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Xiao Xiao1, Nicolas Audibert1, Grégoire Locqueville2, Christophe d’Alessandro2,
Barbara Kuhnert1, Claire Pillot-Loiseau1

1LPP, Sorbonne Nouvelle, France
2LAM, Sorbonne Université, France
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Abstract
This paper introduces an interface that enables the real-time
gestural control of intonation in phrases produced by a vocal
synthesizer. The melody and timing of a target phrase can be
modified by tracing melodic contours on the touch-screen of a
mobile tablet. Envisioning this interface as a means for non-
native speakers to practice the intonation of a foreign language,
we present a pilot study where native and non-native speakers
imitated the pronunciation of French phrases using their voice
and the interface, with a visual guide and without. Comparison
of resulting F0 curves against the reference contour and a pre-
liminary perceptual assessment of synthesized utterances sug-
gest that for both non-native and native speakers, imitation with
the help of a visual guide is comparable in accuracy to vocal
imitation, and that timing control was a source of difficulty.
Index Terms: human-computer interaction, intonation, second-
language acquisition

1. Introduction
Our research explores how chironomic stylization can be used
by non-native speakers for intonation practice of a foreign lan-
guage. ”Chironomic stylization” means here vocal synthesis
using real-time hand gesture control of stylized intonation pat-
terns. Such multimodal practice addresses three sources of dif-
ficulty for intonation learning. First, it can train the ear to per-
ceive unfamiliar features in speech by presenting them through
visual and kinesthetic modalities. Second, control of pronunci-
ation with hand gestures (chironomy) bypasses ingrained pat-
terns in the natural voice that are difficult to correct [1]. Finally,
vocal synthesis enables a learner to focus on the suprasegmental
level without being preoccupied by fine-phonetic detail on the
segmental level. Prior research has shown the benefits of pitch
visualization [2] and pitch gestures [3] for L2 intonation learn-
ing. We hypothesize that the multimodal approach provided by
chironomy (kinesthetic, visual and auditory) can similarly re-
inforce the sensory experience of the learner and help in the
learning process (i.e. grasping and memorizing intonation fea-
tures).

An imitation paradigm for prosodic disambiguation has
been chosen for assessing the ability of both native and non-
native speakers to perceive, control and modify linguistically
meaningful intonation patterns. This paradigm proved useful
for studying intonation in language acquisition tasks [4, 5, 6].
Prior work on chironomic intonation of French phrases with na-
tive speakers yielded similar results for vocal and gestural imi-
tation [1]. In other words, chironomy can be a substitute for the
human voice. Our work seeks to assess the feasibility of chiron-

omy as vocal substitution for non-native speakers. The previous
study, using a graphic tablet and stylus, allowed only the mod-
ulation of melody, with no change of rhythmic parameters.

Our work examines the simultaneous control of speech
rhythm and melody. To this end, a mobile interface was devel-
oped that enables the control of both melody and timing of the
synthesized pronunciation (Section 2). A performance and per-
ception pilot (with native and non-native speakers of French)
was conducted using a corpus of ambiguous French phrases
(with identical phonemic content that change meaning accord-
ing to intonation) (Section 3). The pilot addresses the following
questions: 1/ How does chironomic intonation compare with
vocal intonation for phrase disambiguation? 2/ How much do
visually guided and non-guided chironomic intonations differ?
3/ To what extent does the additional control of timing add to
the difficulty of the task? 4/ Do non-native and native speakers
differ in their performance in different modalities?

2. Chironomic Control Interface

2.1. Performative Synthesis Architecture

The architecture is based on Voks [7], a high-quality perfor-
mative vocal synthesizer that enables the real-time melodic
and rhythmic control of previously recorded or Text-to-Speech
speech samples, through the use of hand gestures. It is a
MaxMSP application based on the WORLD vocoder [8, 9] ini-
tially developed with singing synthesis applications in mind, us-
ing a stylus on a graphic tablet or a Theremin [10, 11]. Given the
widespread availability and popularity of mobile devices and
their apps, we built a custom mobile interface for Voks, con-
trolled by finger motions (instead of a stylus). It runs on a Mac
OS X computer, which also runs a Node.js server that allows
external devices to control Voks wirelessly. This server-client
architecture was created to simulate the user experience of a
mobile app, enabling proof-of-concept testing without the need
to implement the synthesis software on a new platform.

