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WELL POSEDNESS OF GENERAL CROSS-DIFFUSION SYSTEMS

CATHERINE CHOQUET, CAROLE ROSIER, AND LIONEL ROSIER

ABSTRACT. The paper is devoted to the mathematical analysis of the Cauchy problem for general cross-
diffusion systems without any assumption about its entropic structure. A global existence result of nonneg-
ative solutions is obtained by applying a classical Schauder fixed point theorem. The proof is upgraded for
enhancing the regularity of the solution, namely its gradient belongs to the space Lr((0,T )×Ω) for some
r > 2. To this aim, the Schauder’s strategy is coupled with an extension of Meyers regularity result for
linear parabolic equations. We show how this approach allows to prove the well-posedness of the problem
using only assumptions prescribing and admissibility range for the ratios between the diffusion and cross-
diffusion coefficients. The results are compared with those that are reachable with an additional regularity
assumption on the parabolic operator, namely a small BMO assumption for its coefficients. Finally, the
question of the maximal principle is also addressed, especially when source terms are incorporated in the
equation in order to ensure the confinement of the solution.

Keywords: cross-diffusion system; quasilinear parabolic equations; global in time existence; unique-
ness.

1. INTRODUCTION

A strongly coupled cross-diffusion system for the unknown u = (ui)i=1,...,m reads

∂tui =
N

∑
k=1

∂

∂xk

( m

∑
j=1

Dk
i, j(u)

∂u j

∂xk

)
=: ∇ · Ji, for i = 1, ...,m. (1.1)

Its analysis is known to be difficult because of the coupling of the highest order derivatives terms. Nev-
ertheless, since cross-diffusive models occur in many domains, such as for instance biology, chemistry,
ecology and fluid mechanics, there is a wide literature on the subject. Let us give some bibliographical
references, without of course trying to be exhaustive.

System (1.1) is studied by Choi, Huan and Lui in [13]. They show a global weak existence result
by assuming that each matrix Dk(u) = (Dk

i, j(u))1≤i, j≤m is positive definite and that its components are
continuous and uniformly bounded with respect to u. The proof is based on Galerkin method and on
the application of the Schauder fixed-point theorem to a linearized system. An application is given in
a one-dimensional electrochemistry context. According to [3], similar assumptions but with smoother
coefficients give the existence of a unique maximal classical solution.

Unfortunately, when the assumptions of positive definiteness and of uniform boundedness for the
matrices Dk fall down, proving the existence of solutions for a cross-diffusive problem becomes a tricky
question, not to mention an hypothetical uniqueness result. The literature in this context thus essentially
reduces to the study of very particular systems. We refer for instance to the reviews [41] and Chapter 4
in [26] for a variety of illustrations. Let us give only two examples, with a linear dependance of Dk on
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u (corresponding to the setting considered in the present paper) for emphasizing the importance of the
remaining open questions, even for systems involved in primary societal models.

An important particular case of (1.1) is the so-called Shigesada–Kawasaki–Teramoto (SKT) system
[45], related to population dynamics and reading, e.g. in the case m = N = 2, as follows:

D1
1,1(u) = D2

1,1(u) = 2α11u1 +α12u2 +δ , D1
1,2(u) = D2

1,2(u) = α12u1,

D1
2,1(u) = D2

2,1(u) = α21u2, D1
2,2(u) = D2

2,2(u) = α21u1 +2α22u2 +δ .

The unknown ui, for i = 1,2, stands for the population density of the ith species. The SKT system has
been widely studied. The existence of a solution is proved both in the non-degenerate case (δ 6= 0:
[9, 27, 28, 32, 42, 43]) and in the degenerate case (δ = 0: [35, 25]), always with some restrictions on the
non-negative coefficients (αi, j)1≤i, j≤2. The perturbation of the flux Ji by a term describing a prescribed
environmental potential, in the form diui∇P, i = 1,2, is considered in [10, 20, 47]. In [48], the authors
prove a global existence result for the SKT system with a nonlinear reactive source term of the form
(ai−∑

2
j=1 bi ju j)ui, i = 1,2, while an extension of the SKT model, but with linear reaction terms, is

studied in [12].
Another particular case of (1.1) appears in seawater intrusion models, whatever they are based on

the sharp-diffuse interface approach, as described and studied in [14, 15, 17], or on the sharp interface
approach as in [23, 1, 37]. As mentioned in [1], such models can be described by (1.1) by setting

D1
1,1(u) = D2

1,1(u) = (1−α)u1 +δ , D1
1,2(u) = D2

1,2(u) = (1−α)u1,

D1
2,1(u) = D2

2,1(u) = (1−α)u2, D1
2,2(u) = D2

2,2(u) = u2 +δ ,

where u1 (resp. u2) denotes the thickness of the freshwater part (resp. of the saltwater part) and α ∈
(0,1) is the relative density contrast between freshwater and saltwater. The nonnegative parameter δ

characterizes the thickness of the mixing area separating the salt and freshwater on the one hand, and
the saturated and unsaturated part of the aquifer on the other hand. Thus, the degenerate case (δ = 0)
corresponds to the sharp interface approach. The proof of existence given in [1] is based on an entropy
estimate, defined by the Boltzmann entropy density, allowing both the control of the gradients and the
statement of the nonnegativity of the solution. This latter point is not proved as a maximum principle
result but is a direct consequence of the change of unknown defined by the entropy.

Associating an entropy with a system of parabolic equations is a classical approach. For cross-
diffusive problems, the method has been greatly developed by Jüngel and collaborators, see for instance
[25], and by Desvilettes et al. in [18]. The entropy decay is a powerful tool for providing an uniform
estimate of the solution in the space L2(0,T ;H1(Ω)) that yields the global in time existence, assuming
“only” that the (algebraic) structure of the tensor D allows the definition of an adapted entropy. As al-
ready mentioned, the change of unknown defined by the entropy allows sometimes, as a bonus result, to
prove the boundedness of the solution.

The two latter examples are also emblematic of the very few existing uniqueness results for cross-
diffusion systems. The uniqueness of the solution remains an open problem both for the first and third
example. For the well-researched SKT system, we refer to the recent works [40] with δ 6= 0 and [11]
with δ = 0. Both of them are based on a dual method, coupled moreover with the entropy method of
Gajewski in [11]. These methods, the dual and the entropy one, are renowned both for dealing with weak
solutions (unlike the semigroup tools that are restricted to mild solutions) and for not being restricted to
scalar problems. But, despite the qualities of these methods, uniqueness results are limited by further
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restrictions on the parameters in (1.1). For instance in [40], the source terms are assumed quadratic and,
furthermore, such that 0 < (αi j)

2 < 8αiiα ji, i 6= j; this assumption allows in particular the authors to
recover a kind of positive definite character for D(u) in the formulation (1.1), namely, for any ξ ∈ R2,

D(u)ξ ·ξ ≥ α(u1 +u2)|ξ |2 +δ |ξ |2, (1.2)

with 0<α <min(αi j,δ ). Let us already emphasize that in the present paper, we choose a cross-diffusion
model that does not satisfy Assumption (1.2).

The present paper aims at breaking away from the usual class of hypothesis mentioned before. Our
methodology is not based on a structural, algebraic, assumption on the tensor D like the one allowing
entropy methods, but rather on an heterogeneity assumption on the ratio between the diffusive and the
cross-diffusive part of the operator. More precisely, we do not specify any algebraic equation satisfied
by the parameters of D in (1.1); we relax our assumptions into inequalities describing the necessary
smallness of some of the ratios between the different components of the tensor D. Indeed the latter
is often the most accessible information, in particular due to the lack of complete physical data or due
to the phenomenological character of the model. In particular our approach may be chosen when the
identification of the entropy structure of the system seems difficult. We use classical variational tools
and we do not need to restrict the results to smooth solution. We only use a Meyers’ type result which
ensures that the weak solution in L2(H1) of a parabolic problem is actually a little more regular, in
Lr(W 1,r), r > 2. The key point, unfortunately the most restricting one, is to characterize r with regard to
the data of the problem. Then the method consists in controlling the ratios between the components of
tensor D for reaching the regularity, namely the value of r, which allows to prove the uniqueness with
Gagliardo–Nirenberg type inequalities for handling the nonlinear coupled cross-diffusive terms.

As a consequence, we can give in particular a range for the ratios in D ensuring the uniqueness of
the bounded solution of (1.1) (completed by boundary conditions). The boundedness of the solution is
thus, of course, also of interest. With the (non-entropic) tools used in the present paper, the question
corresponds to the proof of weak maximum principles. We thus prove that there exists a source term
confining the solution of (1.1) below any prescribed maximal value.

Enhancing the regularity of the solution is a key point in our approach. Here we choose to exploit
self-improving properties in the spirit of Meyers regularity theorem. Basically, the greater the ellipticity
rate of the operator, the greater the gain in regularity (because at the limit the operator behaves like the
Laplacian). It largely explains our smallness assumptions. Another approach for ensuring the excited
summability of the gradients consists in making stronger assumptions on the smoothness of the domain
and of the coefficients of the equations. Interesting results are those obtained by Krylov in [29] for linear
parabolic equations with BMO coefficients and extended by Dong and Kim for small VMO coefficients in
[19]. As it will become clear below, such additional assumptions does not prevent some other smallness
assumptions and lead to local in time results.

Despite our method applies for the study of any system in the form (1.1), all the results and all the
computations of the present paper are done for a particular class of cross-diffusion systems, the one
classically modeling the dispersal of two interacting biological species (see for instance [22]). Indeed, it
is one of the less cumbersome systems containing all the difficulties inherent to the analysis of a strongly
coupled cross-diffusion. Since the model also corresponds to the seawater intrusion model presented
above, some issues left open in [15] are also clarified in the present paper. By the way, we emphasize
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that this paper aims primary at exposing a methodology for the study of cross-diffusion systems, based on
assumptions on the parameters rates rather than structural assumptions. This methodology can of course
be applied to more general systems, provided that the assumptions are properly adapted. Notice however
that if the cross-diffusion parameters do no longer depend linearly on the solution and remain unbounded,
the uniqueness proof could become unfeasible. Notice also that, due to the use of an interpolation
inequality for handling with the nonlinearity in the cross-diffusive terms, the validity of the uniqueness
result may be restricted. Here for instance it only holds true for a one-dimensional or two-dimensional
domain (while in [40], for the well-structured SKT system, the result holds true up to dimension 4).

The paper is organized as follows. In Section 2, we introduce the cross-diffusion system and the
functional setting, and we remind some auxiliary results that will be used thereafter. In Section 3, we
state the main results of the paper, namely the global in time existence of solutions, the uniqueness of
solutions and the maximum principle. Section 4 is devoted to the proof of the global existence result.
The proof is divided in two steps, namely (i) the existence of solutions to a linearized system and (ii)
the nonnegativity of the solution. The uniqueness of the solution is established in Section 5. The proof
rests mainly on the fact that the gradient of the solution belongs to Lr for some r > 2. More precisely,
we generalize to the quasilinear case the regularity result given by Meyers ([36]) in the elliptic case
and extended to the parabolic case by A. Bensoussan, J.-L. Lions and G. Papanicolaou (see [6]). Then,
if N = 2, a version of the Gagliardo-Nirenberg inequality allowing to control the L4 norm by the L2

and H1
0 norms is sufficient for proving the uniqueness result, provided the value r = 4 is reached. The

results require that the operator satisfies an uniform ellipticity assumption and that its coefficients are L∞

functions. The last hypothesis requires, in our case, the uniform boundedness of the solution (ui)
m
i=1. In

Section 6, several considerations on the maximum principle are thus presented. Intuition suggests using
”pumping” source terms that are sufficiently large to control the upper limit of the solution. We establish
the existence of such source terms by introducing a penalized problem for which we let the penalization
blow up. To conclude, we give a physical meaning for this penalization approach to demonstrate the
existence of a confined solution.

2. MATHEMATICAL SETTING AND AUXILIARY RESULTS

In the present section, we introduce the natural functional setting for addressing the well-posedness of
cross-diffusive problems. We also give three auxiliary lemmas about the regularity of parabolic systems.

We consider an open bounded domain Ω of RN , N ∈N∗, N ≤ 3 for practical applications. The bound-
ary of Ω, assumed to be of class C 1, is denoted by Γ. The time interval of interest is (0,T ), T being any
positive real number. Set ΩT := (0,T )×Ω.

The cross-diffusive system we deal with is a particular case of (1.1), namely

∂tui−∇ ·
(
δi∇ui +ui

m

∑
j=1

Ki, j∇u j
)
= Qi(u) in ΩT , for i = 1, ...,m. (2.1)

It is completed by the following boundary and initial conditions, for i = 1, ...,m:

ui = ui,D in (0,T )×Γ, ui(0,x) = u0
i (x) in Ω.

We consider the fully non-degenerate setting

δi > 0 1≤ i≤ m. (2.2)
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For any 1 ≤ i, j ≤ m, the tensor Ki, j is assumed to be bounded and uniformly elliptic. More precisely,
there exist two positive real numbers, 0 < K−i, j ≤ K+

i, j, such that

0 < K−i, j|ξ |
2 ≤ Ki, jξ ·ξ =

N

∑
k,l=1

(Ki, j)klξkξl ≤ K+
i, j|ξ |

2, ∀ξ ∈ RN \{0}. (2.3)

System (2.1) is classically used for modeling the dispersal of m interacting species. Turning back to
the two examples given in Section 1, the system (2.1) also corresponds to the aquifer model presented on
page 2, the tensors Ki, j describing the permeability of the underground. On the other hand, the system
(2.1) could appear both more general and more simple than the SKT system that reads m = 2 and

∂tui−∇ ·
(
δi∇ui +ui(2αii∇ui +αi j∇u j)+αi ju j∇ui

)
= Qi(u), i = 1,2, j 6= i.

