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Abstract

Chronic sleepiness, and specifically Excessive Daytime Sleepi-

ness (EDS), impacts everyday life and increases the risks of ac-

cidents. Compared with traditional measures (EEG), the detec-

tion of objective EDS through voice benefits from its ease to be

implemented in ecological conditions and to be sober in terms

of data processing and costs. Contrary to previous works focus-

ing on short-term sleepiness estimation, this study focuses on

long-term sleepiness detection through voice. Using the Mul-

tiple Sleep Latency Test corpus, this study introduces new fea-

tures based on Automatic Speech Recognition systems errors,

in an attempt to replace hand-labeled reading mistakes features.

We also introduce a selection feature pipeline inspired by clin-

ical validation practices allowing ASR features to perform on

par with the state-of-the-art systems on short-term sleepiness

detection through voice (73.2% of UAR). Moreover, we give

insights on the decision process during classification and the

specificity of the system regarding the threshold delimiting the

two sleepiness classes, Sleepy and Non-Sleepy.

Index Terms: Sleepiness, Excessive Daytime Sleepiness, Au-

tomatic Speech Recognition, Voice

1. Introduction

Chronic sleepiness, and specifically Excessive Daytime Sleepi-

ness (EDS), impacts everyday life quality [1] and increases the

accidental risks of people affected by it. Indeed, in case of an-

tecedents of sleepiness at the wheel, people affected by EDS are

between two and three times more likely to have a road acci-

dent [2]. Moreover, with a prevalence in the general population

estimated between 10 % and 25 % [3], EDS is a public health

concern.

EDS is usually measured either objectively (EEG) or sub-

jectively (questionnaires). To measure objectively EDS, the

gold-standard measure is the Multiple Sleep Latency Test

(MSLT) [4]. This test consists of asking the patients to take

a nap five times during a day and to measure through EEG (ob-

jectively) their sleep latency at each nap. Although this test

is widely used, for example in narcolepsy diagnostic [5], it is

very expensive: not only the patients are hospitalized during

two nights and one entire day but the test requires qualified staff

to monitor and interpret the EEG, and the equipment is costly

and requires consumables [6].

Psychometric questionnaires, such as the Epworth Sleepi-

ness Scale (ESS) [7], do not suffer the same drawbacks. Gener-

ally fillable in few minutes and requiring only a pen, they aim

at measuring subjective EDS. However, what they exactly mea-

sure is still discussed and the obtained score does not necessar-

ily correlate with objective measures [8, 9].

This study proposes a third modality: detection of EDS

through voice. Indeed, when speakers are sleepy, their artic-

ulation and prosody are affected in a typical manner, allowing

the estimation of their sleepiness [10]. This has the advantage

to be implementable in various environments – including open

environments outside laboratories, and it is not invasive and

more comfortable for the patients, who do not have to wear

electrodes. It does not require complex calibration or specific

sensors and it is economical in terms of data processing, but

also in terms of equipment. Moreover, this modality could be

easily integrated into cutting-edge technologies such as virtual

medical interviews [11].

If the detection of short-term sleepiness has already been

the subject of two international challenges [12, 13], long-term

sleepiness (i.e. EDS) has recently shown a rising interest. Based

on the MSLT corpus (MSLTc) [14], two approaches have al-

ready been proposed to detect objective EDS through voice

(binary classification between Sleepy – SL and Non-Sleepy –

NSL). In [15], a system based on acoustic features explain-

able to physicians has achieved an Unweighted Average Re-

call (UAR) of 63.8%. Unfortunately, these performances are

not sufficient to use the system in the medical field. Another

approach relying on the hand-labeling of the mistakes the pa-

tients make during their reading has been proposed in [16] and

achieved 86.2% of UAR [15]. Nevertheless, these features still

represent a high human effort as they require time and specific

qualifications to annotate the recordings.

The objective of this study is twofold. First, in an attempt

to automatize these annotations, we propose to study Automatic

Speech Recognition (ASR) systems errors to automatically es-

timate EDS and eventually replace manually annotated reading

errors. Second, we seek to validate these new features through a

feature selection pipeline inspired by clinical validation of psy-

chometric questionnaires.

