
HAL Id: hal-03329005
https://hal.science/hal-03329005v1

Submitted on 30 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to Find the Exit from a 3-Dimensional Maze *
Miki Hermann

To cite this version:
Miki Hermann. How to Find the Exit from a 3-Dimensional Maze *. 19th Symposium on Experimental
Algorithms, Jun 2021, Nice, France. �10.4230/LIPIcs.SEA.2021.21�. �hal-03329005�

https://hal.science/hal-03329005v1
https://hal.archives-ouvertes.fr

How to Find the Exit from a 3-Dimensional Maze∗

Miki Hermann ! Ï

LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Abstract
We present several experimental algorithms for fast computation of variadic polynomials over
non-negative integers.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases Young tableaux, randomized algorithm, probabilistic algorithm

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.21

Supplementary Material Software (Source Code & Data): https://github.com/miki-hermann/gyt
archived at swh:1:dir:aa547a4af49a9563138a13168af0160d9e709954

1 Introduction and Motivation

Imagine a three-dimensional cubic maze structure called the Cube. Each side of the Cube
spans 26 rooms and there are 26× 26× 26 = 17576 rooms in total. Except for the rooms
on the edges or faces of the Cube, each room has 6 neighbors: up, down, left, right, front,
and back. Each room is identified by its coordinates x, y, and z, ranging from 0 to 25.
Moreover, each room has a label written on its floor, determined by an unknown ternary
function f : N×N×N→ N over natural numbers. The parameters of the function f are the
coordinates of the room. The only information you have about the function f is that it is
increasing in each coordinate, i.e., that the following relations hold

f(x, y, z) < f(x + 1, y, z), f(x, y, z) < f(x, y + 1, z), f(x, y, z) < f(x, y, z + 1)

for each coordinate (x, y, z). You do not know the labels of the rooms upfront, but discover
them by visiting the rooms on your path to the exit. Labels are not unique: two different
rooms can have the same label. You can pass from one room to another if there exists a door
between them. Each pair of neighboring rooms share a door, which means that there is a
door between any two rooms sharing a face. Except for the rooms on the edges and outer
faces of the Cube, from a given room you can pass to a neighbor room up, down, left, right,
front, or back. Formally speaking, from a room with coordinates (x, y, z) you can pass to
one of the rooms with coordinates

(x + 1, y, z), (x, y + 1, z), (x, y, z + 1), (x− 1, y, z), (x, y − 1, z), (x, y, z − 1),

when 0 < x, y, z < 25. Contrary to the movie, there are no deadly traps in the rooms.
Nevertheless, you are not allowed to pass between rooms freely. You cannot return back to
a previously visited room unless you have flagged it. If you are not sure which choice to
make, you can flag the current room, so that you can return to it later. If you decide in a
certain moment that you arrived at a dead-end, you can ask to be teleported back to the
last flagged room. You can return to each flagged room only once, i.e., you have two choices
to move from a flagged room to another room, allowing you a limited backtrack, contrary to
unflagged rooms where you have only one choice. You have 29 flags available, i.e., you have

∗ Inspired by the Horror Movie Cube.

© Miki Hermann;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 21; pp. 21:1–21:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hermann@lix.polytechnique.fr
http://lix.polytechnique.fr/~hermann
https://orcid.org/0000-0003-2517-2127
https://doi.org/10.4230/LIPIcs.SEA.2021.21
https://github.com/miki-hermann/gyt
https://archive.softwareheritage.org/swh:1:dir:aa547a4af49a9563138a13168af0160d9e709954
https://en.wikipedia.org/wiki/Cube_(Film)
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 How to Find the Exit from a 3-Dimensional Maze

the possibility to return to 29 branchings. Once a room is flagged, you cannot remove it any
more. The coordinates of the flagged rooms are maintained in a stack. You can return only to
the room whose flag is on top of the stack. Once you return to a flagged room, its coordinates
are popped from the stack. The exit room is labeled by 131350013988347832235. Your
starting position is the room with coordinates (0, 0, 25) labeled by 162981450557708740234375.
Are you able to find the exit? What is the minimal number of rooms you must pass through
from your starting position to the exit?1

2 Analysis

Before passing to the three- and more-dimensional case, let us analyze the problem in lower
dimensions.

2.1 Linear Board
In one dimension, the analysis is quite easy. We have a linear board of length n with
coordinates 0, . . . , n− 1, an unknown unary function f : N→ N, a starting position s, and an
exit label B. For two different positions a, b ∈ {0, . . . , n− 1} on board we know that a < b

implies f(a) < f(b). Hence the exit label B can occur only once on a linear board. The
starting point s is one of the extremities of the board: either s = 0 or s = n− 1.