It appears more general –and actually it is– since we use tensors Ki, j instead of scalar parameters αi j.
It could appear simpler because of the loss of a nonlinearity, namely the one involving u j∇ui, j 6= i, in
(2.1). It is not the case. We emphasize first that the form chosen for (2.1) does not satisfy the assumption
(1.2) used for instance in [39, 40] (see the proof of (2.3) in [39] to be convinced). Furthermore, as already
mentioned in Section 1, we claim that (2.1) is the least cumbersome system containing all the difficulties
inherent to the analysis of a strongly coupled cross-diffusion and that our methodology may be applied
to more complex equations, provided that the assumptions are properly adapted.

Let us now introduce some elements for the functional setting used in the present paper. For the sake
of brevity we shall write H1(Ω) =W 1,2(Ω) and

V = H1
0 (Ω), V ′ = H−1(Ω), H = L2(Ω).

The embeddings V ⊂ H = H ′ ⊂V ′ are dense and compact. For any T > 0, let W (0,T ) denote the space

W (0,T ) :=
{

ω ∈ L2(0,T ;V ), ∂tω ∈ L2(0,T ;V ′)
}

endowed with the Hilbertian norm ‖ω‖2
W (0,T ) = ‖ω‖

2
L2(0,T ;V )

+ ‖∂tω‖2
L2(0,T ;V ′). The following embed-

dings are continuous (see [34] prop. 2.1 and thm 3.1, chapter 1)

W (0,T )⊂ C ([0,T ]; [V,V ′] 1
2
) = C ([0,T ];H)

while the embedding

W (0,T )⊂ L2(0,T ;H) (2.4)

is compact thanks to the classical Aubin-Lions’ compactness result (see e.g. [46]). The first auxiliary
result used in the sequel, by F. Mignot (see [21]), is the following.

Lemma 1. Let f : R→ R be a continuous nondecreasing function such that limsup|λ |→+∞ | f (λ )/λ | <
+∞. Let ω ∈ L2(0,T ;H) be such that ∂tω ∈ L2(0,T ;V ′) and f (ω) ∈ L2(0,T ;V ). Then

〈∂tω, f (ω)〉V ′,V =
d
dt

∫
Ω

(∫ ω(·,y)

0
f (r)dr

)
dy in D ′(0,T ).

The second auxiliary lemma is the basis of our proof for the uniqueness result for cross-diffusive
problems. It is a parabolic extension of the Meyers regularity theorem [36]. The aim is to obtain a
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precise estimate of a solution of a parabolic system in Xp = Lp(0,T ;W 1,p
0 (Ω)), p≥ 2, endowed with the

norm (∫ T

0
||v(t)||p

W 1,p
0 (Ω)

dt
)1/p

:= ||∇v||Lp(ΩT )N .

The proof may be recovered from the arguments in Chapter 2, Theorem 2.2 and Chapter 1, Section
4 of [6]. It is detailed in Appendix. The space Yp = Lp(0,T ;W−1,p(Ω)) is endowed with the norm
|| f ||Yp = infdivxg= f ||g||(Lp(ΩT ))N . Given F ∈ Yp, there is a unique solution u ∈ Xp of the following initial
boundary value problem

∂tu−∆u = F in ΩT , u = 0 on (0,T )×Γ, u(0,x) = 0 in Ω.

We set Λ−1 = ∂t −∆, so that u = Λ(F). Let g be defined by

g(p) := ||Λ||L (Yp;Xp).

It is well-known that g(2) = 1. Now, let A ∈ (L∞(Ω))N×N be such that there exists α > 0 satisfying

N

∑
i, j=1

Ai, j(x)ξiξ j ≥ α|ξ |2 for a.e. x ∈Ω and for all ξ ∈ RN .

We set β := max1≤i, j≤n ||Ai, j||L∞(Ω) and A u =−∑
N
i, j=1 ∂xi

(
Ai, j∂x j u

)
. We state the following Lemma (cf

[6] and Appendix).

Lemma 2. Let f ∈ L2(0,T ;V ′), u0 ∈ H and u ∈ L2(0,T ;V ) be the solution of

∂tu+A u = f in ΩT , u(0) = u0 in Ω. (2.5)

There exists r > 2, depending on α,β and Ω, such that if u0 ∈W 1,r
0 (Ω) and f ∈Yr, then u ∈ Xr. Further-

more, the following estimate holds true

||u||Xr ≤C(α,β ,r)(|| f ||Yr +βT 1/r||u0||W 1,r
0 (Ω)

), (2.6)

where the constant C(α,β ,r)> 0 depends on Ω, α , β and r (but not on T ) as follows:

C(α,β ,r)≤ g(r)
(1− k(r))(β + c)

, k(r) = g(r)(1−µ +ν) (2.7)

where µ = (α + c)/(β + c), ν = (β 2 + c2)1/2/(β + c) and c is any real number such that c > (β 2−
α2)/2α . If, moreover, A is symmetric, the estimate (2.7) holds true with µ = α/β and ν = c = 0.

Remark 1. According to (2.7)), the value of r depends on the characteristics (α,β ) of the elliptic oper-
ator A , roughly on the ellipticity rate α/β . Actually the real number r may be chosen in the range

2 < r ≤ sup{r0 ∈ R; k(r0)< 1}. (2.8)

Then, the smaller (1−µ +ν), the larger r. But, up to our knowledge, there is no estimate of g(r), r ≥ 2
except when r = 2, which makes the inequality (2.8) difficult to exploit. In the elliptical case, we can
however mention the optimal integrability exponent of the gradient field ropt = 2Z/(Z− 1), with Z =√

β/α when A is symmetric (cf the work of Astala, Leonetti and Nesi [4], [31], [38]). The critical
exponent ropt was already highlighted by a counterexample given by Meyers in his seminal paper [36].
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For comparison purposes, we give another regularity result. It is based on an additional hypothesis
for the coefficients in A which are assumed to be measurable in time and to have a small BMO (bounded
mean oscillation, see [24]) semi-norm in space. It is an interesting setting since discontinuous coeffi-
cients remain allowed. For any R > 0, define the quantity A#

R by

A#
R = sup

(t,x)∈ΩT

sup
η<R

oscx
(
A,(t, t +η

2)×Bη(x)
)
,

oscx
(
A,(t, t +η

2)×Bη(x)
)
= η

−2|Bη(x)|−2
∫ t+η2

t

∫
y,z∈Bη (x)

∣∣A(s,y)−A(s,z)|dydzds

where Bη(x) is the ball of radius η centered in x. The following result may be obtained from Theorem
2.2 by Dong and Kim in [19] and using local maps for recovering Ω.

Lemma 3. Let u0 ∈ W 1,r
0 (Ω), f ∈ Lr(0,T ;W−1,r(Ω)) and u ∈ L2(0,T ;V ) be the solution of (2.5).

Assume further that the coefficients of A satisfy a small BMO property, namely: there exists some
Ā# = Ā#(α,β ,r) > 0 such that if A#

R0
≤ Ā# for some R0 ∈ (0,1], then u ∈ Lr(0,T ;W 1,r

0 (Ω)) and the
estimate (2.6) holds true, but with a constant in the form CBMO(α,β ,r,T ).

Unlike Lemma 2, the quality of the results obtained by Lemma 3 does not depend on any smallness
assumption on the coefficients of A. Note however that the constant CBMO(α,β ,r,T ) depends on T . This
constant may be estimated using especially the computations in [29]1. More precisely, a careful reading
shows that it actually depends exponentially on T and that it increases with β/α . It should also be noted
that Meyers’ counter-example referred to in Note 2 is constructed with an operator whose coefficients do
not test the small BMO hypothesis.

Remark 2. All the results of the present paper are derived for systems completed by Dirichlet type
boundary conditions. Lemma 2 is actually proven in the appendix using the arguments in [6], thus the
Dirichlet boundary conditions for ensuring that the norm ‖ ·‖W 1,p

0
= ‖∇(·)‖(Lp)N is actually equivalent to

the norm in W 1,p. The extensions of our results to Dirichlet boundary conditions holding solely on a non
negligible part of the boundary, Γ1 ⊂ Γ, |Γ1| 6= 0, is thus straightforward.

Notice however that all the results may also be extended to settings with Neumann boundary condi-
tions. Indeed, using the smoothness of Γ and local maps, we can construct (by reflexion) an extension
outside Ω̄ of the solution u ∈ L2(0,T ;H1(Ω)) of

∂tu+A u = f in ΩT , u(0) = u0 in Ω, ∂Au = 0 in (0,T )×Γ,

and recover locally, especially in Ω, the results of Lemma 2. The extension of Lemma 3 to mixed boundary
conditions is contained in [19]. Yet, if, for instance, the boundary condition on Γ is of Neumann’s type,
some estimates in the remaining of the paper require the use of the Gronwall lemma. Without further
assumptions on the source terms and boundary conditions, we would thus be limited to local in time
results.

3. MAIN RESULTS: GLOBAL IN TIME EXISTENCE, UNIQUENESS, MAXIMUM PRINCIPLE

We aim at giving an existence result of physically admissible weak solutions for the cross-diffusive
model (2.1) completed by initial and boundary conditions. The mathematical analysis thus should pro-
vide at least three kinds of result. The first point is of course to state an existence result of weak solution.

1Nevertheless looking for an anlytical expression of this constant seems unreachable.
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Next an uniqueness result should comfort us regarding its physical meaning. The third type of result,
induced by another physical concern, is the admissible range of values for the solution (bear in mind the
examples of chemical models or the ones modeling populations dynamics). The mathematical version of
this later point is the statement of a realistic maximum principle.

The present paper is organized by the latter three questionings.

3.1. Existence result of a weak solution. The obvious difficulty for the mathematical analysis of cross-
diffusion systems is the coupling of the equations by the gradient of their solution. In the particular case
of systems in the form (2.1) considered here, an additional and substantial difficulty is due to the fact
that the cross-diffusive terms are nonlinear. Since we expect to finally exhibit bounded solutions (see the
last section on the maximum principle below), we first introduce an artificial bound on a part of these
nonlinear terms. More precisely, for ` > 0, we set

T`(u) = max
{

0,min{u, `}
}
.

We then consider the following problem: for i = 1, ...,m,

∂tui−∇ ·
(
δi ∇ui + T`(ui)

m

∑
j=1

Ki, j∇u j
)
= Qi(u) in ΩT , (3.1)

ui = ui,D in (0,T )×Γ, ui(0,x) = u0
i (x) in Ω. (3.2)

The initial and boundary conditions are supposed to satisfy the compatibility conditions

u0
i (x) = ui,D(0,x), x ∈ Γ, 1≤ i≤ m, (3.3)

when the traces u0
i |Γ and ui,D(0, .) are meaningful. We assume that there exists a lifting of each bound-

ary function ui,D, still denoted the same for convenience, belonging to the space L2(0,T ;H1(Ω))∩
H1(0,T ;(H1(Ω))′). Due to the smoothness of Γ, such a result is ensured if ui,D ∈ L2(0,T ;H1/2(Γ))∩
H1(0,T ;H−1/2(Γ))) (see [33]). The initial data u0

i are assumed to be in H, the source terms Qi(v) to be
in L2(ΩT ) for any v ∈ (W (0,T ))m, 1≤ i≤ m. For the sake of simplicity, we set m = 2.

The following existence result holds true.

Theorem 1. Assume that the tensor K satisfies:

(K+
1,2)

2

K−1,1
<

4δ2

`
,
(K+

2,1)
2

K−2,2
<

4δ1

`
. (3.4)

Assume that Qi ∈ L2(0,T ;(H1(Ω)′). Then for any T > 0, the problem (3.1)–(3.2) admits a weak solution
(ui)i=1,2 ∈ (W (0,T ))2. Furthermore, if almost everywhere in ΩT , 0≤ u0

i , 0≤ ui,D and Qi(v)≥ 0 if vi≤ 0,
the following relation holds true

0≤ ui(t,x) for a.e. x ∈Ω, for all t ∈ (0,T ), i = 1,2.

Remark 3. Notice that, thanks to the nonnegativeness result proved for ui, i = 1,2, Theorem 1 actually
gives an existence result for (3.1)–(3.2) where T` only truncates the large values of ui, that is T`(u) = u
for u≤ ` and T`(u) = ` for u≥ `.
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Remark 4. The assumption (3.4) may be viewed as a limitation of the ratio between Ki,i and Ki, j, j 6= i,
i = 1,2, which strongly depends on `. In the last section, we will prove that

0≤ ui(t,x)≤ ` for a.e. x ∈Ω, for all t ∈ (0,T )

if 0 ≤ u0
i ,ui,D ≤ ` a.e. in ΩT , by introducing “sufficiently pumping” source terms to enforce the bound-

edness of the solution. Such a maximum principle gives a physical meaning to the parameter `. (Since
the function Tl can be removed from (3.1), we notice also that Theorem 1 gives the existence of a weak
solution to the original problem (2.1).) Otherwise, this parameter could appear artificial and, because
we study a global in time solution, it should be expected to tend to ∞, leading to a meaningless assump-
tion (3.4), unless there are no cross-diffusive terms. Another interpretation of (3.4) when no maximum
principle can be proved for ui, i = 1 or 2, is that we recover with Theorem 1 a local in time existence
result for the original problem (2.1).

