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Berry-Esseen type bounds for the Left Random Walk on

GLd(R) under polynomial moment conditions

C. Cuny∗, J. Dedecker†, F. Merlevède ‡and M. Peligrad §

Abstract

Let An = εn · · · ε1, where (εn)n≥1 is a sequence of independent random matrices taking

values in GLd(R), d ≥ 2, with common distribution µ. In this paper, under standard

assumptions on µ (strong irreducibility and proximality), we prove Berry-Esseen type the-

orems for log(‖An‖) when µ has a polynomial moment. More precisely, we get the rate
√

log n/
√
n when µ has a moment of order 3 and the rate 1/

√
n when µ has a moment of

order 4, which significantly improves earlier results in this setting.

AMS 2020 subject classifications: 60F05, 60B15, 60G50.
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1 Introduction

Let (εn)n≥1 be independent random matrices taking values in G = GLd(R), d ≥ 2 (the group of

invertible d-dimensional real matrices) with common distribution µ. Let ‖ · ‖ be the euclidean

norm on Rd, and for every A ∈ GLd(R), let ‖A‖ = supx,‖x‖=1 ‖Ax‖. We shall say that µ has a

moment of order p ≥ 1 if ∫
G

(logN(g))pdµ(g) <∞ ,

where N(g) := max(‖g‖, ‖g−1‖).
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Let An = εn · · · ε1. It follows from Furstenberg and Kesten [12] that, if µ admits a moment

of order 1 then

lim
n→∞

1

n
log ‖An‖ = λµ P-a.s., (1.1)

where λµ := limn→∞ n
−1E log ‖An‖ is the so-called first Lyapunov exponent.

Let now X := P (Rd) be the projective space of Rd and write x̄ as the projection of x ∈
Rd − {0} to X. An element A of G = GLd(R) acts on the projective space X as follows:

Ax̄ = Ax. Let Γµ be the closed semi-group generated by the support of µ. We say that µ

is proximal if Γµ contains a matrix that admits a unique (with multiplicity 1) eigenvalue of

maximal modulus. We say that µ is strongly irreducible if no proper union of subspaces of

Rd is invariant by Γµ. Throughout the paper, we assume that µ is strongly irreducible and

proximal. In particular, there exists a unique invariant measure ν on B(X), meaning that for

any continuous and bounded function h from X to R,∫
X

h(x)dν(x) =

∫
G

∫
X

h(g · x)dµ(g)dν(x) . (1.2)

Let W0 be a random variable with values in the projective space X, independent of (εn)n≥1 and

with distribution ν. By the invariance of ν, we see that the process (AnW0)n≥1 is a strictly

stationary process.

Note that, since µ is assumed to be strongly irreducible, the following strong law holds (see

for instance [3], Proposition 7.2 page 72): for any x ∈ Rd − {0},

lim
n→∞

1

n
log ‖Anx‖ = λµ P-a.s. (1.3)

To specify the rate of convergence in the laws of large numbers (1.1) and (1.3), it is then

natural to address the question of the Central Limit Theorem for the two sequences log ‖An‖ −
nλµ and log ‖Anx‖− nλµ. The central limit theorem (with normalization

√
n and positive limit

variance s2) for log ‖Anx‖ − λµ has been established by Le Page [17] under an exponential

moment for µ (meaning that
∫
G

(N(g))αdµ(g) < ∞ for some α > 0, see also [10]). Then, Jan

[14] proved the central limit theorem for log ‖Anx‖ − λµ if µ has a moment of order p > 2, and

Benoist and Quint [1] obtained the same result for both sequences under a moment of order 2.

The fact that s2 > 0 follows from item (c) of Theorem 3.1 of [1].

In the present paper, we are interested in Berry-Esseen type bounds in these central limit

theorems, under moments of order p = 3 or p = 4. Before giving our main results, let us briefly

describe the previous works on this subject.

When µ has an exponential moment, Le Page [17] proved the following inequality: there

exists a positive constant C such that

sup
t∈R

sup
x,‖x‖=1

∣∣P (log ‖Anx‖ − nλµ ≤ t
√
n
)
− Φ(t/s)

∣∣ ≤ Cvn with vn =
1√
n
, (1.4)
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where s2 > 0 is the limit variance, and Φ is the cumulative distribution function of a stan-

dard normal distribution. Still in the case of exponential moments, Edgeworth expansions (a

strengthening of the Berry-Esseen theorem) have been recently obtained by Fernando and Pène

[9].

Now, under the assumption that all the moments of order p of µ are finite, Jan [14] obtained

the rate vn = n−1/2+ε for any ε > 0 in (1.4). Next, Cuny et al. [4] gave an upper bound of order

vn = n−1/4
√

log n in (1.4) provided µ has a moment of order 3 (as a consequence of an upper

bound of order n−1/2 log n for the Kantorovich metric). More recently, Jirak [16] proved that, if

µ has a moment of order p = 8, then there exists a positive constant C such that

sup
t∈R

∣∣P (log ‖AnV0‖ − nλµ ≤ t
√
n
)
− Φ(t/s)

∣∣ ≤ C√
n
, (1.5)

where V0 is independent of (εn)n≥1 and such that ‖V0‖ = 1 and V0 is distributed according to

the invariant distribution ν on X.

Concerning matrix norms, we first note that the Berry-Esseen bound of order n−1/4
√

log n

under a moment of order 3 is still valid for log ‖An‖ − λµ instead of log ‖Anx‖ − λµ (see the

discussion in Section 8 of [4]). Moreover, if µ has an exponential moment, Xiao et al. [19] proved

that there exists a positive constant C such that

sup
t∈R

∣∣P (log ‖An‖ − nλµ ≤ t
√
n
)
− Φ(t/s)

∣∣ ≤ Cwn with wn =
log n√
n
. (1.6)

Note that in [19], the authors also proved a similar upper bound for log(ρ(An)) where ρ(An) is

the spectral radius of An.

In the present paper, we prove that:

• If µ has a moment of order 3, then the rate in (1.4) is vn = n−1/2(log n)1/2 and the rate in

(1.6) is wn = n−1/2(log n)1/2.

• If µ has a moment of order 4, then the rate in (1.4) is vn = n−1/2 and the rate in (1.6) is

wn = n−1/2.

To prove these results, we follow the approach developed in Jirak [15], but with substantial

changes, in order to take advantage of the dependence coefficients described in [4] and [5] (see

(3.1) and (3.2) below).

The paper is organized as follows. In Section 2, we state our main results about Berry-Esseen

type bounds in the context of left random walks when µ has either a moment of order 3 or a

moment of order 4. All the proofs are postponed to Section 3. Some technical lemmas used in

the proofs are stated and proved in Section 4.
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In the rest of the paper, we shall use the following notations: for two sequences (an)n≥1 and

(bn)n≥1 of positive reals, an � bn means that there exists a positive constant C not depending

on n such that an ≤ Cbn for any n ≥ 1. Moreover, given a σ-algebra F , we shall often use the

notation EF(·) = E(·|F).

Remark 1.1. After this article was submitted (in January 2021), we became aware of the article

by Dinh, Kaufmann and Wu [8], in which the authors obtain the bound (1.4) with vn = n−1/2

when µ has a moment of order 3, in the case d = 2. Note that, in the same paper [8] and still

in the case d = 2, a Local Limit Theorem is also established for log ‖Anx‖.

2 Berry-Esseen bounds

Recall the notations of the Introduction: let (εn)n≥1 be independent random matrices taking

values in G = GLd(R), d ≥ 2, with common distribution µ. Let An = εn · · · ε1 for n ≥ 1, and

A0 =Id. We assume that µ is strongly irreducible and proximal, and ve denote by ν the unique

distribution on X = P (Rd) satisfying (1.2).

Let now V0 be a random variable independent of (εn)n≥1, taking values in Rd, such that

‖V0‖ = 1 and V0 is distributed according to ν.

The behavior of log ‖AnV0‖ − nλµ (where λµ is the first Lyapunov exponent defined right

after (1.1)) can be handled with the help of an additive cocycle, which can also be viewed as a

function of a stationary Markov chain. More precisely, let W0 = V0 (so that W0 is distributed

according to ν), and let Wn = εnWn−1 = AnW0 for any ineger n ≥ 1. By definition of ν, the

sequence (Wn)n≥0 is a strictly stationary Markov chain with values in X. Let now, for any

integer k ≥ 1,

Xk := σ(εk,Wk−1)− λµ = σ(εk, Ak−1W0)− λµ , (2.1)

where, for any g ∈ G and any x̄ ∈ X,

σ(g, x̄) = log
(‖g · x‖
‖x‖

)
.

Note that σ is an additive cocycle in the sense that σ(g1g2, x̄) = σ(g1, g2x̄) + σ(g2, x̄). Conse-

quently

Sn =
n∑
k=1

Xk = log ‖AnV0‖ − nλµ .

