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Abstract: Despite recent publications, the strain transfer in distributed optical fiber sensors is still
often overlooked and poorly understood. In the first part of this paper, strain transfer is shown to
be driven by a second-order differential equation, whether the optical fiber is embedded into the
host material or surface-mounted. In this governing equation, only the value of a key parameter,
called strain lag parameter, varies according to the attachment configuration and the type of optical
fiber used as a sensor. Then, a general solution of the governing equation is proposed. It is an
analytical expression established from new boundary conditions that are more adequate than those
used previously in the literature and allows the determination of the strain profile in the core of
a distributed optical fiber sensor under any arbitrary strain fields. This general solution has been
validated by two experiments presented in the third part of the paper. A very good agreement
between the analytical solutions and measured strain profiles using a high spatial resolution opti-
cal interrogator for both uniform and non-uniform strain fields has been obtained. These results
highlight the importance of the strain lag parameter which must be taken into account for a correct
interpretation of measurements, especially in the case of important strain gradients.

Keywords: fiber optics sensors; strain transfer; distributed strain measurements

1. Introduction

For several years, there has been growing interest in new distributed fiber optic sensor
technologies for both industrial and research applications [1–4]. In addition to the intrinsic
characteristics of fiber optic sensors, such as lightweight, small size, immunity to electro-
magnetic interference and corrosion resistance, it is their capacity to provide distributed
measurements of strain or temperature (in others words a multitude of measurement points
along a long length of an optical fiber or optical cable) that is the most promising area
for developing new innovative monitoring techniques [5–7]. Three main distributed fiber
optic technologies, named after the backscattering of light phenomena on which they are
based (i.e., Brillouin, Raman and Rayleigh that can occur in the core of the optical fiber), are
currently used. Historically, distributed fiber optic systems based on Raman backscattering
were first developed to measure temperature only. In the early 2000s, optical interrogators
based on Brillouin and Rayleigh backscattering were then proposed to measure strain
or temperature. Even today, Brillouin and Rayleigh based technologies are constantly
evolving with ever more efficient measurement systems, particularly in terms of spatial
resolution, maximum sensing length and measurement frequency. Brillouin systems such
as BOTDR (Brillouin Optical Time Domain Reflectometry) and BOTDA (Brillouin Optical
Time Domain Analysis) can reach higher sensing length than Rayleigh systems such as
TW-COTDR (Tunable Wavelength Coherent Optical Time Domain Reflectometry) or OFDR
(Optical Frequency Domain Reflectometry) technologies. On the other hand, Rayleigh
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systems are known to have the best spatial resolution, typically of few millimeters. For
Brillouin systems, the spatial resolution is generally about 1 m (10 to 25 cm for the most
efficient optical interrogators). Their characteristics being quite different, Brillouin and
Rayleigh technologies are complementary in the sense that they cover a wide range of
applications. Consequently, Brillouin systems are preferentially used to monitor large
structures in the field (such as pipelines, dams, bridges, roads, railways, nuclear plants
and buildings) in order to detect leakage, concrete crack, fire, intrusion, etc. Rayleigh
systems are well adapted to monitor medium to small structures or specimens tested in
laboratories. Contrary to Brillouin systems, it is indeed expected that the high spatial
resolution of Rayleigh systems allows the measurement of local strain gradients such
as those induced by the presence of a singularity (crack) or by a particular geometry or
heterogeneous assembly of different materials. However, particular attention should be
paid to the measured distributed strain profiles. Strain transfer is often overlooked, which
can result in a misinterpretation of strain profiles measured by Rayleigh interrogators. In
fact, this effect depends on the optical fiber (or cable) used as a sensing element. Given that
optical fibers or optical cables used for sensing are made of several stacks of coatings with
different materials surrounding the core of the optical fiber (in which light propagates), a
mechanical strain transfer exists. Consequently, the strain profile in the core of the optical
fiber sensor measured by a high spatial resolution optical interrogator (as a Rayleigh system
without taking into account possible artifacts produced by the interrogator itself during
optical signal processing) may be different to the one existing around the optical fiber
sensor [8]. In order to correctly interpret strain profiles measured by Rayleigh interrogators,
it may therefore be necessary to take this strain transfer effect into account.

The model of the mechanical strain transfer in a fiber optic sensor based on mathemati-
cal expressions was first developed by Ansari [9]. The fiber optic sensor was assumed to be
embedded in a host material, and the geometrical model was reduced to three layers: fiber
core, coating and host structure. In this model, all the components are supposed to have a
mechanical linear elastic behavior. An analytical expression for the shear stress distribution
was derived by Ansari based on the so-called “strain-lag” approach initially proposed
in 1938 by Völkersen for the study of bonded assemblies [10] and in 1952 by Cox for the
study of the behavior of a discontinuous fiber in a matrix [11]. This analytical expression
is a homogeneous second-order differential equation from which a strain distribution is
obtained by considering a complete strain transfer at the fiber midpoint. Although Ansari’s
model is a reference in the field of fiber optic sensors, the latter assumption is not valid for
short-length sensors as shown by D. Li [12]. In 2006, this author proposed an improvement
of Ansari’s model by assuming that the strain gradients in the fiber core and coating are
of the same order. The governing equation obtained by D. Li for the strain distribution
is a non-homogeneous second-order differential equation in which a constant parameter
called strain-lag parameter appears. The latter contains both the geometrical parameters
and mechanical properties of the components of the three layers model. D. Li’s model was
useful for evaluating the strain profile along Fiber Bragg grating sensors. In order to make
an accurate measurement with this type of sensor (or at least to avoid misinterpretation
of results), it is indeed important to determine the strain profile along the Fiber Bragg
grating to ensure that it is almost constant in order to avoid distortion of the peak of the
Bragg wavelength. By imposing a uniform strain field along the sensor by considering a
symmetry with respect to the center of the grating and by assuming that the strains at the
both ends of the optical fiber are null as boundary conditions, D. Li’s model permits the
calculation of the strain profile in the core of the sensor and, thus, the verification that the
strain transfer was quasi completed along the fiber Bragg grating. Although D. Li’s model
was first developed for Bragg grating sensors, it is worth noting that nothing prevents it
from being used for distributed fiber optic sensors. Later on, similar models were proposed
for describing the strain transfer. For instance, Feng [13] proposed a model for distributed
fiber sensors in the presence of a discontinuity in the host material. In the governing
equation of D. Li’s model, he introduced the Crack Opening Displacement (COD) and
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obtained a mathematical expression of the crack-induced strain profile in the core of the
optical fiber. He also extended the strain transfer model to include the elasto-plastic and
plastic phases of the coating, as previously performed by Q. Li [14] with the Ansari model.
However, in practice, the non-linear behavior of fiber optic sensors was avoided, especially
for on-site monitoring, because it corresponds produces irreversible damage in the sensor.
In 2016, a new improvement of D. Li’s model was proposed by Wang [15] in a study of
the behavior of optical fibers embedded in asphalt pavements. Contrary to the models
of Ansari and D. Li that considered perfect bonding between all the components of the
three-layers system, Wang introduced an imperfect interface bonding in the strain transfer
model by using an interfacial law for the interface between the optical fiber sensor and the
host material. This law states that the interfacial shear stress is proportional to the relative
displacement between the two layers surrounding the interface. The proportionality coeffi-
cient corresponds to the interface stiffness parameter, which tends towards infinity for a
perfectly bonded interface and to zero if there is no mechanical interaction between the
two layers surrounding the interface. In a study of the bonding of an embedded optical
cable in concrete, Henault [16] demonstrated a from finite element analysis confirmed by
experimental results of pull-out tests that the interface stiffness parameter for the interface
between the embedded optical cable and the concrete substrate is an important factor to
consider for proper stress transfer modeling of fiber optic sensors. It is worth noting that
the governing equation of the strain transfer derived by Wang is similar to one obtained
by D. Li (i.e., a non-homogeneous second-order differential equation) but with different
strain lag parameter equations. Indeed, the strain lag parameter deduced by Wang addi-
tionally includes the interface stiffness parameter for the interface between the embedded
optical cable and the host material. Recently, Bassil [17] generalized the imperfect bonding
condition for all the interfaces of a multi-layer system, obtaining a new expression for the
strain lag parameter. Then, he used this new strain transfer model for measuring crack
openings in concrete [18]. A general expression of the crack-induced strain transfer from a
fractured concrete material to an optical fiber was established and validated experimentally
for different geometries of optical cables.

