices. Three examples of confidence metamer sets are shown in Figure 13A 698 
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depicting the trade-off between confidence boost and confidence noise. The set of confidence 699 

metamers corresponding to the ideal confidence observer (blue curve in Figure 13A) is particularly 700 

important because it divides the (confidence noise, confidence boost) space into two parts. On its 701 

right are all the confidence metamers that are worse than the ideal confidence observer (green 702 

shaded region in Figure 13A), and on its left, the ones that are better (red shaded region). We will 703 

come back to this distinction shortly, after defining confidence efficiency. 704 

Confidence metamers that are better than the ideal confidence observer (e.g. the red curve in 705 

Figure 13A) are special because, for these metamers, there exists no confidence noise that can 706 

lead to an equivalent confidence performance when the confidence boost is zero. Note however 707 

that all confidence metamer traces do cross the top horizontal line corresponding to the maximal 708 

confidence boost ( ; horizontal dashed line in Figure 13A). This property allows us to define 709 

the equivalent confidence noise  which is the confidence noise of the confidence metamer that 710 

corresponds to  These equivalent confidence noises are shown as dots at the top of Figure 711 

13A. The blue dot is the equivalent confidence noise  for the ideal observer. 712 

The equivalent confidence noise can help us summarize the sensitivity of the confidence 713 

judgments for a given set of confidence metamers, for instance the metamers shown in green in 714 

Figure 13A. We call this summary the confidence efficiency  that we define from the inverse of the 715 

equivalent confidence noise variance 716 

   . (29) 717 

In this definition, we have normalized the equivalent confidence noise of the human observer by 718 

that of the ideal confidence observer, so that the confidence efficiency is exactly 1 for the ideal 719 

confidence observer. The ratio of equivalent confidence noises is squared to make confidence 720 

efficiency analogous with the definition of efficiency for perceptual decisions (e.g. Kersten & 721 

Mamassian, 2009). Coming back to the two regions of Figure 13A defined by the ideal confidence 722 

observer, all confidence metamers to the right of the curve traced by the ideal confidence observer 723 

have a confidence efficiency smaller than 1, and those to its left have a confidence efficiency 724 

greater than 1. 725 

 726 
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 727 

Figure 13. Confidence metamers and confidence efficiency. (A) Construction of the 728 

equivalent confidence noise. Each of the three coloured curves shows confidence 729 

metamers, namely the pairs of confidence noise and confidence boost that produce 730 

similar quadruplets of choice probabilities across all four possible perceptual decisions 731 

of a confidence pair. The blue curve corresponds to the ideal confidence observer 732 

. It intersects the line of maximal confidence boost ( ; horizontal 733

dashed line at the top) at a point called the equivalent confidence noise for the ideal 734 

confidence observer ( ). For each confidence metamer, we can similarly find the 735 

equivalent confidence noise (e.g. the value  for the green curve that corresponds 736 

to a noisy ideal confidence observer ). (B) Confidence efficiency. The 737 

equivalent confidence noise can be used to compute the confidence efficiency (for the 738 

green confidence metamers in panel (A), the efficiency is ). By definition, 739 

confidence efficiency is 1 when both confidence boost and confidence noise are null. 740 

Confidence efficiency increases with confidence boost and decreases with confidence 741 

noise. Any pair of confidence noise and confidence boost that are to the right and 742 

below of the blue curve in panel (A) have a confidence efficiency smaller than 1, and 743 

those to the left and above have a confidence efficiency greater than 1. 744 

 745 

Using our definition of confidence efficiency, we can assign a confidence efficiency for each pair of 746 

confidence noise and confidence boost (Figure 13B). Confidence efficiency runs from zero (no 747 

metacognition, obtained when confidence noise is very large) to infinity (super-ideal confidence 748 

observer, obtained when confidence boost is 1 and there is no confidence noise). By definition, 749 

confidence efficiency is 1 for all the pairs of confidence noise and confidence boost that are 750 

confidence metamers of the ideal confidence observer. 751 
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10. Full Model and Parameters Estimation 752 

When we introduced confidence metamers in the previous section, we discussed that confidence 753 

boost and confidence noise were difficult to estimate simultaneously. There are however small 754 

differences in the quadruplets of choice probabilities for different pairs of these parameters 755 