With the above notations, the following Berry-Esseen bounds hold.
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Theorem 2.1. Let µ be a proximal and strongly irreducible probability measure on B(G). Assume

that µ has a finite moment of order 3. Then n−1E(S2
n) → s2 > 0 as n → ∞ and, setting

vn =
√

log n/
√
n, we have

sup
y∈R

∣∣∣P(Sn ≤ y
√
n
)
− Φ(y/s)

∣∣∣� vn , (2.2)

sup
y∈R

∣∣∣P( log(‖An‖)− nλµ ≤ y
√
n
)
− Φ(y/s)

∣∣∣� vn , (2.3)

and

sup
x,‖x‖=1

sup
y∈R

∣∣∣P( log ‖Anx‖ − nλµ ≤ y
√
n
)
− Φ(y/s)

∣∣∣� vn . (2.4)

Remark 2.1. The fact that n−1E(S2
n)→ s2 follows for instance from Theorem 1 of [4] and the

fact that s2 > 0 follows (since µ is proximal and strongly irreducible) from item (c) of Theorem

4.11 of [1]. Finally, we also have s2 = E(X2
1 ) + 2

∑
k≥2 Eν(X1Xk), which follows for instance

from the proof of item (ii) of Theorem 1 in [4].

Now if µ has a finite moment of order 4 then the following result holds:

Theorem 2.2. Let µ be a proximal and strongly irreducible probability measure on B(G). Assume

that µ has a finite moment of order 4. Then n−1E(S2
n)→ s2 > 0 as n→∞ and (2.2), (2.3) and

(2.4) hold with vn = 1/
√
n.

Recall that the classical Berry-Esseen theorem for independent random variables, which

corresponds to the case d = 1 in our setting, provides the rate 1/
√
n under a finite moment

of order 3. Hence, one may wonder whether the conclusion of Theorem 2.2 holds under the

assumptions of Theorem 2.1. Note also that we have chosen to focus on the cases where µ

has a finite moment of order 3 (since it corresponds to the usual moment assumption for the

Berry-Esseen theorem in the iid case) or a finite moment of order 4 (since in this case we reach

the rate 1/
√
n), but we infer from the proofs that if µ has a finite moment of order q ∈ (3, 4)

then the above results hold with vn = (log n)(4−q)/2/
√
n.

3 Proofs

3.1 Proof of Theorem 2.1.

As usual, we shall denote by Xk,x̄ the random variable Xk defined by (2.1) when the Markov

chain (Wn)n≥0 starts from x̄ ∈ X. We then define Sn,x̄ := log ‖Anx‖ − nλµ =
∑n

k=1Xk,x̄.
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3.1.1 Proof of the upper bound (2.2)

Notations and Preliminaries. For every k ≥ 1, let

δpp,∞(k) = sup
x̄,ȳ∈X

E
∣∣Xk,x̄ −Xk,ȳ

∣∣p . (3.1)

If µ has a finite moment of order q > 1, then, by [4, Prop. 3], we know that∑
k≥1

kq−p−1 δpp,∞(k) <∞ ∀p ∈ [1, q) . (3.2)

Since (δp,∞(k))k≥1 is non increasing, it follows that (if µ has a moment of order q > 1)

δp,∞(k) = o
(
1/kq/p−1

)
∀p ∈ [1, q) . (3.3)

We shall also adopt most of the time the same notations as in Jirak [15]. Let E ji = σ(εi, . . . , εj)

for i ≤ j, and m be a positive integer that will be specified later. For any k ≥ m, let

Xk,m = E(Xk|Ekk−m+1) := fm(εk−m+1, . . . , εk) , (3.4)

where fm is a measurable function. More precisely, we have

Xk,m =

∫
X

σ(εk, A
k−m+1
k−1 x̄)dν(x̄)− λµ ,

where we used the notation Aij = εj · · · εi for i ≤ j. Note that E(Xk,m) = 0.

Next, let N be the positive integer such that n = 2Nm + m′ with 0 ≤ m′ ≤ 2m − 1. The

integers N and m are such that N ∼ κ1 log n (where κ1 is a positive constant specified later) and

m ∼ (2κ1)−1n(log n)−1 (see (3.23) for the selection of κ1). Define now the following σ-algebra

Fm = σ((ε(2j−1)m+1, . . . , ε2jm), j ≥ 1) . (3.5)

Let U1 =
∑m

k=1Xk and, for any integer j ∈ [2, N ], define

Uj =

(2j−1)m∑
k=(2j−2)m+1

(Xk,m − E(Xk,m|Fm)) . (3.6)

For any integer j ∈ [1, N ], let

Rj =

2jm∑
k=(2j−1)m+1

(Xk,m − E(Xk,m|Fm)) , (3.7)

Y
(1)
j = Uj +Rj and S

(1)
|m =

N∑
j=1

Y
(1)
j . (3.8)
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Let also

UN+1 =

min(n,(2N+1)m)∑
k=2Nm+1

(Xk,m − E(Xk,m|Fm)) and RN+1 =
n∑

k=(2N+1)m+1

(Xk,m − E(Xk,m|Fm)) ,

where an empty sum has to be interpreted as 0. Note that under PFm (the conditional probability

knowing Fm), the random vectors (Uj, Rj)1≤j≤N+1 are independent. Moreover, by stationarity,

the r.v.’s (Uj, Rj)2≤j≤N have the same distribution (as well as the r.v.’s (Rj)1≤j≤N).

Next, denoting by S
(2)
|m =

∑n
k=m+1 E(Xk,m|Fm), the following decomposition is valid:

Sn,m :=
m∑
k=1

Xk +
n∑

k=m+1

Xk,m = S
(1)
|m + S

(2)
|m + UN+1 +RN+1 .

To simplify the exposition, assume in the rest of the proof that n = 2Nm (so that m′ = 0). There

is no loss of generality by making such an assumption: the only difference would be that since

(UN+1, RN+1) does not have the same law as the (Uj, Rj)’s, 2 ≤ j ≤ N , its contribution would

have to be treated separately. Therefore, from now we consider m′ = 0 and then the following

decomposition

Sn,m = S
(1)
|m + S

(2)
|m . (3.9)

According to the so-called Berry-Esseen smoothing inequality (see e.g. [11, Ineq. (3.13) p.

538]) for any positive T ,

sup
x∈R

∣∣∣Pν(Sn ≤ x
√
n
)
− Φ(x/s)

∣∣∣� ∫ T

−T

∣∣E(eiξSn/
√
n
)
− e−ξ

2s2/2
∣∣

|ξ|
dξ + T−1 . (3.10)

But ∣∣E(eiξSn/
√
n
)
− e−ξ

2s2/2
∣∣ ≤ ∣∣E(eiξSn/

√
n
)
− E

(
eiξSn,m/

√
n
)∣∣+

∣∣E(eiξSn,m/
√
n
)
− e−ξ

2s2/2
∣∣ .

Next∣∣E(eiξSn,m/
√
n
)
− e−ξ

2s2/2
∣∣

=
∣∣∣E(eiξS

(2)
|m /
√
n
[
EFm

(
eiξS

(1)
|m /
√
n)− e−ξ

2s2/4
])

+ e−ξ
2s2/4

(
E
(
eiξS

(2)
|m /
√
n)− e−ξ

2s2/4
)∣∣∣

≤
∥∥EFm

(
eiξS

(1)
|m /
√
n)− e−ξ

2s2/4
∥∥

1
+
∣∣∣E(eiξS

(2)
|m /
√
n)− e−ξ

2s2/4
∣∣∣ .

Hence, starting from (3.10) and selecting T =
√
n/ log n, Inequality (2.2) of Theorem 2.1 will

follow if one can prove that∫ T

−T

∣∣E(eiξSn/
√
n
)
− E

(
eiξSn,m/

√
n
)∣∣

|ξ|
dξ �

√
log n√
n

, (3.11)
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∫ T

−T

∥∥EFm
(
eiξS

(1)
|m /
√
n)− e−ξ

2s2/4
∥∥

1

|ξ|
dξ �

√
log n√
n

(3.12)

and ∫ T

−T

∣∣E(eiξS
(2)
|m /
√
n)− e−ξ

2s2/4
∣∣

|ξ|
dξ �

√
log n√
n

. (3.13)

In the rest of the proof we shall prove these three upper bounds.

Step 1. Proof of (3.11). Note that∫ T

−T

∣∣E(eiξSn/
√
n
)
− E

(
eiξSn,m/

√
n
)∣∣

|ξ|
dξ ≤ (log n)−1/2‖Sn − Sn,m‖1 .

But, by stationarity and [5, Lemma 24],

‖Sn − Sn,m‖1 ≤ n‖Xm+1 −Xm+1,m‖1 ≤ nδ1,∞(m) .

Hence, by (3.3) and the fact that µ has a moment of order q > 1, we derive

‖Sn − Sn,m‖1 � nm−(q−1) .

So, overall, since q = 3, it follows that∫ T

−T

∣∣E(eiξSn/
√
n
)
− E

(
eiξSn,m/

√
n
)∣∣

|ξ|
dξ � n(log n)−1/2m−2 .

The upper bound (3.11) follows from the fact that we will select m ∼ κ2n(log n)−1.

Step 2. Proof of (3.12). For any x ∈ R and any integer j ∈ [1, N ], let

ϕj(x) = E
(

eixY
(1)
j /
√

2m|Fm
)
.