Despite these recent publications, strain transfer in distributed optical fiber sensors is
still often overlooked and poorly understood. However, with the constant improvement of
the spatial resolution of the optical interrogators, this effect can no longer be ignored. The
understanding of the strain transfer becomes more and more necessary in order to avoid
misinterpretation of strain profiles measurements. Moreover, a general method allowing
the determination of the strain profile experienced by the optical fiber for any arbitrary
strain distribution in the host material is still missing. Almost all publications on strain
transfers are restricted to the uniform strain field in the host material. Nevertheless, it is
important to underline that a recent publication [19] tried to tackle this issue by proposing,
based on D. Li’s model, several formulas corresponding to various representative strain
fields in the host material. However, the authors have used boundary conditions that are
questionable. Indeed, they have assumed that the strain in the core of the optical fiber is
equal to zero at x = 0 and x = L, while they imposed a constant strain in the host material
at the same abscissa in their case study on a uniform strain field. Due to the strain transfer
in the fiber optic sensor, these boundary conditions obviously cannot be verified (i.e., the
strain in the core of the optical fiber can absolutely not be equal to zero at x = 0 and x = L).
Moreover, this is what can be observed in the measurement results presented in [19], which
do not correspond well to the theoretical results, especially in the vicinity of the boundary
conditions. In order to better match the calculated and measured strain profiles at x = 0
and x = L, ref. [20] recently proposed considering a percentage of residual strain at the
boundary conditions. However, it should be noted that this parameter is fixed arbitrarily
without any theoretical basis.

In this paper, a strain transfer analysis on a five-layer model that is more representative
of common optical cables available on the market is presented. This modeling considers
the bonding condition for all the interfaces of a multi-layer system, but no assumptions
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are made on the shear modulus of the coating layers unlike the model proposed by Bassil.
This results in a new expression for the strain lag parameter. In addition, a method for
determining the strain profile of a distributed fiber optic sensor under any arbitrary strain
distribution in the host material is proposed for the first time. It is important to underline
that a new set of boundary conditions is used to obtain a general solution. From the latter,
closed-form solutions of the strain transfer function can be deduced. In order to show, in
practice, how the general solution is to be used, the calculations of closed-form for uniform
and non-uniform strain fields are presented. Then, experimental measurements obtained
with a high spatial resolution Optical Frequency Domain Reflectometer (OFDR) are con-
fronted with the results calculated from the derived formulas in order to demonstrate the
validity of the new boundary conditions and the precision of the method.

2. Analytical Modeling of the Strain Transfer

This section describes the geometrical model, the assumptions and the calculation
of the governing equation for the strain transfer in distributed optical fiber sensors em-
bedded into a host material from which a new expression of the strain-lag parameter is
obtained. It will be also be shown that the obtained governing equation can also be used for
surface-mounted optical fibers with another expression for the strain-lag parameter. Then,
the importance of the strain-lag parameter for the characterization of the strain transfer
is discussed.

2.1. Governing Equation

In distributed strain measurements, the sensing element is a single-monomode optical
fiber similar to the ones used in telecommunication systems. Typically, the optical fiber is
composed of a glass core (around 10 µm) surrounded by an optical cladding made of glass
(with a lower refractive index than the core’s index) of 125 µm diameter. Since bare optical
fiber is brittle, a protective coating with polymer is added. In general, single or dual acrylate
coating, polyimide coating, Ormocer coating (the latest coating proposed in the market)
and/or silicone coating (for applications requiring higher temperature performance) are
used. According to the type of coating and its manufacturer, the external diameter of the
optical fiber can vary from from 150 µm to 300 µm. These kinds of optical fibers are well
adapted for surface-mounted applications, as shown in the study of Weisbrich [21] which
compares different fiber coatings and adhesives on steel surfaces for distributed optical
strain measurements. For embedded optical fibers in a host material (such as concrete),
more robust sensors are used to prevent damage during the installation. The optical fibers
are usually packaged with additional protective coatings. For these sensors, often called
optical cables, the outer diameter can vary approximately from 0.9 µm to 5 mm. Thus,
in order to cover the large variety of optical cables used in real applications, a five-layer
model is chosen in this study. Note that this choice has an impact only on the strain-lag
parameter as it will be discussed later in this paper.

Figure 1 shows the geometry of the five-layer model with the different normal stresses
and shear stresses that occur in an infinitesimal part of the optical cable when the host
material is subjected to an arbitrary longitudinal stress. Due to symmetry, only half of the
system is analyzed. The outer radii of different layers are denoted as r f , rc, rp 1, rp 2 and rp 3
for the radius of core, optical cladding, coating #1, coating #2 and coating #3, respectively.
The longitudinal stress in the host material is transferred by shear stresses to different
layers of the optical sensor up to the fiber’s core where the light of the laser of the optical
interrogator propagates. The shear stresses τ and normal stresses σ in the fiber’s core, in
the optical cladding, in the coating #1, in the coating #2 and in coating #3 are denoted
as τf , σf , τc, σc, τp 1, σp 1, τp 2, σp 2 and τp 3, σp 3 respectively. The assumptions used in the
stress-strain transfer analysis proposed in this paper are presented as follows.

Assumption 1. The host material and all the materials that make up the optical fiber are supposed
to be isotropic materials and have linear elastic behaviors.
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Assumption 2. The optical fiber cable deforms essentially under the effect of the tensile stress and
the Poisson effect is considered negligible.

Assumption 3. A perfect bonding at the interface between the optical fiber core and the optical
fiber cladding is assumed.

Assumption 4. The behavior of all the interfaces (with the exception of the interface between the
optical fiber core and the optical fiber cladding) is considered to be imperfect and can be modeled as
follows:

τi = ki/j ∆ui/j (1)

where τi is the shear stress in the layer i at the interface with the adjacent layer j and ∆ui/j is the
relative displacement between the two layers i and j. The coefficient ki/j represents the interface
stiffness parameter. For ki/j = 1, the two adjacent layers i and j are perfectly bonded and, conversely,
for ki/j = 0, they are fully debonded.

Assumption 5. The strain gradients are expected to be of the same order for adjacent layers:

dεi(x)
dx

≈
dεj(x)

dx
(2)

where i and j refer to c, f , p 1, p 2 and p 3, respectively, for the layers designated by core, optical
cladding, coating #1, coating #2 and coating #3 in Figure 1.
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Figure 1. Schematic diagram showing the geometry of the optical fiber sensor embedded in a host
material and the stresses used in the stress-strain analysis.

From the Assumptions 1 and 2, the relations between stress and strain in the different
components of the modeled optical cable are provided by Hooke’s law:

σi = Ei εi (3a)

τi = Gi
∂ui
∂r

(3b)

where Ei and Gi are the Young’s modulus and the shear modulus coefficients of the
material of the layer i, respectively.