(compare again Figure 12A with Figure 12B). In a real experiment that contains various stimulus 756 

strengths that compete in confidence pairs, there will be a pair of confidence boost and confidence 757 

noise that best explains all the choice probabilities. 758 

 759 

 760 

Figure 14. Parameter recovery of the model. The distributions of parameters were 761 

estimated from 500 simulated experiments. The estimated parameters were the 762 

sensory noise  and the sensory criterion  (first column), the gain in the slope of the 763 

psychometric functions between chosen and unsorted trials and the confidence 764 

efficiency (second column). The full confidence model also attempted to infer the 765 

confidence boost  and the confidence noise  (right panel). Estimated confidence 766 

boost and confidence noise are correlated, and this correlation creates confidence 767 

metamers. The original parameter values that were used in the simulations are shown 768 

as green lines. Two different confidence boosts were simulated,  in blue and 769 

 in orange. The other parameters are listed in Table 2. 770 

 771 

0.95 1 1.05
Sensory Noise

0 

20

40

0.2 0.25 0.3
Sensory Criterion

0 

20

40

1 2 4 8
Efficiency

0

2

4

6

1.4 1.6 1.8 2
Slope Gain

0 

10

20

0 3 6 9
Probability Density

0

2

4

6

0 0.5 1 1.5 2
Confidence Noise

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Probability Density



34 

 

Assuming that the confidence pairs are independent from each other, we can obtain the set of best 772 

model parameters by summing the log likelihood of each confidence pair. An example of best fitted 773 

estimate is shown superimposed on the simulated data in Figure 3. In that figure, simulated 774 

parameters were , , , and . Estimated parameters were 775 

, , , , and  ( , , and  were fixed to their default 776 

values). We see that estimated parameters are near their theoretical values, but there are small 777 

deviations. 778 

To appreciate the faithfulness of our model parameters, we simulated 500 experiments with the 779 

same original parameters, and collected the distributions of the estimated parameters. Figure 14 780 

shows these distributions for two different values of confidence boost (  vs. ). We 781 

observe that these two values of confidence boost can be distinguished since their distributions do 782 

not overlap. In addition, both the gain in the slope of the psychometric functions and the efficiency 783 

measures are able to distinguish these two conditions, since the distributions are clearly 784 

segregated (middle column of Figure 14). 785 

The next figure shows simulations of the model with varying levels of confidence noise or varying 786 

levels of confidence boost (Figure 15). Critically, the estimated confidence noise follows very well 787 

the actual confidence noise for the two levels of confidence boost simulated (Figure 15A, top), and 788 

these levels of confidence boost are well-recovered independently of the confidence noise (Figure 789 

15A middle). The opposite holds when varying the confidence boost (Figure 15B). In short, both 790 

confidence noise and confidence boosts can be recovered very well.  791 

In Appendix D, we present parameter recovery for the remaining parameters of the model. The 792 

confidence noise and boost parameters are quite stable for different values of sensory noise. This 793 

is not surprising since, in the model, confidence evidence is normalized by sensory sensitivity, so 794 

the confidence noise and boost parameters should not depend on sensory noise. The confidence 795 

noise and boost parameters are also quite stable for different values of sensory and confidence 796 

criteria, at least as long as these criteria are within reasonable limits of the range of the presented 797 

sensory stimuli. Importantly, the confidence noise and boost parameters are very stable for 798 

different values of biases in favour of responding either the first or second interval. In this latter 799 

case though, confidence efficiency decreases as the interval response bias increases, because 800 

favouring one interval over the other necessarily impairs the accuracy of choosing the interval that 801 

was more likely to be self-consistent. Finally, the confidence noise and boost parameters are better 802 

recovered as more confidence pairs are tested in an experiment. If the number of confidence pairs 803 

is less than about 1,000, the confidence noise and boost parameters are estimated too 804 

imprecisely, although the confidence efficiency remains a robust measure of meta-perception. 805 

 806 
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 807 

Figure 15. Model recovery for a range of confidence noise and confidence boost. (A) 808 

The plots show estimated parameters for two different values of confidence boost, 809 

 in blue and  in red. The estimated parameters are confidence noise (top 810 

panel), confidence boost (middle), and efficiency (bottom). (B) The plots show 811 

estimated parameters for two different values of confidence noise,  in blue and 812 

 in red. The thick lines are median estimated values across  repeated 813 

simulations, and the shaded areas cover the 25th to the 75th interquartile range.  814 