The search algorithm proceeds as follows. First, we set x← s and compute the value f(x).
If f(x) = B holds, then we are already at the exit room. If f(x) > B we must decrease x,
else if f(x) < B we must increase x. Set x← x− 1 or x← x + 1, respectively, and repeat
the loop. No flags are necessary to reach the exit, since there is no necessity to make choices.

In the worst case, the starting point is at one extremity of the board (say 0), and the
exit at the other (n − 1). Hence the path to the exit must contain n rooms in the worst
case. On average, each position from 0, . . . , n− 1 is equally likely to contain the exit. The
probability pi that a position i contains the exit is p = 1/n. We denote by X the random
variable equal to the length of the path from 0 to the exit and set Pr [X = i] = pi−1 = 1/n.
If the starting point is one of the extremities (s = 0 or s = n− 1, but these two cases are
mirror images of each other), the expected length of the path to the exit is

E[X|s = 0] = E[X|s = n− 1] =
n∑

i=1
i · Pr [X = i] =

n∑
i=1

(
i · 1

n

)
= (n + 1)/2.

Not really a surprise, this position is near the middle of the linear board.

2.2 Matrix Board
A m×n matrix A, whose elements A[x, y] are equal to a binary function f(x, y) : N×N→ N,
satisfying the relationsf(x, y) < f(x + 1, y) and f(x, y) < f(x, y + 1), is a full Young tableau
over natural numbers [2, Problem 6-3, page 143]. The starting position s is usually (0, 0),
but for simplification reasons we will consider the coordinate (0, n− 1) as the starting point.
Just consider the matrix horizontally flipped. For two different positions a = (a1, a2) and
b = (b1, b2) there exist two positions c = (c1, c2) and d = (d1, d2), such that ci = min{ai, bi}

1 Just for your information, the exit is located in the room with coordinates (14, 15, 16) and the minimal
number of visited rooms is therefore 39, including the starting room and the exit.

M. Hermann 21:3

Algorithm 1 Search in a 2D Maze.

Input: Function f : N × N → N satisfying f(x, y) < f(x + 1, y) and f(x, y) < f(x, y + 1),
and a value B ∈ N.

Output: Coordinates (x, y) for which f(x, y) = B or ⊥ if such coordinates do not exist.
1: function 2D_search(f, B)
2: x← 0
3: y ← n− 1
4: while x ≤ m− 1 & y ≥ 0 do
5: if f(x, y) = B then
6: return (x, y)
7: else if f(x, y) < B then
8: x← x + 1
9: else if f(x, y) > B then

10: y ← y − 1
11: end if
12: end while
13: return ⊥
14: end function

and di = max{ai, bi}, satisfying the relations

f(c1, c2) ≤ f(a1, a2), f(c1, c2) ≤ f(b1, b2), f(a1, a2) ≤ f(d1, d2), and f(b1, b2) ≤ f(d1, d2).

All four relations are strict if the positions a and b do not share the same row or column.
Hence, the exit label B can occur only once in each row and only once in each column.

Algorithm 1 proceeds as follows. The starting position is the room s with coordinates
(0, n − 1), therefore we set x ← 0 and y ← n − 1. While f(x, y) > B holds, decrease the
second coordinate: y ← y − 1. When we arrive at a position where f(x, y) < B, we increase
the first coordinate: x← x + 1. We repeat this loop until we find a room labeled by B. No
flags are necessary to reach the exit, since there is no necessity to make choices.

The correctness of Algorithm 1 is easily proved. If f(x, y) > B holds, then we have
f(x′, y) > B for each x′ > x. Hence the exit room labeled by B cannot be located at any
position (x′, y′) for x′ ≥ x and y′ ≥ y. Therefore there is no need to increase the first
coordinate if the f(x, y) > B holds. Only the second coordinate can be decreased to move
towards the exit room. If f(x, y) < B holds, then we have f(x, y′) < B for each position
y′ < y. Hence the exit room labeled by B cannot be located at any position (x′, y′) for
x′ ≤ x and y′ ≤ y. Therefore there is no need to decrease the second coordinate. Only the
first coordinate can be increased to move towards the exit room.

In the worst case, the starting point is at the south-east extremity (0, n − 1) of the
maze and the exit at the north-western extremity (m − 1, 0). Algorithm 1 proceeds by a
zig-zag, which never returns back. Neither the coordinate y (columns) is increased, nor
the coordinate x (rows) is decreased. There are m rooms in each row and n rooms in each
column. Therefore the path to the exit must contain m + n rooms in the worst case. This is
a considerable improvement against a brute force algorithm going through all m · n rooms.