By applying Newton’s third law, the equations of equilibrium can be written as the
following for each part of the optical cable shown in Figure 1.
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0 ≤ r ≤ r f

π r2 (σf + dσf )− π r2 σf + 2π r
∫ dx

0
τf (ξ, r) dξ = 0 (4a)

r f ≤ r ≤ rc

π (r2 − r2
f )(σc + dσc)− π (r2 − r2

f ) σc + 2 π r
∫ dx

0
τc(ξ, r) dξ − 2 π r f

∫ dx

0
τf (ξ, r f ) dξ = 0 (4b)

rc ≤ r ≤ rp1

π (r2 − r2
c )(σp1 + dσp1)− π (r2 − r2

c ) σp1 + 2 π r
∫ dx

0
τp1(ξ, r) dξ − 2 π rc

∫ dx

0
τc(ξ, rc) dξ = 0 (4c)

rp1 ≤ r ≤ rp2

π (r2 − r2
p1)(σp2 + dσp2)− π (r2 − r2

p1) σp2 + 2 π r
∫ dx

0
τp2(ξ, r) dξ − 2 π rp1

∫ dx

0
τp1(ξ, rp1) dξ = 0 (4d)

rp2 ≤ r ≤ rp3

π (r2 − r2
p2)(σp3 + dσp3)− π (r2 − r2

p2) σp3 + 2 π r
∫ dx

0
τp3(ξ, r) dξ − 2 π rp2

∫ dx

0
τp2(ξ, rp2) dξ = 0 (4e)

By assuming that the shear stresses τc(x), τf (x), τp1(x), τp2(x) and τp3(x) are constant
along the micro-section of length dx, the previous equations can be rewritten as follows.

0 ≤ r ≤ r f τf (x, r) = − r
2

dσf (x)
dx

(5a)

r f ≤ r ≤ rc τc(x, r) = −
r2 − r2

f

2 r
dσc(x)

dx
+

r f

r
τf (x, r f ) (5b)

rc ≤ r ≤ rp1 τp1(x, r) = − r2 − r2
c

2 r
dσp1(x)

dx
+

rc

r
τc(x, rc) (5c)

rp1 ≤ r ≤ rp2 τp2(x, r) = −
r2 − r2

p1

2 r
dσp2(x)

dx
+

rp1

r
τp1(x, rp1) (5d)

rp2 ≤ r ≤ rp3 τp3(x, r) = −
r2 − r2

p2

2 r
dσp3(x)

dx
+

rp2

r
τp2(x, rp2) (5e)

With Assumption 5 and Equation (3a), the new following relations can be obtained as
follows.
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0 ≤ r ≤ r f

τf (x, r) =− r
2

dσf (x)
dx

(6a)

r f ≤ r ≤ rc

τc(x, r) =−
(

r2 − r2
f

2 r
Ec

E f
+

r2
f

2 r

)
dσf (x)

dx
(6b)

rc ≤ r ≤ rp1

τp1(x, r) =−
(

r2 − r2
c

2 r
Ep1

E f
+

r2
c − r2

f

2 r
Ec

E f
+

r2
f

2 r

)
dσf (x)

dx
(6c)

rp1 ≤ r ≤ rp2

τp2(x, r) =−
(

r2 − r2
p1

2 r
Ep2

E f
+

r2
p1 − r2

c

2 r
Ep1

E f
+

r2
c − r2

f

2 r
Ec

E f
+

r2
f

2 r

)
dσf (x)

dx
(6d)

rp2 ≤ r ≤ rp3

τp3(x, r) =−
(

r2 − r2
p2

2 r
Ep3

E f
+

r2
p2 − r2

p1

2 r
Ep2

E f
+

r2
p1 − r2

c

2 r
Ep1

E f
+

r2
c − r2

f

2 r
Ec

E f
+

r2
f

2 r

)
dσf (x)

dx
(6e)

According to Equation (3b), by integrating the shear stresses given by
Equations (6b)–(6e), the relative displacement between the different layers of the system
can be expressed as follows.

uc(x, r f )− uc(x, rc) =−
1

G f

[(
r2

f − r2
c

4
− r2

c
2

ln
( r f

rc

))E f

Ec
+

r2
c
2

ln
( r f

rc

)] dσf (x)
dx

(7a)

up 1(x, rp 1)− up 1(x, r f ) =−
1

Gp 1

[(
r2

p 1 − r2
f

4
−

r2
f

2
ln

(
rp 1

r f

))
Ep 1

Ec
+(

r2
f − r2

c

2
E f

Ec
+

r2
c
2

)
ln

(
rp 1

r f

)]
dσf (x)

dx
(7b)

up 2(x, rp 2)− up 2(x, rp 1) =−
1

Gp 2

[(
r2

p 2 − r2
p 1

4
−

r2
p 1

2
ln

(
rp 2

rp 1

))
Ep 2

Ec
+(

r2
p 1 − r2

f

2
Ep 1

Ec
+

r2
f − r2

c

2
E f

Ec
+

r2
c
2

)
ln

(
rp 2

rp 1

)]
dσf (x)

dx
(7c)

up 3(x, rp 3)− up 3(x, rp 2) =−
1

Gp 3

[(
r2

p 3 − r2
p 2

4
−

r2
p 2

2
ln
(

rp 3

rp 2

))
Ep 3

Ec
+(

r2
p 2 − r2

p 1

2
Ep 2

Ec
+

r2
p 1 − r2

f

2
Ep 1

Ec
+

r2
f − r2

c

2
E f

Ec
+

r2
c
2

)
ln
(

rp 3

rp 2

)] dσf (x)
dx

(7d)
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With the Assumptions 3 and 4, the following equations can also be obtained.

u f (x, r f )− uc(x, r f ) =0 (8a)

up 1(x, rc)− u f (x, rc) =
τc(x, rc)

kc
(8b)

up 2(x, rp 1)− up 1(x, rp 1) =
τp 1(x, rp 1)

kp 1/2
(8c)

up 3(x, rp 2)− up 2(x, rp 2) =
τp 2(x, rp 2)

kp 2/3
(8d)

um(x, rp 3)− up 3(x, rp 3) =
τp 3(x, rp 3)

kp 3/m
(8e)

The expressions of τc(x, rc), τp 1(x, rp 1), τp 2(x, rp 2) and τp 3(x, rp 3) are given by the
relations (6b)–(6e), respectively. Furthermore, um(x, rp 3) can be expressed as follows.

um(x, rp 3) =um(x, rp 3)− up 3(x, rp 3) + up 3(x, rp 3)− up 3(x, rp 2)

+ up 3(x, rp 2)− up 2(x, rp 2) + up 2(x, rp 2)− up 2(x, rp 1)

+ up 2(x, rp 1)− up 1(x, rp 1) + up 1(x, rp 1)− u f (x, rp 1)

+ uc(x, rp 1)− uc(x, rc) + u f (x, rc)− uc(x, r f )

+ uc(x, r f )− u f (x, r f ) + u f (x, r f ) (9)

By using Equations (7a)–(7d) and (8a)–(8e), the relation (9) can be reduced to the
following case:

um(x, rp 3) = −λ
dε f (x)

dx
+ u f (x, r f ) (10)

where λ is given by the following.