 815 

At this stage, we have not presented the model recovery for the last parameter of the model, the 816 

confidence bias . This is because this scaling factor affects both intervals equally, so its effects 817 

cancel out in the confidence forced-choice paradigm (see section 5.c). In a sense, the confidence 818 

forced-choice paradigm was designed to be immune to possible confidence biases, so it was 819 
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expected that this bias would be difficult to estimate. However, there is one scenario where the 820 

confidence bias can be recovered, at least up to a scaling factor, and this is what we explore next. 821 

11. Effects of Confidence Bias 822 

So far, we have considered that participants were performing the same perceptual task in both 823 

intervals of a confidence pair. However, it is interesting to consider the condition where the 824 

participant is asked to perform different tasks across the two intervals. This condition allowed us to 825 

claim that confidence was computed in a common currency, rather than in some metric that is 826 

tightly constrained by the dimension along which the task is performed (de Gardelle & Mamassian, 827 

2014; de Gardelle, Le Corre, & Mamassian, 2016).  828 

 829 

 830 

Figure 16. Effect of confidence bias on the psychometric functions. In these 831 

simulations, the first task was properly scaled ( ) but the observer was over-832 

confident in the second task ( ). As a result, whenever task 1 is competing with 833 

task 2 in a confidence pair, confidence choice is biased in favour of task 2 (indicated 834 

by larger green dots for task 2 than for task 1). All parameters except  are identical 835 

across the two tasks and listed in Table 2. Plotting conventions are those of Figure 6. 836 

 837 

A between-task confidence judgment also allows us to tackle an issue that we had to leave out 838 

when participants were performing the same task in both intervals of a confidence pair. This issue 839 

is whether participants are properly estimating their perceptual sensitivity in a task and correctly 840 

using this estimate to normalize their confidence evidence. In the model we described above, we 841 

assumed that this normalizing parameter  was indeed  (no confidence bias). If only one task is 842 

used, the effects of this parameter are invisible (Figure 6C), because the same scaling is applied to 843 
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both confidence evidences of the two intervals. When two tasks are competing in the two intervals, 844 

there is a visible effect on the psychometric functions (Figure 16). When two tasks are run, we 845 

cannot estimate both corresponding  parameters, but we can estimate their ratios (see 846 

Appendix E). This allows us to estimate whether one task shows over- or under-confidence relative 847 

to the other task. 848 

12. Re-Analysis of De Gardelle & Mamassian (2015) 849 

So far, we have looked at the ability of the model to simulate a confidence forced-choice 850 

experiment, and the faithfulness of the recovered parameters. We now apply this framework to the 851 

re-analysis of one of our previous studies. We choose the study of confidence for motion direction 852 

discrimination that was published in de Gardelle & Mamassian (2015). In that experiment, 853 

observers had to discriminate the mean direction of motion above or below a reference for a 854 

stimulus composed of multiple random dot motion. The strength of the stimulus was manipulated 855 

by varying the mean motion direction, where larger mean motion directions away from the 856 

reference are easier stimuli. In addition, there were two stimulus uncertainty levels, represented by 857 

the different ranges of motion directions of the dots within a stimulus. Given that these ranges are 858 

very different, we can apply the analysis of confidence biases that we discussed in section 11, 859 

where the two tasks correspond here to the two stimulus uncertainty levels. 860 

We present here parameter estimates based on the group data. This group data set corresponds 861 

to the data collected across all participants, after normalising each participant to her own sensory 862 

noise and criterion. The analysis thus assumes that there is single set of model parameters shared 863 

across all participants. In this sense, this analysis can be seen as complementary to the one 864 

presented in the original paper (de Gardelle & Mamassian, 2015), where individual differences 865 

were emphasized. 866 

Parameter estimates for this experiment are shown in Figure 17. Confidence efficiency was about 867 

0.5, indicating that participants were clearly able to make meta-perceptual judgments (efficiency 868 

larger than 0) but less efficient than the ideal confidence observer (efficiency less than 1). 869 

Separating confidence efficiency into confidence noise and confidence boost, we found evidence 870 

that confidence in this task and for this stimulus was processed more in serial than in parallel to the 871 

perceptual decision (confidence boost closer to zero than to one). Confidence noise was estimated 872 

to be about 1 (this value does not have any unit and thus could potentially be compared to other 873 

confidence noise in other experiments). Finally, we also found a small but significant confidence 874 

bias, revealing an overconfidence for the high stimulus uncertainty relative to low stimulus 875 

uncertainty. In other words, on average, participants did not fully appreciate the effect of the 876 

stimulus noise on their sensory sensitivity. 877 
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 878 

