
HAL Id: hal-03328992
https://hal.science/hal-03328992

Submitted on 1 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of regularized B-spline smoothing for
turbulent Lagrangian trajectories

Adam Cheminet, Yasar Ostovan, Valentina Valori, Christophe Cuvier, Fançois
Daviaud, Paul Debue, Bérengère Dubrulle, Jean-Marc Foucaut, Jean-Philippe

Laval

To cite this version:
Adam Cheminet, Yasar Ostovan, Valentina Valori, Christophe Cuvier, Fançois Daviaud, et al.. Opti-
mization of regularized B-spline smoothing for turbulent Lagrangian trajectories. Experimental Ther-
mal and Fluid Science, 2021, 127, pp.110376. �10.1016/j.expthermflusci.2021.110376�. �hal-03328992�

https://hal.science/hal-03328992
https://hal.archives-ouvertes.fr


Optimization of regularized B-spline smoothing for

turbulent Lagrangian trajectories

Adam Cheminet1, Yasar Ostovan1, Valentina Valori2,

Christophe Cuvier1, Fançois Daviaud2, Paul Debue2, Bérengère
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Abstract. The denoising of Lagrangian trajectories based on regularized B-spline is

investigated. The aim is to find systematic criteria for optimization of algorithms

used in 4D-PTV in order to optimize the quality of 4D-PTV measurements of

turbulent flows as well as high-order of turbulence statistics. We introduce and adapt

to this context two innovative tuning strategies which are commonly used in the

Tikhonov regularization of inverse problems based on L-curve shape and Normalized

Cumulative Periodogram (NCP). The corresponding strategies are tested on synthetic

Lagrangian trajectories computed from Direct Numerical Simulation with additional

white Gaussian noise. Error-based quantities like Signal-to-Noise Ratio as well as

statistical Lagrangian quantities are investigated to compare the different strategies.

We then apply the algorithm to experimental data from a 4D-PTV Lagrangian

measurements in a turbulent Von Kármán flow. We show the ability of those strategies

to optimize the quality of the signal compared to conventional methods. Moreover,

the strategies are more adaptable to real experimental noise.

Keywords— Turbulence, Lagrangian measurements, signal processing, denoising

techniques, regularized B-splines

1. Introduction

Turbulent flows are inherently time dependent, multi-scale and three-dimensional. Corre-

sponding measurements need to resolve all the timescales and lengthscales of the flow from

the largest energy injection scales down to the smallest dissipative scales. State-of-the art

methods, termed 4D-Particle Tracking Velocimetry (4D-PTV) (Schanz et al. 2016), strive to

achieve this. These optical techniques are based on the displacement of passive seeded tracers

in the flow, lighted by a laser volume and imaged in successive frames separated by a small

time interval. Reconstruction of the flow field can then be obtained through the displacement
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of each individual tracer in-between two consecutive frames. Historically, 3D-Particle Tracking

Velocimetry (3D-PTV) first emerged in the 1990’s (Maas et al. 1993), (Malik et al. 1993) but

could only give access to very low density Lagrangian flow fields by reconstructing through

triangulation then by tracking individually each particle. In 2006, (Elsinga et al. 2006) intro-

duced tomographic reconstruction followed by cross-correlation on a voxel based representation

of the volume to directly obtain a dense Eulerian flow field. However those methods were still

impaired by the impact of ghost particles at relatively high particle densities. To overcome

these obstacles, and in the case of time-resolved measurements, Schanz et al. (2016) showed

that combining tomographic reconstruction and the tracking of reconstructed particles could

drastically increase the accessible seeding density thus improving the overall spatial resolu-

tion. This results in a hybrid Lagrangian/Eulerian measurement where the Eulerian flow is

accessed by interpolation of the Lagrangian flow field. Numerous hybrid Lagrangian/Eulerian

techniques (Yang et al. 2019),(Lasinger et al. 2020),(Cornic et al. 2020) are emerging nowadays

aiming to achieve higher seeding density thus enabling high spatial resolution of the measure-

ment.

In practice, the 4D-PTV measurement consists in noisy particle trajectories. One can say

that noise is inherent to any measurement system. The sources of noise in 4D-PTV are mul-

tiple. They can be internal to the measurement system, such as the CCD camera background

noise, the pixelation of the cameras, the pixel sensitivity, laser illumination temporal and

spatial inhomogeneity as well as external like vibrations. They can also come from experi-

mental conditions such as the camera setup, imaging conditions and seeding density. This

noise creates uncertainties which will propagate non-linearly through the measurement chain,

from the calibration and self-calibration method to the method of 3D particle reconstruction

(Bhattacharya et al. 2006). This uncertainty in the particle position is detrimental to the

determination of the particle velocity and acceleration using differentiation (Feng et al. 2011)

as well as any direct computation of turbulent quantities based on higher order derivatives.

This issue is well known in experimental studies of Lagrangian turbulence and is not re-

stricted to 4D-PTV. A thorough review of Lagrangian experimental methods can be found

in (Bourgoin et al. 2014). Statistically speaking, this noise is often seen and presumed to be

white and uncorrelated with the particle trajectory (Machicoane et al. 2017) and will mostly

impact the high frequencies of the signal, such as in Acoustic Doppler Velocimeter (Garćıa

et al. 2016). Strategies to evade the noise issue exist and depend on what the experimenter is

trying to measure. For instance, Machicoane et al. (2017) designed a method to directly access

statistical properties such as moments and correlation functions of signal derivatives, without

using filtering schemes. However, in the case of 4D-PTV, the aim is to access both the instan-

taneous Lagrangian and Eulerian velocity field at any given measurement snapshot. Though

this is still an ongoing research and techniques are rapidly evolving, state-of-the art methods

compute the Eulerian flow field directly from a spatial interpolation and data assimilation of

the Lagrangian flow field (Gesemann et al. 2016),(Schneiders et al. 2016). The interpolation

process is done at every measurement snapshot separately using the particles ’ instantaneous

positions, velocities and accelerations. Any measurement noise from the temporal evolution

of Lagrangian field will pollute and reduce the spatial and time resolution of the Eulerian

flow field. Removing this temporal noise as much as possible in the whole Lagrangian data

(positions, velocity & acceleration) becomes necessary.

A classic approach consists in oversampling the particle trajectory so as to distinguish high fre-
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quency noise from the turbulent signal using finite-impulse response low-pass filters as pointed

out in (Lawson et al. 2018). An ideal filter has two essential characteristics : a cutoff frequency

which can be tuned depending on a desired frequency, and a strong negative cutoff slope that

removes the noise while keeping the real signal as much as possible and that does not add any

non-physical high frequencies which might lead to biases in statistics of higher-order deriva-

tives. To this effect, several filters exist and have already been used in the literature. Filtering

can be done through Least-square Polynomial fitting as in (Voth et al. 2002),(Del Castello

et al. 2011), or fitting a moving cubic spline (Lüthi et al. 2005). Those filters enter the category

of Savitsky-Golay filters. A very common filter is the Gaussian filter which consists in doing a

convolution of the signal with a Gaussian kernel (Mordant et al. 2004),(Ouellette et al. 2006),

(Xu 2008),(Biferale et al. 2008), (Stelzenmuller 2017) allowing for an easy computation of the

filtered signal and its derivatives. The Gaussian filter has a stronger negative cutoff slope than

Savitsky-Golay filters, thus eliminating high frequencies more efficiently (Stelzenmuller 2017),

(Schafer 2011). However, border issues are still present when using the convolution of kernel,

limiting the use of such filters to relative long trajectories thus losing some valuable informa-

tion. Finally, Berg et al. (2009) chose a binomial filtering instead of Gaussian filtering, without

clearly stating the benefit of such a choice.

Whatever the filter shape, choosing the proper time scale and frequency cutoff is a key question

in signal processing. Indeed, this choice will decide the trade-off between how much noise is

removed and how much actual physical signal is kept. Too much smoothing will remove high

frequency turbulent events but not enough smoothing will create errors due to noise. This

question is either overlooked or studied rigorously. Several methods have been used but hardly

ever following the same guidelines. The ideal filter length is often looked for in a range where

a small difference in the filter scale leaves no impact on high-order statistical quantities such

as the acceleration variance (Lawson et al. 2018). However, this range is not always observed

(Berg et al. 2009). On the contrary, two distinct behaviors towards the filter lengthscale are

sometimes observed depending on the statistical quantity under study. (Berg et al. 2009)

focuses on the acceleration PDF while (Stelzenmuller 2017) focuses on the wall normal accel-

eration variance. Each behavior corresponds to each extreme filtering situation : keeping too

much noise or removing too much signal. The optimal filtering is thus found in-between those

two ranges of filter lengthscale though Berg et al. (2009) admit that their choice is somehow

arbitrary with no rigorous technique to find the optimal filtering.