3 The Cube and Beyond

Let us extend the previous ideas to a cubic maze. We have ℓ×m×n cube A, whose elements
A[x, y, z] are equal to a ternary function f(x, y, z) : N×N×N→ N, satisfying the inequalities

SEA 2021

21:4 How to Find the Exit from a 3-Dimensional Maze

f(x, y, z) < f(x + 1, y, z), f(x, y, z) < f(x, y + 1, z), and f(x, y, z) < f(x, y, z + 1). The
starting position is, once again, (0, 0, n− 1). If you wish to start at the origin (0, 0, 0), you
can just flip the cube and arrange the subsequent computation according to this flip.

The basic idea of the algorithm remains the same. We set x← 0, y ← 0, and z ← n−1 at
the beginning. While f(x, y, z) > B holds, we decrease the last coordinate: z ← z − 1. This
is correct, because we have f(x′, y′, z) > B for any x′ ≥ x and y′ ≥ y when f(x, y, z) > B

holds. This implies that the value B cannot be in the cube slice with the fixed z. When
we reach a coordinate z with f(x, y, z) < B, then we have f(x′, y′, z′) < B for any position
with x′ ≤ x, y′ ≤ y, and z′ ≤ z. However, we now have the choice to increase either x or y,
contrary to the two-dimensional case, where we were forced to increase only one variable.
Here, we have the choice to continue either to the room (x + 1, y, z) or (x, y + 1, z). This is
the point where the flags must be applied, i.e., where we must apply some limited backtrack.
The other strategy is to proceed in a chosen direction without a possibility to return to the
choice position.

Let us analyze four possible strategies. We will do it for the general case with k coordinates,
where k ≥ 3. We will place the continuations onto a stack or into a queue, then proceed
further. Those strategies, with the possibility to return to a remembered room, face another
problem. In the two-dimensional case, the path from the starting point to the exit was
exactly determined and there were no two or more paths possible to any room in the maze.
However, with the possibility to return to a choice room, we have the possibility to reach
another choice room by two or more different paths. Therefore we must memorize the choice
rooms in which we have been before. This does not count for teleportation returns, but
simple arrivals by a path from another room. If we arrive in a choice room r the second
time by a different path, we can stop the search and ask to be teleported back to a previous
choice room r′, since all possible path from the room r must have been already explored, i.e.,
all choices for a continuation from the room r have been already placed on the stack or into
the queue. When we are in dimension k for k ≥ 3, there are k − 1 possible continuations
from a choice room. Therefore we must allow to return by teleportation to a choice room
(k − 2)-times. This is compatible with the situation in Section 1, where we allow only one
teleportation return to a choice room.

A k-dimensional maze has the shape of a n1 × · · · × nk hypercube A, whose elements
A[x1, . . . , xk] are equal to the values of a function f : Nk → N„ satisfying the inequality
f(x1, . . . , xi−1, xi, xi+1, . . . , xk) < f(x1, . . . , xi−1, xi + 1, xi+1, . . . , xk) for each i = 1, . . . , k.
The starting point will be (0, . . . , 0, nk − 1).

The first strategy will be completely sequential, presented in Algorithm 2. In each
choice room r with coordinates (x1, . . . , xk) it will put on stack all possible continuations
(x1, . . . , xi−1, . . . , xi + 1, xi+1 . . . , xk) from i = 1 to i = k − 1. This implies, that the
continuation (x1, . . . , xk−2, xk−1 + 1, xk) will be popped first. However, only the continuation
rooms will be put on stack, which have not been visited yet. Of course, if k = 2 then only one
continuation room will be put on stack, but it will be popped and considered immediately
during the next turn of the outer while-loop on Line 6. Hence, Algorithm 2 is compatible with
Algorithm 1. Moreover, the use of visited rooms is superfluous for k = 2, but introducing
another if-statement would just unnecessarily complicate the algorithm. A successful path
to the exit contains in the worst case at most N =

∑k
i=1 ni rooms, without counting the

possible backtracks.
This version of our algorithm does not use the concept of flags, or allows to use an

unbounded number of flags. The version using flags would require Algorithm 2 to be called
with the parameters (f, B, F) on Line 1, where F is the number of allowed flags, followed by

M. Hermann 21:5

Algorithm 2 Sequential Search in a k-Dimensional Maze.

Input: Function f : Nk → N satisfying f(. . . , xi, . . .) < f(. . . , xi + 1, . . .) for each i =
1, . . . , k, and a value B ∈ N.

Output: Coordinates (x1, . . . , xk) for which f(x1, . . . , xk) = B or ⊥ if such coordinates do
not exist.