λ =
E f

kp 3/m

(
r2

p3 − r2
p2

2 rp3

Ep3

E f
+

r2
p2 − r2

p1

2 rp3

Ep2

E f
+

r2
p1 − r2

c

2 rp3

Ep1

E f
+

r2
c − r2

f

2 rp3

Ec

E f
+

r2
f

2 rp3

)

+
E f

Gp 3

[(
r2

p 3 − r2
p 2

4
−

r2
p 2

2
ln
(

rp 3

rp 2

))
Ep 3

E f
+(

r2
p 2 − r2

p 1

2
Ep 2

E f
+

r2
p 1 − r2

c

2
Ep 1

E f
+

r2
c − r2

f

2
Ec

E f
+

r2
f

2

)
ln
(

rp 3

rp 2

)]

+
E f

kp 2/3

(
r2

p2 − r2
p1

2 rp2

Ep2

E f
+

r2
p1 − r2

c

2 rp2

Ep1

E f
+

r2
c − r2

f

2 rp2

Ec

E f
+

r2
f

2 rp2

)

+
E f

Gp 2

[(
r2

p 2 − r2
p 1

4
−

r2
p 1

2
ln

(
rp 2

rp 1

))
Ep 2

E f
+(

r2
p 1 − r2

c

2
Ep 1

E f
+

r2
c − r2

f

2
Ec

E f
+

r2
f

2

)
ln

(
rp 2

rp 1

)]

+
E f

kp 1/2

(
r2

p 1 − r2
c

2 rp 1

Ep1

E f
+

r2
c − r2

f

2 rp 1

Ec

E f
+

r2
f

2 rp 1

)

+
E f

Gp 1

[(
r2

p 1 − r2
c

4
− r2

c
2

ln
(

rp 1

rc

))
Ep 1

E f
+

(
r2

c − r2
f

2
Ec

E f
+

r2
f

2

)
ln
(

rp 1

rc

)]

+
E f

kc

(
r2

c − r2
f

2 rc

Ec

E f
+

r2
f

2 rc

)



Sensors 2021, 21, 5423 9 of 33

+
E f

Gc

[(
r2

c − r2
f

4
−

r2
f

2
ln

(
rc

r f

))
Ec

E f
+

r2
f

2
ln

(
rc

r f

)]
(11)

By calculating the derivative of Equation (10), the strain in the core of the optical fiber
sensor ε f (x) can be linked to the strain in the host material εm(x) by the following expression:

d2ε f (x)
dx2 − β2 ε f (x) = −β2 εm(x) (12)

where the coefficient β is defined as the strain-lag parameter given by the following.

β2 =
1
λ

(13)

The coefficient β depends on the geometry of the optical fiber sensor, on the mechanical
properties of the materials of the different layers and on the interface stiffness parameters
between the layers. Note that the methodology used to establish Equation (12) can be
applied to optical fiber sensors having more or fewer layers than the case study presented
in this paper. For instance, the strain-lag parameter is given for a three-layer and four-layer
system in Appendix A.

2.2. Discussion on the Governing Equation on the Strain-Lag Parameter

The strain transfer from the host material to the optical fiber core is, thus, given by the
governing Equation (12) that depends on the strain-lag parameter β. This key parameter
is an intrinsic characteristic of all fiber optic sensors. According to the value of β, the
strain transfer can be significantly different from one sensor to another. To provide a
better idea of the importance of this parameter, a three-layer system (a core, an optical
cladding and a coating) with perfect bonding conditions at the interface is considered for
the sake of simplicity and two optical fibers made with different coatings, acrylate and
polyimide, are compared. The respective strain-lag parameters can be calculated from
Equation (A2) with the optical fiber’s dimensions and material properties given in Table 1.
The calculation produces two very different values: 90 m−1 and 6096 m−1 for the optical
fibers with an acrylate coating and a polyimide coating, respectively. This result means
that an optical fiber with a polyimide coating has better strain transfer than an optical fiber
with an acrylate coating. More generally, the higher the strain-lag value, the shorter the
distance is for a complete strain transfer from the host material to the core of the fiber sensor.
This effect will be illustrated in the section presenting different strain profiles obtained for
different kinds of strain distribution for εm(x). Moreover, it is important to point out that
the values of the strain-lag determined in the example above correspond to an idealized
case study, i.e., without taking into account the interface stiffness between all the interfaces
of the system.

In practice, the strain-lag values will be lower than those obtained in the above
example. To give a better idea of the impact of the stiffness of the interfaces, only the
interface stiffness between the optical fiber and the host material is considered in addition
to the above example. A value of 103 GPa/m (chosen in the middle of the range of the
values used in [16] for the finite element simulations of pull-out test on an optical cable
embedded inside a concrete specimen) is taken for kp 1/m in Equation (A2). By taking the
interface stiffness between the optical fiber and the host material into account, the values
of the strain-lag parameter changes from 90 m−1 to 87 m−1 and from 6096 m−1 to 235 m−1

for the optical fibers with an acrylate coating and with a polyimide coating, respectively.
This result shows that the strain-lag parameter does not only depend on the mechanical
properties of the optical fiber’s layers but also on its interaction with the host material.
Some manufacturers have proposed fiber optic sensors with rough surface in order to
increase their bonding with the host material.
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Table 1. Mechanical properties and dimensions of the optical fiber components [13,22].

Optical Fibers Components

Fiber’s Core Optical Cladding Coating

Material Silica Silica Acrylate Polyimide
Diameter [µm] 9 125 250 160

Young’s modulus [GPa] 72 72 2.10−3 3
Shear modulus [GPa] 30 30 8.10−4 1.43

In this paper, only the case of a fiber optic sensor embedded into the host material
has been considered. However, other installation configurations exist. For steel specimens,
they are generally glued directly on surfaces with adhesives. For concrete specimens, fiber
optic sensors are often introduced inside a surface groove filled with epoxy adhesive. In
these surface-mounted configurations, the adhesive stiffness has an important impact on
strain transfer as shown by the studies comparing several types of adhesives in [23] with
an optical fiber attached on the concrete specimen subjected to a three-point loading test.
Moreover, it is worth noting that the fiber optic sensor placed in a groove can be considered
as embedded in the adhesive. In a coarse way, the model presented in the first part of this
paper can be used to estimate the strain transfer for the surface-mounted configuration in
a groove by adding an additional layer to take the adhesive into account. For example,
the strain-lag parameter can be compared with a four-layer model (Equation (A3)) for a
polyimide fiber embedded in a groove with several adhesives having different Young’s and
shear modulus. For instance, values of 10 MPa and 1000 MPa are chosen for the Young’s
modulus and 3.8 MPa and 380 MPa for the shear modulus. According to the values given
in Table 1 for the polyimide fiber and by considering an outer diameter of the second layer
(adhesive layer) equal to 500 µm and an interface stiffness between the adhesive and the
host material equal to 103 GPa/m, the strain-lag parameter can vary from 142 m−1 with
the soft adhesive to 368 m−1 with the stiff adhesive. This result shows that the distance for
a complete strain transfer from the host material to the core of the fiber sensor is longer
for soft adhesives (such as silicone) than for stiff adhesive (such as epoxy) in accordance
with the results of the study [22] in which finite element simulations have been compared
to experimental results obtained with an optical fiber sealed in a groove at the surface of
concrete specimens subjected to compressive tests.

For surface-mounted optical fiber sensors without grooves, several analytical models
are proposed in the literature [20,24,25]. Similar to the models for an embedded optical fiber
sensor, they are based on equilibrium equations that assume the following: All materials
have a linear elastic behavior, all the interfaces are supposed to be perfectly bonded and the
strain is transferred from the host material to the fiber sensor only by shear. Only the shear
stress at the interface between the coating and the adhesive is expressed differently in order
to take the geometry of the adhesive layer (the height of the adhesive layer varies in the
direction transverse to the optical fiber) into account. Consequently, the governing equation
for the strain transfer is the same as Equation (12), established for embedded optical fiber
sensors. Only the expression of the strain lag parameter is different. Thus, it is obviously
the key parameter for describing the strain transfer in an optical fiber sensors, regardless
of whether they are surface-mounted or embedded in a host material. Furthermore, it is
important to point out that the strain lag parameter depends not only on the geometrical
and mechanical properties of the optical fiber but also on the installation conditions that
can differ from one application to another. For surface-mounted sensors, the quality of
adhesive, the surface preparation, the operator’s skill, etc., can affect the stiffness of the
interface between the optical fiber sensor and the substrate and consequently the strain-lag
parameter. For embedded configurations, the fluidity and cohesiveness of the concrete, etc.
can change the strain-lag parameter as shown in [18]. In addition, for complex structures
of optical cables, the mechanical properties of the different components are often unknown
(not given in the datasheet and sometimes even more unknown by the manufacturer itself)
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and laboratory tests must be performed [16]. Consequently, in practice, the strain-lag
parameter is difficult to determine. However, it should be noted that the method used
in [17] for the monitoring of concrete crack-openings allows measuring the strain lag
parameter indirectly through the strain transfer model.