In a context of evolving 4D-PTV techniques, a simple filtering algorithm for Lagrangian tra-

jectories (TrackFit) was designed by (Gesemann et al. 2016) using regularized B-Spline and the

minimization of a weighted functional. Such minimization is performed via a tuning parameter

which controls the level of smoothness of the solution. This parameter is directly linked to a

cutoff frequency. The best cutoff frequency is chosen to be the frequency at which the Signal-

to-Noise ratio is equal to one. In TrackFit, the tuning is performed by selecting the frequency

laying at the crossroads of the signal (i.e. position) and noise spectrum, either visually or

by a corner detection (Gesemann et al. 2016). Lawson et al. (2018) showed that this simple

procedure could lead to significant gains in the accuracy of acceleration statistics compared

to classical Gaussian filtering when combined with an additional independent measurement.

In the quest for the optimal signal and in the context of detection of extreme and compli-

cated flow events, one needs to optimize the quality of the experimental data with respect to

high order statistics as well as instantaneous quantities. Therefore, the following questions

come up : is this frequency the optimal filtering frequency ? Are the proposed strategies
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to find this frequency adapted to experimental conditions ? Are there other systematic and

rigorous ways of finding this frequency ? If so, how do those methods compare to one another ?

The goal of this paper is to provide a tentative answer to these questions by investigating

the performances of two alternative strategies, namely L-curve and NCP, and by comparing

their performances with respect to several performance criteria : Error-based quantities, statis-

tical Lagrangian quantities such as acceleration PDFs, velocity spectra, geometrical properties

and velocity structure functions. We start by describing the mathematical background of the

filter, as well as different tuning strategies. Then, we use Direct Numerical Simulation (DNS)

of Homogeneous Isotropic Turbulence (HIT) seeded with convected Lagrangian tracers to per-

form tests on the filtering strategies with respect to the addition of a well-controlled Gaussian

noise. Finally, we apply the algorithms to experimental data from a 4D-PTV Lagrangian

measurements in a turbulent Von Kármán flow (Ostovan et al. 2019) and compare them via

several performance criteria.

2. Smoothing method and tuning strategies

Let XP (ti) = (X(ti), Y (ti), Z(ti)) be the coordinates of the measured P particle track at N

discrete time instants such as ti = t1 + (i − 1)∆t. The measurement Nyquist frequency is

defined as fN = 1
2∆t . For each coordinate, f(ti), a Lagrangian trajectory smoothing technique

is required to damper the noise level. In the sequel, we focus on techniques based on B-Spline

projection in the ”least square sense”.

2.1. B-Spline curve

An nth degree B-spline curve S is a piecewise polynomial function made of B-spline basis

functions of order n, bi,n(t), which are defined on a sequence of control points or knots αi such

as

α0 ≤ α1 ≤ α2 ≤ ... ≤ αm (1)

The B-spline basis functions are defined recursively using the De Boor formula (De Boor 1978) :

bi,0(t) =

{
1 if αi ≤ t ≤ αi+1

0 otherwise

bi,n(t) =
t− αi

αi+n − αi
bi,n−1(t) +

αi+n+1 − t
αi+n+1 − αi+1

bi+1,n−1(t)

(2)

Overall, the B-spline curve can be written as :

S(t) =

m−n∑
i=1

ci.bi,n(t) (3)

where ci are weighting coefficients.

2.2. Regularized B-spline

To fit a B-spline curve S(t) to a noisy signal f(tj)j∈{1,N} and find the optimum control

coefficient ci which reduces the noise, one needs to build a distance functional that has to
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be minimized :

Fdist(c) =
N∑
j=1

{
f(tj)−

m−n∑
i=1

cibi,n(tj)

}2

(4)

The smoothness of the B-spline curve is controlled by the number and location αi of the knots

with respect to the data points (tj) as well as the polynomial order (n). A wide variety of

methods are to be found in the literature for an optimal knot arrangement for a given smooth-

ness criterion.

A different projection strategy (O’Sullivan 1986) & (O’Sullivan 1988) uses a large number

of knots compared to the number of data points and has an additional regularization term

Fregu(c) in the functional which will penalize higher-order curve derivatives to avoid over-

fitting. Eilers et al. (1996) use kth order finite difference of the adjacent B-Splines coefficients

(∆kci) as regularization. Strictly speaking, the regularization is not on the kth derivative of

the B-spline fitted curve but on the kth derivative of its control coefficients (ci). However,

regularizing the control coefficient derivatives will penalize the curve derivatives which is the

aim of the smoothing technique. In the case of the second derivative, (Eilers et al. 1996)

showed the strong link between the two implementations.

The TrackFit method (Gesemann et al. 2016) is very similar to (Eilers et al. 1996). It uses

third order B-spline functions from an analytical description, placed at and centered on every

data points. One can say that they are used like Radial Basis Functions (RBF). This is equiv-

alent to using third order (n = 3) B-spline curve defined as equation (2) and using the data

points as the control knots of the B-spline curve (ti = αi , m = N).

In TrackFit, penalization is performed on the particle acceleration derivative also called jerk.

Since B-spline are third order, this is achieved using ∆3ci as regularization term. The differen-

tiating scheme used here is a first order forward finite difference. The regularization functional

is :

Fregu(c) =

N−3∑
i=1

{
∆3ci

}2
(5)

Smoothing is then achieved through minimization with respect to c of the following functional

:

F (c) = Fdist(c) + λFregu(c), (6)

where λ is a given smoothing parameter, weighting the strength of the regularization on the

jerk compared to the error on the data which needs to be tuned depending on the Signal-to-

noise Ratio (SNR) and the expected cutoff frequency fc. Using generalized normal equations

(Eilers et al. 1996), minimization is thus achieved when the functional gradient ∇F is set to

0, which gives :

Bty =
{
BtB + λDt

kDk

}
c (7)

with Bij = bj,n(ti) and Dk, the kth order differentiation matrix (in our case, k = 3) and

yi = f(ti). To avoid border issues as much as possible, we put three additional equally spaced

knots at the two extremities of the time series resulting in a knots series (ti)i∈{−2,N+3}. B

and D matrices are therefore a N by N + 6− n matrix and a N − n+ 3 by N + 6− n matrix

respectively, with n = 3 in our case.
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Solving eq. 7, one then gets the ci as a function of λ, thereby getting the smoothed coor-

dinate via eq. 3. In this procedure, we see that the choice of λ determines the smoothing

properties. In Section 2.4, we will discuss the TrackFit choice, as well as two alternative

choices based on properties of Tikhonov regularization. In the next section, it will be worth

investigating the link between the smoothing parameter λ and the signal cutoff frequency fc.

2.3. Smoothing parameter and cutoff frequency

The Lagrangian smoothing acts as a low-pass filter. Like any such filter, it has a transfer

function, H(f) defined as :

H(f) =

∣∣∣∣ F̂ (f)

F̂ (f)

∣∣∣∣ (8)

where F̂ (f) is the Fourier transform of the unfiltered signal and F̂ (f) is the Fourier transform

of the filtered signal. Knowing H(f) allows to define a cutoff frequency fc. Since H(f) depends

on λ, so does fc. We can provide both numerical and analytical estimates of such dependence,

by applying the smoothing technique to the case of a wave function for varying frequencies.

(a) (b)

Figure 1: a : Filter transfer function for different regularization parameters λ. The analytical

model from eq. 10 is shown here for λ = 100 b : Link between the analytical fc from eq. 11

and the effective − 3 dB frequency cutoff measured from the numerical transfer function.

Assuming that the filter response to a sinusoidal signal f(t) = Asin(kt) of period T is

a sinusoidal signal f̃(t) = Aεsin(kt), one can model and write the distance Fdist and

regularization Fregu functionals of the filter optimization problem.