Remark 5. The interested reader will check that the proof of Theorem 1 developed below may be easily
adapted for extending the existence result to cross-diffusive systems in the form

∂tui−∇ ·
(
δi ∇ui +

m

∑
j=1

Ti j(u1,u2)Ki, j∇u j
)
= Qi in ΩT ,

ui = ui,D in (0,T )×Γ, ui(0,x) = u0
i (x) in Ω,

where Ti j(u) are continuous and bounded functions, provided that slight modifications (depending on the
Ti j’s) are made on Assumption (4.24).

3.2. Uniqueness result. As already mentioned in the introduction, proving a uniqueness result for a
cross-diffusive system is always a tricky problem. Here we choose to found our results on an additional
regularity result. Let us emphasize once again that it does not consist in reducing the analysis to the
framework of smooth or mild solutions. We rather prove a Meyer’s type property allowing to upgrade
the regularity of any solution of the cross-diffusive problem from L2(H1) to Lr(W 1,r), for some r > 2.
We expose this result in the following proposition, which we believe to be of self-interest.

First we introduce some notations for turning back to the setting of Lemma 2. In the particular case of
System (3.1), the tensor A appearing in Lemma 2 reads Ai = (δi +Ki,iTl(ūi))Id, for i = 1 or i = 2. With
the notations of Lemma 2, A is characterized by the quantities αi = δi and βi = δi + `K+

i,i for i = 1,2.
Let ci = 0 if Ki,i is symmetric and ci > (β 2

i −α2
i )/2αi if not. Set

µi =
αi + ci

βi + ci
=

δi + ci

δi + `K+
i,i + ci

, νi
2 =

β 2
i + c2

i

(βi + ci)2 =
(δi + `K+

i,i)
2 + c2

i

(δi + `K+
i,i + ci)2 , (3.5)

with νi ≥ 0. In accordance with (2.8), we are going to deal with the greatest real number r such that

ki(r) = g(r)(1−µi +νi)< 1 for i = 1,2. (3.6)

One easily checks that ci 7→ 1− µi + νi is a decreasing function. It is thus sufficient to define r =
r(`,δ1,δ2,K+

1,1,K
+
2,2) by

2 < r < sup{r0 > 2; k∗i (r0) = g(r0)(1−µ
∗
i +ν

∗
i )< 1 for i = 1,2}, (3.7)
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where

µ
∗
i =


αi

βi
if Ki,i is a symmetric tensor,

αi +(β 2
i −α2

i )/2αi

βi +(β 2
i −α2

i )/2αi
if not;

(3.8)

ν
∗
i =


0 if Ki,i is a symmetric tensor,

ν∗i ≥ 0, ν
∗
i

2 =
β 2

i +(β 2
i −α2

i )
2/4α2

i

(βi +(β 2
i −α2

i )/2αi)2 if not. (3.9)

Then the following result holds.

Proposition 1. Let (u1,u2) be a solution of Problem (3.1)–(3.2) and let r be a real number satisfying
(3.7). Assume that Qi ∈ Lr(0,T ;W−1,r(Ω)), i = 1,2, and that (`,δ1,δ2) and the tensor K satisfy

K+
i, j <

1
g(r)`

(
1−g(r)(1−µ

∗
i +ν

∗
i )
)
(β ∗i + c∗i ), i = 1,2, i 6= j, (3.10)

and that (u0
1,u

0
2) ∈ (W 1,r(Ω))2. Then ∇u1 and ∇u2 belong to (Lr(ΩT ))

N and are bounded as follows:

||∇ui||(Lr(ΩT ))N ≤Cr,i(`,δ1,δ2,K,‖Qi‖Lr(W−1,r),T
1/r‖(u0

1,u
0
2)‖W 1,r(Ω)). (3.11)

Remark 6. The characterization (3.7) of r and the assumption (3.10) both depend on the function g
which is the norm of the inverse of the Heat operator, g(p) = ||Λ||

L (Lp(W−1,p);Lp(W 1,p
0 ))

and which could
appear hard to compute explicitely. We actually have g(r)≥ 1 (see the end of the Appendix). Thus (3.7)
and (3.10) require in particular

1−µ
∗
i +ν

∗
i < 1 and K+

i, j <
1
`

(
µ
∗
i −ν

∗
i )
)
(β ∗i + c∗i ).

One checks with some computations that the first condition is always satisfied. The second one illustrates
how restrictive are (3.7) and (3.10). The explicit form of the bound (3.11) is given in (5.2).

For comparison, we claim and prove the following.

Proposition 2. Let (u1,u2) be a solution of Problem (3.1)–(3.2). Assume N = 2, (u0
1,u

0
2) ∈ (W 1,r(Ω))2

and that K satisfies the small BMO hypothesis described in Lemma 3. Assume further that K is such that

CBMO(αi,βi,r,T )`K+
i,−i < 1, (3.12)

where we use the notation (i,−i) = (i, j) with j 6= i. Then the conclusion of Proposition 1 still hods true,
but with Cr,i in (3.11) depending moreover on CBMO(αi,βi,r,T ).

Note that even if Lemma 3 does not require a smallness assumption for ensuring the invertibility of the
linear parabolic operator, handling with the cross-diffusive system reintroduce such a condition, namely
(3.12), which is very restrictive for large times due to the exponential dependence of CBMO on T .

The important point is that a precise characterization of the regularity parameter r with regard to
the data of the problem is given in (3.7). More precisely, it only depends on the coefficients of the
operators and on their L∞ norms. Conversely, one may attempt to sufficiently restrict the range of these
data for reaching a given regularity parameter r. The smaller 1− µ∗i + ν∗i , i = 1,2, the bigger r. We
use this process in the two-dimensional case for proving that the cross-diffusive problem (3.1)-(3.2) is
well-posed. Indeed, if N = 2, there exists a version of the Gagliardo–Nirenberg inequality allowing the



WELL POSEDNESS OF GENERAL CROSS-DIFFUSION SYSTEMS 11

control of the L4 norm by the L2 and H1
0 norms. It appears that this inequality is sufficient for proving

the uniqueness result, provided we reach the value r = 4. We thus assume that

g(4)(1−µ
∗
i +ν

∗
i )< 1, i = 1,2. (3.13)

To set the ideas on a simple example, notice that if the tensors Ki,i, i = 1,2, are symmetric, then 1−µ∗i +
ν∗i = `K+

i,i/(δi+`K+
i,i) and the latter assumption reduces to `(g(4)−1)K+

i,i < δi, i = 1,2. We are now in a
position to establish the following uniqueness result, which asserts that our problem is well-posed in the
space W (0,T ).

Theorem 2. Set N = 2. Assume that the tensor K satisfy (3.10) for r = 4, (u0
1,u

0
2) ∈ (W 1,4(Ω))2 and

(3.13). Assume2 that the source terms Qi in (3.1) belong to L∞((0,T )×Ω) and set q+,i = ‖Qi‖∞/(δi +
`K+

i,i), i = 1,2. Assume

(K+
1,2)

2

K−1,1
<

3δ2

`
and

(K+
2,1)

2

K−2,2
<

3δ1

`
, (3.14)

c1/4
4,i =

g(4)(δi + `K+
i,i)(

(1−g(4)(1−µ∗i +ν∗i ))(βi + c∗i )−g(4)`K+
i,−i

) < 1
2
, i = 1,2. (3.15)

Then the solution (u1,u2) of Problem (3.1)-(3.2) is unique in the space
(
W (0,T )∩L4(0,T,W 1,4(Ω))

)2

for any T > 0.

Remark 7. Notice also that choosing r > N +2 in Proposition 1 ensures that (u1,u2) is Hölder contin-
uous. Here, with N = 2 and r = 4, we choose not to reach this regularity.

Remark 8. The result based on a small BMO assumption (see Proposition 2) reads as follows: still
assuming N = 2 and that the tensor K satisfies (3.14), assuming further that K satisfies the assumptions
of Proposition 2 for r = 4, there exists a real number Cbmo,i depending on αi, βi, K+

i,i , u0
i , Qi, i = 1,2, `

and Ω, such that if
Cbmo,i

1−CBMO(αi,βi,4,T )`K+
i,−i

< 1, i = 1,2,

then the solution (u1,u2) of Problem (3.1)-(3.2) is unique in (W (0,T ))2. The quality of this result is
comparable to that of the theorem but it should be noted that the criterion of smallness is much less
explicit.

3.3. Maximum principle. The obvious difference between our original system (2.1) and the one con-
sidered in Theorems 1 and 2 is the truncation defined by the function T`. The uniqueness result in
Theorem 2 gives for instance sense to numerical investigations but it remains frustrating. For turning
back to the original problem, the first tentation is of course to let `→ ∞. Unfortunately, such an attempt
is useless due the assumption (3.4). This point is not surprising if we carefully look at the structure of
(1.1): if the coefficient u j of the cross-diffusion term is unbounded, there is no other term in (1.1) for
controlling its explosion in order to state uniform estimates with regard to `. The setting of System (1.1)
is thus very different from the one of the SKT system (notice that the terms u j∇ui ·∇ui and u j∇u j ·∇u j

2This hypothesis may be alleviated by simply assuming that Qi ∈ L4(0,T ;W−1,4(Ω)). We have made this choice to make
the condition (3.15) simpler to write.
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may be used with the Cauchy-Schwarz and Young inequalities for containing the term u j∇u j ·∇ui when
deriving a priori estimates for the SKT system) and there is no hope to get similar results as the ones
derived for instance in [39].

Here, for stating a complete maximum principle for (1.1), we have to make additional assumptions.
A classical approach consists, once again, in making restrictions on the algebraic structure of the

equation. These models are often called volume-filling models because of their physical derivation (see
[25]). For instance, in the context of population dynamics, volume limitations lead to a limitation of
the population densities. Another classical example appears in chemistry modeling since the sum of
the concentrations shall not go above 1. With our notations, it means that there exists ` > 0 such that
u1 +u2 ≤ `. Together with the non-negativity of the solutions, this result induces the boundedness of u1
and u2. Subsection 6.1 is further devoted to the maximum principle in volume-filling systems: System
(2.1) with Ki, j = K for all i, j appears actually to behave like a volume-filling system.

Nevertheless, we prefer avoiding such structural assumption. The common sense then suggests us-
ing sufficiently large “pumping” source terms in order to control the upper bound of the solution. We
question this idea in Proposition 3 below.

Proposition 3. Assume the assumptions in Theorem 1 fulfilled. Assume 0 ≤ u0
i ≤ ` a.e. in Ω and

0≤ ui,D ≤ ` a.e. in (0,T )×Γ. There exists source terms Qi ∈ L2(0,T ;(H1(Ω)′)), i = 1,2, such that the
system (2.1) completed by the initial and boundary conditions (3.2) admits a weak global solution such
that, for any T > 0, (ui−ui,D)i=1,2 ∈W (0,T )2 and the following maximum principle holds true:

0≤ ui(t,x)≤ ` for a.e. x ∈Ω, for all t ∈ (0,T ) and for all i = 1,2.

We straightforward infer from the latter proposition the following result which sums up all the results
of the paper.

Theorem 3. Assume the assumptions in Theorem 2 to be fulfilled. Assume 0 ≤ u0
i ≤ ` a.e. in Ω and

0 ≤ ui,D ≤ ` a.e. in (0,T )×Γ. There exist source terms Qi ∈ L2(0,T ;(H1(Ω)′)), i = 1,2, such that
the system (2.1) completed by the initial and boundary conditions (3.2) admits a unique bounded weak
global solution.

Remark 9. The source term exhibited in the proof of Proposition 3 is more precisely in the form Qi =
χ{ui≥`}∇ ·Qi + qi(u) with Qi ∈ (L2(ΩT ))

N and qi(v) in L2(ΩT ) for any v ∈ (W (0,T ))2, qi(v) ≥ 0 if
vi ≤ 0, qi(v)≤ 0 if vi ≥ `.

Remark 10. Some elements for the physical interpretation of the penalization process used in the proof
of Proposition 2 are provided in Subsection 6.4.

Remark 11. The analogous of Theorem 3 may be proven under the assumptions leading to the enhanced
regularity of Proposition 1. In this case, we claim the existence of a source term Qi ∈ Lr(0,T ;W−1,r(Ω))
ensuring the maximum principle. Hence, for short, we have proved that, if the diffusive operator in
(2.1) is close enough to the Laplacian operator (see the Meyer’s type criterion), if the cross-diffusive
operator in (2.1) is sufficiently small with regard to the diffusive one (see the existence result), then, for
well-prepared data (see the regularity of the initial data and the choice of the source term ensuring that
the solution is bounded by a real number satisfying (3.15)), the problem (2.1), (3.2) is well-posed.

The following sections are devoted to the proof of the three main results in this paper (namely Theo-
rems 1, 2, and 3), regarding respectively the global existence in time, the uniqueness and the maximum’s
principle.
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4. PROOF OF THEOREM 1

For the sake of simplicity, we assume that Qi = 0, ui,D = 0, i = 1,2. Nevertheless, we emphasize that
Theorem 1 is both valid for non homogeneous Dirichlet boundary conditions and for non null source
terms. We refer to [17] for more details about. The proof is divided in two steps: proving the existence
of a weak solution of (3.1)–(3.2); proving the non-negativity of any weak solution of (3.1)–(3.2).

STEP 1. EXISTENCE OF A WEAK SOLUTION

We aim at finding a weak solution (u1,u2) ∈ (W (0,T ))2 of (3.1)–(3.2) in the following sense: for any
w ∈ L2(0,T ;V ),∫ T

0
〈∂tu1,w〉V ′,V dt +

∫
ΩT

(δ1 +K1,1T`(u1))∇u1 ·∇wdxdt +
∫

ΩT

K1,2T`(u1)∇u2 ·∇wdxdt = 0, (4.1)∫ T

0
〈∂tu2,w〉V ′,V dt +

∫
ΩT

(δ2 +K2,2T`(u2))∇u2 ·∇wdxdt +
∫

ΩT

K2,1T`(u2)∇u1 ·∇wdxdt = 0. (4.2)

In view of the nonlinearity of the problem, we adopt a fixed point strategy.