3. Generalized Solution for Determining the Strain Profile in an Optical Fiber under
Any Arbitrary Strain Distribution

In the previous section, it was shown that the strain transfer governing equation in
distributed optical fiber sensors, for both surface-mounted and embedded configurations,
corresponds to the differential Equation (12). In this section, a general solution for deter-
mining strain profile in optical fiber ε f (x) under any arbitrary strain distribution εm(x)
(at the level of host material) is detailed, and two case studies are presented. It should be
emphasized that the originality of our solution lies in the introduction of new boundary
conditions. In our point of view, the ones used in [19] or [20] are not very adequate as
already mentioned in the introduction.

3.1. Presentation of the Generalized Solution

Before introducing the new boundary conditions, it is important to mention that
the general solution of the differential Equation (12) is given by the sum of the solution
corresponding to the homogeneous equation and the particular solution ε

p
f (x) of the

non-homogeneous equation:

ε f (x) = A exp(β x) + B exp(−β x) + ε
p
f (x) (14)

where A and B are unknown constants that can be determined by the boundary condi-
tions. The particular solution ε

p
f (x) can be expressed as follows(see Appendix B for the

demonstration):

ε
p
f (x) = −β

∫ x

0
εm(x′) sinh

(
β(x− x′)

)
dx′ (15)

where εm(x) is the strain profile at the surface of the substrate where the optical fiber
is fixed.

In order to obtain a general solution of Equation (12), the following boundary condi-
tions are settled. As shown in Figure 2, an optical fiber sensor of a length L is considered.
This part is localized between the abscissas noted a and b in Figure 2. The others two
parts between the abscissas x = 0 and x = a and between x = b and x = L are used to
connect an optical interrogator and to make an optical termination. For these parts, the
optical fiber is considered free. Consequently, εm(x) is assumed to be null if 0 ≤ x < a and
b < x ≤ L. On the other hand, no assumption is imposed on the shape of εm(x) between
the abscissas x = a and x = b. This leads to the following boundaries.

{
ε f (0) = 0

ε f (L) = 0

(16a)

(16b)

Note that the abscissas x = a and x = b cannot be equal to x = 0 and x = L,
respectively, for physical reasons (ends of the optical fiber), and the strain profile at the
surface of the substrate, εm(x), at the abscissas x = a and x = b are εm(a) = εa and
εm(b) = εb, respectively, where εa and εb can take on any arbitrary values.
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Figure 2. Arbitrary strain profile εm(x) between the abscissas a and b along the optical fiber of
length L.

Since the strain measured by the optical fiber corresponds to a continuous and dif-
ferentiable function at the abscissas x = a and x = b, the following conditions must also
be verified.

dε f 1(x)
dx

∣∣∣∣∣
x=a

=
dε f 2(x)

dx

∣∣∣∣∣
x=a

(17a)

dε f 2(x)
dx

∣∣∣∣∣
x=b

=
dε f 3(x)

dx

∣∣∣∣∣
x=b

(17b)

Moreover, since only a part of the optical fiber is used as a sensor, the strain lag
parameter β is also assumed to be different between the abscissas x = a and x = b and
those between x = 0 and x = a and between x = b and x = L. For instance, for an optical
fiber glued between x = a and x = b, the corresponding strain lag parameter should be
lower (due to the layer of the adhesive) than the one corresponding to the part of the optical
fiber between x = 0 and x = a and between x = b and x = L (without the layer of the
adhesive), as discussed in the previous section. As shown in the Figure 3, the strain lag
parameter β is then defined by the following:{

β =β1 if 0 ≤ x < a or b < x ≤ L

β =β2 if a ≤ x ≤ b

(18a)

(18b)

where β1 and β2 can take on any arbitrary values. From the statements on the strain profile
εm(x) and the strain lag parameters β1 and β2, the particular solution ε

p
f (x) must, therefore,

be determined by piecewise functions. Indeed, three cases must be taken into account
according to the values of x.
♦ Case: 0 ≤ x ≤ a

From Equation (15), we immediately obtain the following:

ε
p
f 1(x) = 0 (19)

and, consequently, the form of the general solution can be expressed as follows:

ε f 1(x) = A1 exp(β1 x) + B1 exp(−β1 x) (20)

where A1 and B1 are constants.
♦ Case: a ≤ x ≤ b
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From Equation (15), the particular solution is written as:

ε
p
f 2(x) = −β2

∫ x

a
εm(x′) sinh

(
β2(x− x′)

)
dx′ (21)

and the general solution is expressed by:

ε f 2(x) = A2 exp(β2 x) + B2 exp(−β2 x) + ε
p
f 2(x) (22)

where A2 and B2 are constants.
♦ Case: b ≤ x ≤ L

According to Equation (15), the particular solution is as follows:

ε
p
f 3(x) = −β1

∫ b

a
εm(x′) sinh

(
β1(x− x′)

)
dx′ (23)

and, consequently, the form of the general solution can be written as the following:

ε f 3(x) = A3 exp(β1 x) + B3 exp(−β1 x) + ε
p
f 3(x) (24)

where A3 and B3 are constants.
By using the boundary conditions (16a) to (16b) and the conditions (17a) to (17b), a set

of equations can be obtained from which the constants A1, B1, A2, B2, A3 and B3 can be
determined. Indeed, this set of equations can be rewritten in the following matrix form:

2 sinh(β1 a) − exp(β2 a) − exp(−β2 a) 0
2 cosh(β1 a) − exp(β2 a) exp(−β2 a) 0

0 exp(β2 b) exp(−β2 b) −(exp(β1 b)− exp(β1(2 L− b)))
0 exp(β2 b) − exp(−β2 b) −β1 (exp(β1 b) + exp(β1(2 L− b)))




A1
A2
B2
A3

 =


R1
R2
R3
R4

 (25)

where the coefficients R1, R2, R3 and R4 can be expressed as the following.

R1 = 0

R2 = 0

R3 = ε
p
f 3(b)− ε

p
f 2(b)− ε

p
f 3(L) exp(β1 (L− b))

R4 =
dε

p
f 3(x)

dx

∣∣∣∣∣
x=b

−
dε

p
f 2(x)

dx

∣∣∣∣∣
x=b

+ β1 ε
p
f 3(L) exp(β1 (L− b))

(26a)

(26b)

(26c)

(26d)

By applying Cramer’s rule, the parameters A1, A2, B2 and A3 can be determined. Note
that the constants B1 and B3 depends on the others parameters. In Appendix C, the reader
can find a detailed presentation of the equations resulting in the matrix Equation (25) and
the expressions of the parameters A1, A2, B2 and A3.