Fdist =
1

T

∫ T

0
(f(t)− f̃(t))2dt =

1

2
(1− ε)2A2

Fregu =
1

T

∫ T

0
(f̃

′′′
(t)∆t3)2dt =

1

2
ε2A2k6∆t6

(9)

Though the regularization is done on the derivative of the adjacent B-spline coefficients, and

not the derivative of the filtered signal, a first rough approximation allows us to equal the two.
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The filter full functional F (ε) can be now expressed as a function of ε, the damping parameter.

Setting the functional gradient to zero (dFdε = 0) allows us to obtain the analytical transfer

function:

H(f) =
1

1 + ( ffc )6
, fc =

1

πλ1/6
fN (10)

fc can be defined as the frequency cutoff of the filter and provides a link between fc and λ.

In signal processing, it is also common to define the −3 dB frequency cutoff (f−3 dB) as the

effective frequency cutoff of the filter. f−3 dB can be obtained by setting H(f) = 1/
√

2 in eq.

10, leading to :

f−3dB = (
√

2− 1)1/6fc (11)

To check such formula, the filter transfer function can be estimated numerically. To do so,

we filtered a noiseless signal made of a sinusoidal wave of varying frequencies and for different

regularization parameters. Fig. 1a shows the transfer function for different smoothing param-

eters. Fig.1a clearly depicts the −6 slope behavior of the low-pass filter. Fig.1b shows the link

between the analytical description of fc given in eq. 11 and the measured −3dB frequency

cutoff. It shows that eq. 11 is reliable and offers a good estimate of the relationship between

the regularization coefficient and the cutoff frequency.

Two main characteristics of the filter can be inferred from this analysis. First, a clear relation

between tuning parameter and cutoff frequency allows us to accurately tune the smoothing

intensity so as to remove all the frequencies above a given frequency. Second, the filter exhibits

a strong −6 slope suitable to efficiently denoise the signal. It is thus reasonable to think that

the best cutoff frequency should be equal to or in the close vicinity of the frequency at which

the Signal-to-Noise Ratio (SNR) is equal to 1. Depending on the definition of SNR, this can

also be seen as the frequency where the low-frequency physical signal spectrum intersects with

the noise spectrum (Gesemann et al. 2016). This frequency is termed fSNR=1 thereafter.

2.4. Frequency cutoff finding strategies

2.4.1. Spectrum shape derived methods : To find the fSNR=1, it is worth looking at the

shape of the trajectories position spectrum. Indeed, as mentioned in (Gesemann et al. 2016),

this spectrum can be divided in two parts : a low-frequency signal-dominated part and a high-

frequency noise-dominated part. For particle trajectories, the signal spectrum usually exhibits

a negative power law. In contrast, the noise spectrum is usually assumed to be flat (white

noise). Therefore the fSNR=1 can be found in the vicinity of the corner or kink of the spectrum.

Two methods can be inferred : the spectrum corner can be either found by computing the

maximum curvature of the spectrum curve in logarithmic scaling or by finding the intersection

of two straight lines which locally approximate the two parts of the spectrum on both sides of

its corner. Those two strategies lead to regularization parameters respectively termed λc and

λd.

To compute λc, the raw signal spectrum is first smoothed, interpolated on a finer grid and

then its curvature is computed. The frequency yielding the maximum curvature is chosen

as the cutoff frequency leading to a regularization parameter using eq. 10 as suggested in

(Gesemann et al. 2016). To compute λd, the raw spectrum is fitted by two straight lines using

least-square fitting. The cutoff frequency is defined as the frequency where both lines cross
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(noted fcross), yielding a regularization parameter from eq.10. This criterion is very sensitive

to the spectrum shape which does not always have a constant power law (see Fig. 12). The

length of each segment is also user-related, thus making this criterion dependent on the insight

of the experimenter.

2.4.2. Methods deriving from Tikhonov regularization strategies : It is interesting

to realize the similarities between our regularization problem and Tikhonov regularization

(Tikhonov et al. 1977). In Tikhonov regularization, solutions of ill-posed problems are searched

by minimizing the following functional :

‖y −Kx‖22 + λ‖x‖22 (12)

In this problem, properly choosing the regularization parameter is also crucial. Several

techniques were developed to circumvent this issue. In this article, we will focus on two

of them, namely the L-curve criterion (Hansen et al. 1993) and the Normalized Cumulative

Periodogram (NCP) criterion (Hansen et al. 2006).

(a) (b)

Figure 2: a : Representation of an L-curve b : NCP for a white noise signal as well as its

low-pass and high-pass filtered version. The dotted line represents the x = y identity line.

The L-curve criterion uses the characteristic L-shape of the parametric curve L(λ) =

(log(‖y −Kxλ‖2), log(‖xλ‖2)) where xλ = arg min
x

{
‖y −Kx‖22 + λ‖x‖22

}
. The optimal

regularization is searched in the vicinity of its corner (Fig. 2a). To locate the curve corner,

we can use the L-curve curvature θ(λ), resulting in a criteria for the choice of λ such as :

λL = arg max
λ

{|θ(λ)|} (13)

The NCP criterion uses the spectral behavior of the residual vector of the filter rλ =

xfiltered(λ) − xdata. Given the vector rλ(j)j∈[0,N ], and its power spectrum Pλ(k)k∈[0,N/2], its

NCP is computed as :

NCPrλ(k) =

∑k
n=0 |Pλ(n)|∑N/2
n=0 |Pλ(n)|

(14)

NCPrλ visualizes the spectral behavior of rλ. If a signal is made of white noise, its NCP should

be close to the identity line (see Fig. 2b). A signal dominated by low frequency (respectively
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high frequency) has its NCP above (and respectively below) the identity line. Ideally, the

filter residual should correspond to the noise. Its NCP should therefore be the NCP of a noisy

signal. Thus, the point is to choose the regularization parameter that gives an NCP of the

residual vector that is as close as possible to an estimated measurement noise (NCPNoise). A

criterion based on the principles of a Kolmogorov-Smirnov test can be inferred such as :

λNCP = arg min
λ

{
max
k
|NCPrλ(k)−NCPNoise(k)|

}
(15)

We will call λNCP WN the criterion based on the assumption that the noise is a white noise,

thus where NCPNoise(k) is the x = y line.

However in our case, the TrackFit filter is a low pass-filter, which leaves unaltered low frequen-

cies of the signal and damps the high frequencies above its cutoff frequency which depends on

λ, namely, fc(λ). Therefore it is logical to compare the spectral behavior of rλ to the spectrum

of the high-pass filtered estimated noise using the TrackFit transfer function. This high-pass

filtered estimated noise can be seen as the best estimated residual TrackFit can produce for

each λ. If ENoise is the spectrum of the estimated noise then the spectrum of the best es-

timated residual is EEN,λ = (1−Hλ(f))ENoise where Hλ(f) is the filter transfer function

(equation 10) parametrized here by the regularization parameter λ. Let us call NCPEN,λ the

NCP of EEN,λ. One can infer a new criterion such as :

λNCP EN = arg min
λ

{
max
k
|NCPrλ(k)−NCPEN,λ(k)|

}
(16)

Both L-curve and NCP criteria (λNCP WN eq.15 and λNCP EN eq.16) will be investigated in

synthetic tests and experimental data in sections 3 and 4.

3. Tests on Numerical Simulations

In this section, we will test and compare the above strategies on synthetic tracks from con-

vected particles in a Direct Numerical Simulation (DNS) in a triply periodic box. Gaussian

noise is added on the particle trajectories so as to have both noisy trajectories and their ref-

erences to quantify the filter behavior and compare the TrackFit tuning strategies.

For the numerical simulation, we use a well resolved Direct Numerical Simulation of a forced

Taylor Green Turbulent flow at Rλ = 62. A pseudo-spectral scheme on a 7683 periodic cubic

box of length 2π was used to solve the Navier-Stokes equations. The forcing is introduced

through the Taylor-Green modes. Ideal tracers were randomly introduced in the flow and

convected along the Eulerian flow field by means of a classical 4th order Runge-Kutta scheme

and linear interpolation. Tracers’ positions were saved at a given frequency fDNS such that

fDNSτη ≈ 1.2, τη being the Kolmogorov time. Unless otherwise specified, we added white

noise on the Lagrangian track positions using a Gaussian distribution of µNoise = 0 mean

and σNoise = 0.1η standard deviation where η is the Kolmogorov lengthscale. The smoothing

algorithm was tested on trajectories of length N = 200. Although more than 2.106 had been

introduced in the DNS, the study in this section was only done on 50 000 trajectories which

were found sufficient for the purposes of our statistical analyses.