When connected to the same WiFi network as the host com-
puter, a mobile tablet or phone (herein a 9.7in Samsung Galaxy
S2 tablet) can open the Gepeto interface in a Chrome browser.
Communication between the interface and server uses the Web-
sockets protocol. Messages for Voks are first sent to the server,
where they can be saved, and then routed to Max via Open
Sound Control (OSC). One way latency between the mobile
device and the computer averages around 10ms. Subjects can
control intonation for recorded sentences using the tip of their
fingers on the touch-screen of the mobile device.
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Figure 1: Screenshots of the Gepeto interface showing a pair
of phrases from the corpus. The hot pink and dark purple lines
are gesture traces from the user. The pink fades away after 1.5
second while the purple remains until it is erased and can be
played back. The yellow line is the visual guide, a stylized ver-
sion of the reference phrase’s F0 curve.

2.2. Finger Intonation Control

The phrase to be controlled is shown at the top of the Gepeto
interface. Below the target phrase is the control region, where
tracing one’s finger outputs a resynthesis of the phrase from
Voks. The horizontal axis determines the temporal position in
the original sample to resynthesize. It is divided based on syl-
lable segmentation specified by a Praat TextGrid file [12]. Syl-
lables are indicated with the International Phonetic Alphabet
(IPA). For the present study, all syllables appeared with equal
width in the interface, as French is often said to be ”isochronic”
[13]. Different rhythms can be realized by changing the speed
of the finger’s movement across the control surface (the ”scrub”
mode in Voks [7]). Although only syllable-level segmentation
is displayed, intra-syllabic temporal modifications are possible
based on the speed of finger movement within each syllabic re-
gion. The vertical axis determines the output frequency regu-
larly spaced on a semitones (ST) scale, with a range of 24ST
(2 octaves) calibrated around the study corpus (116-466Hz). A
higher vertical position results in a higher output sound.

A visual guide was made for each target phrase, which
shows the stylized intonation curve of the reference recording
generated by Prosogram [14]. Based on a perceptual model
by [15], Prosogram simplifies a recording’s pitch curve into
straight line segments. Speech resynthesized with these stylized
pitch curves are perceptually identical to the original stimuli. A
stylized visual guide was chosen for ease of tracing and to avoid
distraction from micro-prosodic vocal artifacts.

By default, a gesture in the control region leaves a hot
pink trace that fades away after 1.5 seconds. The top button
in the buttons panel toggles between the default ”fade mode”
and “held mode” where gestures stay on the screen until erased.
In held mode, gesture traces appear in dark purple. When in
held mode, the next three buttons are activated. One replays
the gesture, with each point highlighted as it is resent to Voks.
The next erases the gesture, and the last saves the gesture to the
server. The button on the bottom left corner triggers the refer-
ence audio to play. When the visual guide is on, a cursor moves
along the curve to indicate playback position.

3. Prosodic Disambiguation Pilot
3.1. Subjects, Corpus and Task

Ten subjects took part in the pilot study (2 male, 8 female, aged
20-48, mean age 32.7). Five were non-native speakers with dif-
ferent L1 backgrounds: Cantonese (S1), Portuguese (S2, S3),
Mandarin (S6), Slovenian (S10). Subjects all reside in France
and have lived in France for 2.5-7.5 years. All have completed a
semester-long course on French pronunciation and have DELF-

DALF level between B1 and C2 [16]. The 5 native speakers
were undergraduate students in speech therapy. One non-native
and three native subjects have musical experience (6-16 years).

Table 1: Corpus of phrases

Id # Phrase # Phrase #bis
2 Tu parais très soucieux.

You seem very worried.
Tu paraı̂trais soucieux.
You would seem worried.

7 Jean lève son verre.
Jean lifts his glass.

J’enlève son verre.
I lift his glass.