Since, under PFm , the Y
(1)
j ’s are independent we write

∥∥EFm
(
eiξS

(1)
|m /
√
n)− e−ξ

2s2/4
∥∥

1
= E

[∣∣∣ N∏
j=1

ϕj

( ξ√
N

)
−

N∏
j=1

e−ξ
2s2/(4N)

∣∣∣] (3.14)

As in [15, Section 4.1.1], we use the following basic identity: for any complex numbers (aj)1≤j≤N

and (bj)1≤j≤N ,
∏N

j=1 aj −
∏N

j=1 bj =
∑n

i=1(
∏i−1

j=1 bj)(ai − bi)(
∏N

j=i+1 aj) to handle the right-hand

side of (3.14). Taking into account that (ϕj(t))1≤j≤N forms a one-dependent sequence and that

the r.v.’s (Uj, Rj)2≤j≤N have the same distribution, we then infer that

E
[∣∣∣ N∏

j=1

ϕj

( ξ√
N

)
−

N∏
j=1

e−ξ
2/(4N)

∣∣∣] ≤ I1,N(ξ) + I2,N(ξ) + I3,N(ξ) , (3.15)
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where

I1,N(ξ) = (N − 1)‖ϕ2(ξ/
√
N)− e−ξ

2s2/(4N)‖1

∥∥∥ N−1∏
j=N/2

∣∣∣ϕj( ξ√
N

)∣∣∣∥∥∥
1
,

I2,N(ξ) = Ne−ξ
2s2(N−6)/(8N)‖ϕ2(ξ/

√
N)− e−ξ

2s2/(4N)‖1

and

I3,N(ξ) = ‖ϕ1(ξ/
√
N)− e−ξ

2s2/(4N)‖1

∥∥∥ N−1∏
j=N/2

∣∣∣ϕj( ξ√
N

)∣∣∣∥∥∥
1
.

To integrate the above quantities, we need to give suitable upper bounds for the two terms

‖ϕj(t) − e−s
2t2/4‖1 and ‖

∏N−1
j=N/2 |ϕj(t)|‖1. Applying the first part of Lemma 4.6 and using

stationarity, we derive that for any 2 ≤ j ≤ N ,

‖ϕj(t)− e−s
2t2/4‖1 �

t2√
m

+
|t|
m3/2

. (3.16)

Moreover the second part of Lemma 4.6 implies that

‖ϕ1(t)− e−s
2t2/4‖1 �

t2√
m
. (3.17)

On another hand, according to [15, Inequality (4.14)], for any integer ` ∈ [1,m],

∥∥∥ N−1∏
j=N/2

|ϕj(t)|
∥∥∥

1
≤
∥∥∥∏
j∈J

∣∣ϕ(`)
j (t

√
(m− `)/(2m))

∣∣∥∥∥
1
,

where J = [N/2, N − 1] ∩ 2N,

ϕ
(`)
j (x) = E

(
eixH

(`)
j,m

∣∣H(`)
j,m

)
with H(`)

j,m = Fm ∨ σ(ε2(j−1)m+1, . . . , ε2(j−1)m+`) and

H
(`)
j,m =

1√
m− `

( (2j−1)m∑
k=2(j−1)m+`+1

(Xk,m − E(Xk,m|H(`)
j,m)) +Rj − E(Rj|H(`)

j,m)
)
.

We shall apply Lemma 4.1 with

Aj =
1√
m− `

(2j−1)m∑
k=2(j−1)m+`+1

(Xk,m−E(Xk,m|H(`)
j,m)), Bj = Rj −E(Rj|H(`)

j,m) and a = (m− `)−1/2 .
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By stationarity, for any j ∈ J ,

P
(
E
H

(`)
j,m

(A2
j) ≤ s2/4

)
= P

(
E
H

(`)
2,m

(A2
2) ≤ s2/4

)
= P

(
(m− `)−1Em

(( 2m−`∑
k=m+1

(Xk,m − Em(Xk,m)
)2)
≤ s2/4

)
,

where Em(·) means E(·|Gm) with Gm = σ(W0, ε1, . . . , εm). Let K be a positive integer and note

that∥∥∥ m+K∑
k=m+1

(Xk,m − Em(Xk,m))
∥∥∥

2
−
∥∥∥ m+K∑
k=m+1

Xk

∥∥∥
2
≤

m+K∑
k=m+1

‖Xk,m −Xk‖2 +
m+K∑
k=m+1

‖Em(Xk,m)‖∞

≤
m+K∑
k=m+1

δ2,∞(k) +
m+K∑
k=m+1

δ1,∞(k) .

Therefore, by taking into account (3.3) and the fact that µ has a moment of order 3, we get that∥∥∥ m+K∑
k=m+1

(Xk,m − Em(Xk,m))
∥∥∥

2
−
∥∥∥ m+K∑
k=m+1

Xk

∥∥∥
2

= o(K1/2) .

But, using stationarity, we have K−1/2
∥∥∥∑m+K

k=m+1Xk

∥∥∥
2

= K−1/2
∥∥∥∑K

k=1Xk

∥∥∥
2
→ s > 0. Hence

provided that (m− `) is large enough, we have

(m− `)−1E
(( 2m−`∑

k=m+1

(Xk,m − Em(Xk,m)
)2)

> s2/2 . (3.18)

So, overall, for (m− `) large enough,

P
(
E
H

(`)
2,m

(A2
2) ≤ s2/4

)
≤ P

(
(m− `)−1

∣∣∣Em(( 2m−`∑
k=m+1

(Xk,m−Em(Xk,m)
)2

−E
(( 2m−`∑

k=m+1

(Xk,m−Em(Xk,m)
)2)∣∣∣ ≥ s2/4

)
.

Using Markov’s inequality and the same arguments as those used in the proof of Lemma 4.2, we

then derive that, for (m− `) large enough and any j ∈ J ,

P
(
E
H

(`)
j,m

(A2
j) ≤ s2/4

)
� (m− `)−5/7 .

Hence, provided that m− ` is large enough, Item (ii) of Lemma 4.1 is satisfied with u− = s2/4.

Note now that by stationarity, for any j ∈ J ,

E(B2
j ) ≤ 4E(R2

j ) = 4E(R2
1)� 1 ,
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by using Lemma 4.3 with p = 2. This proves Item (iv) of Lemma 4.1. Next, for p ≥ 2, using

stationarity and [18, Cor. 3.7], we get that for any j ∈ J ,

E(|Aj|p) ≤ 2p(m− `)−p/2
∥∥∥ 2m−`∑
k=m+1

Xk,m

∥∥∥
p
�
[
‖X1+m,m‖p +

2m−`∑
k=m+1

k−1/2‖Em(Xk,m)‖p
]p
. (3.19)

But ‖X1+m,m‖p ≤ ‖X1‖p < ∞ if p ≤ 3 (indeed recall that it is assumed that µ has a moment

of order 3) and ‖Em(Xk+m,m)‖p ≤ ‖Em(Xk+m,m)‖∞ ≤ δ1,∞(k). Hence, by (3.2) and since µ has

a moment of order q = 3, Item (iii) of Lemma 4.1 is satisfied for any p ∈ [2, 3]. So, overall,

noticing that |J | ≥ N/8 ≥ 16, we can apply Lemma 4.1 to derive that there exist positive finite

constants c1, c2 and c3 depending in particular on s2 but not on (m,n) such that for (m − `)
large enough we have ∥∥∥∏

j∈J

∣∣ϕ(`)
j (x)

∣∣∥∥∥
1
≤ e−c3x

2N/8 + e−N/256 for x2 ≤ c2,

implying overall that, for (m− `) large enough and for t2(m− `)/(2m) ≤ c2,∥∥∥ N−1∏
j=N/2

|ϕj(t)|
∥∥∥

1
≤ e−c3t

2(m−`)N/(16m) + e−N/256 . (3.20)

The bounds (3.16), (3.17) and (3.20) allow to give an upper bound for the terms I1,N(ξ), I2,N(ξ)

and I3,N(ξ) and next to integrate them over [−T, T ] when they are divided by |ξ|. Hence the

computations in [15, Sect. 4.1.1., Step 4] are replaced by the following computations. First, as

in [15], we select

` = `(ξ) = 1{ξ2<Nc2} + (m− [nc2/(2ξ
2)] + 1)1{ξ2≥Nc2} . (3.21)

Therefore m− ` is either equal to m− 1 or to [nc2/(2ξ
2)]− 1. Since |ξ| ≤ T = n1/2(log n)−1/2,

it follows that nc2/(2ξ
2) ≥ 2−1c2(log n)2. So, starting from (3.20) and taking into account the

selection of `, we get that for any |ξ| ≤ T ,∥∥∥ N−1∏
j=N/2

|ϕj(ξ/
√
N)|
∥∥∥

1
� e−c3ξ

2/321{ξ2<Nc2} + e−c3c2N/321{ξ2≥Nc2} + e−N/256 . (3.22)

Select now

N = [κ log n] with κ > 2 max(256, 32(c2c3)−1) (3.23)

and then m ∼ (2κ)−1n/ log n. Taking into account (3.16), (3.17) and (3.22), we get∫ T

−T
(I1,N(ξ) + I3,N(ξ))/|ξ| dξ � N

∫ T

0

( |ξ|
N
√
m

+
1√

Nm3/2

)(
e−c1ξ

2/32 + n−2
)

dξ

� 1√
m

+

√
N

m
√
m

+
T 2

n2
√
m

+
T
√
N

n2m
√
m
�
√

log n√
n

. (3.24)
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Next, using (3.16), we get

I2,N(ξ)�
( ξ2

√
m

+

√
N |ξ|
m3/2

)
× e−s

2ξ2/16 .