Definition of the map F = (F1,F2)

We define an application F : (L2(0,T ;H1(Ω)))2→ (L2(0,T ;V ))2 by

F (ū1, ū2) =
(
F1(ū1, ū2),F2(ū1, ū2)

)
= (u1,u2), (4.3)

where (u1,u2) is the unique solution of the following initial boundary value problem

∂tu1−∇ ·
(
(δ1 +T`(ū1)K1,1)∇u1 +T`(ū1)K1,2∇ū2

)
= 0 in ΩT , (4.4)

∂tu2−∇ ·
(
(δ2 +T`(ū2)K2,2)∇u2 +T`(ū2)K2,1∇ū1

)
= 0 in ΩT , (4.5)

(u1,u2) = (0,0) in (0,T )×Γ, (4.6)

(u1(0,x),u2(0,x)) = (u0
1(x),u

0
2(x)) x ∈Ω. (4.7)

Notice that (4.4)-(4.7) can be solved by considering first (4.4) and (4.6)-(4.7) for i = 1 (thus a linear
system in u1) and next (4.5) and (4.6)-(4.7) for i = 2 (a linear system in u2). The existence of a unique
weak solution (u1,u2) ∈ (L2(0,T ;V ))2 for the parabolic problem with bounded coefficients (4.4)-(4.7) is
thus obvious. It satisfies, for all w ∈ L2(0,T ;V ),∫ T

0
〈∂tu1,w〉V ′,V dt +

∫
ΩT

(
(δ1 +K1,1T`(ū1))∇u1 +K1,2T`(ū1)∇ū2

)
·∇wdxdt = 0, (4.8)∫ T

0
〈∂tu2,w〉V ′,V dt +

∫
ΩT

((δ2 +K2,2T`(ū2))∇u2 +K2,1T`(ū2)∇ū1) ·∇wdxdt = 0. (4.9)

We now collect the properties allowing the use of the Schauder’s fixed point theorem for F in some
appropriate subset of (L2(0,T ;H))2.

Sequential continuity of F1 in (L2(0,T ;H))2 when F is restricted to any bounded subset of
(L2(0,T ;H1(Ω)))2

Pick a real number M > 0, that we will precise later on, and assume that F is restricted to the set
{u ∈ (L2(0,T ;H1(Ω)))2 ; ‖u‖(L2(0,T ;H1(Ω)))2 ≤M}. For proving the sequential continuity of F1, assume
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given a sequence (ū1,n, ū2,n) in this set and (ū1, ū2) ∈ (L2(0,T ;H))2 such that

(ū1,n, ū2,n)→ (ū1, ū2) in (L2(0,T ;H))2.

Since (ū1,n, ū2,n) is uniformly bounded (by M) in (L2(0,T ;H1(Ω)))2, there exists an increasing func-
tion ϕ in N, and a subsequence (ū1,ϕ(n), ū2,ϕ(n)) weakly converging in (L2(0,T ;H1(Ω)))2. Due to the
uniqueness of the limit we thus have

(ū1,ϕ(n), ū2,ϕ(n))⇀ (ū1, ū2) weakly in (L2(0,T ;H1(Ω)))2,

(ū1,ϕ(n), ū2,ϕ(n))→ (ū1, ū2) in (L2(0,T ;H))2 and a.e. in ΩT

and, since ‖∇ūi‖L2(0,T ;H) ≤ liminf‖∇ūi,ϕ(n)‖L2(0,T ;H),

||∇ūi||(L2(0,T ;H))N ≤M, i = 1,2, (4.10)

Setting
u1,n = F1(ū1,n, ū2,n), u1 = F1(ū1, ū2),

we now aim at showing that u1,n⇀u1 weakly in W (0,T ) and thus strongly in L2(0,T ;H) thanks to a
classical result of Aubin.

We begin by some uniform estimates for proving that a subsequence of u1,n is actually converging.
For any n ∈ N, u1,n satisfies (4.8). Pick any τ ∈ [0,T ] and choose w = u1,nχ(0,τ) in (4.8), χ(0,τ) denoting
the characteristic function of (0,τ)⊂ (0,T ). We obtain∫

τ

0
〈∂tu1,n,u1,n〉V ′,V dt +

∫
Ωτ

(δ1 +K1,1T`(ū1,n))∇u1,n ·∇u1,n dxdt

+
∫

Ωτ

K1,2T`(ū1,n)∇ū2,n ·∇u1,n dxdt = 0. (4.11)

Since u1,n belongs to W (0,T ), hence to C ([0,T ];L2(Ω)), we use Lemma 1 and write∫
τ

0
〈∂tu1,n,u1,n〉V ′,V dt =

1
2
||u1,n(·,τ)||2H −

1
2
||u0

1||2H .

On the other hand, we have∫
Ωτ

(
δ1 +K1,1T`(ū1,n)

)
∇u1,n ·∇u1,n dxdt ≥ δ1||∇u1,n||2L2(0,τ;H)

and, using the Cauchy-Schwarz and Young inequalities, for any η1 > 0∣∣∣∫
Ωτ

K1,2T`(ū1,n)∇ūn
2 ·∇u1,n dxdt

∣∣∣≤MK+
1,2`||∇u1,n||L2(0,τ;H) ≤

K+
1,2

2M2

4η1
`2 +η1||∇u1,n||2L2(0,τ;H).

Using the latter estimates in (4.11), we obtain, for all τ ∈ [0,T ]

1
2
||u1,n(·,τ)||2H +(δ1−η1)||∇u1,n||2L2(0,τ;H) ≤

K+
1,2

2M2

4η1
`2 +

1
2
||u1,0||2H . (4.12)

We choose η1 such that δ1−η1 ≥ η0 for some η0 > 0. We infer from (4.12) that the sequence (u1,n)n is
uniformly bounded in L∞(0,T ;H)∩L2(0,T ;V ): there exist real numbers AM = AM(δ ,K,u1,0, `,M) and
BM = BM(δ ,K,u1,0, `,M) such that

||u1,n||L∞(0,T ;H) ≤ AM, ||u1,n||L2(0,T ;V ) ≤ BM. (4.13)
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We now prove that (u1,n)n is also bounded in H1(0,T ;V ′). Using the operational norm for L2(0,T ;V ′)
viewed as the dual space of L2(0,T ;V ), we write

||∂tu1,n||L2(0,T ;V ′) = sup
||w||L2(0,T ;V )≤1

∣∣∣∫ T

0
〈∂tu1,n,w〉V ′,V dt

∣∣∣
= sup
||w||L2(0,T ;V )≤1

∣∣∣−∫
ΩT

(
δ1 +K1,1T`(ū1,n)

)
∇u1,n ·∇wdxdt−

∫
ΩT

K1,2T`(ū1,n)∇ū2,n ·∇wdxdt
∣∣∣.

Since ∣∣∣∫
ΩT

(
δ1 +K1,1T`(ū1,n)

)
∇u1,n ·∇w

∣∣∣≤ (δ1 +K+
1,1`
)
||u1,n||L2(0,T ;V )||w||L2(0,T ;V ),

and since u1,n is uniformly bounded in L2(0,T ;V ), we have∣∣∣∫
ΩT

(
δ1 +K1,1T`(ū1,n)

)
∇u1,n ·∇wdxdt

∣∣∣≤ (δ1 +K+
1,1`
)
BM||w||L2(0,T ;V ). (4.14)

Furthermore, ∣∣∣∫
ΩT

K1,2T`(ū1,n)∇ū2,n ·∇wdxdt
∣∣∣≤ K+

1,2M`||w||L2(0,T ;V ). (4.15)

Gathering together (4.14) and (4.15), we conclude that

||∂tu1,n||L2(0,T ;V ′) ≤CM, CM := δ1BM + `(max
j=1,2

K+
1, j)(BM +M). (4.16)

With (4.13) and (4.16), we have proved that the sequence (u1,n)n is uniformly bounded in the space
W (0,T ). Using Aubin-Lions’ lemma, we extract a subsequence (u1,ψ(n))n from (u1,ϕ(n))n, converging
strongly in L2(ΩT ), almost everywhere in ΩT and weakly in W (0,T ) to some limit denoted by v1. From
the convergence stated a.e. in ΩT for (ū1,ψ(n))n ⊂ (ū1,ϕ(n))n, we see that for all w ∈ L2(0,T ;H1(Ω)),
T`(ū1,ψ(n))∇w→ T`(ū1)∇w strongly in L2(ΩT ) by dominated convergence. We thus check that v1 solves
(4.4) and (4.6)-(4.7). Due to the uniqueness of the solution of this problem, we conclude first that
v = u1, next that the whole sequence u1,ϕ(n)⇀u1 weakly in W (0,T ) and strongly in L2(0,T ;H). Re-
iterating the process for any subsequence (ū1,ϕ(n), ū2,ϕ(n))n extracted from (ū1,n, ū2,n)n and using once
again the uniqueness of the solution of (4.4) and (4.6)-(4.7), we conclude that the whole sequence
u1,n = F1(ū1,n, ū2,n) converges to u1 = F1(ū1, ū2) in L2(0,T ;H). The sequential continuity of F1 in
(L2(0,T ;H))2 is established.

Sequential continuity of F2 in (L2(0,T ;H))2 when F is restricted to any bounded subset of
(L2(0,T ;H1(Ω)))2

Likewise, we study the sequential continuity of F2 by setting u2,n =F2(ū1,n, ū2,n), u2 =F2(ū1, ū2), and
showing that u2,n→ u2 in L2(0,T ;H). The key estimates

||u2,n||L∞(0,T ;H) ≤ DM = DM(δ2,K,u2,0, `,M), (4.17)

||u2,n||L2(0,T ;V ) ≤ EM = EM(δ2,K,u2,0, `,M) (4.18)

||∂tu2,n||L2(0,T ;V ′) ≤ FM, FM := δ2EM + `(max
j=1,2

K+
2, j)(EM +M) (4.19)

are obtained using the same type of arguments than those in the proof of the sequential continuity of F1,
and the details are thus omitted.
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Existence of C ⊂ (L2(0,T ;H1(Ω))2 such that F (C )⊂ C

For using the Schauder’s fixed point theorem in (L2(0,T ;H))2, we have to look for a nonempty bounded
closed convex set of (L2(0,T ;H))2, denoted by C , such that F (C ) ⊂ C . We actually are going to
construct C as a bounded subset of (L2(0,T ;H1(Ω))2 so that the result F (C )⊂ C will imply in partic-
ular that there exists a real number M > 0, depending on initial data, such that any (u1,u2) = F (ū1, ū2)
satisfies

||∇u1||L2(0,T ;H) ≤M and ||∇u2||L2(0,T ;H) ≤M. (4.20)

Hence the former results will apply and F will be sequentially continuous in C .
Taking w = u1 ∈ L2(0,T ;V ) (resp. w = u2 ∈ L2(0,T ;V )) in (4.4) (resp. (4.5)) leads to∫ T

0
〈∂tu1,u1〉V ′,V dt +

∫
ΩT

(δ1 +K1,1T`(ū1))∇u1 ·∇u1 dxdt

+
∫

ΩT

K1,2T`(ū1)∇ū2 ·∇u1 dxdt = 0, (4.21)∫ T

0
〈∂tu2,u2〉V ′,V dt +

∫
ΩT

(δ2 +K2,2T`(ū2))∇u2 ·∇u2 dxdt

+
∫

ΩT

K2,1T`(ū2)∇ū1 ·∇u2 dxdt = 0. (4.22)

Applying Lemma 1 to the function f =Id, summing up the equations (4.21) and (4.22) and using the
elliptic properties of the tensor K, we obtain

1
2

∫
Ω

u1(T,x)2 dx+
1
2

∫
Ω

u2(T,x)2 dx− 1
2

∫
Ω

u1(0,x)2 dx− 1
2

∫
Ω

u2(0,x)2 dx

+
∫

ΩT

(δ1 +K−1,1T`(ū1))|∇u1|2 dxdt +
∫

ΩT

(δ2 +K−2,2T`(ū2))|∇u2|2 dxdt

+
∫

ΩT

K1,2T`(ū1)∇ū2 ·∇u1 dxdt︸ ︷︷ ︸
(1)

+
∫

ΩT

K2,1T`(ū2)∇ū1 ·∇u2 dxdt︸ ︷︷ ︸
(2)

= 0 (4.23)

where

|(1)| ≤
∫

ΩT

K−1,1T`(ū1)|∇u1|2 dxdt +
`K+

1,2
2

4K−1,1

∫
ΩT

|∇ū2|2 dxdt,

|(2)| ≤
∫

ΩT

K−2,2T`(ū2)|∇u2|2 dxdt +
`K+

2,1
2

4K−2,2

∫
ΩT

|∇ū1|2 dxdt.