First, we will describe the computation of the different regularization parameters namely

λc, λd, λL, λNCP WN and λNCP EN . Then, we will use error statistical analysis, position,
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velocity and position SNR spectral behavior as well as Lagrangian Structure Functions to

evaluate their respective performances.

3.1. Criteria computation

Fig. 3a shows the Power Spectral Density (PSD) of the particle X positions from the DNS,

the noisy data, as well as the PSD of the added noise. From this spectrum, we can define

fSNR=1, yielding a regularization parameter λSNR=1 following eq. 10. The fSNR=1 frequency

cannot be directly computed from the experimental data since we do not know the real noise-

less physical spectrum nor do we know the noise spectrum. Fig. 3b shows the computation of

the λc parameter from the corner detection (corresponding to the red star). The λd criterion

was computed using the yellow segment of the raw spectrum and corresponds to the inter-

section of both dotted lines. The exploration of different regularization parameters allows for

the computation of the L-curve (Fig. 4a) as well as its maximum curvature yielding λL. The

NCP of the residual vector rλ for different λ is shown in Fig. 4b. Since the noise is a white

Gaussian noise, we estimated the noise spectrum as a horizontal line whose intensity ENoise
was estimated from the flat tail of the spectrum. λNCP WN is estimated from the comparison

between the NCPs and the identity line.

(a) (b)

Figure 3: a : Power Spectral Density of particle positions for the DNS, noisy data and the

added Gaussian noise. b : PSD of particle x-positions showing the spectrum corner detection

from the maximum spectrum curvature (the red star) corresponding to the λc parameter. The

λd parameter is computed from the intersection of the dash lines. The yellow segment was

chosen for the line fitting resulting in the dash line.

The different regularisation parameters as well as the corresponding cutoff frequencies are

summed up in table 1.

λSNR=1 λc λd λL λNCP WN λNCP EN

λ 35.14 2.25 20.36 80 200 30

fc [Hz] 4.39 6.95 4.82 3.83 3.29 4.51

Table 1: Summary of the different regularization parameters, their dimensionless values and

associated cutoff frequencies.
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(a) (b)

Figure 4: a : L-curve of the Lagrangian smoothing algorithm. The black star represents λL
computed from (13). b : NCP of the residual vector for different regularization parameters. In

full red, the NCP closest to the x = y line corresponds to λNCP WN . In full black, the residual

NCP is associated to the λNCP EN criterion with the corresponding NCPEN,λ in dotted black

line. The black arrows represents the direction of increasing λ.

3.2. Statistical and spectral error analysis

The statistical analysis of the filter normalized errors can be done first by computing the mean

and the standard deviation of the errors for different regularization parameters. The filter er-

rors are based on the particle position, velocity and acceleration, respectively normalized by η,

η/τη and η/τ2
η . To compute the statistics, the first and last 10 points of each trajectory were

excluded to avoid border issues. One could argue that with increasing lambdas, ie increasing

filter width, 10 points may not be enough to account for border issues. However, tests (not

included in this article) showed clearly that the error statistics were but only slightly impacted

by this choice at regularization parameters well above the optimum one.

The mean normalized errors based on position, velocity and acceleration were all found to

be O(10−5) which indicates that TrackFit does not create any biases since errors are centered

on 0. Fig.5a shows the normalized error standard deviations based on either the particles

positions, velocities or accelerations with respect to the regularization parameter. Each curve

has a ”v” shape curve : for low λ, there is scarcely any smoothing, the error on the position

is of the order of the noise standard deviation (0.1η in our case), and it is much higher when

considering errors on velocity and acceleration. For high λ, high signal frequencies are far

too damped which leads to high errors. For each curve, a minimum can be found. The curve

minima for the standard deviations of the errors are all located in the close vicinity of λSNR=1.

The λc criterion seems to severely under-smooth the signal and leaves too much noise unfil-

tered, while in contrast, the λNCP WN criterion over-smooths the signal. Since λNCP EN and

λd are the closest to λSNR=1, their errors are the lowest. However λd seems to have higher

dispersion of acceleration error than λNCP EN . The λL criterion has higher position error

dispersion than λd and λNCP EN but relatively comparable dispersion error on the velocity

and acceleration to λNCP EN .
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(a)

Figure 5: a : Normalized standard deviation errors based on position, velocity and acceleration

errors. Position errors were normalized by η, velocity errors by η/τη and acceleration errors

by η/τ2
η . λc and λd are respectively represented by the F and F star marker, λL is indicated

by the � marker, λNCP WN and λNCP EN are represented respectively by the � and � square

marker. The vertical dotted line indicates λSNR=1. The color code associated with each

regularization strategy is respected throughout the article. b : Acceleration error Probability

Density Functions for different regularization parameters.

To better understand the filter behavior and the error dispersion, the Probability Density

Functions (PDF) of the acceleration errors was computed in Fig.5b. An ideal filter would have

the narrowest error PDF centered around 0. In our case, one sees that the error PDFs which

have a high value in 0 have wide tails, as in contrast, error PDFs with lower tails have a low

value at 0. This behavior is directly linked to how TrackFit reconstructs the signal gradients.

To be able to reconstruct strong gradients, the regularization parameter need not be too high,

thus resulting in low PDF tails, with low errors in areas of strong acceleration. However, this

will lead to under-filtering in regions of the low gradients and an increase of low-level accelera-

tion errors which have a considerable statistical weight as PDF of Lagrangian acceleration are

centered on 0. This means that a trade-off has to be found between extreme high gradients

reconstruction and low gradients area of the particle trajectories. The λNCP WN criterion

is the one which has the highest PDF value at 0. However, this choice corresponds to an

over-filtering of the acceleration leading to wider tails of the PDF. Additionally, one sees that

the λc criterion creates a Gaussian-like distribution of the acceleration error. This behavior is

due to the unfiltered Gaussian noise which is still left in the signal. The best regularization

criterion for the acceleration is the one closest to the λSNR=1 which is λNCP EN representing

a trade-off between high gradients reconstruction and low gradients smoothing.

A spectral analysis of the trajectories and velocities will enable us to further understand

the ability of the filter to recover the turbulent small scales. Fig.6 shows the PSD of positions

and velocities. Since the trajectories are non periodic signals, spectra are periodized using

a point symmetry of the signal (Foucaut et al. 2004). Fig.7a shows the impact of the noise

on the particle positions. The choice of the regularization parameter does not lead to very

different results except around fSNR=1. The corner detection strategy, as expected, does not
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(a) (b)

Figure 6: PSD of X positions (a) and X velocities (b) for the reference DNS, the noisy data

and the results of TrackFit using the different strategies.

filter enough. On the other hand, the λNCP WN leads to an over-filtering around fSNR=1.

To distinguish between the other strategies, the regularization choice can be better evaluated

from the velocity spectrum. With λSNR=1, the smoothed velocity spectrum can recover the

correct energy until f ≈ 4 Hz < fSNR=1 where the spectrum falls below the reference one

while still being very similar. λNCP EN and λSNR=1 lead to similar results when considering

the spectrum. It is interesting to realize that the λd strategy leads to an energy spectrum

which is the closest to the DNS reference down to f ≈ 10 Hz. However, we have seen that it

does not mean that this strategy minimizes the velocity errors (Fig.5).