Therefore, by the selection of m and N ,∫ T

−T
I2,N(ξ)/|ξ| dξ �

√
log n√
n

. (3.25)

Starting from (3.14) and taking into account (3.15), (3.24) and (3.25), the upper bound in (3.12)

follows.

Step 3. Proof of (3.13). Recall that S
(2)
|m =

∑n
k=m+1 E(Xk,m|Fm), and recall that we assume that

2Nm = n. Denoting

Y
(2)
j = U

(2)
j +R

(2)
j for j = 1, . . . , N ,

where U
(2)
N =

∑n
k=(2N−1)m+1 E(Xk,m|Fm), R

(2)
N = 0,

U
(2)
j =

2jm∑
k=(2j−1)m+1

E(Xk,m|Fm) and R
(2)
j =

(2j+1)m∑
k=2jm+1

E(Xk,m|Fm) for j = 1, . . . , N − 1 ,

we have S
(2)
|m =

∑N
j=1 Y

(2)
j . Note that the random vectors (U

(2)
j , R

(2)
j )1≤j≤N are independent. The

proof of (3.13) can be done by using similar (but even simpler) arguments to those developed

in the step 2. In this part, one of the important fact is to notice that the R
(2)
j ’s also have a

negligible contribution. Indeed, for any 2m+ 1 ≤ k ≤ 3m,

‖E(Xk,m|Fm)‖∞ =
∥∥∥∫ ∫ (fm(εk−m+1, . . . , ε2m, a2m+1, . . . , ak)

− fm(bk−m+1, . . . , b2m, b2m+1, . . . , bk)
) k∏
i=2m+1

dµ(ai)
k∏

i=k−m+1

dµ(bi)
∥∥∥
∞

≤ sup
x̄

∣∣∣E(Xk−2m|W0 = x̄)−
∫

E(Xk−2m|W0 = ȳ)dν(ȳ)
∣∣∣ ≤ δ1,∞(k − 2m) .

Hence by stationarity and (3.2) we derive that ‖R(2)
j ‖∞ � 1 for any j = 1, . . . , N .

To complete the proof of the upper bound (2.2), we just have to put together the results in

the steps 1, 2 and 3.

3.1.2 Proof of the upper bound (2.3)

According to Proposition 4.5 in [1] and to pages 52-53 in [3], we have

sup
n≥1

∥∥∥ log(‖An‖)− nλµ −
∫
X

Sn,ūdν(ū)
∥∥∥
∞
<∞

12



(see also Section 8.1 in [4]). Hence, according to Lemma 1 in [2], the upper bound (2.3) will

follow if one can prove that

sup
y∈R

∣∣∣P(∫
X

Sn,ūdν(ū) ≤ y
√
n
)
− Φ(y/s)

∣∣∣� √log n√
n

. (3.26)

We proceed as for the proof of the upper bound (2.2) with the following differences. First we

consider

Sn,m =
m∑
k=1

∫
X

Xk,ūdν(ū) +
n∑

k=m+1

Xk,m ,

where Xk,m is defined by (3.4). Hence∥∥∥∫
X

Sn,ūdν(ū)− Sn,m
∥∥∥

1
≤
∫
X

n∑
k=m+1

‖Xk,ū −Xk,m‖1dν(ū) ≤ nδ1,∞(m) .

It follows that the step 1 of the previous subsection is unchanged. Next, we use the same notation

as in subsection 3.1.1 with the following change: U1 is now defined by

U1 =
m∑
k=1

∫
X

Xk,ūdν(ū) , (3.27)

and then, when n = 2mN , the decomposition (3.9) is still valid for Sn,m. The step 3 is also

unchanged. Concerning the step 2, the only difference concerns the upper bound of the quantity

‖ϕ1(t)− e−s
2t2/4‖1 since the definition of U1 is now given by (3.27). To handle this term, we note

that for f(x) ∈ {cosx, sinx}, we have

∥∥∥EFm

[
f
(
t

∑m
k=1

∫
X
Xk,ūdν(ū) +R1√

2m

)]
− EFm

[
f
(
t

∑m
k=1Xk +R1√

2m

)]∥∥∥
1

≤ |t|√
2m

∫
X

n∑
k=m+1

‖Xk,ū −Xk‖1dν(ū) ≤ |t|√
2m

m∑
k=1

δ1,∞(k)� |t|√
m
.

The last upper bound comes from (3.2) together with the fact that µ is assumed to have a

moment of order q = 3. Next, by taking into account (3.22), note that∫ T

−T

|ξ|√
N
√
m

∥∥∥ N−1∏
j=N/2

|ϕj(ξ/
√
N)|
∥∥∥

1
dξ � 1/

√
n .

This imples in particular that (3.24) still holds. Compared to subsection 3.1.1 the rest of the

proof is unchanged.
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3.1.3 Proof of the upper bound (2.4)

Once again we highlight the differences with respect to the proof given in Subsection 3.1.1. For

x ∈ Sd−1, we consider

Sn,m,x̄ =
m∑
k=1

Xk,x̄ +
n∑

k=m+1

Xk,m ,

and we note that

sup
x̄∈X
‖Sn,x̄ − Sn,m,x̄‖1 ≤

n∑
k=m+1

sup
x̄∈X
‖Xk,x̄ −Xk,m‖1 ≤ nδ1,∞(m) .

Once again Step 1 of Subsection 3.1.1 is unchanged. Next, U1 is now defined by

U1,x̄ = U1 =
m∑
k=1

Xk,x̄ , (3.28)

and the step 3 is also unchanged. Concerning the step 2, due to the new definition (3.28) of U1,

the only difference concerns the upper bound of the quantity ‖ϕ1(t)− e−s
2t2/4‖1. To handle this

term, we note that for f(y) ∈ {cos y, sin y}, we have, by using (3.2) together with the fact that

µ is assumed to have a moment of order q = 3.

sup
x̄∈X

∥∥∥EFm

[
f
(
t

∑m
k=1 Xk,x̄ +R1√

2m

)]
− EFm

[
f
(
t

∑m
k=1 Xk +R1√

2m

)]∥∥∥
1

≤ |t|√
2m

n∑
k=m+1

sup
x̄∈X
‖Xk,x̄ −Xk‖1 �

|t|√
m
.

We then end the proof as in subsection 3.1.1.

3.2 Proof of Theorem 2.2.

Let us point out the differences compared to the proof of Theorem 2.1 (the selections of N and

m being identical). To get the upper bound (3.22), we still establish an upper bound similar

to (3.20) valid for any ` ∈ [1,m] and any t such that t2(m − `)/(2m) ≤ C. Since µ has a

finite moment of order q = 4, according to Lemma 4.3, ‖R1‖3 � 1. Hence, using Lemma 4.1

with a = 0 (here Lemma 4.5 in [15] can also be used), the desired upper bound follows and

the constant C appearing above in the restriction for t can be taken equal to c2 (which is the

constant appearing in Lemma 4.1). Next, we select ` as in (3.21). This selection makes sense if

ξ2 ≤ nc2/2. Therefore, we use (3.10) by selecting T = η
√
n with η small enough (more precisely

such that c2/(2η
2) is large enough for (3.18) to be satisfied when m − ` is of order c2/(2η

2)).

Therefore, for any |ξ| ≤ T , the upper bound (3.22) is still valid. The second difference, in

14



addition to the choice of T , is that instead of using Lemma 4.6 we use Lemmas 4.11 and 4.12

which then entail that for any j ≥ 1,

‖ϕj(ξ/
√
N)− e−s

2ξ2/(4N)‖1 � N−1|ξ|3n−1/2 +N1/2|ξ|n−1(log n) .

4 Technical lemmas

Suppose that we have a sequence of random vectors {(Aj, Bj)}1≤j≤J and a sequence of filtration

{Hj}1≤j≤J such that the following sequence(
EHj(A2

j),EHj(|Aj|p),EHj(B2
j )
)
j∈J

is a sequence of independent random variables (with values in R3). For any real a, let Hj(a) =

Aj + aBj and

ϕHj,a(x) = E
(
exp(ixHj(a))|Hj

)
.

With the notations above, the following modification of [15, Lemma 4.5] holds:

Lemma 4.1. Let p > 2. Let J ≥ 16 be an integer. Assume the following

(i) EHj(Aj) = EHj(Bj) = 0, for any 1 ≤ j ≤ J

(ii) there exists u− > 0 such that P(EHj(A2
j) ≤ u−) < 1/2, for any 1 ≤ j ≤ J ,

(iii) supj≥1 E(|Aj|p) <∞,

(iv) supj≥1 E(B2
j ) <∞.

Then there exist positive finite constants c1, c2 and c3 depending only on p, u−, supj≥1 E(|Aj|p)
and supj≥1 E(B2

j ) such that for any a ∈ [0, c1] and any x2 ≤ c2,

E
( J∏
j=1

|ϕHj,a(x)|
)
≤ e−c3x

2J + e−J/32 .

Proof of Lemma 4.1. The beginning of the proof proceeds as the proof of [15, Lemma 4.5].