This paper is organized as follows. Section 2 introduces

the MSLTc and the objective EDS label used in this study. We

introduce the features in Section 3 and the feature selection and

classification pipeline in Section 4. Performances are presented

in Section 5 and we discuss the selected features in Section 6.

Finally, we conclude and draw future works in Section 7.

2. Corpus and EDS label

2.1. MSLT corpus

The corpus used in this study is the MSLT corpus (MSLTc),

relying on the recordings of 106 patients of the Sleep Clinic

of the Bordeaux University Hospital [14]. They undertake a

Multiple Sleep Latency Test: every two hours between 9 am and

5 pm, the patients are asked to take a nap that has a maximum



duration of 35 minutes. Before each nap, the patients are asked

to read out loud a 200 words text extracted from Le Petit Prince

of Saint-Exupéry. As a consequence, each speaker of the corpus

is recorded 5 times during the same day, with different texts

and different emotional, fatigue, and circadian states. To ensure

coherence of the speakers, we only keep the 93 patients of the

corpus affected by different forms of Hypersomnia.

2.2. Objective EDS label

During each nap, the sleep latency – i.e. the time between the

beginning of the test and the moment the patient falls asleep

– is assessed by electroencephalography (EEG). This value is

measured in minutes and ranges between 0 and 20 minutes: if

the patients did not fall asleep during the first 20 minutes of the

test, lights are switched on and the test is stopped. The objective

EDS of the patient is measured by the average sleep latency

across the nap: a mean MSLT sleep latency under 8 minutes is

usually associated with objective EDS [4].

Table 1: Distribution of the speakers across Sex and Sleepiness

class. SL: Sleepy (MSLT ≤ 8 min.), NSL: Non-Sleepy (MSLT >

8 min.)

Sex SL NSL TOTAL

Women 10 48 58

Men 11 24 35

TOTAL 21 72 93

3. Features

3.1. Acoustic features

The acoustic features used in this study are presented in detail in

[17, 18]. They are twofold: on one side, statistics (length and

ratio) of voiced and vocalic parts are automatically extracted

from audio; on the other side acoustic features are computed on

these parts (Harmonics and Formants amplitude and bandwidth,

Harmonic to Noise ratio, ...).

3.2. Hand-labeled reading mistakes

These features rely on the hand-labeling of the errors the pa-

tients make during the reading of the texts. Elaborated with

speech therapists, four errors have been studied for sleepi-

ness detection: stumbling errors (”hesitations and breaks in the

speech rhythm” [19]), paralexia (i.e. ”identification error of

written words consisting in the production of a word instead

of another” [19]), deletions of words and addition of words. In-

troduced in [16], these features have shown promising results

in detecting objective EDS [15]. They are referred to as ”R.

errors” in the following.

3.3. ASR errors

Annotating the previous errors is time-consuming and requires

training to differentiate errors. In an attempt to automatize the

labeling of reading errors, we measured the errors made by ASR

systems. Indeed, when subjects are sleepy, their articulation

and prosody are impaired [10] while the number of hesitations

and repeats increases. This alteration of speech due to sleepi-

ness may induce errors in ASR systems that could be used as

biomarkers of sleepiness. Thanks to recent advances on end-to-

end ASR systems allowing intermediate transcription units such

as characters or tokens, it is now possible to transcribe not only

words but also portions of words (Byte Pair Encoding – BPE).

In this study, we use an end-to-end system using RNN

transducters with attention, based either on words, BPE, or

characters, to transcribe words or BPE. The language model is

trained on a word, BPE, or character version of the ESTER cor-

pus [20]. A complete review of such systems and their perfor-

mances is proposed in [21]. The end-to-end system achieving

the best performances is the character-based one with a word-

based RNN language model achieving 17.6% of Word Error

Rate on the ESTER corpus.

In line with the previous results on reading mistakes [15],

we consider two types of errors in this study: insertions and

substitutions. Each type of error is computed on tokens and on

words, and we consider both the raw number of errors and their

proportion over the total number of transcription units, leading

to 8 features per system.