1: function seq_kD_search(f, B)
2: s← ∅ ▷ Initialize stack s

3: m← ∅ ▷ Initialize memory m of visited rooms
4: r ← (0, . . . , 0, nk − 1) ▷ Initialize room r

5: s.push(r) ▷ Put room r on stack s

6: while s ̸= ∅ do ▷ While stack s is nonempty
7: r ← top(s) ▷ Get room from top of stack s

8: pop(s) ▷ Pop stack s

9: while r[j] < nj for j = 1, . . . , k − 1 & r[k] ≥ 0 do
10: if f(r) = B then
11: return r

12: else if f(r) > B then
13: r[k]← r[k]− 1
14: else if f(r) < B then
15: for i← 1 to k − 1 do ▷ For each potential continuation coordinate
16: r′ ← r ▷ Copy room coordinates
17: r′[i]← r′[i] + 1 ▷ Go to a neighboring room
18: if r′[i] < ni & r′ /∈ m then ▷ If room within limits and not visited
19: s.push(r′) ▷ Put continuation room r′ on stack s

20: m.insert(r′) ▷ Label room r′ as visited
21: end if
22: end for
23: end if
24: end while
25: end while
26: return ⊥
27: end function

an extension of the condition on Line 18 to “r′[i] < ni & r′ /∈ m & F > 0”, an introduction
of the statement “F ← F − 1” between Lines 18 and 19, plus inserting a test “else if F = 0”
with a subsequent failure command after Line 20.

The second strategy is based on a greedy heuristic to always choose first the continuation
room nearest to the exit. For this, a priority queue is maintained to include the coordinates
of the continuation room together with their “distance” to the exit. Since we do not know
the coordinates of an exit room – which we are supposed to find – we use the difference
between the label f(x1, . . . , xk) of a continuation room r and the label B of an exit room
as the priority key. This priority strategy is presented in Algorithm 3. We assume that the
priority queue is implemented by a heap, therefore no code concerning an implementation of
the priority queue is presented. An interested reader can find more information on priority
queues and their implementation by a heap for instance in [6].

This version of our algorithm is similar to Dijkstra’s shortest path algorithm [6, Section 4.4]
in a graph. Dijkstra’s algorithm applied directly on regular multidimensional Cartesian

SEA 2021

21:6 How to Find the Exit from a 3-Dimensional Maze

Algorithm 3 Priority Search in a k-Dimensional Maze.

Input: Function f : Nk → N satisfying f(. . . , xi, . . .) < f(. . . , xi + 1, . . .) for each i =
1, . . . , k, and a value B ∈ N.

Output: Coordinates (x1, . . . , xk) for which f(x1, . . . , xk) = B or ⊥ if such coordinates do
not exist.

1: function priority_kD_search(f, B)
2: q ← ∅ ▷ Initialize priority queue q

3: m← ∅ ▷ Initialize memory m of visited rooms
4: r ← (0, . . . , 0, nk − 1) ▷ Initialize room r

5: s.insert((r, 0)) ▷ Insert room r into queue q with dummy key 0
6: while q ̸= ∅ do ▷ While queue q is nonempty
7: r ← front(q).first ▷ Get room coordinates from front of queue q

8: pop(q) ▷ Pop queue q

9: while r[j] < nj for j = 1, . . . , k − 1 & r[k] ≥ 0 do
10: if f(r) = B then
11: return r

12: else if f(r) > B then
13: r[k]← r[k]− 1
14: else if f(r) < B then
15: for i← 1 to k − 1 do ▷ For each potential continuation coordinate
16: r′ ← r ▷ Copy room coordinates
17: r′[i]← r′[i] + 1 ▷ Go to a neighboring room
18: if r′[i] < ni & r′ /∈ m then ▷ If room within limits and not visited
19: c← |f(r′)−B| ▷ Compute key c

20: q.insert((r′, c)) ▷ Insert room r′ with key c into queue q

21: m.insert(r′) ▷ Label room r′ as visited
22: end if
23: end for
24: end if
25: end while
26: end while
27: return ⊥
28: end function

grids, where each cell represents a node and each pair of neighboring cells is connected by an
edge of length 1, would potentially place each cell into the priority queue of explored nodes.
Algorithm 3 places a room into the priority queue only if it matters, namely when it is a
split room from where we have more than one possibility to continue. All other rooms r

where f(r) > B do not need to be inserted into the priority queue for the same reason as it
was already mentioned in an aforementioned discussion on Algorithm 2. Moreover, we know
the goal node in Dijkstra’s algorithm, whereas in Algorithm 3 the exit room is unknown and
must be discovered. Hence, we cannot minimize the path leading to the exit room. Therefore
the distance |f(r′)−B| from a continuation room r′ to the exit is the only value which we
can minimize. This is the reason for which Algorithm 3 does not preclude backtracks, even if
they are reduced to the minimum. Although in principle it is only a pseudo-problem, the use
of a priority queue implies uncontrolled jumps around a maze.