Let 1 ≤ j ≤ J be fixed for the moment. Using a Taylor expansion we have

E
(
exp(ixHj(a))|Hj

)
= 1− EHj(H2

j (a))x2/2 + x2/2

∫ 1

0

(1− s)I(s, x)ds ,

where, for any h > 0 and any s ∈ [0, 1],

|I(s, x)| ≤ 4a2EHj(B2
j ) + 2EHj

(
A2
j

∣∣(cos(sxHj(a))− cos(0)) + i(sin(sxHj(a))− sin(0))
∣∣)

≤ 4a2EHj(B2
j ) + 8EHj(A2

j)|xh|+ 4EHj(A2
j1|Hj(a)|≥2h) .
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Using the fact that for any reals u and v, u21|u+v|≥2h ≤ u21|u|≥h + v2, we get

|I(s, x)| ≤ 8a2EHj(B2
j ) + 8EHj(A2

j)|xh|+ 4EHj(A2
j1|Aj |≥h)

≤ 8a2EHj(B2
j ) + 8EHj(A2

j)|xh|+ 4h2−pEHj(|Aj|p) .

Now for any α > 0,

|EHj(H2
j (a))−

(
EHj(A2

j) + a2EHj(B2
j )
)
| ≤ α−1EHj(A2

j) + αa2EHj(B2
j ) .

So, overall, for any h > 0 and any α > 0,∣∣∣E(exp(ixHj(a))|Hj

)
− 1 + EHj(A2

j))x
2/2
∣∣∣ ≤ x2(4a2 + αa2)EHj(B2

j )

+ EHj(A2
j)(x

2α−1/2 + 4h|x|3) + x2h2−pEHj(|Aj|p) .

Let us take h = |x|−1/(p−1) and α = a−1. Set δ(p) := (p− 2)/(p− 1).

Let ũ, u+ be positive numbers to be chosen later.

Recall that by the conditional Jensen inequality, EHj(A2
j) ≤

(
EHj(|Aj|p)

)2/p P-almost surely.

For the sake of simplicity, we shall assume that this inequality takes place everywhere.

From the above computations, we infer that, on the set {EHj(B2
j ) ≤ ũ}∩{EHj(|Aj|p) ≤ u+},

one has∣∣∣E(exp(ixHj(a))|Hj

)
− 1 + EHj(A2

j))x
2/2
∣∣∣

≤ x2(4a2 + a)ũ+ x2(u+)2/pa/2 + |x|2+δ(p)(4(u+)2/p + u+) .

Set

u(x) := x(4a2 + a)ũ+ x2(u+)2/pa/2 + |x|δ(p)(4(u+)2/p + u+) .

Let u− be a positive number (u− will be given by (ii) but it is unimportant at this stage).

We infer that, for every x2 ≤ 2/u−, on the set

Γj := {EHj(B2
j ) ≤ ũ} ∩ {EHj(A2

j) > u−} ∩ {EHj(|Aj|p) ≤ u+}

one has ∣∣∣E(exp(ixHj(a))|Hj

)∣∣∣ ≤ 1− u−x2/2 + x2u(x) .

Since 0 < u−, u+, ũ < ∞, there exist positive constants c1, c2 < ∞ (depending only on

(u−, u+, ũ)) such that

a ≤ c1 ⇒ (4a2 + a)ũ+ (u+)2/pa/2 ≤ u−/8 ,

x2 ≤ c2 ⇒ |x|δ(p)(4(u+)2/p + u+) ≤ u−/8 .
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Therefore, there exist constants 0 < c1, c2 < ∞ (depending only on (ũ, u−, u+)) such that for

any a ≤ c1, any x2 ≤ c2, on the set Γj,∣∣E(exp(ixHj(a))|Hj

)∣∣ ≤ 1− u−x2/4 ≤ e−u
−x2/4 .

Set also ΣJ :=
∑J

j=1 1Γj and ΛJ := {ΣJ ≥ J/8}.

From the previous computations and the trivial bound
∣∣E(exp(ixHj(a))|Hj

)∣∣ ≤ 1, we see

that, for any 0 < ũ, u−, u+ < ∞, there exists positive contants c1, c2, c3 such that for every

x2 ≤ c2 and every a ≤ c1, on the set ΓJ , one has (recall that J ≥ 16),

E
( J∏
j=1

|ϕHj,a(x)|
)
≤ e−u

−x2[J/8]/2 ≤ e−u
−x2J/32 .

Using the the above trivial bound again, the lemma will be proved if, with u− given by (ii),

one can chose ũ, u+ > 0 such that P(ΛJ) ≤ e−J/32.

By Markov’s inequality,

P(EHj(B2
j ) > ũ) ≤

supj∈J E(B2
j )

ũ
−→
ũ→+∞

0 .

Hence there exists ũ > 0 such that, for any 1 ≤ j ≤ J , P(EHj(B2
j ) > ũ) ≤ 1/8.

Similarly, there exists u+ > 0 such that , for any 1 ≤ j ≤ J , P(EHj(|Aj|p) > u+) ≤ 1/8.

By assumption (ii) and by definition of ũ and u+, we have

E(ΣJ) ≥
J∑
j=1

(1− (1/2 + 1/8 + 1/8)) = J/4 .

Hence,

P(Λc
J) = P(ΣJ < J/8) = P(ΣJ − E(ΣJ) < J/8− E(ΣJ))

≤ P(ΣJ − E(ΣJ) < −J/8) = P(−ΣJ + E(ΣJ) > J/8) .

Hence, using Hoeffding’s inequality (see [13, Theorem 2]),

P(Λc
J) ≤ e

−2(J/8)2

J = e−J/32 .

�
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Lemma 4.2. Assume that µ has a moment of order q = 3. Let Xk,m be defined by (3.4). Then,

setting X̄k,m = Xk,m − Em(Xk,m), we have∥∥∥Em( 2m∑
k=m+1

X̄k,m

)2

− E
( 2m∑
k=m+1

X̄k,m

)2∥∥∥
1
� m2/7 ,

where Em(·) means E(·|Gm) with Gm = σ(W0, ε1, . . . , εm). In addition if q = 4, then∥∥∥Em( 2m∑
k=m+1

X̄k,m

)2

− E
( 2m∑
k=m+1

X̄k,m

)2∥∥∥
1
� 1 .

Proof of Lemma 4.2. Note first that∥∥∥Em( 2m∑
k=m+1

X̄k,m

)2

− E
( 2m∑
k=m+1

X̄k,m

)2∥∥∥
1

≤
∥∥∥Em( 2m∑

k=m+1

Xk,m

)2

− E
( 2m∑
k=m+1

Xk,m

)2∥∥∥
1

+ 2
∥∥∥Em( 2m∑

k=m+1

Xk,m

)∥∥∥2

2

:= Im + IIm .

But ∥∥∥Em( 2m∑
k=m+1

Xk,m

)∥∥∥
2
≤

2m∑
k=m+1

‖Em(Xk,m)‖∞ �
m∑
k=1

δ1,∞(k)� 1 , (4.1)

by taking into account (3.2) and the fact that q > 2. It remains to handle Im. With this aim,

we first write the following decomposition: for any γ ∈ (0, 1]

Im ≤
m∑
k=1

‖Em(X2
k+m,m)− E(X2

k+m,m)‖1

+ 2
m∑
`=1

`γ sup
`≤j<i≤2`

‖Em(Xi+m,mXj+m,m)− E(Xi+m,mXj+m,m)‖1

+ 2
m∑
`=1

m−∑̀
k=`γ+1

‖Em(X`+m,mX`+k+m,m)− E(X`+m,mX`+k+m,m)‖1 . (4.2)

Note that for 1 ≤ i, j ≤ m,

‖Em(Xi+m,mXj+m,m)− E(Xi+m,mXj+m,m)‖1 ≤ sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi,x̄1Xj,x̄2 −Xi,ȳ1Xj,ȳ2

∣∣
With the same arguments as those developed in the proof of [4, Prop. 4], we infer that, if µ has

a moment of order q = 3, ∑
k≥m+1

‖Em(X2
k,m)− E(X2

k,m)‖1 � 1 , (4.3)
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and, for every β < 1/3,∑
`≥m+1

`β sup
`≤j<i≤2`

‖Em(Xi+m,mXj+m,m)− E(Xi+m,mXj+m,m)‖1 � 1 . (4.4)

On another hand, with the same arguments as those used to prove [4, Relation (34)], we have

m∑
`=1

m−∑̀
k=`γ+1

‖Em(X`+m,mX`+k+m,m)− E(X`+m,mX`+k+m,m)‖1

�
( 2m∑
`=m+1

‖Em(X`,m)‖2

)2

+
2m−1∑
i=m

‖Em(Xi,m)‖2 ×
m∑
k=1

k1/γ−1/2‖Em(Xk+m,m)‖2 . (4.5)

But, by taking into account (3.2) and the fact that µ has a moment of order q = 3, we have, for

any 1 ≤ k ≤ m,

‖Em(Xk+m,m)‖2 ≤ ‖Em(Xk+m,m)‖∞ ≤ δ1,∞(k) ≤ k−2 .

Hence, using this upper bound in (4.5) and considering the estimates (4.3) and (4.4), we get, for

any γ ∈ (0, 1] and any β < 1/3,

Im ≤ 1 +mγ−β1γ≥β +
m∑
k=1

k1/γ−5/2 .

Hence, selecting γ = 2β and β = 2/7, we derive that Im ≤ m2/7 which gives the desired

inequality, when µ has a moment of order q = 3 .