Assuming that (3.4) holds true, there exists p≥ 2 such that

(K+
1,2)

2

K−1,1
≤ p−1

p
× 4δ2

`
,
(K+

2,1)
2

K−2,2
≤ p−1

p
× 4δ1

`
. (4.24)

Denoting by C0 the real number such that

C0 =
p
2

∫
Ω

u0
1(x)

2 dx+
p
2

∫
Ω

u0
2(x)

2 dx, (4.25)
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we infer from (4.23) with (4.24) that

δ1‖∇u1‖2
(L2(ΩT ))N +δ2‖∇u2‖2

(L2(ΩT ))N ≤C0, (4.26)

as soon as δ1‖∇ū1‖2
(L2(ΩT ))N +δ2‖∇ū2‖2

(L2(ΩT ))N ≤C0. Notice that (4.26) yields ‖∇ui‖(L2(ΩT ))N ≤
√

C0/δi,
i = 1,2, and ∑i ‖ui‖2

L∞(L2)
≤ 2C0. We thus define the subset C of (L2(0,T ;H))2 by

C := {(u1,u2) ∈ (L2(0,T ;V ))2; (u1(0, .),u2(0, .)) = (u0
1(.),u

0
2(.)),

δ1‖∇u1‖2
(L2(ΩT ))N +δ2‖∇u2‖2

(L2(ΩT ))N ≤C0,

‖∂tu1‖L2(0,T,V ′) ≤CM, ‖∂tu2‖L2(0,T,V ′) ≤ FM} (4.27)

where C0 is defined by (4.24)-(4.25), M = max(
√

C0/δ1,
√

C0/δ2) and CM and FM are defined by (4.16)
and (4.19).

Schauder’s fixed point result
The set C is obviously a convex and bounded (thanks to Poincaré’s inequality) subset of (L2(0,T ;H))2.
It has been constructed so that F (C ) ⊂ C . Since C is also a bounded subset of (L2(0,T ;H1(Ω))2, we
proved that F restricted to C is sequentially continuous in (L2(0,T ;H))2. The sequential compactness
of Fi(C ) in L2(0,T ;H) (i = 1,2) is straightforward due to the Aubin-Lions’ lemma. Since we work in
metric spaces, the compactness of F (C ) in (L2(0,T ;H))2 follows.

For using the Schauder’s fixed point theorem, it remains to show that the set C is strongly closed in
(L2(0,T ;H))2. Consider a sequence (un

1,u
n
2)n in C 2 and a couple of functions (u1,u2) ∈ (L2(0,T ;H))2

such that

(un
1,u

n
2)→ (u1,u2) in (L2(0,T ;H))2.

Let us check that (u1,u2) ∈ C 2. Due to the definition of C , the sequence
(
un

1,u
n
2

)
n is uniformly bounded

in the space (W (0,T ))2. Thus, we assert that there exists (u1,u2) ∈ (W (0,T ))2 such that, up to a subse-
quence denoted by (unk

1 ,unk
2 )k, the following convergence holds true:

(unk
1 ,unk

2 )⇀(u1,u2) weakly in (W (0,T ))2.

Because of the uniqueness of the limit in (L2(0,T ;H))2, (u1,u2) = (u1,u2) and, furthermore, we have
‖∇ui‖2

(L2(ΩT ))N ≤ liminfk→∞ ‖∇unk
i ‖2

(L2(ΩT ))N and ‖∂tui‖L2(0,T,V ′) ≤ liminfk→∞ ‖∂tu
nk
i ‖L2(0,T,V ′), meaning

(u1,u2) ∈ C 2. The closeness of C is proved.
We now have the tools for using the Schauder’s fixed point theorem [49, Corollary 9.7]. There exists

(u1,u2) ∈ C 2 such that F (u1,u2) = (u1,u2). Then (u1,u2) is a weak solution of problem (4.1)–(4.2).

STEP 2. NON NEGATIVITY OF THE SOLUTIONS.

Let us solely prove that 0 ≤ u1(t,x) for all t ∈ (0,T ) and for almost every x ∈ Ω. Showing the non-
negativity of u2 follows the same lines. For the sake of completeness, we reuse the source term Q1(u)
in (4.1). Let um = sup(0,−u1). The function um belongs to L2(0,T ;V ), since u1,D is nonnegative, and
is such that ∇um =−χ{u1<0}∇u1 (see [5] Lemma 2.1; χA denotes the characteristic function of a set A).
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We assume that the function Q1 is such that Q1(u)um ≥ 0 for any u = (u1,u2). Let τ ∈ (0,T ). Setting
w(t,x) =−um(x, t)χ(0,τ)(t) in (4.1) results in∫

τ

0
〈∂tu1,−um〉V ′,V +

∫
τ

0

∫
Ω

δ1χ{u1<0}|∇u1|2

−
∫

τ

0

∫
Ω

K1,1T`(u1)∇u1 ·∇um−
∫

τ

0

∫
Ω

K1,2T`(u1)∇u2 ·∇um =−
∫

τ

0

∫
Ω

Q1(u)um. (4.28)

In order to evaluate the first term in the left hand side of (4.28), we apply Lemma 1 with function f
defined by f (λ ) = max(0,−λ ), λ ∈ R. Of course um(t,x) 6= 0 iff u1(t,x)< 0. We have∫

τ

0
〈∂tu1,−um〉V ′,V dt =

1
2

∫
Ω

(
u2

m(τ,x)−u2
m(0,x)

)
dx =

1
2

∫
Ω

u2
m(τ,x)dx.

Since T`(u1)χ{u1<0} = 0 by definition of T`, the two last terms in the left hand side of (4.28) are null.
Hence, with the assumption on Q1, (4.28) gives

∫
Ω

u2
m(τ,x)dx≤−2

∫
τ

0
∫

Ω
δ1χ{u1<0}|∇u1|2 dxdt ≤ 0 and

um = 0 a.e. in ΩT .

This ends the proof of Theorem 1.

5. ADDITIONAL REGULARITY RESULT AND PROOF OF THEOREM 2

Theorem 2 is devoted to a uniqueness result for Problem (3.1)–(3.2). The first step towards its proof
is an additional regularity result, in the spirit of the Meyer’s theorem, proved for the cross-diffusive
problem under consideration (in subsection 5.1 below). We aim at upgrading the regularity of the solution
exhibited in Theorem 1 from L2(0,T ;H1(Ω)) to Lr(0,T ;W 1,r(Ω)) for some r > 2. This regularity will
allow to handle the nonlinear terms in the system for proving the uniqueness of the solution.

5.1. Proof of Proposition 1. We adapt the proof of Theorem 1. We turn back to the construction of the
intermediate solution which appears as the fixed point of an application in Step 1 of the proof of Theorem
1. We recall its outline. If F is the application defined in (4.3) and if C is the nonempty (strongly) closed
convex bounded subset of the space (L2(0,T ;H))2 defined in (4.27), we have shown that F (C )⊂C and
that there exists (u1,u2) ∈ C such that F (u1,u2) = (u1,u2). This fixed point for F is a weak solution
of problem (4.1)–(4.2) in (L2(0,T ;H1(Ω))2. Now, we prove that, if the assumptions of Proposition 1 are
fulfilled, this solution is actually in Lr(ΩT ), r > 2. To this aim, we modify the definition of the convex
bounded subset C by including an estimate in the norm Lr(0,T ;W 1,r(Ω)) of its elements.

Let M′ be a strictly positive real number that we will define later on. We set

D := { (u1,u2) ∈ (Lr(0,T ;W 1,r
0 (Ω)))2, (u1(0),u2(0)) = (u0

1,u
0
2),

‖(u1;u2)‖(W (0,T ))2 ≤M, ‖∇ui‖(Lr(ΩT ))N ≤M′, i = 1,2}. (5.1)

Our aim is to check that F (D)⊂D for some appropriate choice of M′. Let (ū1, ū2)∈D and (u1,u2)=
F (ū1, ū2). Applying Lemma 2 to (4.8) and (4.9), we deduce that, with the notations of (3.5) and (3.6),

||∇ui||(Lr(ΩT ))N ≤
g(r)

(
`K+

i,−i||∇ū−i||(Lr(ΩT ))N +(δi + `K+
i,i)T

1/r||u0
i ||W 1,r(Ω)

)
(1− ki(r))(βi + ci)

≤
g(r)

(
`K+

i,−i||∇ū−i||(Lr(ΩT ))N +(δi + `K+
i,i)T

1/r||u0
i ||W 1,r(Ω)

)
(1−g(r)(1−µ∗i +ν∗i ))(βi + c∗i )

, i = 1,2,
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where we recall the notation (i,−i) = (i, j) with j 6= i. Assume that `, K+
i,−i and δi, i = 1,2, satisfy the

condition (3.10) given in Proposition 1. This condition implies that there exists γ , 0 < γ < 1, such that

g(r)`K+
i,−i

(1−g(r)(1−µ∗i +ν∗i ))(βi + c∗i )
≤ 1− γ.

We thus have

||∇ui||(Lr(ΩT ))N ≤ (1− γ)M′+
g(r)(δi + `K+

i,i)T
1/r‖u0

i ‖W 1,r(Ω)

(1−g(r)(1−µ∗i +ν∗i ))(βi + c∗i )
.

Now, we choose the constant M′ such that the initial conditions satisfy

g(r)(δi + `K+
i,i)T

1/r ||u0
i ||W 1,r(Ω)

(1−g(r)(1−µ∗i +ν∗i ))(βi + c∗i )
≤ γM′, i = 1,2.,

that is

M′ = max
i=1,2

{ g(r)(δi + `K+
i,i)T

1/r ||u0
i ||W 1,r(Ω)(

(1−g(r)(1−µ∗i +ν∗i ))(βi + c∗i )−g(r)`K+
i,−i

)} (5.2)

Then, combining the two previous inequalities, we obtain

||∇u1||(Lr(ΩT ))N ≤M′ and ||∇u2||(Lr(ΩT ))N ≤M′. (5.3)

We emphasize that the real M′ does not depend on the real number M in (5.1).
We have the tools to perform a fixed point analysis similar to the one in the proof of Theorem 1. We

have already chosen M′ so that the bounded convex D defined by (5.1) satisfies F (D)⊂D . Let us show
that D is closed in L2(0,T ;H). We proceed as we did for the set C . In fact, it is sufficient to check that,
if (un

1,u
n
2) denotes a sequence of functions of D2 such that

(un
1,u

n
2)→ (u1,u2) in L2(0,T ;H),

then ∇ui ∈ (Lr(ΩT ))
N with ‖∇ui‖(Lr(ΩT ))N ≤ M′, i = 1,2. Due to the definition of D , the sequence

(∇un
1,∇un

2)n is uniformly bounded in the space (Lr(ΩT ))
N . Thus, there exits (v1,v2) ∈ (Lr(ΩT ))

2N such
that, for an appropriate subsequence here characterized by an increasing function ϕ , the convergence
(∇uϕ(n)

1 ,∇uϕ(n)
2 )⇀(v1,v2) holds true weakly in (Lr(ΩT ))

2N . It means∫
ΩT

∇uϕ(n)
i ·Φdxdt→

∫
ΩT

vi ·Φdxdt, ∀Φ ∈ (Lr′(ΩT ))
N ,

1
r
+

1
r′
= 1, (5.4)

and besides
‖vi‖(Lr(ΩT ))N ≤ lim inf

n→∞
‖∇uϕ(n)

i ‖(Lr(ΩT ))N ≤M′. (5.5)

But we know (see the proof of the closeness of C in L2(0,T ;H)) that

(uϕ(n)
1 ,uϕ(n)

2 )⇀(u1,u2) weakly in L2(0,T,V )

thus in particular ∫
ΩT

∇uϕ(n)
i ·Φdxdt→

∫
ΩT

∇ui ·Φdxdt, ∀Φ ∈ (L2(ΩT ))
N .

Since r > 2, we have L2(ΩT )⊂ Lr′(ΩT ) and then we infer from the latter convergence together with (5.4)
that ∇ui = vi in Lr′(ΩT ) for i = 1,2. We conclude the proof thanks to (5.5). In brief, D is a nonempty
convex, bounded closed set in (L2(0,T ;H))2, satisfying F (D)⊂D .
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The remainder of the proof follow the lines of the one of Theorem 1. It follows from Schauder fixed
point theorem that there exist (ũ1, ũ2) ∈ D such that F (ũ1, ũ2) = (ũ1, ũ2). This fixed point is a weak
solution of problems (4.1)–(4.2) and its gradient is uniformly bounded in the space (Lr(ΩT ))

2N . The
proof of Proposition 1 is complete.

Remark 12 (Proof of Proposition 2). Note first that, if N = 2, the small BMO assumption makes sense
in our fixed point strategy. Indeed the solution ui belongs to L2(0,T ;V ) and V ⊂V MO (vanishing mean
oscillation space, see Sarason [44]) thanks to the Poincaré-Wirtinger inequality. The proof in the small
BMO case thus only consists in replacing the bound given in (2.7) by CBMO(α,β ,r,T ). The constant M′

in (5.2) then have to be replaced by

max
i=1,2

{CBMO(αi,βi,r,T )(δi + `K+
i,i)T

1/r ||u0
i ||W 1,r(Ω)

1−CBMO(αi,βi,r,T )`K+
i,−i

}
.

5.2. Proof of Theorem 2.
We begin by focusing the study of the well-posedness of (3.1)-(3.2) in small times. To this aim, we

introduce a small characteristic time scale, denoted 1/φ for a given positive real number φ , and we work
in the time interval (0,T0) := (0,T/φ). The precise definition of its smallness will be specified at the end
of the proof.