4. Classification pipeline

 Discrimination between SL and NSL
(Mann-Whitney's U)

DISCRIMINATION POWER

EXTERNAL VALIDATION
No correlation with Age, BMI, Neck Size, Anxiety,

Depression
(Spearman's ρ)

No discrimination between Sexes 
(Mann-Whitney's U)

No discrimination between pathologies
(Univariate ANOVA)

Acoustic
N = 329

R. errors
N = 28

ASR Ins. 
N = 112

 N = 25 N = 6 N = 9

ASR Sub.
N = 112

N = 90

 N = 1 N = 1 N = 6 N = 21

Figure 1: Feature selection pipeline. R. errors: reading er-

rors; ASR: Automatic Speech Recognition errors, Ins: inser-

tions; Sub: substitutions. SL: Sleepy (MSLT ≤ 8 min.), NSL:

Non-Sleepy (MSLT > 8 min.). BMI: Body Mass Index

4.1. Feature selection

For each speaker, each previously presented set of features is

computed on each of the 5 naps of the MSLT, to which we ag-

gregate the mean and the standard deviation across the naps,

resulting in 7 measures for each feature and speaker. The pro-

posed feature selection pipeline is represented in Figure 1. The

selected features have to comply with two constraints:

• Their distribution for each sleepiness class, measured by

a Mann-Whitney’s U (p < 0.05) has to be statistically

different (discrimination power of the features);

• They should not correlate (Spearman’s ρ, p > 0.05)

with age, Body Mass Index (BMI), neck size, anxiety

or depression (measured by the Hospital Anxiety and

Depression scale [22]); they should not discriminate sex

(Mann Whitney’s U, p > 0.05) or pathologies (Univari-

ate ANOVA, p > 0.05).

This pipeline, inspired by the external validation of psychome-

tric questionnaires, ensures that the selected features classify



only sleepiness, independently from the other measured speaker

traits. Indeed, even if some of these factors could correlate with

sleepiness, our aim is to train the classifier to learn the concept

of sleepiness, not to learn a confounding factor correlating with

sleepiness, that could still give good classification performances

but make the interpretation of such results impossible.

Moreover, compared with performance-driven feature se-

lection pipelines, this one works with few samples – statistical

tests do not require large amounts of data – and is independent

of the chosen metric: however the performances of the system

are measured, the selected features remain the same.

4.2. Classification

To ensure generalization and avoid overlearning, the classi-

fication is carried out under Leave One Speaker Out Cross-

Validation: each speaker is turn-by-turn isolated as a test

speaker, while the classification system is trained on the oth-

ers. Estimated and ground-truth sleepiness classes of the test

speaker are stacked and the classification metrics are computed

on this aggregation.

As the goal of this study is not to optimize the best possi-

ble classifier but to validate the use of new features for objective

sleepiness estimation through voice, the previously selected fea-

tures are aggregated (early-fusion), scaled, orthogonalized by a

Principal Components Analysis (PCA) and classified by a logis-

tic regression using the Python module sci-kit learn [23] with a

newton-cg solver and a balanced class-weighting.

5. Results

5.1. Classification performances

Table 2: Classification performances of the proposed pipeline.

UAR: Unweighted Average Recall, F1-score: class-weighted

average F1-score, AUC: Area Under the ROC Curve.

R. errors: Reading errors, ASR: Automatic Speech Recognition

system errors.

Features UAR F1 AUC

(a) ASR 73.2% 75.8% 74.8%

(b) R. errors 57.7% 73.4% 22.1%

(c) Acoustic 59.5% 66.0% 60.1%

(d) ASR + R. errors 71.8% 74.0% 74.5%

(e) ASR + Acoustic 73.2% 75.9% 74.4%

(f) R. errors + Acoustic 61.3% 70.2% 67.7%

(g) All 73.9% 76.8% 74.6%

The obtained Unweighted Average Recall (UAR), weighed

F1-score, and Area Under the ROC Curve (AUC) for the differ-

ent feature combinations are presented in Table 2.

The best performances are obtained by the system (g), ag-

gregating the three sets of features: this system achieves 73.9%

of UAR, 76.8% of weighted F1-score, and 74.6% of AUC. In

this system, the selected reading error is the number of addi-

tions on the fourth nap, and the selected acoustic features are

the bandwidth of the first Formant on the first nap. The selected

ASR errors are detailed below.