Assume now that µ has a moment of order q = 4. In this case, with the same arguments as

those developed in the proof of [4, Prop. 4], we infer that (4.4) holds with β < 1 + 1/4. Then,

selecting γ = 1 in the decomposition (4.2) and using similar computations as above, the desired

upper bound follows.

Lemma 4.3. Let p ∈ [2, 3]. Assume that µ has a moment of order q = p+ 1. Then ‖R1‖p � 1,

where R1 is defined by (3.7).

Proof of Lemma 4.3. Setting X̃k,m = Xk,m − EFm(Xk,m) and applying [6, Proposition 3.1]

with N = 1, we have

‖R1‖p ≤
(

2(p− 1)
2m∑

i=m+1

γi,m

)1/2

+
( 2m∑
k=m+1

‖X̃k,m‖pp,ν + p(p− 1)
2m∑

i=m+2

αi,m

)1/p

,

where

γi,m =
1

2
‖X̃i,m‖2

2 +
i−1∑

j=m+1

‖X̃j,mE(X̃i,m|E j2)‖p/2
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and

αi,m =
1

2

i−1∑
j=m+1

‖|X̃j,m|p−2E(X̃2
i,m − E(X̃2

i,m)|E j2)‖1 .

But, for any integer k ∈ [m+ 1, 2m] and any p ≥ 1,

E
∣∣X̃k,m

∣∣p
= E

∣∣∣fm(εk−m+1, . . . , εm, εm+1, . . . , εk)−
∫
fm(vk−m+1, . . . , vm, εm+1, . . . , εk)

m∏
i=k−m+1

dµ(vi)
∣∣∣p

≤
∫

E
∣∣∣fm(εk−m+1, . . . , εm, εm+1, . . . , εk)− fm(vk−m+1, . . . , vm, εm+1, . . . , εk)

∣∣∣p m∏
i=k−m+1

dµ(vi) .

Hence, for any integer k ∈ [m+ 1, 2m] and any p ≥ 1,

E
∣∣X̃k,m

∣∣p ≤ ∫ ∫ E
∣∣∣fm(uk−m+1, . . . , um, εm+1, . . . , εk)

− fm(vk−m+1, . . . , vm, εm+1, . . . , εk)
∣∣∣p m∏
i=k−m+1

dµ(vi)
m∏

i=k−m+1

dµ(ui)

≤ sup
x̄,ȳ∈X

E|Xk−m,x̄ −Xk−m,ȳ|p = δpp,∞ (k −m) . (4.6)

By taking into account (3.2) and the fact that µ has a moment of order q = p+ 1, it follows that

2m∑
k=m+1

‖X̃k,m‖pp,ν ≤
∑
k≥1

δpp,∞(k) <∞ .

On another hand, for m+ 1 ≤ j < i ≤ 2m,

‖E(X̃i,m|E j2)‖∞ ≤ 2δ1,∞(i− j) .

By taking into account (3.2) and the fact that µ has a finite moment of order q = p + 1 (and

then q ≥ 3 and q > p), it follows that

2m∑
i=m+1

γi,m ≤ 2−1

m∑
i=1

δ2
2,∞(i) + 2

2m∑
i=m+1

i−1∑
j=m+1

(
δp/2,∞(j −m)

)
δ1,∞(i− j)

�
m∑
i=1

δ2
2,∞(i) +

m∑
j=1

δp/2,∞(j)
m∑
i=1

δ1,∞(i)� 1 .

On another hand, for any m+ 1 ≤ i ≤ 2m, by Lemma 4.4,

‖E(X̃2
i,m − E(X̃2

i,m)|E j2)‖∞ ≤ 4 sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1Xi−j,x̄2 −Xi−j,ȳ1Xi−j,ȳ2

∣∣ .
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Again, by (3.2) and the fact that µ has a moment of order q = p + 1 (and then q ≥ 3 and

q ≥ p− 1) and by using (4.7), it follows that

2m∑
i=m+2

αi,m �
2m∑

j=m+1

δp−2
p−2,∞(j −m)

m∑
k=1

sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xk,x̄1Xk,x̄2 −Xk,ȳ1Xk,ȳ2

∣∣� 1 .

Putting together all the computations above we get the lemma.

Lemma 4.4. Let X̃k,m = Xk,m − EFm(Xk,m). For any m+ 1 ≤ j < i ≤ 2m,

‖E(X̃2
i,m − E(X̃2

i,m)|E j2)‖∞ ≤ 4 sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1Xi−j,x̄2 −Xi−j,ȳ1Xi−j,ȳ2

∣∣ .
In addition, if µ has a finite moment of order q,∑

k≥1

kq−3 sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xk,x̄1Xk,x̄2 −Xk,ȳ1Xk,ȳ2

∣∣ <∞ . (4.7)

Proof of Lemma 4.4. The upper bound (4.7) follows from equation (8) of [4]. Let us prove

the first part of the lemma. Let Aij = εi · · · εj. For any integer i in [m+ 1, 2m], write that

X̃i,m =

∫
X

σ(εi, A
i−1
i−m+1x̄)dν(x̄)−

∫
X

∫
G

σ(εi, A
i−1
m+1gm · · · gi−m+1x̄)dν(x̄)

m∏
k=i−m+1

dµ(gk)

:= Yi,m − Zi,m .

Now, for any m+ 1 ≤ j < i ≤ 2m,

E(Y 2
i,m|E

j
2) =

∫
σ(gi, gi−1 · · · gj+1A

j
i−m+1x̄)σ(gi, gi−1 · · · gj+1A

j
i−m+1ȳ)dν(x̄)dν(ȳ)

i∏
k=j+1

dµ(gk) ,

and

E(Y 2
i,m) =

∫
σ(gi, gi−1 · · · gj+1gj · · · gi−m+1x̄)

× σ(gi, gi−1 · · · gj+1gj · · · gi−m+1ȳ)dν(x̄)dν(ȳ)
i∏

k=i−m+1

dµ(gk) .

Hence, using stationarity, we get

‖E(Y 2
i,m|E

j
2)− E(Y 2

i,m)‖∞ ≤ sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1Xi−j,x̄2 −Xi−j,ȳ1Xi−j,ȳ2

∣∣ .
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Next, for any m+ 1 ≤ j < i ≤ 2m,

E(Yi,mZi,m|E j2) =

∫
σ(ui, ui−1 · · ·uj+1A

j
i−m+1x̄)

× σ(ui, ui−1 · · ·uj+1A
j
m+1gm · · · gi−m−1ȳ)dν(x̄)dν(ȳ)

i∏
k=j+1

dµ(uk)
m∏

k=i−m−1

dµ(gk) ,

By stationarity, we derive

‖E(Yi,mZi,m|E j2)− E(Yi,mZi,m)‖∞ ≤ sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1Xi−j,x̄2 −Xi−j,ȳ1Xi−j,ȳ2

∣∣ .
We get a similar upper bound for ‖E(Z2

i,m|E
j
2) − E(Z2

i,m)‖∞. The lemma follows by taking into

account all the above computations.

Lemma 4.5. Assume that µ has a finite moment of order q ≥ 2. Then
∥∥∑2m

k=m+1Xk

∥∥
q
�
√
m

and
∥∥∑2m

k=m+1Xk,m

∥∥
q
�
√
m.

Proof of Lemma 4.5. The two upper bounds are proved similarly. Let us prove the second

one. As to get (3.19), we use [18, Cor. 3.7], to derive that∥∥∥ 2m∑
k=m+1

Xk,m

∥∥∥
q
�
√
m
[
‖X1+m,m‖p +

2m∑
k=m+1

k−1/2‖Em(Xk,m)‖p
]
,

where Em(·) means E(·|Gm) with Gm = σ(W0, ε1, . . . , εm). But ‖X1+m,m‖p ≤ ‖X1‖p < ∞
and ‖Em(Xk+m,m)‖p ≤ ‖Em(Xk+m,m)‖∞ ≤ δ1,∞(k). Hence, the lemma follows by considering

(3.2).

For the next lemma, we recall the notations (3.5) and (3.8) for Fm and Y
(1)
j .

Lemma 4.6. Assume that µ has a finite moment of order q = 3. Then for f(x) ∈ {cosx, sinx},
we have ∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1
� t2√

m
+
|t|
m3/2

.

In addition ∥∥∥EFm

[
f
(
t
Y

(1)
1√
2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1
� t2√

m
.

Proof of Lemma 4.6. Since the derivative of x 7→ f(tx) is t2-Lipschitz, making use of a Taylor

expansion as done in the proof of Item (2) of [7, Lemma 5.2], we have∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1

≤
∥∥∥EFm

[
f
(
t
U2√
2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1
+

t2

2m

(
‖R2‖2‖U2‖2 + ‖R2‖2

2

)
. (4.8)
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Now note that U2 =
∑3m

k=2m+1 X̃k,m where

X̃k,m = Xk,m − EFm(Xk,m) ,

with Xk,m = E(Xk|Ekk−m+1) := fm(εk−m+1, . . . , εk). Let (ε∗k)k be an independent copy of (εk)k.