To further our understanding, we need to investigate the error spectrum behavior and find how

it compares to the real signal spectrum behavior. The idea is to understand, in the frequency

space, how the real physical energy level compares to the error energy levels made by the

filtering operation. Similar to the Signal-to-Noise ratio (SNR) terminology used above, we can

define a Signal-to-Error ratio (SER) spectrum computed by normalizing the DNS reference

spectrum by an error spectrum. For a given frequency, if the SER is above one, it means

that error levels are below the real signal. On the contrary, if the SER is below one, it means

the error levels of the filter are above the level of the real noise. This will help us quantify,

frequency by frequency, how the filter is able to remove noise, and how far in the frequency

space, the filter has the ability to denoise effectively and with precision. Furthermore, the

error considered can be the error on the particles position, velocity or acceleration. In Fig.7,

we show the filter’s position and velocity SER. One sees that the filtering method allows us

to access frequencies above the fSNR=1 since SER = 1 is reached for f ≈ 6 Hz for the best
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regularization strategy both for position and velocity. The best strategy is the one that leads

to the largest SER ≥ 1 on a wider range of frequencies. The λNCP WN deteriorates the SER

for the lowest frequencies by over-smoothing the signal. The λc is an excellent choice for the

small frequencies but the SER degrades rapidly due to the under-smoothing even well before

the fSNR=1. The L-curve criterion has a slightly lower SER than λd and λNCP EN for fre-

quencies between 2 and 5 Hz. However, its SER is the highest for frequencies larger than 5 Hz.

The SERs for λd and λNCP EN are the same and above the others. Starting from fSNR=1, the

SER for λNCP EN is slightly above the SER for λd and the SER is kept above 1 until f ≈ 6

Hz. Those detailed trends are the same for the SER based on position and velocity. Overall

this shows that the λNCP EN is the regularization strategy that has the best SER for both

position and velocity.

(a) (b)

Figure 7: SER spectra based on X positions (a) and X velocities (b) for TrackFit results using

the different tuning strategies.

3.3. Analysis of the trajectories statistical geometric properties

This section is devoted to the assessment of the Lagrangian smoothing method on the

trajectories geometry. Following (Braun et al. 2006) we computed the curvature κ and the

norm of the torsion θ for each trajectory.

κ(t) =
‖u ∧ a‖
|u3|

, θ(t) =
|u.(a ∧ ȧ)|
κ2u6

(17)

where u, a and ȧ are the particles velocity, acceleration and acceleration derivative or jerk

respectively and u = ||u||, and ∧ the cross-product operator between two vectors. For the

DNS and noisy DNS, velocities and acceleration were computed using a second order centred

difference scheme. For all signals, the jerk was computed by a 2nd order central finite difference

scheme from the positions.

The PDFs of curvature and torsion are shown in Fig. 8 where 2.105 trajectories were used to

allow for a good statistical convergence of the results. The curvature PDF exhibits the same

power laws as in the numerical analysis of (Braun et al. 2006), (Scagliarini et al. 2009) as

well as the experimental results of (Xu et al. 2007). The PDF of curvature behaves as κ for
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(a) (b)

Figure 8: a : PDF of the trajectories curvature b : PDF of the norm of the trajectories torsion.

low curvatures and as κ−5/2 for high curvatures. Those robust power laws were shown to be

independent from turbulence and linked to the relatively independent random Gaussian-like

nature of velocity variables in turbulence (Xu et al. 2007). This is visible in Fig.8a since the

raw unfiltered noisy data also exhibit the −1 and −5/2 power laws. However, the position

of the PDF peak is strongly linked to the turbulence and ReλT , the Reynolds number based

on the Taylor microscale. Xu et al. (2007) suggests that the peak location may be due to

the intermittency of the acceleration and to the velocity and acceleration correlation in a

fully turbulent field. Fig.8a shows that all five regularization criteria (λc, λd, λL, λNCP WN ,

λNCP EN ) are able to reproduce the PDF of the DNS, thus nicely resolving the curvature of

trajectories. Only the PDF of curvature using λc seems to be shifted to the right towards the

PDF of the noisy data.

The computation of the torsion has always challenged experimenter since it includes the deriva-

tive of the acceleration, the particle jerk, which is extremely sensitive to experimental noise

thus requiring a good time resolution of the measurements to distinguish noise from physical

signal. Since the DNS used in those synthetic tests is well resolved, it seemed relevant to

compute the torsion that can be extracted from the smoothing algorithm (see Fig.8b). The

absolute torsion PDF shows the same behavior as numerical results based on the trajectories

of an ABC flow (Braun et al. 2006). A flat slope is seen for low torsion values and a −3 slope

for higher torsion. Regarding the regularization parameters, all three criteria are capable of

capturing this behavior. A closer inspection shows that the λNCP EN criterion is the one

criterion which follows the best the DNS torsion PDF. λc seems to create higher torsion values

than the DNS resulting in a slight shift of the PDF towards higher torsion values similarly to

the noisy data PDF. The other parameters (λNCP WN , λL and λd) lead to similar PDF. This

is a promising result in that TrackFit has the ability to recover the particle jerk. Ironically

enough, one of its operating principles is to regularize the particles jerk which can lead to an

almost null jerk if the regularization parameter is set too high. This preliminary work needs

further investigations to quantify the quality of the jerk measurement but this lies beyond the

scope of our article.
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3.4. Lagrangian Velocity Structure function analysis

The aim of this section is to understand the impact of the trajectory smoothing algorithm

and its parameterization on the Lagrangian velocity structure functions which are high order

moments of velocity increments.

Lagrangian velocity structure functions of order p are defined as :

Sp(τ) = 〈|e. (v(t + τ)− v(t)) |p〉 (18)

The 〈.〉 here refers to ensemble averaging and averaging over all possible directions of the axes,

i.e. the random unit vector e (Berg et al. 2009). They are of particular interest when trying to

understand the statistical behavior of small scales in turbulence. Moreover, their scaling laws

have been hotly debated because the Kolmogorov theory of 1941 (A.N. Kolmogorov 1941)

predicted in the inertial range a Sp(τ) ∼ (ετ)p/2 scaling, with ε the dissipation rate, thus

predicting statistical similarity of velocity increments in the inertial range for homogeneous

isotropic turbulence. However, several studies have revealed deviations from the statistical

self-similarity (Mordant et al. 2001). This phenomenon is associated with Lagrangian inter-

mittency which is found to be larger than in the Eulerian framework (Xu et al. 2006).

We will focus in this section on the small scale behavior of the Lagrangian structure func-

tions since the low-pass behavior of TrackFit should not impact the larger inertial scales of

the DNS. In Fig. 9, we show the 2nd (left top) and 6th (left bottom) order structure functions

as well as their respective local scaling exponents. The aim is to understand the impact of

the regularization strategy on the structure functions. At small scales, the noise on the ve-

locity measurement creates a well-known bias in the Lagrangian statistics (Berg et al. 2009).

The impact of smoothing is thus mostly visible at small scale (τ ≤ 2τη). Furthermore, the

smoothest signal has the lowest structure function values at small scales. For small scales,

τ < τη, all regularization strategies recover the expected Sp(τ) ∼ τp scaling stemming from

regularity. For the second order structure function, there are very little differences between

the regularization strategies and all seem to recover well the DNS reference. The only slight

difference appears in the S2 scaling exponent (Fig. 9b). The choice of λc leads to a lower

scaling exponent, which comes from the fact that a signal smoothed with λc is more noisy

than its DNS reference. At small scales, the corresponding structure function is thus higher

than the DNS. On the contrary, the λNCP WN leads to a higher exponent than for the DNS.

The λNCP EN seems to be the one which best recovers the scaling exponent of the DNS.

However, differences are more pronounced for the 6th order structure functions as the impact

of the smoothing increases with the order of the structure functions. What is surprising is

the fact that S6 for the noisy data recovers the DNS reference very well up to τ ∼ 0.4τη.

Similarly, the λc criterion is the one which is the closest to the DNS reference. This behavior

is counter-intuitive since we saw that the choice of λc is not able to filter the noise as well as

the other criteria. We believe that this behavior is due to the fact that the higher the order

is, the more sensitive the structure functions are to high values of velocity increments which

may be smoothed out in TrackFit at small scales but are present in the noisy data.

This means that the seemingly good behavior of λc is in fact a by-product of the noise which

is still in the signal. The trend might be good but is due to the measurement noise. This

shows how difficult it is to use such statistical criteria as performance criteria since seemingly

good trends actually can come mainly from a lack of measurement precision.
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(a) (b)

(c) (d)

Figure 9: a : Lagrangian velocity structure function of order 2, S2, as a function of non-

dimensional time increment b : Local scaling exponent d[log(S2)]
d[log(τ/τη)] as a function of non-

dimensional time increment c : Lagrangian velocity structure function of order 6, S6, as a

function of non-dimensional time increment d : Local scaling exponent d[log(S6)]
d[log(τ/τη)] as a function

of non-dimensional time increment.