Figure 17. Model parameter estimates in a real study. Individual dots are estimates 879 

from 100 bootstrapped trials on the data collected over 15 observers. Data are from de 880 

Gardelle & Mamassian (2015).  881 

 882 

13. Discussion 883 

In summary, we have presented here a generative model for the estimation of confidence in 884 

perceptual decisions. Our model considers confidence to be the 885 

decision is self-consistent, thereby highlighting that confidence is about a decision, not about the 886 

stimulus itself, its sensory uncertainty, contrast, duration or visibility. The self-consistency aspect of 887 

the definition emphasizes that the perceiver evaluates her own percept, rather than whether her 888 

percept is consistent with the true state of the world. Using this definition, we have proposed a 889 

model of perceptual confidence where the perceptual decision follows classical Signal Detection 890 

Theory (Green & Swets, 1966). We then assumed that confidence evidence scales with the 891 

distance between sensory evidence and the sensory criterion, where the scaling factor is inversely 892 

proportional to sensory noise. This confidence evidence is corrupted by confidence noise but can 893 

benefit from some confidence boost that corresponds to the possibility that confidence may rely on 894 

additional information compared to the sensory evidence. We identify three keys aspects by which 895 

our approach goes beyond previous work. 896 

First, we can theoretically differentiate between parallel and serial processing of confidence. To 897 

obtain this result, we described the behavior of an ideal agent that uses the same information as 898 

that used for the perceptual decision. This ideal confidence observer was contrasted to a super-899 

ideal agent that uses a novel and perfect estimation of the stimulus for the purpose of the 900 

confidence judgment. Serial processing mimics the ideal confidence observer, albeit not optimally 901 

(see also Bang et al., 2019), whereas parallel processing mimics the super-ideal confidence 902 
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observer. The fraction of ideal and super-ideal observers in the confidence judgments is 903 

represented by the confidence boost parameter in our model. To be precise, this parameter 904 

reflects the fraction of all information used in confidence processing that was not used for the 905 

perceptual decision (see also Barrett, Dienes & Seth, 2013; Maniscalco & Lau, 2016; Fleming & 906 

Daw, 2017). As such, it may aggregate information from multiple sources, including non-sensory 907 

information such as motor signals (see e.g. Fleming et al., 2015; Wokke et al., 2020), or 908 

fluctuations of attention (see e.g. Recht et al., 2019) or sensory information that was processed  909 

after the perceptual decision took place (Baranski & Petrusic, 1998; Pleskac & Busemeyer, 2010). 910 

Similarly, we should emphasize that the noise corrupting the confidence evidence, although 911 

quantified with a single parameter in our model, may aggregate multiple sources of inefficiencies, 912 

including noisy read-out of the perceptual evidence, but also influences from previous confidence 913 

judgments (Rahnev et al., 2015), or influences from other features that are not related to 914 

perceptual performance. Importantly, the confidence boost parameter was well recovered in our 915 

simulations that contained a large number of trials. We anticipate that the ability to distinguish 916 

between parallel and serial confidence processing will be an important asset of our model. 917 

Second, we propose a measure of efficiency that is genuinely anchored to the metacognitive level 918 

of computation. Our efficiency measure is obtained by comparing human confidence performance 919 

to that of the ideal confidence observer. Along the way, we have defined confidence metamers that 920 

correspond to different observers who share the same confidence efficiency. Confidence 921 

metamers result from different trade-offs between two parameters of our model, confidence noise 922 

and confidence boost, and are hard to differentiate in an experiment that contains only a limited 923 

number of trials. Our definition of confidence efficiency deviates from previous ones. For instance, 924 

in the now popular meta-  framework for analyzing confidence judgments (Maniscalco & Lau, 925 

2012), no generative model is specified for confidence judgments. Under that framework, meta-  926 

quantifies the sensitivity at the metacognitive level by estimating the first-order sensitivity that 927 

would be needed to observe the data if the metacognitive system were perfect. The M-ratio, that is 928 

the ratio of meta-  over , has been put forward as a measure of efficiency, but although it makes 929 

some intuitive sense, it does not correspond to a clear process. Other theoretical approaches to 930 

metacognition have described potential generative models for confidence judgments (e.g. Pleskac 931 