We change the time scale by setting t∗ = φ t and u∗i (t
∗,x) = ui(t,x), i = 1,2. If (u1,u2) and (ū1, ū2) are

two weak solutions of (3.1), the functions vi := u∗i − ū∗i ∈W (0,T ), i = 1,2, weakly solve the following
system in Ω× (0,φT0) = ΩT :

φ∂t∗v1−∇ ·
(
(δ1 +K1,1T`(u∗1))∇v1

)
−∇ ·

(
K1,1(T`(u∗1)−T`(ū∗1))∇ū∗1

)
−∇ · (K1,2T`(u∗1)∇v2)−∇ ·

(
K1,2(T`(u∗1)−T`(ū∗1))∇ū∗2

)
= 0,

φ∂t∗v2−∇ ·
(
(δ2 +K2,2T`(u∗2))∇v2

)
−∇ ·

(
K2,2(T`(u∗2)−T`(ū∗2))∇ū∗2

)
−∇ · (K2,1T`(u∗2)∇v1)−∇ ·

(
K2,1(T`(u∗2)−T`(ū∗2))∇ū∗1

)
= 0.

We multiply these equations by, respectively, v1 and v2 and we integrate over (0, t)×Ω with 0 < t ≤ T .
Using the fact that v1(0, .) = v2(0, .) = 0 a.e. in Ω and the coercivity property of Ki,i, we get after
summing up the two equations:

φ

2

∫
Ω

(
|v1|2(t,x)+ |v2|2(t,x)

)
+
∫

Ωt

(
(δ1 +K−1,1T`(u∗1))|∇v1|2 +(δ2 +K−2,2T`(u∗2))|∇v2|2

)
+
∫

Ωt

(
T`(u∗1)−T`(ū∗1)

)(
K1,1∇ū∗1 +K1,2∇ū∗2

)
·∇v1 +

∫
Ωt

(
K1,2T`(u∗1)+K2,1T`(u∗2)

)
∇v1 ·∇v2

+
∫

Ωt

(
T`(u∗2)−T`(ū∗2)

)(
K2,1∇ū∗1 +K2,2∇ū∗2

)
·∇v2 ≤ 0.

By the definition of T` and since u∗i , ū
∗
i ≥ 0, we have that T`(u∗i )≥ 0 and

T`(u∗i )−T`(ū∗i ) =


u∗i − ū∗i if 0≤ u∗i , ū

∗
i ≤ `,

`− ū∗i if u∗i ≥ `, 0≤ ū∗i ≤ `,
u∗i − ` if 0≤ u∗i ≤ `, ū∗i ≥ `,
0 if u∗i , ū

∗
i ≥ `.
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Thus, in all the cases, |T`(u∗i )− T`(ū∗i )| ≤ |u∗i − ū∗i | = |vi|. For notational convenience, let Ki,+ =
max j=1,2 |K+

i, j|, i = 1,2. We have∣∣∣∣∫
Ωt

(T`(u∗1)−T`(ū∗1))
(
K1,1∇ū∗1 +K1,2∇ū∗2

)
·∇v1 dxds

∣∣∣∣≤ ∫ t

0

∫
Ω

K1,+|v1|
(
|∇ū∗1|+ |∇ū∗2|

)
|∇v1|dxds.

Next, we compute∫ t

0

∫
Ω

Ki,+|vi|
(
|∇ū∗i |+ |∇ū∗−i|

)
|∇vi|dxds

≤
∫ t

0
Ki,+

(∫
Ω

|vi|4 dx
)1/4(

(
∫

Ω

(|∇ū∗i |4 dx)1/4 +(
∫

Ω

|∇ū∗−i|4 dx)1/4
)(∫

Ω

|∇vi|2 dx
)1/2

ds. (5.6)

The analogous of Proposition 1 can be proved for u∗i and ū∗i (note that the proof of Lemma 2 given in
Annex shows that the result in Prop. 1 does not depend on φ ). It ensures the existence of C4 defined by
(5.2) with an obvious modification for including the source term Qi such that

‖∇u∗i ‖(L4((0,T )×Ω))2 ≤C4, i=1,2.

More precisely, we have

‖∇u∗i ‖(L4((0,T )×Ω))2 = φ
1/4‖∇ui‖(L4((0,T/φ)×Ω))2

≤ φ
1/4 g(4)(δi + `K+

i,i)(T/φ)1/4 (q+,i + ||u0
i ||W 1,4(Ω))(

(1−g(4)(1−µ∗i +ν∗i ))(βi + c∗i )−g(r)`K+
i,−i

) =C4. (5.7)

Hence

(
∫

ΩT

(|∇ū∗i |4 dx)1/4 +(
∫

ΩT

|∇ū∗−i|4 dx)1/4 ≤ 2C4.

On the other hand, by the Gagliardo–Nirenberg inequality, we have(∫
Ω

|u|4 dx
)1/4
≤CG||u||1/2

L2(Ω)
||∇u||1/2

(L2(Ω))2 , ∀u ∈ H1
0 (Ω).

Then, combining the Hölder and Young inequalities, we obtain∫
Ωt

Ki,+|vi|(|∇ū∗i |+ |∇ū∗−i|) |∇vi|dxds

≤ Ki,+CG

(∫ t

0
||vi||2/3

L2(Ω)
||∇vi||2(L2(Ω))2 ds

)3/4(
(
∫

Ωt

(|∇ū∗i |4 dx)1/4 +(
∫

Ωt

|∇ū∗−i|4 dx)1/4
)

≤ 2K1,+CGC4 max
(0,t)
||vi||1/2

L2(Ω)

(∫
Ωt

|∇vi|2
)3/4
≤ 27

4
K4

i,+C4
GC4

4

ε3
i

max
(0,t)
||vi||2L2(Ω)+ εi

∫
Ωt

|∇vi|2 dxds,

for any arbitrary given εi > 0, i = 1,2. Finally, using once again the Cauchy-Schwarz and Young in-
equalities, we get for any arbitrary εi+1 > 0, i = 1,2:∣∣∣∫ t

0

∫
Ωt

Ki,−iT`(u∗i )∇vi ·∇v−i

∣∣∣≤ `1/2K+
i,−i

(∫
Ωt

|∇v−i|2
)1/2(∫

Ωt

T`(u∗i )|∇vi|2
)1/2

≤
`(K+

i,−i)
2

4εi+1
(
∫

Ωt

|∇v−i|2)+ εi+1(
∫

Ωt

T`(u∗i )|∇vi|2).
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By combining all the inequalities above, we obtain that

φ

2

∫
Ω

(v2
1 + v2

2)(t,x)dx+(δ1− ε1−
`(K+

2,1)
2

4ε4
)
∫

Ωt

|∇v1|2 dxds

+(δ2− ε2−
`(K+

1,2)
2

4ε3
)
∫

Ωt

|∇v2|2 dxds+(K−1,1− ε3)
∫

Ωt

T`(u∗1)|∇v1|2 dxds

+(K−2,2− ε4)
∫

Ωt

T`(u∗2)|∇v2|2 dxds

≤ 27
4

K4
1,+C4

GC4
4

ε3
1

max
(0,T )

(
∫

Ω

|v1|2(t,x)dx)+
27
4

K4
2,+C4

GC4
4

ε3
2

max
(0,T )

(
∫

Ω

|v2|2(t,x)dx). (5.8)

Pick ε1 = δ1/4, ε2 = δ2/4, ε3 = K−1,1 and ε4 = K−2,2. We get

φ

2

∫
Ω

(v2
1 + v2

2)(t,x)dx+
(3δ1

4
−

`(K+
2,1)

2

4K−2,2

)∫
Ωt

|∇v1|2 dxds+
(3δ2

4
−

`(K+
1,2)

2

4K−1,1

)∫
Ωt

|∇v2|2 dxds

≤
33 42 K4

1,+C4
GC4

4

δ 3
1

max
(0,T )

(
∫

Ω

|v1|2(t,x)dx)+
33 42 K4

2,+C4
GC4

4

δ 3
2

max
(0,T )

(
∫

Ω

|v2|2(t,x)dx).

Finally, assuming (3.14), the maximum of the left hand side of the latter relation for t ∈ (0,T ) satisfies

∑
i=1,2

(φ

2
−

33 42 K4
i,+C4

GC4
4

δ 3
i

)
max
(0,T )

∫
Ω

|vi|2(t,x)dx≤ 0. (5.9)

If φ satisfies

φ

2
−

33 42 K4
1,+C4

GC4
4

δ 3
1

≥ 0 and
φ

2
−

33 42 K4
2,+C4

GC4
4

δ 3
2

≥ 0, (5.10)

and if (`,δ1,δ2) and the tensor K satisfy (3.14), then (5.9) implies that∫
ΩT

|∇vi|2 dxds, i = 1,2,

and so vi = 0, that is u∗i = ū∗i almost everywhere in ΩT .
Turning back to the original time scale, it means that the solution u = (u1,u2) of (3.1)-(3.2) is unique

in (0, t̂0)×Ω with

t̂0 = min
{ T δ 3

1

3325×K4
1,+C4

GC4
4
,

T δ 3
2

3325×K4
2,+C4

GC4
4
,T
}
.

Indeed, choosing
φ = φ0 = T/t̂0

ensures the validity of (5.10).
We now aim at propagating this uniqueness result to the whole interval of interest. The important point

is a precise computation of the real number C4 that characterizes the size of the interval (0, t̂0) where the
uniqueness is ensured. According to (5.2),

C4 := c1/4
4,i T 1/4(q+,i +‖u0

i ‖W 1,4(Ω)

)
,
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with c4,i given in Theorem 2. According to Lusin’s theorem, since (u∗i , ū
∗
i ) ∈ L4(0,T,W 1,4(Ω))2 for

i = 1,2, for any given ε > 0, there exists some closed interval I ⊂ (φ0t̂0/2,φ0t̂0) ⊂ (0,T ) such that
|I| ≥ φ0t̂0/2− ε and the restriction of (u∗i , ū

∗
i ) in I is a continuous in time function. Of course, we have

|I|mint∈I ‖u∗i ‖4
W 1,4(Ω)

≤ ‖u∗i ‖4
L4(0,T ;W 1,4(Ω))

≤ C4
4 . Similar computations may be done with ū∗i . We can

therefore pick some t∗0 ∈ I such that

‖(u∗i (t∗0), ū∗i (t∗0))‖4
(W 1,4(Ω))2 ≤

1
φ0t̂0/2− ε

×‖u∗i ‖4
L4(0,T ;W 1,4(Ω)) ≤

C4
4

φ0t̂0/2− ε
.

Let γ ∈ (0,1/2) such that φ0t̂0/2− ε = γT . The latter estimate then reads

‖(u∗i (t∗0), ū∗i (t∗0))‖4
(W 1,4(Ω))2 ≤

C4
4

γT
. (5.11)

We now consider the solutions ui and ūi as starting from t∗0 and we try to follow the previous lines for
proving the uniqueness in a new interval in the form [t∗0 , t

∗
0 + t̂1]. To this aim, we set t∗ = φ1(t− t∗0) and

u∗i (t
∗,x) = ui(t,x), i = 1,2. Using (5.11) in (5.2)–(5.3), we obtain the following analogous for (5.7):

‖∇u∗i ‖4
(L4((0,T )×Ω))2 ≤ c4,iT

(
q+,i +

C4

(γT )1/4

)4
=: (C1

4)
4. (5.12)

Next, we follow the previous lines and show that vi = u∗i − ū∗i = 0 a.e. in [t∗0 , t
∗
0 +T ), the time scaling

factor φ1 still being defined by the condition (5.10) but with C4
4 replaced by (C1

4)
4. Turning back to the

original time scale, it means that the solution of (3.1)-(3.2) is unique in (0, t∗0 + t̂1) with

t̂1 = min
{

min
i=1,2

{ T δ 3
i

3325K4
i,+C4

G(C
1
4)

4

}
,T
}
.

For propagating this uniqueness result to the whole interval of interest, it is sufficient to ensure that the
sequence (Cn

4)n∈N defined by {
C0

4 =C4,

Cn+1
4 = c1/4

4,i

(
q+,iT 1/4 + γ−1/4Cn

4

)
,

is such that ∑n≥0(Cn
4)
−4 = ∞. This result is especially ensured if limn→∞Cn

4 < ∞ thus if c1/4
4,i /γ1/4 < 1.

Further γ may be chosen arbitrarily close to 1/2. We thus obtain the criterion c4,i < 1/2. The proof of
Theorem 2 is complete. �

Remark 13. The previous strategy may be repeated for the proof in the small BMO setting. Estimate
(5.7) is modified in view of the expression of M′ given in Remark 2. The analogous of the condition (5.10)
is in the form

φ/T ≥ e4CiT/φ 33 25 K4
i,+C4

GC4
bmo,i/δ

3
i (1−CBMO(αi,βi,4,T/φ)`K+

i,−i)
4,

where Cbmo,i and Ci are such that CBMO(αi,βi,4,T )(δi + `K+
i,i)(‖u0

i ‖W 1,4 +q+,i) =Cbmo,ieCiT . But, since
φ > 4T (otherwise the result is obvious), such a condition is fulfilled if

φ ≥ T max
i=1,2

{
eCi

33 25 K4
i,+C4

GC4
bmo,i

δ 3
i (1−CBMO(αi,βi,4,T )`K+

i,−i)
4

}
.
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Hence, the rest of the computations can be reproduced as is, of course by changing the value of the
constants.

6. ABOUT THE MAXIMUM PRINCIPLE AND PROOF OF THEOREM 3

In the present section, we look for additional assumptions allowing the proof of a complete maximum
principle for (2.1). We first consider an example of the simplest setting. We study a particular case of the
system which behaves like a volume-filling model. As emphasized by the proof, the algebraic structure
of the system “naturally” ensures a maximum principle: the boundedness of the solution is proved with
classical arguments. Notice that models with segregation properties (e.g. [7]) also inherits naturally
of maximum principle properties. As already mentioned, the aim of this paper is to avoid as far as
possible this kind of structural assumption. Nevertheless, we are aware that another kind of assumption
is necessary. Indeed, as emphasized by Le and Nguyen in [30] (Theorem 1.5), there even may exists a
classical solution (in the case of a cross-diffusion system with smooth coefficients) changing sign. If the
maximum principle is not induced by the structure of the system, we choose to deal with “sufficiently
pumping” source terms for enforcing the boundedness of the solution. In the second subsection, we
thus prove the existence of source terms confining the solution under any prescribed value. The proof
consists in introducing in the original system a penalizing term that we let blow up. Since this method
introduces additional nonlinearity in the problem, we give another existence proof, still based on a fixed
point argument, but using the Brouwer’s topological degree method instead of the Schauder’s theorem.
Finally, in the last subsection, we show how the penalization method introduced for proving the existence
of confining source terms may be interpreted from the physical point of view.