As a result, the general solution of Equation (12) can be then expressed as the following:

ε f (x) =


ε f 1(x) 0 ≤ x ≤ a

ε f 2(x) a ≤ x ≤ b

ε f 3(x) b ≤ x ≤ L

(27)

where the following is the case:
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ε f 1(x) =
β2

2
α

{
(β1 + β2)

∫ b

a
εm(x′)

[
exp(−β2 (2 b− a− x′)− β1 (x− 2 b + a + 2 L))

− exp(β2 (a− x′)− β1 (x + a))− exp(−β2 (2 b− a− x′) + β1 (x + 2 b− a− 2 L))

+ exp(β2 (a− x′) + β1 (x− a))
]
dx′

+ (β2 − β1)
∫ b

a
εm(x′)

[
exp(β2 (a− x′)− β1 (x− 2 b + a + 2 L))

+ exp(β1 (x− a)− β2 (2 b− a− x′))− exp(−β1 (x + a)− β2 (2 b− a− x′))

− exp(β2 (a− x′) + β1 (x + 2 b− a− 2 L))
]
dx′
}

(28a)

ε f 2(x) =
β2

α

{(
β2

1 + β2
2

2

) ∫ b

a
εm(x′)

[
exp(−β2 (x− 2 a + 2 b− x′))− exp(−β2 (x− 2 a + x′)− 2 β1 a)

+ exp(−β2 (x− 2 a + 2 b− x′)− 2 β1 (L− b + a))− exp(β2 (x− 2 b + x′)− 2 β1 (L− b))

− exp(β2 (x− 2 b + x′)− 2 β1 a)− exp(−β2 (x− 2 a + x′)− 2 β1 (L− b))
]
dx′

+

(
β2

2 − β2
1

2

) ∫ b

a
εm(x′)

[
exp(−β2 (x− 2 a + x′)− 2 β1 (L− b + a)) + exp(β2 (x− 2 b + x′))

+ exp(β2 (x− 2 b + x′)− 2 β1 (L− b + a))− exp(−β2 (x− 2 a + 2 b− x′)− 2 β1 a)

− exp(−β2 (x− 2 a + 2 b− x′)− 2 β1 (L− b)) + exp(−β2 (x− 2 a + x′))
]
dx′

+β1 β2

∫ b

a
εm(x′)

[
exp(−β2 (x− 2 a + x′)− 2 β1 (L− b))− exp(−β2 (x− 2 a + 2 b− x′))

+ exp(−β2 (x− 2 a + 2 b− x′)− 2 β1 (L− b + a))− exp(β2 (x− 2 b + x′)− 2 β1 (L− b))

+ exp(β2 (x− 2 b + x′)− 2 β1 a)− exp(−β2 (x− 2 a + x′)− 2 β1 a))
]
dx′

+

(
β2

1 + β2
2

2

) ∫ x

a
εm(x′)

[
exp(−β2 (x− x′))− exp(−β2 (x + 2 b− 2 a− x′)− 2 β1 (L− b + a))

+ exp(−β2 (2 b− 2 a− x + x′)− 2 β1 (L− b + a)) + exp(−β2 (x− x′)− 2 β1 (L− b + a))

− exp(−β2 (x− 2 a + 2 b− x′)) + exp(−β2 (2 b− 2 a− x + x′))
]
dx′

+

(
β2

2 − β2
1

2

) ∫ x

a
εm(x′)

[
exp(−β2 (2 b− 2 a + x− x′)− 2 β1 (L− b))− exp(−β2 (x− x′)− 2 β1 a)

+ exp(−β2 (2 b− 2 a + x− x′)− 2 β1 a)− exp(−β2 (2 b− 2 a− x + x′)− 2 β1 a)



Sensors 2021, 21, 5423 15 of 33

− exp(−β2 (2 b− 2 a− x + x′)− 2 β1 (L− b))− exp(−β2 (x− x′)− 2 β1 (L− b))
]
dx′

+β1 β2

∫ x

a
εm(x′)

[
exp(−β2 (x− x′))− exp(−β2 (2 b− 2 a + x− x′)− 2 β1 (L− b + a).

+ exp(−β2 (2 b− 2 a− x + x′)− 2 β1 (L− b + a))− exp(−β2 (2 b− 2 a− x + x′))

+ exp(−β2 (2 b− 2 a + x− x′))− exp(−β2 (x− x′)− 2 β1 (L− b + a)))
]
dx′

+

(
β2

1 + β2
2

2

) ∫ b

x
εm(x′)

[
exp(β2 (x− x′)) + exp(β2 (x− x′)− 2 β1 (L− b + a))

]
dx′

+

(
β2

1 − β2
2

2

) ∫ b

x
εm(x′)

[
exp(β2 (x− x′)− 2 β1 (L− b)) + exp(β2 (x− x′)− 2 β1 a)

]
dx′

+ β1 β2

∫ b

x
εm(x′)

[
exp(β2 (x− x′))− exp(β2 (x− x′)− 2 β1 (L− b + a))

]
dx′
}

(28b)

ε f 3(x) =
β2

2
α

{
(β1 + β2)

∫ b

a
εm(x′)

[
exp(β1 (x− 2 a + b− 2 L)− β2 (b− 2 a + x′))

− exp(−β1 (x + 2 a− b)− β2 (b− 2 a + x′)) + exp(−β1 (x− b)− β2 (b− x′))

− exp(β1 (x + b− 2 L)− β2 (b− x′))
]
dx′

+ (β2 − β1)
∫ b

a
εm(x′)

[
exp(−β1 (x− b)− β2 (b− 2 a + x′))

− exp(β1 (x + b− 2 L)− β2 (b− 2 a + x′)) + exp(β1 (x− 2 a + b− 2 L)− β2 (b− x′))

− exp(−β1 (x + 2 a− b)− β2 (b− x′))
]
dx′
}

(28c)

The parameter α is given by:

α =(β1 − β2)
2 (exp(2 β1 (b− a− L))− exp(−2 β2 (b− a)))

+ (β1 + β2)
2 (1− exp(−2 β2 (b− a) + 2 β1 (b− a− L)))

+ (β2
1 − β2

2) (exp(2 β1 (b− L))− exp(−2 β2 (b− a)− 2 β1 a)

+ exp(−2 β1 a)− exp(−2 β2 (b− a) + 2 β1 (b− L))) (29)

It should be noted that the last Equations (28a)–(28c) depend only on εm(x). Conse-
quently, the strain in the core of the optical fiber sensor can be determined for any arbitrary
strain profile εm(x). It must be specified that analytical solutions can be found in some
cases depending on the form of εm(x), as shown in the following section. For all others
cases, numerical integration must be performed in order to obtain the strain profile ε f (x)
in the core of the optical fiber sensor. Note that the expressions of Equations (28a)–(28c)
were written so as to avoid the computation of exponentials (or hyperbolic cosines and
sines) with large positive integer exponents.

3.2. Applications

In this section, uniform and non-uniform strain fields for εm(x) are considered to
show in detail how strain profiles ε f (x) can be derived from Equations (28a)–(28c). The
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results will be then used to point out the impact of the strain-lag parameter value on the
strain profiles measured ε f (x) in comparison with the strain profile εm(x).

3.2.1. Uniform Strain Field

First, the expression of the strain profile ε f (x) is derived for a uniform strain field
εm(x). As assumed in the previous section, εm(x) is defined between the abscissas x = a
and x = b along the optical fiber of length L by the following:

εm(x) = εm a ≤ x ≤ b (30)

where εm is constant. As indicated by Equation (27), the strain profile ε f (x) along the
core of the optical fiber sensor under a uniform strain field can then be decomposed into
three parts. From the integration of Equations (28a)–(28c), the following expression can be
obtained for ε f 1(x), ε f 2(x) and ε f 3(x):

ε f 1(x) = εm
β2

α

{
(β1 + β2) (− exp(−β1 (x + a))− exp(−β1 (x− 2 b + a + 2 L)− 2 β2 (b− a))

+ exp(β1 (x + a)) + exp(β1 (x + 2 b− a− 2, L)− 2 β2 (b− a)))
+ (β2 − β1) (exp(−β1 (x− 2 b + a + 2 L)) + exp(−β1 (x + a)− 2 β2 (b− a))

− exp(β1 (x + 2 b− a− 2 L))− exp(β1 (x− a)− 2 β2 (b− a)))
+ 2 β1 (exp(−β1 (x + a)− β2 (b− a)) + exp(−β1 (x− 2 b + a + 2 L)− β2 (b− a))

− exp(β1 (x− a)− β2 (b− a))− exp(−β1 (x + 2 b− a− 2 L)− β2 (b− a)) )
}

(31a)