The third strategy is similar to the first strategy, but instead of pushing the continuations

M. Hermann 21:7

on stack in a fixed predefined way, it randomly permutes the sequence of continuations
before placing them on stack. For this reason we call this strategy randomized. The strategy
is implemented by a Las Vegas algorithm, therefore it always produces a correct answer.
However, produced results may vary, provided that there is more than one solution, depending
on the random permutation of the continuation sequence. Nevertheless, even if there is only
one solution, depending on different random permutations of the continuation sequences
subsequently pushed on the stack, the algorithm can follow different paths, potentially with
some backtracks, to find the exit.

Algorithm 4 Randomized Search in a k-Dimensional Maze.

Input: Function f : Nk → N satisfying f(. . . , xi, . . .) < f(. . . , xi + 1, . . .) for each i =
1, . . . , k, and a value B ∈ N.

Output: Coordinates (x1, . . . , xk) for which f(x1, . . . , xk) = B or ⊥ if such coordinates do
not exist.

1: function rand_kD_search(f, B)
2: s← ∅ ▷ Initialize stack s

3: m← ∅ ▷ Initialize memory m of visited rooms
4: r ← (0, . . . , 0, nk − 1) ▷ Initialize room r

5: s.push(r) ▷ Put room r on stack s

6: while s ̸= ∅ do ▷ While stack s is nonempty
7: r ← top(s) ▷ Get room from top of stack s

8: pop(s) ▷ Pop stack s

9: while r[j] < nj for j = 1, . . . , k − 1 & r[k] ≥ 0 do
10: if f(r) = B then
11: return r

12: else if f(r) > B then
13: r[k]← r[k]− 1
14: else if f(r) < B then
15: v ← ∅ ▷ Initialize auxiliary vector v

16: for i← 1 to k − 1 do ▷ For each potential continuation coordinate
17: r′ ← r ▷ Copy room coordinates
18: r′[i]← r′[i] + 1 ▷ Go to a neighboring room
19: if r′[i] < ni & r′ /∈ m then ▷ If room within limits and not visited
20: v.push(r′) ▷ Put continuation room r′ in vector v

21: m.insert(r′) ▷ Label room r′ as visited
22: end if
23: end for
24: permute(v) ▷ Permute vector v uniformly at random
25: for all r′ ∈ v do ▷ For the permuted sequence of continuation rooms
26: s.push(r′) ▷ Put each continuation room r′ in v on stack s

27: end for
28: end if
29: end while
30: end while
31: return ⊥
32: end function

The fourth and last strategy is purely probabilistic. It does not store the potential

SEA 2021

21:8 How to Find the Exit from a 3-Dimensional Maze

continuation rooms in a structure – a stack, a queue, or others – but it makes a probabilistic
choice among possible continuations to advance, without the possibility to return back when a
dead end is subsequently discovered. For this reason, this strategy is a Monte Carlo algorithm,
which can produce a failure answer ⊥ even if there exists a solution. The probability p to
find an exit is equal to E/(k − 1)S , where S is the number of splits and E the number of
exits in the maze. Potentially any room on the path from the start s to the exit can be a
splitting room, therefore the (very coarse) lower bound to find an exit is equal to E/(k− 1)N ,
where N =

∑k
k=1 ni is the sum of all bounds. Recall that in the two-dimensional case (k = 2)

there is only one exit (E = 1) and no splits (S = 0), therefore the probabilistic algorithm
applied to the two-dimensional case becomes totally deterministic with the probability p = 1
to find the exit. This probabilistic strategy is presented in Algorithm 5.

Algorithm 5 Probabilistic Search in a k-Dimensional Maze.

Input: Function f : Nk → N satisfying f(. . . , xi, . . .) < f(. . . , xi + 1, . . .) for each i =
1, . . . , k, and a value B ∈ N.

Output: Coordinates (x1, . . . , xk) for which f(x1, . . . , xk) = B or ⊥ if such coordinates do
not exist.

1: function proba_kD_search(f, B)
2: r ← (0, . . . , 0, nk − 1) ▷ Initialize room r

3: while r[j] < nj for j = 1, . . . , k − 1 & r[k] ≥ 0 do
4: if f(r) = B then
5: return r

6: else if f(r) > B then
7: r[k]← r[k]− 1
8: else if f(r) < B then
9: i← choose(1, . . . , k − 1) ▷ Choose a coordinate uniformly at random

10: r[i]← r[i] + 1 ▷ Go to a neighboring room
11: end if
12: end while
13: return ⊥
14: end function

4 Applications

A well-suited possibility to implement the function f : Nk → N is to use variadic polynomials
over natural numbers. A variadic polynomial p(x1, . . . , xk) ∈ N[x1, . . . , xk] ensures the
inequality

p(x1, . . . , xi, . . . , xk) < p(x1, . . . , xi + 1, . . . , xk) for each i = 1, . . . , k,

since all coefficients of p are natural numbers. The bound will be bi = ⌈ di
√

B/ai⌉ for each
variable xi, where di is the minimum exponent of xi and ai is the coefficient of the monomial
where the variable xi occurs with this exponent in the polynomial p. The bounds bi can be
further reduced along the edges of the hypercube. More precisely, for each i = 1, . . . , k, the
bound bi can be still reduced if p(0, . . . , 0, bi, 0, . . . , 0) > B holds.