8 Jean porte un journal.
Jean carries a newspaper.

J’emporte un journal.
I carry a newspaper.

10 Jean saigne beaucoup.
Jean is bleeding a lot.

J’enseigne beaucoup.
I teach a lot.

11 Jean cadre la photo.
Jean frames a photo.

J’encadre la photo.
I frame a photo.

21 C’est la morsure.
It’s the bite.

C’est la mort sûre.
It’s death for sure.

Six pairs of lexically ambiguous French phrases (Table 1)
were selected from a larger corpus used in the above-mentioned
French pronunciation course, with phrases from [17, 18] and the
instructor. Each pair shares the same sequence of phonemes and
syllabic segmentation, but can take on two different meanings
with roughly equal plausibility, based on the location of the first
prosodic word boundary, marked by an intonational rise and the
elongation of the last syllable of the group. Reference record-
ings featured a female native francophone speaker reading each
as a declarative utterance.

Subjects first recorded themselves reading the phrases
based on their own interpretation of the phrase. Next, subjects
used the Gepeto interface to imitate the reference recording of
each phrase to the best of their ability. Initially, subjects were
asked to find a gesture for the phrase without any visual guid-
ance. After the first gesture is submitted, the stylized pitch curve
for the reference phrase appeared, and subjects were given an-
other chance to find a gesture. Two familiarization trials were
given for the gestural imitation task. Finally, subjects recorded
vocal imitations of the reference phrases.

Phrases appeared in random order in all parts of the study,
with paired phrases next to each other. For the imitation sec-
tions, no limits were imposed on the number of times refer-
ences are played and the amount of time subjects spent finding
the pronunciation of each phrase. The entire study, including
verbal instructions and the subject information survey took be-
tween 1 and 1.5 hours. The study took place in a sound isolated
studio. All audio was heard through monitor headphones, and
voice recordings were made with an AKG C414 XLS micro-
phone connected via an audio interface to a Macbook Air lap-
top computer. An external monitor displayed the current phrase
and a graphical user interface for the audio recording sections.

3.2. Intonation Contours comparison

The study collected 4 pronunciations per phrase with differ-
ent modalities: vocal reading, non-guided gestural imitation,
guided gestural imitation, and vocal imitation. Intonation con-
tour distances were computed for each utterance.

3.2.1. F0 analysis and Intonation Contour Determination

To extract the F0 of subjects’ vocal recordings, pitch analysis
was performed with Praat and then manually verified. The start-
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Figure 2: Boxplots of scores used in statistical analysis. Horizontal line indicates median, hinges indicate 25th and 75th percentiles.

ing and ending timestamp of the utterance within each record-
ing were labeled in a Praat TextGrid. To compare with the re-
sults of [1], vocal imitations were fist aligned with the refer-
ence recordings using Dynamic Time Warping, which removes
differences in timing. F0 values are sampled and compared at
10-millisecond intervals in the reference.

Gestural imitation utterances were encoded as a series of
data points. Each point is based on a 2D position touched by
the subject in the control region of the Gepeto interface and
includes the following information:

• f : the frequency in semitones (ST) relatives to the lowest
frequency in the Gepeto interface

• scrub: the point in the original recording where phone-
mic information is taken, specified from 0 to 1

• t-start, t-end: the start and end time of the current point,
relative to the start time of the gesture

3.2.2. Intonation Contours Distances

F0 contours were compared using two distance measures [19,
1]: correlation between contours and weighted Root Mean
Square Error (RMSE), i.e. differences between contours. For
both measures, the mean of each curve was subtracted from the
F0 contours to normalize global register differences between in-
dividual voices.

Using the wCorr R package, Pearson’s correlation was cal-
culated between the reference and an imitation F0 contour,
weighed by the intensity of the original contour to give more
importance to phonemes with a higher sound level [20, 21].
Correlation measures similarity between two curves, and is 1
for identical curves. The mltools package [22] was used to com-
pute the RMSE, which is 0 for identical contours and increases
for divergent curves. Vocal contours were compared with the
original F0 of the reference while gestural contours were com-
pared with Prosogram stylizations of the reference curves. Be-
tween the stylized and original contours, mean correlation is
0.94 (SD: 0.04) and mean RMSE is 1.11 semitones (SD: 0.32
ST). For stylized contours across phrase pairs, mean correlation
is 0.51 (SD: 0.38) and mean RMSE is 4.47 ST (SD: 0.91 ST).