Define

X̃∗k,m = fm(ε∗k−m+1, . . . , ε
∗
2m, ε2m+1, . . . , εk) and U∗2 =

3m∑
k=2m+1

X̃∗k,m . (4.9)

Clearly U∗2 is independent of Fm. Using again the fact that the derivative of x 7→ f(tx) is

t2-Lipschitz, we get∥∥∥EFm

[
f
(
t
U2√
2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1

�
∣∣∣E[f(t U∗2√

2m

)]
− E

[
f(tsN/

√
2)
]∣∣∣+

t2

2m

(
‖U2 − U∗2‖2‖U∗2‖2 + ‖U2 − U∗2‖2

2

)
. (4.10)

But, by stationarity, ‖R2‖2 = ‖R1‖2, and by Lemma 4.3, since µ has a moment of order

q = 3, we have ‖R1‖2 � 1. Moreover, by using Lemma 4.5 and the fact that X̃∗k,m is dis-

tributed as Xk,m, we get that ‖U2‖2 + ‖U∗2‖2 �
√
m. On another hand, setting Gk,m =

σ(ε∗k−m+1, . . . , ε
∗
2m, εk−m+1, . . . , ε2m, ε2m+1, . . . , εk), we have

‖U2−U∗2‖2
2 ≤

3m∑
k=2m+1

‖X̃k,m− X̃∗k,m‖2
2 + 2

3m∑
k=2m+1

3m∑
`=k+1

‖(X̃k,m− X̃∗k,m)E(X̃`,m− X̃∗`,m|Gk,m)‖1 .

Now, for p ≥ 1, ‖X̄k,m − X̄∗k,m‖pp ≤ δpp,∞(k − 2m) and, for ` > k,

‖E(X̄`,m − X̄∗`,m|Gk,m)‖∞ ≤ δ1,∞(`− k) .

Since µ has finite moment of order q = 3, by (3.2), we obtain

‖U2 − U∗2‖2
2 �

m∑
k=1

δ2
2,∞(k) +

( m∑
k=1

δ1,∞(k)
)2

� 1 .

So, the inequalities (4.8), (4.10) together with the above considerations, lead to∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1
�
∣∣∣E[f(t U∗2√

2m

)]
− E

[
f(tsN/

√
2)
]∣∣∣+

t2√
m
. (4.11)

Next, note that U∗2 =D
∑m

k=1 Xk+m,m and Sm =D S2m − Sm. So, taking into account that

x 7→ f(tx) is t-Lipschitz, it follows that∣∣∣E[f(t U∗2√
2m

)]
− E

[
f
(
t
Sm√
2m

)]∣∣∣ ≤ |t|√
2m

∥∥∥ m∑
k=1

(Xk+m,m −Xk+m)
∥∥∥

1
.
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But, by stationarity, [5, Lemma 24] and (3.2), we have∥∥∥ m∑
k=1

(Xk+m,m −Xk+m)
∥∥∥

1
≤ mδ1,∞(m)� 1/m ,

implying that ∣∣∣E[f(t U∗2√
2m

)]
− E

[
f
(
t
Sm√
2m

)]∣∣∣� |t|
m3/2

. (4.12)

Hence starting from (4.11) and taking into account (4.12), we derive that

∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1

�
∣∣∣E[f(t Sm√

2m

)]
− E

[
f(tsN/

√
2)
]∣∣∣+

t2√
m

+
|t|
m3/2

. (4.13)

Next note that x 7→ f(tx) is such that its first derivative is t2-Lipshitz. Hence, by the definition

of the Zolotarev distance of order 2 (see for instance the introduction of [7] for the definition of

those distances), ∣∣∣E[f(t Sm√
2m

)]
− E

[
f(tsN/

√
2)
]∣∣∣ ≤ t2ζ2

(
PSm/

√
2m, Gs2/2

)
.

Next we apply [7, Theorem 3.2] and derive that (since µ has a finite moment of order q = 3),

ζ2

(
PSm/

√
2m, Gs2/2

)
� m−1/2 .

Note that the fact that the conditions (3.1), (3.4) and (3.5) required in [7, Theorem 3.2] hold

when µ has a finite moment of order q = 3 has been established in the proof of [4, Theorem 2].

Hence ∣∣∣E[f(t Sm√
2m

)]
− E

[
f(tsN/

√
2)
]∣∣∣� t2√

m
. (4.14)

Starting from (4.13) and considering (4.14), the first part of Lemma 4.6 follows. Now to prove

the second part, we note that

∥∥∥EFm

[
f
(
t
Y

(1)
1√
2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1

≤
∥∥∥E[f(t Sm√

2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1
+

t2

2m

(
‖R1‖2‖Sm‖2 + ‖R1‖2

2

)
,

where we used the fact that Sm is independent of Fm. Hence the second part of Lemma 4.6

follows by using (4.14) and by taking into account Lemma 4.3 and the fact that, by Lemma 4.5,

‖Sm‖2 �
√
m.
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Lemma 4.7. Let p ∈ [2, 3]. Assume that µ has a finite moment of order q = p + 1. Then

‖U2 − U∗2‖p � 1, where U2 is defined by (3.6) and U∗2 is defined by (4.9).

Proof of Lemma 4.7. Let Zk,m := Xk,m − X̃∗k,m where X̃∗k,m is defined by (4.9). Using once

again [6, Proposition 3.1] with N = 1, we get

‖U2 − U∗2‖p ≤
3m∑

k=2m+1

‖E(Xk,m|Fm)‖p +
(

2(p− 1)
3m∑

i=2m+1

γ∗i,m

)1/2

+
( 3m∑
k=2m+1

‖Zk,m‖pp + p(p− 1)
3m∑

i=2m+2

α∗i,m

)1/p

,

where, setting FZj = σ(εm+2, . . . , εj, ε
∗
m+2, . . . , ε

∗
2m), we have

γ∗i,m =
1

2
‖Zi,m‖2

2 +
i−1∑

j=2m+1

‖Zj,mE(Zi,m|FZj )‖p/2,ν

and

α∗i,m =
1

2

i−1∑
j=2m+1

‖|Zj,m|p−2E(Z2
i,m − E(Z2

i,m)|FZj )‖1 .

But, for any integer k in [2m+ 1, 3m],

‖E(Xk,m|Fm)‖p = ‖E(Xk,m|F2m)‖p ≤ ‖E(Xk,m|F2m)‖∞ ≤ δ1,∞(k − 2m) ,

and, for 2m+ 1 ≤ j ≤ i− 1,

‖E(Zi,m|FZj )‖∞ ≤ 2‖E(Xi,m|Fj)‖∞ ≤ δ1,∞(i− j) .

In addition, we infer that, for 2m+ 1 ≤ j ≤ i− 1,

‖E(Z2
i,m − E(Z2

i,m)|FZj )‖∞ ≤ 4 sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1Xi−j,x̄2 −Xi−j,ȳ1Xi−j,ȳ2

∣∣ := 4η(i− j) .

On another hand, for any r ≥ 1 and any integer k ∈ [2m+ 1, 3m],

E
∣∣Zk,m∣∣r = E

∣∣∣fm(εk−m+1, . . . , εm, ε2m+1, . . . , εk)− fm(ε∗k−m+1, . . . , ε
∗
2m, ε2m+1, . . . , εk)

∣∣∣r
≤
∫ ∫

E
∣∣∣fm(uk−m+1, . . . , u2m, ε2m+1, . . . , εk)

− fm(vk−m+1, . . . , v2m, ε2m+1, . . . , εk)
∣∣∣r 2m∏
i=k−m+1

dµ(vi)
2m∏

i=k−m+1

dµ(ui)

≤ sup
x̄,ȳ∈X

E|Xk−2m,x̄ −Xk−2m,ȳ|r = δrr,∞ (k − 2m) . (4.15)
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So, taking into account the above computations, we infer that

‖U2 − U∗2‖p �
m∑
k=1

δ1,∞(k) +
( m∑
i=1

δ2
2,∞(i) +

m∑
j=1

δp/2,∞(j)
m∑
i=1

δ1,∞(i)
)1/2

+
( m∑
k=1

δpp,∞(k) +
m∑
j=1

δp−2
p−2,∞(j)

m∑
i=1

η(i)
)1/p

,

The lemma follows by taking into account (3.2), (4.7) and the fact that µ has a moment of order

q = p+ 1.

For the lemmas below, we recall the definitions (3.6), (3.7), (3.8) and (4.9) for U2, R2, Y
(1)

2

and U∗2 .

Lemma 4.8. Assume that µ has a finite moment of order 4. Let αm =
√

EFm ((U2+R2)2)

EFm ((U∗2 )2)
. Then

for f(x) ∈ {cosx, sinx}, we have

∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
− EFm

[
f
(
tαm

U∗2√
2m

)]∥∥∥
1
� |t|3m−1/2 .

Proof of Lemma 4.8. Using the arguments developed in the proof of [7, Lemma 5.2, Item 3]

and setting V = U2 +R2 − U∗2 and Ṽ = V + (1− αm)U∗2 , we get

2× (2m)3/2
∣∣∣EFm

[
f
(
t
Y

(1)
2√
2m

)]
− EFm

[
f
(
tαm

U∗2√
2m

)]∣∣∣
≤ t3

{
α2
m

(
EFm(|Ṽ |3)

)1/3(E(|U∗2 |3)
)2/3

+ αm
(
EFm(|Ṽ |3)

)2/3(E(|U∗2 |3)
)1/3

+ EFm(|Ṽ |3)
}
. (4.16)

Next, note that, by Hölder’s inequality

E
(
α2
m

(
EFm(|Ṽ |3)

)1/3) ≤ E
(
α2
m

(
EFm(|V |3)

)1/3)
+ E

(
α2
m × |1− αm|

)
‖U∗2‖3

≤ ‖αm‖2
3‖V ‖3 + ‖αm‖2

3‖1− αm‖3‖U∗2‖3 .