6.1. A volume-filling model: classical weak maximum principle. In the present subsection, we give
an example of the simplest setting ensuring a maximum principle, namely a volume-filling algebraic
structure. We consider the following particular case of system (2.1) with Ki, j = K, 1≤ i, j ≤ 2:

∂tu1−δ∆u1−∇ · (Ku1∇u1 +Ku1∇u2) = Q(u)u1, (6.1)
∂tu2−δ∆u2−∇ · (Ku2∇u2 +Ku2∇u1) = Q(u)u2, (6.2)

completed by (3.2). We aim showing that this problem has a volume-filling structure, that is that we can
exhibit a solution such that

0≤ u1 +u2 ≤ ` a.e. in ΩT

provided that the initial and Dirichlet data satisfy the same relation. The non-negativity of the solutions
has already been proved in the general setting. We thus simply check, using formal a priori estimates,
that one may expect a solution such that u` := max(u1+u2−`,0) = 0 almost everywhere in ΩT . Assume
u0

1+u0
2 ≤ ` and Q(v)≤ 0 for any v = (v1,v2) such that v1+v2 ≤ 1. For the sake of simplicity, set ui,D = 0.

Summing up (6.1) and (6.2), we obtain

∂t(u1 +u2)−δ∆(u1 +u2)−∇ ·
(
K(u1 +u2)∇(u1 +u2)

)
= Q(u)(u1 +u2).

We multiply this equation by u` and integrate by parts over Ω. We obtain
1
2

d
dt

∫
Ω

|u`|2 dx+
∫

Ω

(
δ +(u1 +u2)K

)
∇u` ·∇u` dx−

∫
Ω

Q(u)(u1 +u2)u` dx = 0.

Using the assumption on Q, the non-negativity of ui and the coercivity of K, we infer from the latter
relation that 1

2
d
dt

∫
Ω
|u`|2 dx+δ

∫
Ω
|∇u`|2 dx≤ 0 a.e. in (0,T ). It follows that u` ≤ 0 and thus u1 +u2 ≤ `

a.e. in ΩT .
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6.2. An example of explicit admissible source term when δi = 0. In the present paper, we question the
possibility of tuning up the value of the source term for ensuring a maximum principle. A first example
follows in the simplest setting when δi = 0, i = 1,2. We remind that, when δi = 0, the decay of the
entropy enables to obtain a bound (depending only on the data) for the L2(ΩT )-norm of the gradient of
ui (i = 1,2) (cf. [1]).

Assume the source terms Qi equal to
−Ci(t,x)

η +(ui− `)+
, where Ci is a non negative function of L2(ΩT ),

η is some positive real number (chosen smaller than 1). Assume also that the initial and boundary data
satisfy 0≤ u0

i ≤ ` and ui,D = 0.
Let us solely prove that u1(t,x)≤ ` for all t ∈ (0,T ) and for almost every x ∈ Ω. Showing this result

for u2 follows the same lines. Let uM = η +(u1− `)+. The function uM−η belongs to L2(0,T ;V ) and
is such that ∇uM = χ{u1>`}∇u1. Let τ ∈ (0,T ]. Setting w(t,x) = uM(t,x)χ(0,τ)(t) in (4.1) (with δ1 = 0)
results in∫

τ

0
〈∂tu1,uM〉V ′,V +

∫
Ωτ

C1(t,x)dxdt +
∫

Ωτ

T`(u1)K1,1∇uM ·∇uM =−
∫

Ωτ

T`(u1)K1,2∇u2 ·∇uM. (6.3)

Since the function T` is extended continuously and constantly outside the interval (0, `), we deduce from
(6.3)

1
2

∫
Ω

(
(u1− `)+

)2
(τ,x)dx+η

(∫
Ω

u1(τ,x)dx−
∫

Ω

u0
1(x)dx

)
+
∫

Ωτ

C1(t,x)dxdt

+ `K−1,1

∫
Ωτ

|∇uM|2 dxdt ≤−`
∫

Ωτ

K1,2∇u2 ·∇uM := J0. (6.4)

Then, using the regularity result for the gradient of u2 established in [1] (thus the constant C0 below), we
estimate J0 as follows

|J0| ≤ K+
1,2 ` ×

(∫
Ωτ

|∇u2|2
)1/2×

(∫
Ωτ

|∇uM|2
)1/2 ≤ `2 +

(K+
1,2C0)

2

4

∫
Ωτ

|∇uM|2. (6.5)

Combining (6.5) with (6.4), we obtain for all τ ∈ (0,T ]

1
2

∫
Ω

((u1− `)+
)2
(τ,x)dx+

4`K−1,1 − (K+
1,2C0)

2

4

∫
Ωτ

|∇uM|2 dxdt

+ η

∫
Ω

u1(τ,x)dx+
(∫

Ωτ

C1(t,x)dxdt− `2) ≤ η

∫
Ω

u0
1(x)dx.

Now, assume that ` is sufficiently large so that

K+
1,2 <

2
√

`K−1,1
C0

.

Then, if the source term is large enough, namely
∫

ΩT
C1(t,x)dxdt ≥ `2, by taking τ = T in the previous

inequality, we deduce that
∫

Ω
u1(T,x)dx ≤

∫
Ω

u0
1(x)dx. If the pumping is stronger, namely if we impose

e.g. η ≤ 1 and ∫
ΩT

C1(t,x)dxdt ≥ `2 +
∫

Ω

u0
1(x)dx
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we ensure that |∇(u−`)+|2 = 0 a.e. in ΩT . Moreover (u−`)+(T,x) = 0 a.e. x∈Ω and then (u−`)+ = 0
a.e. in ΩT . We also get that u1(T, .) = 0 a.e. in Ω.

6.3. Proof of Theorem 3. Here we turn back to the general setting of the cross-diffusion model. We
prove that there exist “sufficiently pumping” source terms for enforcing the boundedness of the solution,
namely Theorem 3. We only have to prove Proposition 3.

STEP 1. EXISTENCE OF A WEAK SOLUTION FOR A PENALIZED PROBLEM

Let the function U` defined in R by
U`(x) = max{`,x}.

Let ε > 0. Consider the following penalized problem

∂tuε
i −∇ ·

(
δi∇uε

i +T`(uε
i )

2

∑
j=1

Ki, j∇uε
j
)
− 1

ε
∆U`(uε

i ) = Qi(uε) in ΩT , (6.6)

uε
i = ui,D, in (0,T )×Γ, uε

i (0,x) = u0
i (x) in Ω. (6.7)

Once again we use a fixed point strategy for proving the existence of a weak solution of (6.6)-(6.7). But
in view of the new nonlinearity introduced in the system, we rather use a topological degree argument.
Problem (6.6)-(6.7) is rewritten as

uε
i −ui,D ∈W (0,T ),

〈∂t(uε
i −ui,D),v〉L2(0,T ;V ′)×L2(0,T ;V )+δi

∫
ΩT

∇uε
i ·∇vdxdt = 〈Fi(uε),v〉L2(0,T ;V ′)×L2(0,T ;V )

where Fi(u) ∈ L2(0,T ;V ′) for any u = (u1,u2) ∈ (L2(0,T ;H1(Ω)))2 is defined by

〈Fi(u),v〉L2(0,T ;V ′)×L2(0,T ;V ) = −
∫

ΩT

(
T`(ui)(Ki,i∇ui +Ki, j∇u j)+

1
ε

∇U`(ui)
)
·∇vdxdt

+
∫

ΩT

Qi(u)vdxdt−〈∂tui,D,v〉L2(0,T ;V ′)×L2(0,T ;V ).

Notice that the function Fi : (L2(0,T ;V ))2→ L2(0,T ;V ′) is continuous. Next, denote by Li the operator
from L2(0,T ;V ′) into L2(0,T ;V ) defined by Li(S) = ui−ui,D where ui is the unique solution of

ui−ui,D ∈W (0,T ),

〈∂t(ui−ui,D),v〉L2(0,T ;V ′)×L2(0,T ;V )+δi

∫
ΩT

∇ui ·∇vdxdt = 〈S,v〉L2(0,T ;V ′)×L2(0,T ;V ).

Now solving (6.6)-(6.7) consists in solving uε−uD = (L1(F1(uε)),L2(F2(uε))). For any s ∈ [0,1], we set
d(s,u) = (sL1(F1(u)),sL2(F2(u))). For M > 0, let BM = {u ∈ (L2(0,T ;H1(Ω)))2; ‖u‖(L2(0,T ;H1(Ω)))2 <
M}. If the following conditions are fulfilled

(i) ∃M > 0;
(
u−d(s,u) = 0, s ∈ [0,1] and u ∈ (L2(0,T ;H1(Ω)))2

)
⇒ u ∈BM

(ii) the function d is continuous from [0,1]×BM into BM
(iii) the set {d(s,u), s ∈ [0,1], u ∈BM} is relatively compact in L2(ΩT )

there is no solution of the equation u−d(s,u) = 0 on the boundary of BM and we can define the topo-
logical degree ([8]) deg(Id−d(s, ·),BM,0). It does not depend on s. Thus

deg(Id−d(s, ·),BM,0) = deg(Id−d(0, ·),BM,0) = deg(Id,BM,0) = 1.
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It follows that there exists uε ∈BM such that uε −d(1,uε) = 0, that is

uε −uD = (L1(F1(uε)),L2(F2(uε))).

All the elements for checking points (i)-(iii) have already been exposed in the proof of Theorem 1. It
is clear that the only new terms, namely ε−1∇U`(ui), have a diffusive form that does not perturb the
estimates. We thus do not detail their proof.

Remark 14. Notice that this proof can be adapted for ensuring more regularity to the solutions and
obtaining the analogous of Proposition 1. Indeed, the computations performed in Subsection 5.1 allow
to restrict properly the operators Li, i = 1,2, to Lr(0,T ;W 1,r

0 (Ω)), r > 2.

STEP 2. UNIFORM ESTIMATES OF ANY SOLUTION OF THE PENALIZED PROBLEM

Clearly any solution uε of (6.6)-(6.7) lies in the set C defined in (4.27). The following uniform estimates
thus hold true

‖∂tuε
i ‖L2(0,T ;V ′)+‖uε

i ‖L2(0,T ;H1(Ω)) ≤C, i = 1,2, (6.8)

where we denote by C a generic constant that does not depend on ε . Nevertheless, we have to look at the
influence of the penalization on the behavior of uε

i above `. To this aim, we compute once again energy
estimates. Set ui,D = 0 for the sake of simplicity. We multiply (6.6) by uε

i , integrate by parts over Ω and
sum up the results for i = 1,2. Using the coercivity of Ki,i and Qi(uε) ∈ L2(ΩT ), we obtain

1
2

d
dt

∫
Ω

((uε
1)

2 +(uε
2)

2)dx+
2

∑
i=1

∫
Ω

(
δi +K−i,i +

1
ε

χ{uε
i ≥`}

)
|∇uε

i |2 dx

+
∫

Ω

(
T`(uε

1)K1,2∇uε
2 ·∇uε

1 +T`(uε
2)K2,1∇uε

1 ·∇uε
2
)

dx

≤
∫

Ω

(
Q1(uε)uε

1 +Q2(uε)uε
2
)

dx≤C(t)+
∫

Ω

((uε
1)

2 +(uε
2)

2)dx (6.9)

where C(t) belongs to L1(0,T ). Using the Cauchy-Schwarz and Young inequalities we write for i = 1,2,
j 6= i, ∣∣∣∫

Ω

T`(uε
i )Ki, j∇uε

j ·∇uε
i dx
∣∣∣≤ εi

∫
Ω

T`(uε
i )K

−
i,i |∇uε

i |2 dx+
(K+

i, j)
2`

4K−ii εi

∫
Ω

|∇uε
j |2 dx,

for any εi > 0. Inserting this result in (6.9), we get

1
2

d
dt

∫
Ω

((uε
1)

2 +(uε
2)

2)dx+
2

∑
i≥1, j=−i

∫
Ω

(
(δi−

(K+
j,i)

2`

4K−j, jε j
)+K−i,i(1− εi)+

1
ε

χ{uε
i ≥`}

)
|∇uε

i |2 dx

≤C(t)+
∫

Ω

((uε
1)

2 +(uε
2)

2)dx. (6.10)

The assumptions (3.4) ensure the existence of 0 < εi < 1 such that δi− ((K+
j,i)

2`)/4K−j, jε j > 0. From
(6.10), the Gronwall lemma gives

√
ε‖∇uε

i ‖(L2(ΩT )N +‖χ{uε
i ≥`}∇uε

i ‖(L2(ΩT )N ≤C
√

ε.
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This direct estimate can be improved. We rather multiply (6.6) by uε
i,` := sup(uε

i − `,0). Bear in mind
that∣∣∣∫

Ω

T`(uε
i )Ki, j∇uε

j ·∇uε
i,` dx

∣∣∣≤ 1
2ε

∫
Ω

|∇uε
i,`|2 dx+Cε

∫
Ω

|∇uε
j |2 dx≤ 1

2ε

∫
Ω

|∇uε
i,`|2 dx+C(t)ε

where C(t) belongs to L1(0,T ). Then, assuming that the source term Qi is such that Qi(u)ui,` ≤ 0, we
get the following energy estimate

1
2

d
dt

∫
Ω

((uε
1,`)

2 +(uε
2,`)

2)dx+
2

∑
i≥1, j=−i

∫
Ω

(
δi +K−i,i +

1
2ε

)
|∇uε

i,`|2 dx≤C(t)ε. (6.11)

Since uε
i,`(0,x) = 0 a.e. in Ω, the estimate (6.11) gives with the Gronwall lemma and the Poincaré

inequality
‖χ{uε

i ≥`}u
ε
i ‖L2(0,T ;V ) ≤Cε. (6.12)

STEP 3. LETTING THE PENALIZATION BLOW UP

We let ε → 0. In view of estimates (6.8)-(6.12), there is a subsequence of (uε), not relabeled for conve-
nience, and (u,Q) ∈ (W (0,T ))2× (L2(0,T ;(H1(Ω))′))2 such that

uε
i ⇀ ui weakly in W (0,T ),

1
ε

∇U`(uε
i ) =

χ{uε
i ≥`}

ε
∇uε

i ⇀ Qi weakly in (L2(ΩT ))
N , Q := (∇ ·Q1,∇ ·Q2)

and moreover, thanks to a compactness argument of Aubin’s type,

uε
i → ui a.e. in ΩT .