ε f 2(x) = εm
β1

α

{
(β1 + β2) (exp(β2 (x− 2 b + a)− 2 β1 (L− b + a)) + exp(−β2 (x− 2 a + b)− 2 β1 a)

− exp(−β2 (x− 2 a + b)− 2 β1 (L− b + a))− exp(−β2 (x− a))

− exp(β2 (x− b)− 2 β1 (L− b))− exp(−β2 (x− a)− 2 β1 a)

+ exp(β2 (x− 2 b + a)− 2 β1 (L− b))− exp(β2 (x− b)))
+ (β2 − β1) (exp(−β2 (x− 2 a + b)− 2 β1 (L− b))− exp(β2 (x− b)− 2 β1 (L− b + a))

− exp(−β2 (x− a)− 2 β1 (L− b + a))− exp(−β2 (x− a)− 2 β1 (L− b))

+ exp(β2 (x− 2 b + a)− 2 β1 a) + exp(−β2 (x− 2 a + b))

+ exp(β2 (x− 2 b + a))− exp(β2 (x− b)− 2 β1 a))

+
(β2

1 + β2
2)

β1
(1− exp(−2 β2 (b− a)− 2 β1 (L− b + a)) + exp(−2 β1 (L− b + a))

− exp(−2 β2 (b− a)))

+
(β2

2 − β2
1)

β1
(exp(−2 β2 (b− a)− 2 β1 (L− b)) + exp(−2 β2 (b− a)− 2 β1 a)

+ exp(−2 β1 (L− b))− exp(−2 β1 a))
+ 2 β2 (1− exp(−2 β2 (b− a)− 2 β1 (L− b + a))− exp(−2 β1 (L− b + a))

+ exp(−2 β2 (b− a)))
}

(31b)

ε f 3(x) = εm
β2

α

{
(β1 + β2) (exp(−β1 (x + 2 a + b)− 2 β2 (b− a))− exp(β1 (x + b− 2 L))

− exp(β1 (x− 2 a + b− 2 L)− 2 β2 (b− a))− exp(−β1 (x− b)))
+ (β2 − β1) (exp(β1 (x + b− 2 L)− 2 β2 (b− a))− exp(−β1 (x− b)− 2 β2 (b− a))

+ exp(β1 (x− 2 a + b− 2 L))− exp(−β1 (x + 2 a− b)))
+ 2 β1 (exp(β1 (x− 2 a + b− 2 L)− β2 (b− a))− exp(−β1 (x + 2 a− b)− β2 (b− a))

+ exp(β1 (x + b− 2 L)− β2 (b− a))− exp(−β1 (x− b)− β2 (b− a)) )
}

(31c)

where the coefficient α is given by Equation (29).
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It should be emphasized that these last expressions are only valid under a uniform
strain field εm as defined by Equation (30). They are now used to investigate the effect
of the strain lag parameters β1 and β2 on the strain profile ε f (x). Three case studies are
considered by varying a single parameter each time: β1, β2 or the distance between a and b.
Figure 3 shows the first case study where only the strain lag parameter β1 varies. Although
the values β1 are fixed arbitrarily, note that they remain in the range of values calculated
in Section 2.2. Three strain profiles obtained for β1 = 100, 150, 250 m−1 and β2 = 50 m−1

are plotted in Figure 3. The other parameters for εm(x) in Equation (30) are fixed to the
following: a = 0.2 m, b = 0.8 m and εm = 1 µm/m. Firstly, it can be observed that the
strain profile ε f (x) beyond the two ends (at x = a and x = b) where the uniform strain is
applied along the sensor is not equal to zero due to the new boundary conditions proposed
in this paper. Secondly, the strain lag parameter β1 mainly has an influence on the shape
of the strain profile ε f (x) between the abscissas x = 0 and x = a and between x = b and
x = L, as expected. The higher the value of β1, the faster ε f (x) decreases to zero. Note also
that the ratio β1/β2 has an influence on the level of strain in these areas.

Figure 3. Strain profiles ε f (x) under uniform field for different strain lag paramaters β1 = 100,
150, 250 m−1 and β2 = 50 m−1.

In the second case study, the strain lag parameter β1 is fixed to 100 m−1 and three
values for β2 have been chosen: β2 = 20, 50, 90 m−1. The strain profiles obtained for these
latter values are plotted in Figure 4. It can be clearly observed that the distance over which
the strain transfer occurs varies in function of β2. As a result, the strain profile in the
core of the optical sensor may be significantly different from the one along the optical
sensor, especially for low values of β2. We can also observe that after a certain distance, the
strain in the core of the optical fiber ε f (x) reaches the strain along the optical sensor εm(x).
However, it also depends on εm(x), as shown in the Figure 5. The latter corresponds to the
third case study where the two strain lag parameters β1 and β2 are fixed (β1 = 100 m−1

and β2 = 20 m−1), but the distance between the abscissas x = a et x = b varies from
0.2 m to 0.6 m. For a short distance between the abscissas x = a and x = b and for a low
value of β2, the strain transfer may be incomplete. As a result, the strain measured by the
distributed optical fiber ε f (x) may be strongly underestimated compared to the real strain
in the host material εm(x).
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Figure 4. Strain profiles ε f (x) under a uniform field for different strain lag parameters β2 =

20, 50, 90 m−1 and β1 = 100 m−1.

Figure 5. Strain profiles ε f (x) (with β1 = 100 m−1 and β2 = 20 m−1) under uniform fields εm(x) of
different lengths.

3.2.2. Non-Uniform Strain Field

In order to further demonstrate the importance of the strain lag parameters (especially
β2) on the strain profile ε f (x), a non-uniform strain field is considered in this section. A
complex strain profile εm(x) that exhibits high-spatial strain gradients has been chosen. It
is expressed as follows:

εm(x) = εm + 2 A sin
(

x− a
b− a

(2 k + 1)π

)
(32)

where k is an integer. The shape of εm(x) is shown in Figure 6.
In order to determine the strain profile ε f (x) in the core of the optical sensor that is

induced by this non-uniform strain field, Equations (28a)–(28c) are used once again. Con-
trary to the previous case study with a uniform strain field, where analytical expressions
have been derived, ε f (x) was obtained for this case study by using a numerical calculation
with Simpson’s rule (although an analytical expression can be derived with the strain
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profile εm(x) defined by Equation (32)). The following parameters have been used for
εm(x) in Equation (32): a = 0.2 m, b = 0.8 m, εm = 0.5, A = 0.225 and k = 3. For the
strain lag parameters, β1 is fixed to 100 m−1 and three values for β2 have been chosen:
β2 = 20, 50, 90 m−1. Figure 6 presents the strain profiles ε f (x) obtained with these parame-
ters. As expected, the strain lag parameter β2 has an important effect on the strain profile
ε f (x) measured in the core of the optical fiber sensor. The lower the strain lag parameter
β2 is, the more the strain ε f (x) is underestimated. Thus, for practical application with the
presence of high-spatial strain gradients, it is of paramount importance to use fiber optic
sensors characterized by a high strain lag parameter in order to avoid misinterpretation of
distributed optical fiber sensor measurements.

Figure 6. Strain distribution in the core of optical fiber sensor ε f (x) induced by a sine strain field
εm(x) in the host material.

4. Experimentation and Results

In order to validate the general solution (Equations (28a)–(28c)), experimental tests
have been carried out. Firstly, the results obtained for a uniform strain field εm(x) will be
presented and Equations (31a)–(31c), derived in Section 3.2.1, will be used to estimate the
strain lag parameters β1 and β2. Then, the general solution is applied to a non-uniform
strain field. The strain profiles calculated and measured will be then compared to show the
efficiency of the method proposed in this paper.