Two sets of correlation and RMSE scores were computed
for each gestural imitation, with F0 values sampled and com-
pared at 10-millisecond intervals in the reference. For both, the
region of interest in the reference file is determined by the first
and last scrub values in the gesture. One set retains the origi-
nal timing of the gesture and linearly scales the t-start values to

match the length of the reference, interpolating when necessary.
A second set of scores aligns the gesture by linearly scaling the
gesture’s scrub values in the region of interest, reflecting only
how closely a subject followed the stylized reference F0 curve
and do not take into account distortions in timing (e.g. if a sub-
ject moved too slowly when tracing one section of the gesture).

As neither correlation nor RMSE follow a Gaussian distri-
bution, the Fisher Z and log transforms are used respectively for
correlation and RMSE scores to obtain Gaussian distributions
for statistical analysis.

3.3. Statistical Modeling of Comparison Scores

Multilevel models were fitted for further analysis, focusing on
two types of comparisons. A first set of models were fitted
for vocal imitation and guided gestural imitation scores with-
out timing. Only guided scores were used because they repre-
sent the “best attempts” of gestural imitation. A second set of
models were fitted for guided and non-guided gestural imita-
tion scores with subjects’ timing included, to assess the effect
of the visual guide. Difference in intercepts for guided imita-
tion scores between the no-timing and with-timing models rep-
resents the effect of timing control on the gestural imitation task.
Figure 2 shows aggregate plots of scores used in the models.

All models were given random intercepts for phrases and
random slopes for subjects based on condition. Frequentist mul-
tilevel models failed to converge when random slopes were in-
cluded [23]. To prevent type 1 errors from removing the ran-
dom slopes [24], we turned to Bayesian multilevel models us-
ing BRMS and Stan [25, 26, 27]. Weakly informative, ”regu-
larizing,” priors based on [28, 29, 30] were used (intercepts (α)
& slopes (β)- Normal(0, 10); σe & σgroup- HalfCauchy(0,10),
Correlation Parameter - LKJ(2)) All models used two chains
with 10000 iterations (2000 warm-up).

For each data subset and score type, four models were made
with different fixed effects: on condition only, on subject native-
ness only, on both without correlation, and on both with corre-
lation. Condition and nativeness were contrast coded in each
model (0.5 and -0.5). Models with the same dataset and score
type were compared with LOO (Leave One Out).

3.4. Analysis of Results

All LOO comparisons yielded standard error (SE) differences
of less than 3, indicating that no best model stands out. Table 2
shows the results of the full model, given by the following for-
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Table 2: Posterior estimates for Fisher Z transformed correlation (z(r)) and log transformed RMSE (log(r)) values. The mean, lower
95%Credible Interval and upper 95%CrI estimates are shown for four Bayesian multi-level models. The left two models were fitted on
vocal and guided imitation scores with neutralized timing. The right two models were fitted on guided and non-guided imitation scores
with subjects’ timing input. Rhat was 1.00 for all parameters. Parameters with entirely positive or entirely negative 95% credible
intervals are in bold. The bottom row gives intercept values reverse transformed (f−1) into correlation and RMSE scores.

Condition: 0.5 vocal, -0.5 gestural Condition: 0.5 guided, -0.5 non-guided
f = z(correlation)) f = log(RMSE) f = z(correlation) f = log(RMSE)

Mean Lower Upper Mean Lower Upper Mean Lower Upper Mean Lower Upper
Condition, β1 0.18 -0.16 0.52 -0.29 -0.57 -0.02 0.45 0.24 0.65 -0.28 -0.39 -0.17

Native, β2 -0.09 -0.44 0.25 0.06 -0.17 0.29 -0.03 -0.38 0.32 -0.03 -0.24 0.19
Cond.:Native, β3 0.33 -0.35 1.01 -0.21 -0.78 0.36 0.10 -0.30 0.50 0.06 -0.16 0.28

f−1(α) 0.95 0.92 0.97 1.35 1.09 1.68 0.73 0.60 0.83 2.43 2.07 2.85

mula in lme4 notation [23]: Score ∼ Condition ∗Native+
(1+Condition|Subject)+(1|Phrase), applied to each data
subset and score type. This formula models score as a function
of condition, nativeness, and their interaction. Random inter-
cepts account for different baseline results across phrases and
subjects. Random slopes were modeled for subjects based on
condition.