Letting ε → 0 in (6.6)-(6.7), we conclude that ui is a nonnegative solution of

∂tui−∇ ·
(
δi∇ui +T`(ui)

m

∑
j=1

Ki, j∇u j
)
= Qi(u)+∇ ·Qi in ΩT ,

ui = ui,D in (0,T )×Γ, ui(0,x) = u0
i (x) in Ω.

Moreover, due to (6.12), ui(t,x) ≤ ` almost everywhere in ΩT . Proposition 3 is proved. It remains to
notice that Remark 9 comes straightforward from the construction of Qi.

6.4. Concept of confined solution. Another way for stating Theorem 3 consists in introducing a con-
cept of confined solution for the problem.

Definition 1. The problem (1.1) completed by appropriate boundary and initial conditions admits a
confined solution if there exists a source term Q ∈ (L2(0,T ;(H1(Ω))′))m and u ∈ (W (0,T ))m such that
ui solves

∂tui−∇ · Ji = Qi in ΩT

and ui is bounded almost everywhere in ΩT , i = 1, ..,m.

The advantage of this definition is that the term ‘confined’ clearly corresponds to the construction
of the solution which is forced to remain bounded by the penalization method. Another asset is that it
sometimes corresponds to a physical interpretation of the confinement. Let us turn back to the aquifer
model presented on page 2. Define the depths h, h1 and h2 so that u1 = h−h1 and u2 = h2−h (see Figure
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FIGURE 1. Aquifers modeling

1). Assuming the necessary conditions for Theorem 1, namely ` = h2 and 1− 4δ/h2 < α ≤ 1, we can
prove the existence of a weak solution u = (u1,u2), with nonnegative components, and thus of h and h1
solving

∂th−δ∆h+α∇ ·
(
(h2−h)∇h)

)
−∇ ·

(
(1−α)(h2−h)∇h1

)
= 0, (6.13)

∂th1−δ∆h1−∇ ·
(
(1−α)(h2−h1)∇h1)

)
−α∇ ·

(
(h2−h)∇h

)
= 0, (6.14)

in ΩT completed by initial and Dirichlet boundary conditions with the hierarchy of interface depths,
h1 ≤ h≤ h2 a.e. in ΩT . One retrieves the formulation of the aquifer model of [14]. We now aim proving
the existence of a confined solution for the problem above. The physical intuition consists in trying to
prove that 0 ≤ h1, that is u1 + u2 ≤ h2 a.e. in ΩT . Let us address this question with our penalization
method.

Since our purpose concerns the boundedness of u1 + u2, we change the set of unknowns, replacing
the pair (u1,u2) by the pair (u1,s = u1 +u2). We thus consider the following form of the cross-diffusion
system:

∂tu1−δ∆u1−∇ ·
(
(1−α)u1∇s

)
= 0,

∂ts−δ∆s−∇
(
(s−αu1)∇s

)
−α∇·

(
(u1− s)∇u1) = 0.

We now penalize properly the second equation. By properly we mean that we bear in mind that we have
to preserve the non-negativity of the functions u1 and u2 = s−u1. We thus set U0(x) = max(0,x) and we
introduce the following penalized system.

∂tuε
1−δ∆uε

1−∇ ·
(
(1−α)U0(uε

1)∇sε
)
= 0, (6.15)

∂tsε −δ∆sε −∇

((
U0(sε −uε

1)+(1−α)U0(uε
1)
)
∇sε

)
−α∇·

(
U0(uε

1− sε)∇uε
1)−

1
ε

∇ ·
(
U0(sε −uε

1)∇U0(sε −h2)
)
= 0. (6.16)

One may check that, following the lines of the proof of Proposition 3 in Subsection 6.3, we obtain at the
limit ε → 0 the existence of a bounded solution (u1,s), such that u1 ≥ 0, s− u1 ≥ 0 and s ≤ h2 a.e. in
ΩT , of the following system

∂tu1−δ∆u1−∇ ·
(
(1−α)u1∇s

)
= 0,

∂ts−δ∆s−∇
(
(s−αu1)∇s

)
−α∇·

(
(u1− s)∇u1)−∇ ·Q = 0.
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Here we denoted by Q the weak limit in (L2(ΩT ))
N of ε−1(s−u1)∇U0(sε−h2), which satisfies moreover

(s−h2)Q = 0 almost everywhere in ΩT . Turning back to the interfaces depths, this means that we have
exhibited a mathematically confined solution (h1,h) of (6.13)-(6.14) with 0 ≤ h1 ≤ h ≤ h2 a.e. in ΩT ,
which appears as the weak solution of

∂th−δ∆h+α∇ ·
(
(h2−h)∇h)

)
−∇ ·

(
(1−α)(h2−h)∇h1

)
−∇ ·Q = 0, (6.17)

∂th1−δ∆h1−∇ ·
(
(1−α)(h2−h1)∇h1)

)
−α∇ ·

(
(h2−h)∇h

)
−∇ ·Q = 0, (6.18)

in ΩT completed by initial and Dirichlet boundary conditions, where Q is such that

h1Q = 0 a.e. in ΩT .

The interesting point is that there exists a physical interpretation of the latter penalization process.
With the penalization term in (6.15)-(6.16), we assume that the aquifer is highly permeable above the
depth z = 0, thus the very high averaged permeability, namely equal to ε−1, when the thickness u1 +u2
of the water exceeds h2. At the first order, this very conductive layer acts like a confining layer, as
emphasized by the bound u1 +u2 ≤ h2 at the limit ε → 0.
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[10] L. Chen, A. Jüngel, Analysis of a multi-dimensional parabolic population model with strong cross-diffusion, SIAM J.

Math. Anal. 36 (2004) 301–322.
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APPENDIX: PROOF OF LEMMA 2

Let f ∈ L2(0,T ;V ′), u0 ∈ H and u ∈ L2(0,T ;V ) be the solution of

φ∂tu+A u = f in ΩT , u(0,x) = u0 in Ω.

We aim at proving that, if f and u0 are sufficiently smooth, there exists r > 2 such that u− u0 belongs
to Lr(0,T ;W 1,r

0 (Ω)). For the sake of simplicity, the proof is presented for u0 = 0. Of course, u also
satisfies φ(β + c)−1∂tu+(β + c)−1A u = (β + c)−1 f , where (β + c)−1 ≤ 1 for any c ≥ 0. Next some
computations, detailed in [6], allow to transform the equation in the form

φ(β + c)−1
∂tu−div((A1 +A2)∇u) = (β + c)−1 f

where A1 is a symmetric matrix such that the operator A1 = −div(A1∇) is uniformly elliptic, while
A2 =−div(A2∇) is bounded. More precisely, using µ and ν defined in Lemma 2, we have

N

∑
i, j=1

A1i, jξiξ j ≥ µ|ξ |2 ∀ξ ∈ RN , ‖A1‖2 ≤ 1 and ‖A2‖2 ≤ ν a.e. in (0,T )×Ω,

where 0 < µ ≤ 1 (the case µ = 1 corresponds to the case where A1 = −β∆) and ν < µ , ‖Ai‖2 :=
supξ∈RN\{0} |Aiξ |/|ξ |. If A is symmetric, we set A = A1, A2 = 0 and thus µ = α/β ≤ 1 (that is c = 0),
ν = 0. Setting g∗(t,x) = g(t/φ(β + c),x) for any function g involved in the problem and using the
operator Λ−1 = ∂t∗−∆, the problem now reads: find u∗ ∈ L2(0,τ;V ) such that

u∗+(Λ(A ∗
1 +∆))u∗+(ΛA ∗

2 )u
∗ = (β + c)−1

Λ f ∗ in Ωτ , u∗(0,x) = u0 in Ω,

with τ = (β + c)T/φ and Ωτ = (0,τ)×Ω. For simplicity, we still write Xr = Lr(0,τ;W 1,r
0 (Ω)) and

Yr = Lr(0,τ;W−1,r(Ω)). Now, it is sufficient for our purpose to prove that there exists r > 2 such that

n(r) := ‖Λ(A ∗
1 +∆)+ΛA ∗

2 ‖L (Xr;Xr) < 1. (6.19)

Indeed, the later estimate ensures that the operator Id +Λ(A ∗
1 +∆)+ΛA ∗

2 is invertible (Id denoting the
identity) and thus the existence of u∗ ∈ Xr defined by

u∗ = (β + c)−1(Id+Λ(A ∗
1 +∆)+ΛA ∗

2
)−1

Λ f ∗. (6.20)

We first write

n(r) ≤ ‖Λ‖L (Yr;Xr)

(
‖A ∗

1 +∆‖L (Xr;Yr)+‖A
∗

2 ‖L (Xr;Yr)

)
= g(r)

(
‖A ∗

1 +∆‖L (Xr;Yr)+‖A
∗

2 ‖L (Xr;Yr)

)
. (6.21)

An important point is that g(r) does not depend on T (use a scaling argument for the proof ). We notice
that, for any given k ∈W 1,r(Ω), if h = (Id−A∗1)∇k then (A ∗

1 +∆)k = div(h) and, thanks to Lemma 4
below,

‖(A ∗
1 +∆)k‖Yr ≤ ‖h‖Lr(Ωτ ) = ‖(Id−A∗1)∇k‖(Lr(Ωτ ))N ≤ (1−µ)‖∇k‖(Lr(Ωτ ))N .
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It follows that
‖A ∗

1 +∆‖L (Xr;Yr) ≤ 1−µ.

Proving that
‖A ∗

2 ‖L (Xr;Yr) ≤ ν

is straightforward. The two latter estimates give in (6.21)

n(r)≤ g(r)(1−µ +ν) = k(r). (6.22)

We know that g(2) = 1. Since 0 < 1−µ +ν < 1, k(2)< 1. It is proved in [6] (relation (2.98) in Chapter
2) that, according to Riesz-Thorin’s theorem, there exists a continuous function ρ , defined in [2,∞), such
that g≤ ρ and ρ(2) = 1. It follows that there exists r > 2 such that ρ(p)(1−µ +ν)< 1 for any p∈ [2,r].
In particular, r is such that (6.19) is fulfilled. Definition (6.20) thus makes sense.

It remains to prove the estimate (2.7). Turning back to (6.20), we write

‖u∗‖Xr ≤ (β + c)−1‖
(
Id+Λ(A ∗

1 +∆)+ΛA ∗
2
)−1‖L (Xr;Xr)‖Λ‖L (Yr;Xr)‖ f ∗‖Yr

≤ g(r)
(β + c)(1− k(r))

‖ f ∗‖Yr .

Bearing in mind that u∗ and f ∗ correspond to u and f after a rescaling in time, the latter estimate is
exactly (2.7).

Lemma 2 is proved. All that remains is to show the following technical lemma, which was used in the
latter proof.

Lemma 4. Let A1 be a symmetric definite matrix such that ‖A1‖2 ≤ 1 and such that 0 ≤ µ ≤ 1 where
µ = sup{α ∈ R+; ∑

N
i, j=1 A1i jξiξ j ≥ α|ξ |2 for any ξ ∈ RN}. Then‖Id−A1‖2 ≤ 1−µ .

Proof. Since Id−A1 is a symmetric matrix, we choose the following definition of its spectral norm:

‖Id−A1‖2 = max
λ∈Sp(Id−A1)

|λ |

where Sp(Id− A1) is the set of eigenvalues of the matrix Id− A1. Let λ ∈ Sp(Id − A1) and ξλ an
associated eigenvector: (Id−A1)ξλ = λξλ . The scalar product of the latter relation by ξλ gives (1−
λ )|ξλ |2 = A1ξλ ·ξλ . On the first hand, thanks to the definition of µ , we infer from the latter relation that
(1− λ )|ξλ |2 ≥ µ|ξλ |2. An eigenvector being non null, it follows that λ ≤ 1− µ . On the other hand,
λ |ξλ |2 = (Id−A1)ξλ ·ξλ ≥ 0 since µ|ξλ |2 ≤ A1ξλ ·ξλ ≤ |A1ξλ ||ξλ | ≤ |ξλ |2. Thus λ ≥ 0. It follows that
‖Id−A1‖2 ≤ 1−µ . �
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