Proceeding similarly for the two last terms in (4.16), we derive that

2× (2m)3/2
∣∣∣EFm

[
f
(
t
Y

(1)
2√
2m

)]
− EFm

[
f
(
tαm

U∗2√
2m

)]∣∣∣
≤ t3‖αm‖2

3‖V ‖3‖U∗2‖2
3 + t3‖αm‖2

3‖1− αm‖3‖U∗2‖3
3

+ 2t3‖αm‖3‖V ‖2
3‖U∗2‖3 + 2t3‖αm‖3‖1− αm‖2

3‖U∗2‖3
3

+ 4t3‖V ‖3
3 + 4t3‖1− αm‖3

3‖U∗2‖3
3 .
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According to Lemmas 4.3 and 4.7, since µ has a moment of order 4, ‖V ‖3 � 1. Moreover

‖U∗2‖3 ≤
√
m. On another hand,

‖U∗2‖2 × ‖1− αm‖3 =
∥∥∥√EFm((U2 +R2)2)−

√
EFm((U∗2 )2)

∥∥∥
3

≤
∥∥∥√EFm((U1 +R1 − U∗2 )2)

∥∥∥
3
≤ ‖V ‖3 � 1 .

Since limm→∞m
−1‖U∗2‖2

2 = s2 > 0, it follows that for m large enough ‖1− αm‖3 � m−1/2. The

lemma follows from all the above considerations.

Lemma 4.9. Assume that µ has a moment of order 4. Recall the notation αm =
√

EFm ((U2+R2)2)

EFm ((U∗2 )2)
.

Then for f(x) ∈ {cosx, sinx}, we have∥∥∥EFm

[
f
(
tαm

U∗2√
2m

)]
− EFm

[
f
(
tαm

sN√
2

)]∥∥∥
1
� |t|3m−1/2 + |t|m−5/2 .

where N is a standard Gaussian random variable independent of Fm.

Proof of Lemma 4.9. Let W ∗
0 be distributed as W0 and independent of W0. Let (ε∗k)k≥1

be an independent copy of (εk)k≥1, independent of (W ∗
0 ,W0). Define S∗m =

∑2m
k=m+1X

∗
k where

X∗k = σ(ε∗k,W
∗
k−1)− λµ. Note that

∥∥∥EFm

[
f
(
tαm

S∗m√
2m

)]
− EFm

[
f
(
tαm

U∗2√
2m

)]]∥∥∥
1
� |t|√

2m
E|αm| × ‖

2m∑
k=m+1

(Xk,m −Xk)‖1

� |t|√
m
×mδ1,∞(m)� |t|m−5/2 . (4.17)

On another hand, note that x 7→ f(tx) is such that its second derivative is t3-Lipshitz. Hence,

by the definition of the Zolotarev distance of order 2,∥∥∥EFm

[
f
(
tαm

S∗m√
2m

)]
− EFm

[
f
(
tαm

sN√
2

)]∥∥∥
1
≤ |t|3 × ‖αm‖3

3ζ3

(
PSm/

√
2m, Gs2/2

)
.

Next we apply [7, Theorem 3.2] and derive that since µ has a moment of order q = 3,

ζ3

(
PSm/

√
2m, Gs2/2

)
� m−1/2 .

Note that the fact that the conditions (3.1), (3.4) and (3.5) required in [7, Theorem 3.2] hold

when µ has a moment of order q = 4 has been proved in the proof of [4, Theorem 2]. Hence∥∥∥EFm

[
f
(
tαm

S∗m√
2m

)]
− EFm

[
f
(
tαm

sN√
2

)]∥∥∥
1
� |t|3√

m
. (4.18)

Considering the upper bounds (4.17) and (4.18), the lemma follows.
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Lemma 4.10. Assume that µ has a finite moment of order 4. Recall the notation αm =√
EFm ((U2+R2)2)

EFm ((U∗2 )2)
. Then for f(x) ∈ {cosx, sinx}, we have

∥∥∥EFm

[
f
(
tαm

sN√
2

)]
− EFm

[
f
(
t
sN√

2

)]∥∥∥
1
� |t|m−1 log(m) .

where N is a standard Gaussian random variable independent of Fm.

Proof of Lemma 4.10. We have∥∥∥EFm

[
f
(
tαm

sN√
2

)]
− EFm

[
f
(
t
sN√

2

)]∥∥∥
1
≤ |t|σE|N | × ‖1− αm‖1 � |t| × ‖1− α2

m‖1 .

But

‖1− α2
m‖1 ∼

1

m

∥∥EFm((U1 +R1)2)− EFm((U∗2 )2)
∥∥

1

and ∥∥EFm((U2 +R2)2)− EFm((U∗2 )2)
∥∥

1
≤
∥∥EFm(U2

2 )− E(U2
2 )
∥∥

1
+ ‖R2‖2

1 + 2‖EFm(U2R2)‖1 .

By stationarity,

∥∥EFm(U2
2 )− E(U2

2 )
∥∥

1
=
∥∥∥Em( 2m∑

k=m+1

X̃k,m

)2

− E
( 2m∑
k=m+1

X̃k,m

)2∥∥∥
1
.

Hence, by Lemma 4.2, since q = 4,∥∥EFm(U2
2 )− E(U2

2 )
∥∥

1
� 1 .

By stationarity and Lemma 4.3, we also have ‖R2‖2 = ‖R1‖2 � 1. Next

‖EFm(U2R2)‖1 =
∥∥∥EFm

(
R2

3m∑
k=2m+1

Xk,m

)∥∥∥
1
.

Let (ε∗k)k≥1 be an independent copy of (εk)k≥1. For 2m+ 1 ≤ k ≤ 3m, let

X∗k,m = fm(ε∗k−m+1, . . . , ε
∗
2m, ε2m+1, . . . εk) ,

where we recall that fm is defined as follows: Xk,m = E(Xk|Ekk−m+1) := fm(εk−m+1, . . . , εk). Note

that ∥∥∥ 3m∑
k=2m+1

(Xk,m −X∗k,m)
∥∥∥

2
≤

3m∑
k=2m+1

δ2,∞(k − 2m)�
m∑
k=1

k−1 � log(m) .
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Hence since ‖R2‖2 � 1, we get∥∥∥EFm

(
R2

3m∑
k=2m+1

Xk,m

)∥∥∥
1
� log(m) +

∥∥∥EFm

(
R2

3m∑
k=2m+1

X∗k,m

)∥∥∥
1
.

Combined with the fact that (X∗k,m)2m+1≤k≤3m is independent of Fm and then E(X∗k,m|Fm) = 0

for any 2m+ 1 ≤ k ≤ 3m, we get∥∥∥EFm

(
R2

3m∑
k=2m+1

Xk,m

)∥∥∥
1
� log(m) +

∥∥∥EFm

( 3m∑
k=2m+1

X∗k,m

4m∑
`=3m+1

X`,m

)∥∥∥
1
.

Next, note that if `−m+ 1 ≥ k+ 1, given Fm, X∗k,m is independent of X`,m, which implies that

EFm(X∗k,mX`,m) = 0. Hence∥∥∥EFm

( 3m∑
k=2m+1

X∗k,m

4m∑
`=3m+1

X`,m

)∥∥∥
1

=
∥∥∥EFm

( 3m∑
k=2m+1

X∗k,m

k+m−1∑
`=3m+1

X`,m

)∥∥∥
1
.

Now, for any 3m+ 1 ≤ ` ≤ k +m− 1 and any 2m+ 1 ≤ k ≤ 3m, let

X
(k,∗)
`,m = fm(ε∗`−m+1, . . . , ε

∗
k, εk+1, . . . ε`) ,

and note that EFm(X∗k,mX
(k,∗)
`,m ) = 0. Hence

∥∥∥EFm

( 3m∑
k=2m+1

X∗k,m

4m∑
`=3m+1

X`,m

)∥∥∥
1

=
∥∥∥EFm

( 3m∑
k=2m+1

X∗k,m

k+m−1∑
`=3m+1

(X`,m −X(k,∗)
`,m )

)∥∥∥
1

≤
3m∑

k=2m+1

k+m−1∑
`=3m+1

‖X∗k,m‖4‖X`,m −X(k,∗)
`,m ‖4/3

�
3m∑

k=2m+1

k+m−1∑
`=3m+1

δ4/3,∞(`− k)�
m∑
`=1

`δ4/3,∞(`)� log(m) .

Combining Lemmas 4.8, 4.9 and 4.10, we derive

Lemma 4.11. Assume that µ has a moment of order q = 4. Then for f(x) ∈ {cosx, sinx}, we

have ∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1
� |t|3m−1/2 + |t|m−1(logm) .

Let R1 be defined by (3.7). Proceeding similarly as to derive the previous lemma, we get

Lemma 4.12. Assume that µ has a moment of order q = 4. Then for f(x) ∈ {cosx, sinx}, we

have ∥∥∥EFm

[
f
(
t

∑m
k=1Xk +R1√

2m

)]
− E

[
f(tsN/

√
2)
]∥∥∥

1
� |t|3m−1/2 + |t|m−1(logm) .
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