3.5. Signal-to-Noise ratio analysis

Up to now, only one Signal-to-Noise ratio was considered in our numerical tests (σNoise = 0.1η).

In a real experiment, the noise level is often fixed in pixel size. Indeed, once the optical setup

is set (calibration, magnification, pixel size, particle image size, particle density, defocusing

effects, laser power, temporal and spatial illumination for instance), the level of noise on the

particle trajectory will mostly be fixed compared to the pixel size. However, the values of

position error relatively to turbulent scales increase with the Reynolds number. The higher

the Reynolds number is, the smaller η is compared to the pixel size resulting in a higher SNR

relatively to η.

To understand how the TrackFit filter behaves with higher SNRs, we computed mean nor-

malized accelerations errors as a function of λ for different standard deviation noise (σNoise)
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Figure 10: In grey, mean normalized acceleration errors as a function of λ for different SNR,

ie σNoise (0.01η, 0.05η, 0.1η, 0.5η, 1η, 5η, 10η, 30η). The yellow stars represent λSNR=1. The

purple and red lines respectively correspond to λd andλNCP EN .

ranging from 0.01η to 30η in Fig.10. Each grey curve corresponding to the error for a given

SNR has a minimum. The best strategy is the one which is able to capture each curve mini-

mum. In yellow are the errors when using λSNR=1. One sees that they correspond to the error

curves minima, except for very small SNRs where they are in the close vicinity of the min-

ima. For the sake of simplicity, we only show here the acceleration errors for two regularization

strategy which were shown to give good results in the previous tests : λd and λNCP EN . Fig.10

shows that the value of the regularization parameter for the λd strategy is always lower than

the optimum and the gap between λd and the minimum tends to grow as the SNR decreases.

Though λNCP EN is slightly less than the optimum one for the first two low SNRs, it is clearly

the most capable of finding the optimum regularization parameter for a wide range of SNR,

including very high SNRs.

Overall, the λNCP EN strategy is the best strategy to minimize mean acceleration errors, and

also position and velocity errors since Fig.5 showed that the optima of the three quantities

were found for the same regularization parameter.

4. Experimental results

4.1. Experimental set-up

Time resolved measurement of 4D-PTV ”Shake-The-Box” (Schanz et al. 2016) were performed

on a turbulent Von Kármán flow in water (Ostovan et al. 2019). Four high speed cameras

are imaging a 45 × 40 × 6 mm3 volume lighted by a 30 mJ/pulse high speed laser Nd-YLG

laser. The measurement volume is located at the center of a cylindrical water tank of radius

R = 0.1 m and height H = 0.47 m. It is worth mentioning that all four cameras are in the

same Y = 0 plane, the Z axis being the reconstructed dimension. The Y axis corresponds to

the Von Kármán rotation axis. Energy is being injected in the fluid by two counter-rotating

impellers located respectively on the top and at the bottom of the water tank. For the present
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analysis, the frequency is set at F = 0.1 Hz, resulting in a Reynolds number based on the

tank radius Re = 2πFR2/ν ≈ 6300. The Kolmogorov length (η = 0.3 mm) and time scale

(τη = 92 ms) were computed from an estimate of the global mean dissipation rate ε in the

water tank from torque measurements. The measurement frequency fm = 200 Hz was set to

resolve the Kolmogorov time scale. The Taylor length scale is λT ≈ 5.3 mm which leads to

a Reynolds number based on the Taylor lengthscale ReλT ≈ 80. For a thorough description

of the experimental setup, a complete description of the experimental set-up is provided in

(Debue 2019).

Glass hollowsphere particles of 10 µm averaged diameter from DANTEC were inserted in

the water tank resulting in a Kolmogorov based Stokes number of Stτη = 6.57 10−5. The par-

ticle image density was estimated at 0.047 particles per pixels resulting in an average of 40 000

particles tracked per time step in the measurement volume (Fig. 11). Particle reconstruction

and tracking was obtained using the STB algorithm of Davis10 software. The parameters used

for the analysis are detailed in (Ostovan et al. 2019).

Figure 11: Visualisation of Lagrangian trajectories color coded by the velocity norm.

4.2. Regularization criteria : computation and remarks

In this section, we discuss the results of the aformentioned regularization criteria on the ex-

perimental data. Their values are summed up in table 2.

Fig.12 shows the spectrum of the trajectories raw positions. It was computed using Ntracks =

59 222 tracks of Nlength = 100 time steps long. Looking at the Lagrangian spectrum gives us

a lot of information concerning the temporal resolution of our measurements and the level of

error in the particle position. The level of the spatial noise is seen by looking at the level of

the noise section of the spectrum, at high frequencies. The temporal resolution is given by the

frequency at which the noise appears in the spectrum. The position error can be estimated in

between 0.01 to 0.02η. The temporal resolution of our measurement is about τη.

Several additional remarks can be made regarding our results. First of all, one observes a
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Figure 12: Raw particle positions spectrum for X, Y and Z.

clear difference between the X, Y dimensions and the third dimension Z. The reconstructed

Z dimension seems to be more noisy by almost one order of magnitude than the X and Y

dimensions (for f ≥ 10 Hz). We believe that this is due to the linear imaging configuration

of our camera setup. The Z axis is the axis which is the most co-linear to all the cameras

optical axis. This dimension is thus the most difficult to reconstruct during the 3D particle

reconstruction process and therefore the dimension on which the position errors will be the

highest. This is why cross-like configurations are preferred whenever possible (Scarano 2013).

The Y component is also less noisy than the X one since the X spectrum is slightly above

the Y spectrum in the frequency range affected by the measurement noise. Furthermore, the

frequencies at which the noise appears in the signal is not the same for the two largest dimen-

sions (X,Y ) with respect to the Z dimension. Thus, the smoothing cutoff frequencies have

to be separately chosen for each direction based on each direction noise spectral behavior.

Finally, a striking feature of the spectra is the fact that the high frequency noise is not a pure

white noise. The reason for this is still unknown but is certainly to be found in a combination

of the experimental setup, the particle reconstruction and the tracking algorithm since the Z

spectrum is even less flat than the X and Y spectra. We believe that this feature could be

a footprint of the Wiener filter used for predicting the position of a tracked particle in the

next time-step (Schanz et al. 2016). The slightly correlated nature of this noise could also be

due to the illumination inhomogeneity and two head-pulsed laser misalignement causing the

particle position error to be correlated in space and time.

The fcross frequency, defined in 2.4, is therefore difficult to find especially for the compu-

tation of λd, which requires the experimenter to approximate the noise. Fig.12 shows that

neither the signal part nor the noise part of the spectrum can easily be approximated by a

straight line. We therefore only computed the λc criterion based on the curvature of the spec-

trum for each direction. We also computed the L-curve and extracted their related curvature

maxima (see Fig. 13a) yielding for each direction λL,x, λL,y and λL,z . We recover the fact

that the Y direction is the less affected by the noise with λL,y ≤ λL,x � λL,z.

We also computed the two NCP criteria : NCPWN , which is based on the assumption of

a pure white noise and NCPEN which is based on a comparison of a current residual spec-

trum and a model of the best residual spectrum. The model of the best residual spectrum was
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(a) (b)

Figure 13: a : L-curve curvature for X, Y and Z dimensions b : Normalized cumulative

periodogram of residual vectors for the Z coordinates.

chosen to be made of two distinct parts :

Eλresidu(f) =

{
Esignal(f) if f ≥ fλ
Esignal(fλ) (1−Hλ(f)) otherwise

(19)

The λNCP EN is the λ for which the NCP residue is closer to the NCP of its associated model

residue Eλresidu(f). Fig. 13b shows for the Z dimension the tested NCPs of the residual vectors

of TrackFit as well as NCPWN , NCPEN and their associated models. Table 2 summarizes

the results for all the different regularization parameters. On the Z dimension, one sees that

λNCP EN � λNCP WN . Choosing to estimate the noise as white noise in the case of strongly

non-uniform noise may lead to a wrong and under-estimated smoothing parameter value. This

will be further examined in the following section.

X Y Z

λ fc [Hz] λ fc [Hz] λ fc [Hz]

λc 151.9 13.7 73.9 15.5 447.4 11.5

λL 1328.8 9.6 1040.2 10 3421.5 8.2

λNCP WN 1040.2 10 1328.8 9.6 91.3173 15

λNCP EN 1507.8 9.4 1174.2 9.8 2239.8 8.8

Table 2: Summary of the different regularization parameters, their values λ and associated

cutoff frequencies fc.