For the two-dimensional case, we can for instance use the polynomial f(x, y) = x3 + y3.
In fact, this polynomial is the basis for Taxicab numbers [10] Ta(t) for t = 1, 2, 3, . . . If we
set the value B to one of Taxicab numbers Ta(t), the bounds to m = n = ⌈ 3

√
B⌉, and the

M. Hermann 21:9

starting point to (0, ⌈ 3
√

B⌉), Algorithm 1 finds a pair of values x and y whose sum of cubes
is equal to Ta(t). An easy modification of Algorithm 1 produces all solutions for a Taxicab
number Ta(t): extend the while-loop condition on Line 4 to “x ≤ m− 1 & y ≥ 0 & x ≤ y”,
replace Line 6 by “print (x, y)”, add the instruction “y ← y− 1” between Lines 6 and 7, and
finally delete Line 13. In the same way, we can solve other problems mentioned by Silverman
in [10], like the problem x4 + y4 = 635318657 solved by Euler.

For the three-dimensional case, we can use for instance the polynomial x3 + y3 + z3 = B

with the bound ⌈ 3
√

B⌉ for each variable. This problem was considered by Heath-Brown in [3],
not only over natural numbers N, but over integers Z.

Another interesting case comes from Gauss’ theorem, showing that any natural number
can be written as a sum of three triangle numbers, which is equivalent to the statement that
any natural number of the form 8n + 3 can be written as a sum of squares of three odd
natural numbers. This is expressed formally by x2 + y2 + z2 = 8n + 3 for any n ∈ N, where
the bound for each variable is ⌈

√
8n + 3⌉. Hirschhorn and Sellers studied in [5] the number

of all solutions for this problem.
An excellent example for an application is the famous Lagrange’s theorem [7], showing

that any natural number can be written as a sum of four squares. Formally, this can
be expressed as x2 + y2 + z2 + w2 = B for each B ∈ N, with the bound ⌈

√
B⌉ for each

variable. We should mention here, that our method of generalized Young tableaux is not the
best algorithm to compute the four squares in Lagrange’s sum. More efficient algorithms
exist, namely three randomized algorithms of Rabin and Shallit [9] the fastest of which has
the running time O(log2 B) provided that the Extended Riemann Hypothesis holds, their
modification by Pollack and Treviño [8] with running time O(log2 B/ log log B), or that of
Bumby [1]. It is just an interesting application for a more general setting. We can also play
with Hilbert–Waring theorem [4], which says that for each natural number d there exists
an associated natural number q(d) such that every natural number B can be expressed as a
sum of at most q(d) natural numbers raised to the power d.

The coordinates of the exit in the puzzle from Section 1 are the solution of the equation
3x14 + 5y15 + 7z16 = 131350013988347832235. There is only one solution to this equation.

5 Implementation and Benchmarks

All five Generalized Young Tableaux algorithms (respective seven if we count the modifications
producing all solutions) have been implemented in C++. All implementations have a variant
with the GNU Multiple Precision Arithmetic Library (GMP) which allows to treat numbers B

of any precision. These implementations, together with data files, can be found at the github
repository github.com/miki-hermann/gyt. This directory contains the individual C++
sources, as well as the data, and a Makefile. There are two directories. The first one, entitled
src, contains the C++ sources and a Makefile which allows to compile the sources without
typing the whole compiler command. The correspondence between the algorithms presented
in this paper and their implementations is described in Table 1. The second directory, entitled
data, contains the data files for the implemented algorithms. All implemented algorithms
expect the input from STDIN, either typed from the keyboard after being prompted, or being
piped from a file, for instance by a command like “gyt < ../data/lagrange01.data”.

The C++ sources have been compiled by the g++, version 10.2.1, with the optimization
option “-O4”. The software has been run with the benchmarks on a Dell computer with
an Intel® Core™ i7-9700 CPU @ 3.00GHz × 8 processor, with 16GB RAM, running under
Fedora 33. The performance of the software is quite surprizing. For instance, gyt-2d-gmp

SEA 2021

http://gmplib.org/
http://gmplib.org/
https://github.com/miki-hermann/gyt
github.com/miki-hermann/gyt

21:10 How to Find the Exit from a 3-Dimensional Maze

Table 1 Corresondence between algorithms and C++ implementation sources.