& Busemeyer, 2010; Fleming & Daw, 2017; Sanders et al., 2016), but they did not offer an 932 

efficiency measure based on these models.  933 

Third, our model can sometimes recover the confidence bias that corresponds to the mis-934 

 In our model, perceptual sensitivity is used to normalize 935 

confidence so that this latter can be compared across tasks and sensory modalities (de Gardelle & 936 

Mamassian, 2014). As a consequence, overconfidence corresponds here to an over-estimation of 937 

invisible when one considers 938 

only one task, the ratio of confidence biases can be estimated when two tasks are compared. 939 
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Confidence comparison between two tasks is particularly easy within the confidence forced-choice 940 

paradigm. In this paradigm, a confidence choice is taken between two perceptual decisions. Using 941 

our modelling framework, we have described the probabilities with which one perceptual decision 942 

is associated with a larger confidence than the other decision, for different stimulus strengths and 943 

different commitments to perceptual decisions. Previous analyses of metacognitive abilities have 944 

had troubles to take into account varying difficulty levels. For instance, the classic measure of 945 

confidence resolution simply compares confidence in correct responses and errors, and ignores 946 

task difficulty. In the meta-  approach, one major limitation is that it is designed to analyze data 947 

where perceptual sensitivity is constant across trials (only one stimulus strength is used in the 948 

experiment). Failure to meet this assumption leads to overestimations of metacognitive sensitivity 949 

(see e.g. Rahnev & Fleming, 2019), because participants could be using variations of performance 950 

that cannot be used in the meta-  estimation procedure. Our method may allow researchers to 951 

overcome this obstacle.  952 

Our model involves a number of parameters and assumptions, which deserve scrutiny. We argue 953 

however that most assumptions of our model are relatively standard and supported by empirical 954 

evidence. Besides, the parameters we have introduced all have a clear interpretation, and can be 955 

recovered quite well (see section 10 and Appendices D and E). The output of our model is a 956 

signed confidence evidence that approximates the probability that the perceptual decision is self-957 

consistent. When applied to the confidence forced-choice paradigm, the decision rule for 958 

confidence is a simple comparison of the signed confidence evidence between two trials, and does 959 

not involve complex inference. In this respect, our approach appears less demanding than the 960 

actor-critic model of Fleming & Daw (2017) where confidence judgments require an inference 961 

based on the confidence evidence and the knowledge of the covariance between confidence 962 

evidence and sensory evidence. It is arguably unrealistic to assume that human participants have 963 

access to this latter knowledge, and it becomes computationally intense when multiple levels of 964 

difficulty are involved.  965 

One aspect of our model that appears non trivial is the possibility that participants would use 966 

distinct decision criteria for the Type 1 response and for the Type 2 evaluation. This possibility was 967 

explicitly excluded in the meta-  framework. Our framework allows for it, although we anticipate 968 

that a reduced model without this additional criterion should suffice in most case. However, this 969 

parameter might be interesting to researchers in some situations, where participants have to 970 

combine sensory and non-sensory information about a stimulus. The non-sensory information can 971 

be a probabilistic cue, as in many decision making studies (e.g. Locke et al., 2020), or an advice 972 

given by another observer, as for instance in Asc ch 1956). Here, as 973 

they face a tradeoff between optimality and accuracy, participants might use a Type 1 criterion that 974 

takes into account all the cues to make their own decision, but a Type 2 criterion that only 975 

considers their own sensory information when evaluating their confidence. Future research, both 976 
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theoretical and empirical, may aim at understanding how metacognition unfolds in these situations 977 

of decision under influence. 978 

To conclude, our effort has focused on specifying a formal generative model where confidence can 979 

be both corrupted and boosted relative to the sensory evidence, and the application of this model 980 

to the confidence forced choice paradigm. Obviously, this generative model could be used to 981 

derive confidence ratings on a scale, which are most commonly used in experiments. Doing so 982 

would require introducing additional parameters for the mapping between internal and reported 983 

confidence (Aitchison et al., 2015), which the confidence forced choice paradigm naturally avoids. 984 

One other direction for future work is to extend the present model to other perceptual tasks, 985 

including detection tasks (see e.g. García-Pérez et al., 2011). Finally, since the simultaneous 986 

estimation of all parameters in our model require a large amount of data, the development of a 987 

Bayesian hierarchical estimation would be important to be able to collect data across participants 988 

(Fleming, 2017). Ultimately, it will be interesting to compare the parameters of the generative 989 

model across tasks, sensory modalities, and participant populations. 990 
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