4.3. Results

Experimental results are brought together in this section. We will first look at positions and

velocity spectra of the particles tracks. We focused on the Z direction, since we showed that

this dimension is the more impacted by the measurement noise.

The spectra of Z positions are shown in Fig.14a for the different regularization parameters.

An overall −6 slope is observed for all spectra, as previously found on numerical data in sec-

tion 2.3. There is almost no quantitative difference between the regularization parameters,
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(a) (b)

Figure 14: a : Power density Spectrum of Particle Z positions b : Power density Spectrum of

Particle Z Velocities.

except for λNCP WN which as expected, has a higher cutoff frequency and does not perfectly

filter the noise as visible in the small bump around f = 10 Hz. The Z velocity spectrum

(Fig. 14b) helps to discriminate between the different parameters. The noise amplification

on derivatives of a noisy signal is a well known issue, and depends on the derivative scheme

used. It is clearly visible in the spectrum of raw unfiltered data where a 2nd order centered

difference scheme was used to compute the derivatives from the positions. The velocities of

TrackFit were computed from the derivation of equation 3 resulting in a linear combination of

polynomial functions of order n−1. A noise-induced bump is visible in the λNCP WN velocity

spectrum as well as for λc around f ≈ 10 Hz. This was expected for λNCP WN which totally

overestimated the cutoff frequency. The spectrum behavior of the noise clearly differs from

a pure white noise, thus rendering the NCP estimate and comparison incorrect. For λc, the

bump around f ≈ 10 Hz shows that the geometrical criteria selecting the cutoff frequency

was not conservative enough regarding the noise estimation since the signal remains noisy. On

the contrary, the λL and λNCP EN do not exhibit such a bump and their respective velocity

spectra do not seem to be affected by the measurement noise. Since we do not have a reference

signal or another independent measurement for comparison such as in (Lawson et al. 2018), it

is difficult to state that one is better than the other. However, one could argue that λL may

smooth the signal more than λNCP EN . Though, this trend is found both in the numerical

tests in 3 as well as in this experimental dataset, we do not expect this to be always the case

for any given experimental dataset. Therefore, we strongly advise experimenters to apply such

treatments to their data set in order to best select the optimal filter frequency cut-off. In any
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case, the optimum is definitely around this value. Further investigation could also be made

on the impact of this unfiltered noise on the interpolation of the Lagrangian velocity field on

an Eulerian mesh, but this lies well beyond the scope of our present research.

The particle Lagrangian acceleration statistics are crucial quantities in Lagrangian turbulence

and often used as a criteria to select the filtering width. We computed the particle acceleration

PDF (Fig.15.) for the three space coordinates of the acceleration and for the 4 regularization

strategies considered in section 4. To avoid any biases due to the possibility (which is now

known in the 4D-PTV community for the Shake-The-Box algorithm) of ghost tracks, we only

considered relatively long tracks of more than 50 time steps. We also removed the first and

last 10 points of the tracks to avoid any border issues. For a good statistical convergence, we

computed the statistics over 40 runs of 3226 time instants each. This resulted in more than

7.109 data points.

Figure 15: Particles’ Z acceleration PDF normalized by its standard deviation for different

regularization parameters.

The PDF is non gaussian, as expected in Lagrangian turbulence (Mordant et al. 2004),(Voth

et al. 2002), (Berg et al. 2009). Fig.15 shows the PDF is well converged up to 10−6. The

PDF of the Z acceleration is also quite symmetric for a range of normalized acceleration be-

tween −18 and +18. The tails of the PDF on this component are not symmetric, and in this

range, the choice of regularization parameter can be seen. Since our measurement volume is

at the center of the Von Kármán flow, there should not be any preferential flow direction.

The asymmetry of the PDF in its tails is certainly due to the measurement noise, which is an

order of magnitude higher than in the X and Y direction and the PDF done on X and Y show

symmetric tails (not show here).

As excepted from the previous investigations, the λc and λNCP WN are the ones which allow

for higher accelerations with wider PDF tails. λNCP EN and λL regularization parameters

produce smoother results. If one is interested in locating extreme events in the turbulence,

less regularization will definitely allow to capture higher accelerations. However,it will also

allow for smaller frequencies to have higher energy values, as seen in the velocity spectra. This

will result in higher averaged errors as seen in Fig.5(a) and 5(b). If the idea is to use the La-
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grangian flow field for interpolation to obtain the Eulerian flow field or to obtain the pressure

field by integrating the Lagrangian acceleration (Neeteson et al. 2016) which is susceptible

to measurement noise, it may be best to opt for stronger regularization parameters such as

λNCP EN or λL to have less overall noise in the measurements.

(a) (b)

Figure 16: a : PDF of the trajectories curvature b : PDF of the norm of the trajectories

torsion.

Geometrical properties of the Lagrangian trajectories such as PDF of curvature and tor-

sion are shown in Fig.16). All the behaviors observed in the numerical tests are recovered in

this experimental application. The robust +1 and −5/2 slopes are recovered in the PDF of

curvatures. The shift of the PDF towards lower curvature due to the smoothing procedure

is also observed. All the different regularization parameters exhibit almost the same PDF

of curvature. The PDF of torsion (Fig.16b) is flat for low torsion values and exhibits a −3

slope for high torsion values. The transition between these two states is also affected by the

smoothing procedure. One finds the same trend as observed in section 3.3 : the signals which

are the more regularized (λNCP EN and λL) have slightly lower torsion values. Overall, such

a statistical criterion shows very little difference between the regularization parameters.

Velocity structure functions were also computed and we show (Fig.17a & 17c) the 2nd and

6th order velocity structure functions as well as their scaling exponents (Fig. 17b & 17d).

The scaling exponents of the DNS are shown for comparison. Since we are only looking at

relatively short Lagrangian tracks of 100 time steps, we do not observe any plateau as ex-

pected for S2 and S6 indicating that the inertial range was not covered in this Lagrangian

exploration of our turbulent Von Kármán flow. All four regularization parameters are able

to recover and regularize the small time scale velocities since all the curves superimpose in

Fig. 17a and 17c. Furthermore, the scaling exponents recover the expected trends of a regular

differentiable function on which a Taylor expansion can be done. For the scaling exponents,

differences arise for the 6th order : λL and λNCP EN have slightly higher scaling exponents

than λc and λNCP WN for τ ≤ τK . This is coherent with the trend observed on the DNS

where higher values of smoothing power lead to higher scaling exponents. The comparison

with the DNS shows that the experimental structure functions have higher scaling exponents
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(a) (b)

(c) (d)

Figure 17: a : Lagrangian velocity structure function of order 2, S2, as a function of non-

dimensional time increment b : Local scaling exponent d[log(S2)]
d[log(τ/τη)] as a function of non-

dimensional time increment c : Lagrangian velocity structure function of order 6, S6, as a

function of non-dimensional time increment d : Local scaling exponent d[log(S6)]
d[log(τ/τη)] as a function

of non-dimensional time increment.

for −0.75 ≤ log10(τ/τK) ≤ 0.4. One can think of numerous reasons that might explain this

difference. First, the flows are rigorously not the same since the flow geometry and the me-

chanical properties like ReλT differ from one another. Furthermore, it is well known that PTV

measurements can suffer from multiple biases like inhomogeneity of seeding, errors in the case

of high seeding and high gradients or anisotropy of the measurement volume to name a few.

In our case, the measurement laser volume has a smaller Z expansion than in the X and Y

dimension. Furthermore, to avoid border issues, the structure functions were computed on

trajectories larger than 50 time steps. The particles that have high Z velocities tend to come

out of the volume and belong to short trajectories and thus are scarcely represented in the

statistics.
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5. Conclusion

We compared three types of optimal cutoff frequency finding strategies for the smoothing of

noisy Lagrangian trajectories. Those strategies are based on the shape of the spectrum (cor-

ner detection), the shape of the regularization L curve problem (corner detection) and the

comparison between the spectral behaviors of the residual vector and the estimated noise.

Comparisons were done using DNS assuming a Gaussian white noise on the trajectories and

also on experimental data of a Von Kármán flow at Re ≈ 6300.