However, the ASR features alone (system (a)) achieve clas-

sification performances that are only slightly below (73.2% of

UAR, 75.8% of F1-score, and 74.8% of AUC): the acoustic and

reading errors seem to have little importance on the classifica-

tion. Regarding the cost-benefices balance of the hand-labeled

reading mistakes in comparison with the small performance en-

hancement they are the cause of when combined with ASR

and acoustic features (0.7% of absolute improvement regard-

ing UAR, 1% regarding the weighted F1-score), we choose to

discard these features. As the combination between ASR and

acoustic features (system (c)) achieves poorer results than ASR

features alone, we choose to focus on system (a), based only on

ASR features.

5.2. Performances of the selected system

The ROC curve of the systems (a) and (g) and the confusion ma-

trix of the system (a) are respectively represented in Figures 2a)

and 2b). The ROC curve confirms the close similarity of per-

formances of systems (a) and (g) and consolidates the choice to

focus on system (a).

Moreover, inspired by a previous study [18], we represented

in Figure 2c) the performances of the system (a) depending on

the threshold to distinguish SL from NSL. This graph repre-

sents the specificity of the selected features to the phenomena

they aim at measuring. As intended, the best performances are

obtained for a threshold of 8 minutes. Moreover, excepting

a crook for 7.5 minutes, these features achieve performances

higher than 70% for thresholds between 7.0 minutes and 9.5

minutes, allowing physicians to select the severity of objective

EDS they want to detect.

6. Discussions

6.1. PCA Analysis

Along the cross-validation process, the parameters of the PCA

and the weights of the logistic regression are averaged. Fig-

ure 3 represents the four different PCA dimensions and their

averaged corresponding weights in the classification. The most

important PCA component in the decision of the classifier is the

fourth dimension, relying on the difference between the num-

ber of insertions during the third nap and the standard deviation

of the substitutions (mean coefficient of the logistic regression:

α4 = 0.85). The sum of the same features directs the third di-

mension of the PCA, which has a weight of α3 = −0.22 in the

classifier decision. The insertions errors measured at the third

nap are made by a character-based ASR system with a word-

based language model, whereas the involved substitutions are

made by a BPE-based ASR system without a language model.

The second most important dimension is directed by the sub-

stitutions measured on second, fourth, and fifth naps, and the

mean value across the naps (α1 = 0.29). These errors come

from 7 ASR systems based on different units, with and without

language models. Finally, the least important PCA dimension

relies on the number of insertions on the first and the third naps

(α2 = −0.05). Contrary to the insertions of the third nap, the

selected insertions of the first nap are made by a BPE-based

ASR system without a language model.

6.2. Measures of the features

Regarding the selected features, the insertions seem to be rel-

evant precisely on the first and third naps, excluding the oth-

ers. When studying the selected features after the first step of

the validation process, the insertions of the first, third but also

fourth nap and their standard deviation across the naps discrim-

inate objective EDS. However, insertions during the fourth nap

correlate significantly with the BMI (Spearman’s ρ, p < 0.05)

and their standard deviation across naps discriminate patholo-
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gies (Univariate ANOVA, p < 0.05). This could be explained

by two phenomena. First, the texts are different for each it-

eration of the MSLT procedure. The ASR systems having an

inherent error rate depending on the content of the processed

text reading, it may be possible that the third text could be

the only one on which the link between insertions and objec-

tive EDS is distinguished independently from the other speaker

traits. Second, the speakers are recorded five times during the

day, in different emotional, fatigue, or circadian states, filtering

the expression of the speakers’ traits. Indeed, the first recording

is made at 9 am after breakfast and patients lunch few minutes

before the third nap: the state induced by taking a meal could

favor voice phenomena inducing the ASR system to produce in-

sertions errors linked with sleepiness, but discriminating it from

other traits.

7. Conclusion and perspectives

After validating the usefulness of reading mistakes analysis for

sleepiness detection, we wanted to fully automatize the process

by removing any human intervention in the labeling of errors.

We thus proposed to use the outputs of several ASR systems

based on end-to-end architectures using different target units

(words, characters, and BPE). The analysis of the errors pro-

duced by the systems when compared to the reference tran-

scription of the texts allowed us to reach a satisfying 73.2%

of UAR in objective sleepiness classification with a fully auto-

mated pipeline, compared to 55.7% UAR for manually anno-

tated reading mistakes. As a perspective, we will focus on im-

proving the feature selection process using for example decor-

relation techniques. Furthermore, we will validate the proposed

pipeline for the prediction of other objective and subjective

sleepiness measurements.
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