Algorithm 1 (2-dimensional) gyt-2d.cpp gyt-2d-gmp.cpp
Algorithm 1 all solutions gyt-2d-all.cpp gyt-2d-all-gmp.cpp
Algorithm 2 (sequential) gyt.cpp gyt-gmp.cpp
Algorithm 2 all solutions gyt-all.cpp gyt-all-gmp.cpp
Algorithm 3 (priority) gyt-pq.cpp gyt-pq-gmp.cpp
Algorithm 4 (randomized) gyt-rand.cpp gyt-rand-gmp.cpp
Algorithm 5 (probabilistic) gyt-proba.cpp gyt-proba-gmp.cpp

computing the first solution of the 7th taxicab number (data file taxi7.data) takes only
31.83 seconds and gyt-2d-all-gmp computing all solutions of the same takes only 1607.15
seconds, i.e., not even 27 minutes.

The performance of the individual algorithms is measured in terms of a maximal stack or
queue size, number of splits or choices, number of backtracks, and number of continuation
rooms double reached. For the randomized and probabilistic versions, the most advantageous
outcome out of 20 runs is presented. Table 2 summarizes the performance of the most
interesting data sets. Measuring the execution time would not give a clear picture in this case,
since all of them except lagrange07.data execute very fast. For instance, the sequential
algorithm needs only 4.91 seconds on ex01.data, which is quite an involved data set, whereas
the priority algorithm needs only 0.57 seconds to execute it, and the randomized algorithm
squeezes it down even to 0.25 seconds in the best case.

6 Concluding Remarks

When we look at Table 2, we cannot decide which of the four algorithms is the clear winner.
As a rule of thumb, the priority algorithm almost always outperforms the sequential algorithm.
Notable exceptions are the data sets ex01.txt and ex04.txt, where the sequential algorithm
pushes only 10628 or 329 rooms on stack, whereas the priority driven algorithm inserts 72910
or 213064 rooms into the queue, which indicates that the algorithm “dances” around the
search space. Of course, the sequential algorithm makes in the first case more splits and
backtracks, as well as it encounters more doubles. However, except for the backtracks, the
priority algorithm looses in any category against the sequential version in the second case.

The priority algorithm is a clear winner for lagrange07.data. Both the sequential and
randomized algorithms terminate with a timeout due to memory exhaustion. The priority
algorithm found a solutions without backtracks and only with 16214 splits, beating even
the probabilistic algorithm which does not memorize continuation rooms, but needed an
incredible number of 19636633 choices. The search space must be densely populated by
exits in this case, since the probabilistic algorithm almost always returns a positive anser for
this data set. However, the priority algorithm looses against everybody, even against the
sequential algorithm, for ex04.data.

The randomized and probabilistic algorithms should in principle make the same number of
splits, respective choices. This is true many times, but there are cases like lagrange09.data,
where the search space is small and populated with many solutions (there are actually
1260), but the probabilistic algorithm was not able to reach the minimum achieved by the
randomized version. Note, that the priority algorithm beats everybody in this case. Neither
doubles are encountered, nor backtracks are triggered.

If we do not count the probabilistic algorithm, when we wish always to receive a correct

M. Hermann 21:11

Table 2 Performance of algorithms on chosen data sets.

Algorithm
Data set measure 2:seq 3:priority 4:random 5:proba
gauss-triangle4.data max stack/queue 49465 1858 1555 —
x2 + y2 + z2 = splits/choices 51118 1857 1554 1554

2446610011 backtracks 1659 0 0 —
doubles 2180 95152 0 —

gauss-triangle6.data max stack/queue 264651 48777 16661 —
x2 + y2 + z2 = splits/choices 269208 49399 16660 13024

70039266307 backtracks 4563 623 0 —
doubles 6462 1521415 0 —

lagrange02.data max stack/queue 22256 315 173 —
x2 + y2 + z2 + w2 = splits/choices 11143 218 86 86

123456789 backtracks 32 0 0 —
doubles 0 146 0 —

lagrange07.data max stack/queue timeout 32383 timeout —
x2 + y2 + z2 + w2 = splits/choices timeout 16214 timeout 19636633

83461523083775142 backtracks timeout 0 timeout —
doubles timeout 46 timeout —

lagrange09.data max stack/queue 92 23 45 —
x2 + y2 + z2 + w2 = splits/choices 46 11 22 25