Numerical simulations, assuming a Gaussian white noise, gave us an in-depth understanding

of the types of errors that occur with this smoothing technique by computing mean absolute

error and standard deviation error on positions, velocities and accelerations. We can con-

clude from this research that an optimal regularization parameter does exist for each physical

quantity while the dispersion of the error is minimum for positions, velocities and accelera-

tions for λ close to fSNR=1. We show that this behavior is linked to the way low or high

gradients of the signal are reconstructed by looking at PDFs of accelerations and acceleration

errors. Low regularization parameters will faithfully reconstruct high gradients while adding

non-physical fluctuations in low-gradients areas. On the contrary, higher regularization pa-

rameters will smooth out high gradients and better predict low gradients. We showed that

regularization parameters based on the shape of the position spectrum (especially λc) tend to

under-smooth the signal, thus recovering high accelerations but adding artificial fluctuations

to low gradients. In comparison, we show that λNCP WN over-smooths the signal. λd, λL
and λNCP EN have quite similar performances and a combined analysis of error criteria and

SER spectrum is needed. λd is able to recover the acceleration variance quite accurately but

it fails to reconstruct low acceleration. It results in a lower SER for frequencies higher than

fSNR=1. λL is less accurate for high accelerations but reconstructs low intensity gradients well

thus resulting in the highest SER at high frequencies (f ≥ fSNR=1). λNCP EN seems to be a

good compromise between those two tendencies. Those results are confirmed by the analysis

of the statistical geometrical properties of the Lagrangian trajectories where λNCP EN is the

parameter which recovers the best behavior of the torsion PDF behavior. The investigation

of the Lagrangian velocity structure functions showed that λNCP EN recovers the closest the

scaling exponent of the DNS for the second order structure function. SNR analysis showed

that for a wide range of SNR, λNCP EN is able to find the regularization parameter leading

to the least mean acceleration errors.

When confronted to real experimental data, the first finding is that the experimental noise

can be quite different from a white Gaussian noise, especially for the smallest reconstructed

dimension. At this stage, this is an ongoing research, but it could be extremely stimulating

to understand the origin of this phenomenon in order to improve the measurement accuracy.

This does undoubtedly impact the possible strategies to distinguish the real signal from the

noise. Indeed, we show that the non-Gaussian noise renders the λWN strategy ineffective. Fur-

thermore, the geometrical properties of the position spectrum change, making λd very hard to

set objectively. We show that, both in the case of Gaussian noise and experimental noise, λc
under-smooths the signal. It does furthermore impact the statistical Lagrangian geometrical

properties and this unfiltered noise could be detrimental to any interpolation into the Eule-

rian flow field. λL and λNCP EN have very similar performances and behavior for velocity

spectrum, acceleration PDF, PDF of curvature and torsion and also velocity structure func-

tions. This robustness combined with the performances obtained in the numerical simulation
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strengthens the idea that those parameters constitute the best possible tuning of the TrackFit

method. The L-curve criterion, though purely based on signal processing analysis, is quite

robust and offers the experimenter a good systematic cutoff frequency finding strategy but

leads to smoother results than with λNCP EN .

Overall, this study showed that TrackFit is a very powerful tool to recover denoised Lagrangian

trajectories. Furthermore, the smoothing tuning strategies can be based on a desired accuracy

and on the physical behavior of the measured quantities the experimenter wishes to focus on.

For instance, extreme events with rapid change of direction can more readily be recovered with

lower constraints on the regularization. If the position spectrum slope has a clear negative

slope, then the λd strategy can be applied and is still close to the optimum regularization

parameter for mean errors. As shown in acceleration PDFs, higher acceleration values can be

recovered. However, this is done at the detriment of lower frequency accuracy and may lead to

more noise in low acceleration areas when interpolating the field on an Eulerian mesh. If the

experimenter wishes to use TrackFit as a first step before interpolation to obtain the Eulerian

flow field, or to reconstruct the pressure field using the Lagrangian acceleration, the idea is

to choose a regularization parameter which has the best performances overall on all possible

scales, thus λL and λNCP EN are the best candidates.

Ultimately, this smoothing technique requires to find a trade-off between low and high ac-

celeration reconstruction. This can be detrimental to the measurement of intermittency which

is a crucial property of turbulence. This choice is required because the same smoothing level is

applied to all tracks and to the whole track length. To go further, an idea could be to tune the

regularization parameter according to an estimate of the intensity of local velocity gradients.

This would allow a stronger regularization parameter in low acceleration areas, and a lower

regularization when high frequencies with high amplitudes are detected. This promising idea

may lead to significant gains for the measurement of turbulence.

Acknowledgments

This work was carried out within the framework of ELSAT2020 project supported by the

European Community, the French Ministry for Higher Education and Research, and the

Hauts de France Regional Council in connexion with CNRS Research Foundation on Ground

Transport and Mobility. The experimental data were collected through the ANR EXPLOIT

grant agreement no. ANR-16-CE06-0006-01 which is a collaboration between CEA/SPEC and

LMFL. This research was granted access to the HPC resources of IDRIS under the allocation

021741 made by GENCI (Grand Equipement National de Calcul Intensif).

References

Berg, J., Ott, S., Mann, J., & Luthi, B., 2009 Experimental investigation of Lagrangian structure

functions in turbulence. Physical Review E 80(2), 026316

Bhattacharya, S., & Vlachos, P., 2019 Volumetric Particle Tracking Velocimetry (PTV) Uncertainty

Quantification arXiv preprint Fluid Dynamics arXiv reference

Biferale, L., Bodenschatz, E., Cencini, M., Lanotte, A. S., Ouellette, N. T., Toschi, F., & Xu, H., 2008

Lagrangian structure functions in turbulence: A quantitative comparison between experiment

and direct numerical simulation Physics of Fluids. 20, 065103.



Optimization of regularized B-spline smoothing for turbulent Lagrangian trajectories 28

Bourgoin, M., Pinton, J.-F. & Volk, R., 2014 Lagrangian Methods in Experimental Fluid Mechanics.

Modeling Atmospheric and Oceanic Flows. 15, 277-296.

Braun, W., De Lillo, F., & Eckhardt. B., 2006 Geometry of particle paths in turbulent flows. Journal

of Turbulence 7(62)

Carl de Boor 1978 A Practical Guide to Splines. Springer-Verlag New York

Cornic, P., Leclaire, B., Champagnat, F., Le Besnerais, G., Cheminet, A., Illoul, C., Losfeld, G.

2020 Double-frame tomographic PTV at high seeding densities. Experiments in Fluids 61(23).

https://doi.org/10.1007

Debue, P., 2019 Experimental approach to the problem of the Navier-Stokes singularities. PhD thesis,
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Schanz, D., Gesemann, S., & Schröder, A., 2016 Shake-The-Box: Lagrangian particle tracking at high

particle image densities. Experiments in Fluids 57(5), 70.

Schneiders, J. F. G., & Scarano, F., 2016 Dense velocity reconstruction from tomographic PTV with

material derivatives. Experiments in Fluids 57, 139.

Schneiders, J. F. G., Scarano; F., & Elsinga, G. E., 2017 Resolving vorticity and dissipation in a

turbulent boundary layer by tomographic PTV and VIC+. Exp. Fluids 58(4), 27.

Stelzenmuller, N., 2017 A Lagrangian study of inhomogeneous turbulence. PhD Thesis Université

Grenoble Alpes

Tikhonov, A.N., & Arsenin, V.Y., 1977 Solutions of Ill-Posed Problems. Wiley, NewYork

Voth, G., La Porta, A., Crawford, A., Alexander, J., & Bodenschatz, E., 2002 Measurement of particle

accelerations in fully developed turbulence. Journal of Fluid Mechanics 469, 121-160.

Xu, H., Ouellette, N. T., & Bodenschatz, E., 2006 High Order Lagrangian Velocity Statistics in

Turbulence Phys. Rev. Lett. 96(2), 024503.

Xu, H., Ouellette, N. T., & Bodenschatz, E., 2007 Curvature of Lagrangian Trajectories in Turbulence.

Phys. Rev. Lett. 98(5), 050201.

Xu, H., 2008 Tracking Lagrangian trajectories in position–velocity space. Measurement Science and

Technology 19, 075105.
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