For the models using scores without timing, the posterior
mean correlation of vocal and guided gestural imitation is 0.95
(95% CrI=[0.92, 0.97]), and the mean RMSE score is 1.35 ST
(95% CrI=[1.09, 1.68]). For RMSE, the slope for condition
is negative for the entire credible interval, indicating slightly
better imitation results for the vocal modality. In other words,
when timing is not taken into account, vocal and gestural imita-
tion perform similarly, with vocal imitation slightly better. For
correlation, the effect of condition is uncertain because its cred-
ible interval spans both positive and negative values.

When timing was taken into consideration, gestures had
lower correlation and higher RMSE, with a reverse transformed
posterior means of 0.73 (95%CrI=[0.60,0.83]) for correlation
and 2.43 ST (95%CrI=[2.07, 2.85]) for RMSE. The slope for
condition is positive for correlation and negative for RMSE
across the entire credible interval, indicating the effect of the
guide in improving gestural imitations. Nativeness and the in-
teraction parameter had credible intervals that span both posi-
tive and negative values in all four models, so their effects are
uncertain.

Figure 3: Preliminary results from an online perceptual pilot
using stimuli from one pair of phrases (10 and 10bis, 80 total
stimuli). Gestural data with subjects’ timing was resynthesized
using WORLD [9]. 37 francophone natives listened to stimuli
in random order and selected between the two meanings in a
forced choice. Aggregate scores of ”correctness” are presented
by condition and nativeness. Horizontal line indicates median,
hinges indicate 25th and 75th percentiles.

4. Discussion and Conclusions
This paper introduced an interface that enables the real-time
gestural control of intonation in phrases produced by a vocal
synthesizer. A study using an imitation paradigm for prosodic
disambiguation has been conducted as a means to explore chiro-
nomic stylisation of intonation for native and non-native speak-
ers. The 4 questions raised in the introduction are revisited here.

For quantitative measures, vocal and guided gestural imi-
tation performed comparably when timing was not taken into
account, a finding which corroborates prior results. Guided chi-
ronomy performed significantly better than non-guided chiron-
omy in our results. Another finding is the additional difficulty
from the added dimension of timing control, confirmed by lower
comparison scores when timing was taken into account. Sur-
prisingly, no statistically significant difference in quantitatives
scores was found between native and non-native subjects.

However, results of a preliminary perceptual test suggests
further examination of this question (see Figure 3). While
vocal imitation performed the best overall, guided chironomy
was still able to produce intonation that is correctly identifi-
able by native listeners. Using Fisher’s exact test (p<0.05)
to compare subject-phrase pairings across conditions, guided
chironomy performed significantly better than non-guided for 4
subject-phrases, where 3 were from non-native subjects. It also
performed significantly better than reading for the 2 subject-
phrase combinations with the lowest reading scores (0.19 and
0.43). The non-native subjects available for this study are al-
ready fairly advanced, and have already come across the stimuli
in their studies. Errors in reading only occurred for a small per-
centage of stimuli. Nevertheless, the fact that subject-phrase
combinations with mistakes in reading had high correctness
scores in guided gestural imitation suggests an opportunity for
chironomic practice.

In conclusion native and non-native speakers succeeded in
prosodic disambiguation using chironomic stylization of into-
nation. This allows us to envision this interface as a means for
non-native speakers to practice the intonation of a foreign lan-
guage. Future work should explore easier ways to control tim-
ing, which should be tested with non-native subjects with more
room for improvement in their intonation. Further perceptive
testing should also be conducted.
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