2021 backtracks 2 0 0 —
doubles 0 0 0 —

ex01.data max stack/queue 10628 72910 254 —
2x3y2 + 3y3z2 + 5z3w2 = splits/choices 2058405 99665 74513 failure

84662255 backtracks 2138825 50299 101210 —
doubles 7078935 129088 331188 —

ex02.data max stack/queue 6 9 7 —
2x3y2 + 3y3z2 + 5z3w2 = splits/choices 5 5 3 3

10 backtracks 5 2 0 —
doubles 0 0 0 —

ex04.data max stack/queue 329 213064 731 —
2x4 + 3y4 + 5z4 + 7w4 + 13u4 = splits/choices 6262 180091 386 failure

253930575 backtracks 14179 0 395 —
doubles 29559 3658440 524 —

maze01.data max stack/queue 16 51 27 —
x10 + y10 + z10 = splits/choices 39 51 26 26

413575475547 backtracks 26 11 0 —
doubles 24 22 0 —

maze05.data max stack/queue 3120 130 36 —
3x3y2 + 5y3z2 + 7x2z3 = splits/choices 3555 168 35 35

29177953 backtracks 3537 44 0 —
doubles 6875 184 0 —

maze06.data (using GMP) max stack/queue 21 30 30 —
3x14 + 5y15 + 7z16 = splits/choices 60 29 29 29

131350013988347832235 backtracks 45 0 0 —
doubles 102 0 0 —

SEA 2021

21:12 How to Find the Exit from a 3-Dimensional Maze

answer, the randomized algorithm beats all others in most cases. However, this is mainly due
to the best performance among those 20 runs. Even if the randomized algorithm outperforms
the priority one, the advantage is measured only in terms of a constant, provided we do
not count the doubles. For these two algorithms, the ratio of maximal stack/queue size
ranges within an interval from 1.0 to 3.6, with three notable exceptions, two in favor of the
randomized algorithm (ex01.data and ex04.data) and the other in favor of the priority
algorithm (langrange02.data). In the same spirit, the ratio of splits ranges within an
interval from 0.51 to 4.8. Nevertheless, in the case of ex04.data, the randomized algorithm
massively surpasses the priority version.

The probabilistic version works well only when the search spaces is populated with many
exits. If there is only a small number of exits, namely 1 or 46, respectively, and the search
space is huge, as in ex01.data and ex04.data, the probabilistic algorithm fails to find the
exit. The respective randomized algorithm needed 74513 splits for the first one, but only
386 in the second. Given that there are 4 or 5 variables, respectvely, in that problem, which
means the correct continuation room is chosen with probability 1/3 or 1/4, respectively,
exactly 74513 or even only 386 times, the chances to find the exit by a probabilistic algorithm
are practically equal to 0.

The performance of the algorithms essentially depends on the bounds. The data set
maze06.data has a horribly big exit label B, but actually its calculated bound is relatively
small: the maximal bound for maze06.data is 26. However, the bounds for lagrange07.data
are all equal to 288897081.

Interested readers are invited to write their own examples and try it out with this software.

References
1 Richard T. Bumby. Sums of four squares. In David V. Chudnovsky, Gregory V. Chudnovsky,

and Melvyn B. Nathanson, editors, Number Theory: New York Seminar 1991–1995, pages
1–8. Springer, 1996.

2 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT Press, 2nd edition, 2001.

3 D. R. Heath-Brown. Searching for solutions of x3 + y3 + z3 = k. In S. David, editor, Séminaire
de Théorie des Nombres, Paris, 1989–90, volume 102 of Progress in Mathematics, pages 71–76.
Birkhäuser, 1992.

4 David Hilbert. Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter
Potenzen (Waringsches Problem). Mathematische Annalen, 67:81–300, 1909.

5 Michael D. Hirschhorn and James A. Sellers. Partitions into three triangular numbers.
Australasian Journal of Combinatorics, 30:307–318, 2004.

6 Jon Kleinberg and Éva Tardos. Algorithm Design. Addison Wesley, 2006.
7 Joseph-Louis Lagrange. Démonstration d’un théorème d’arithmétique. Nouveaux mémoires de

l’Académie royale des sciences et belles-lettres de Berlin, 123-133, 1770.
8 Paul Pollack and Enrique Treviño. Finding the four squares in Lagrange’s theorem. Integers,

18A:A15, 2018.
9 Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. Commu-

nications on Pure and Applied Mathematics, 39:S239–S256, 1986.
10 Joseph H. Silverman. Taxicabs and sums of two cubes. American Mathematical Monthly,

100(4):331–340, 1993.

	1 Introduction and Motivation
	2 Analysis
	2.1 Linear Board
	2.2 Matrix Board

	3 The Cube and Beyond
	4 Applications
	5 Implementation and Benchmarks
	6 Concluding Remarks