4.1. Uniform Strain Field
4.1.1. Description of the Experiment

A uniaxial tensile test on a steel plate (dimensions: 80 cm × 8 cm × 5 mm; Young’s
Modulus: 200 MPa) has been performed to create a uniform strain field for εm(x). As
shown in Figure 7a, a servohydraulic testing system applied a constant tensile force of
72 kN (σm = 180 MPa) on the specimen during the measurements. The specimen has
been instrumented on both sides by two monomode optical fibers possessing different
coatings: polyimide (external diameter: 145 µm) and acrylate (external diameter: 250 µm).
The two optical fibers have been attached on the specimen with a two-component epoxy
adhesive (Araldite 2014-2) over four different lengths (20 cm, 10 cm, 5 cm and 2.5 cm), as
shown in Figure 7b, in order to study the strain transfer effect as discussed in Section 3.2.1.
The distributed strain measurements have been obtained with a high spatial resolution
distributed optical fiber interrogator (0.65 mm gage pitch, 1.3 mm gage length, model:
Luna ODISI-B). The operating principle of this system will not be described in this paper
(the readers can refer to the following publications [26,27]). Nevertheless, it is important to
remember that a strain profile is obtained from two optical measurements performed at
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different states. In this experiment, a reference measurement was set at null tensile force
and the other at 72 kN, which corresponds to uniform strain of εm = 900 µm along the
specimen between the wedge grips of the hydraulic testing system. Note also that the two
optical fiber sensors have been interrogated one after the other. Consequently, the tensile
tests have been repeated twice, and the force and displacement sensors have been used to
control the repeatability of the tests. It was not possible to measure the two optical fibers
at the same time due to the vibrations of the servohydraulic testing system inducing a
cumulative noise on the strain measurement. Thus, a shorter length of optical fiber was
used, which explains why the two optical fiber sensors have been interrogated one after
the other.

(a) (b)

Figure 7. Experiment description of uniform strain field measurements. (a) Photography of the in-
strumented specimen under tensile test. (b) Schematic presentation of the specimen instrumentation.

4.1.2. Results and Discussions

Figure 8 presents the entire strain profile measured for the two optical fibers possessing
polyimide and acrylate coatings. The four bonding lengths are clearly visible and the strain
profiles for the two optical fibers are very different, as expected. Note also that the level of
noise (due in large part to vibrations of the hydraulic testing system) increases over the
length of the optical fiber. Moreover, two continuous noisy peaks emerge for polyimide-
coated fiber between x = 0.8 m and x = 1 m and after x = 1.3 m. They correspond to a
small tension in the free portions of the optical fiber where small adhesive tapes are used
to hold them to the steel plate (and to prevent them from being broken during handling).
For the acrylate-coated fiber, the adhesive tapes were better placed preventing any tension
during the tensile test. Note, however, that this instrumentation artifact has a very small
influence on the strain profile measurements (less that 5% of the maximum strain), and
it is not the cause of the differences between the strain profiles measured for both optical
fibers having a polyimide and acrylate coating. Indeed, for the polyimide-coated fiber,
the maximum strain value for each bonding length is equal to about 900 µm/m, which
corresponds to the value of the strain in the steel plate imposed by the tensile test. For
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the acrylate-coated fiber, the maximum strain value is different for each bonding length.
Shorter bonding lengths result in lower maximum strain values. This corresponds well to
the observation deduced in Section 3.2.1 due to the strain transfer in the optical fiber sensor.
The polyimide-coated fiber has a shorter strain transfer length than the one with an acrylate
coating. The strain lag parameters β1 and β2, which drive the strain transfer mechanism of
the two optical fiber sensors tested in this experiment, can be estimated by fitting the strain
profiles corresponding to each of the four bonding lengths using Equations (31a)–(31c).

Figure 8. Strain profiles obtained for the sample instrumented by optical fibers with acrylate and
polyimide coating under tensile test (σm = 180 MPa).

Figures 9 and 10 show the strain profiles and the model fitting for the optical fiber
sensors with polyimide and acrylate coating, respectively. Note that for better readability,
the strain profiles corresponding to each of the four bonding lengths have been shifted
along the x-axis so that they are centered in a window of 40 cm width. A very good
agreement can be observed between the fitted model and the strain profile measurements
for both optical fiber sensors.

Figure 9. Fitting of the strain profiles obtained for the sample instrumented by optical fibers with polyimide coating under
tensile test (σm = 180 MPa).
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Figure 10. Fitting of the strain profiles obtained for the sample instrumented by optical fibers with acrylate coating under
tensile test (σm = 180 MPa).

For model fitting, an implementation of the nonlinear least-squares Levenberg–Marquardt
algorithm has been used to fit the parameters a, b, εm, β1 and β2 of Equations (31a)–(31c). The
values of these parameters obtained for the different bond lengths (Lglued) are presented
in Tables 2 and 3, respectively, for the optical fiber sensors with a polyimide and an
acrylate coating. Before detailing the results of the fitted parameters, it is worth observing,
particularly from Figure 10, that the strain profile measured by the optical fiber with an
acrylate coating extends over a longer length (about 2 cm) than the bonding length, which
confirms the new boundary conditions proposed in this paper.

Table 2. Fitting parameters obtained for the sample instrumented by polyimide coated fibers.

OF with Polyimide Coating a (m) b (m) εm (µm/m) β1 (m−1) β2 (m−1)

Lglued = 20 cm 0.0885 ± 1.10−4 0.2884 ± 1.10−4 908 ± 2 1774 ± 200 1112 ± 54

Lglued = 10 cm 0.1410 ± 1.10−4 0.2405 ± 1.10−4 911 ± 2 1259 ± 84 1061 ± 57

Lglued = 5 cm 0.1653 ± 2.10−4 0.2127 ± 2.10−4 913±6 1074 ± 152 1058 ± 148

Lglued = 2.5 cm 0.1587 ± 4.10−4 0.1844 ± 4.10−4 935 ± 15 837 ± 160 1047 ± 303

Table 3. Fitting parameters obtained for the sample instrumented by acrylate coated fibers.

OF with Acrylate Coating a (m) b (m) εm (µm/m) β1 (m−1) β2 (m−1)

Lglued = 20 cm 0.1012 ± 3.10−4 0.2962 ± 3.10−4 905 ± 4 183 ± 8 32 ± 1

Lglued = 10 cm 0.1488 ± 4.10−4 0.2512 ± 4.10−4 fixed to 900 163 ± 9 30 ± 1

Lglued = 5 cm 0.1739 ± 8.10−4 0.2241 ± 8.10−4 fixed to 900 206 ± 27 30 ± 1

Lglued = 2.5 cm fixed to 0.1875 fixed to 0.2125 fixed to 900 194 ± 22 33 ± 2
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Concerning the results of the model fitting, it can be observed from Tables 2 and 3 that the
bonding length has been very well estimated from the fit parameters a and b (Lglued = b− a)
for the two optical fiber sensors. The fit parameter εm has also been correctly estimated
despite the increased error due to the measurement noise along the optical fiber. Note that
for the acrylate coated fiber, the parameter εm had been fixed to 900µm/m for the strain
profiles corresponding to 10 cm and 5 cm bond lengths in order for the fitting algorithm
to converge. For the strain profiles corresponding to a bond length of 2.5 cm (the part
closed to the end of the optical where the noise is the highest), three parameters a, b and εm
have to be fixed as indicated in Table 3. From the model fitting, the most interesting fitting
parameters are the strain lag parameters β1 and β2 since they are the key parameters for
describing the strain transfer. As expected, the β1 and β2 values obtained for the optical
fiber with a polyimide and acrylate coating are very different. They are higher for the
optical fiber with a polyimide coating than the one with an acrylate coating.

As shown in Figure 11, the values of β2 obtained for the four bond lengths of the optical
fiber with a polyimide coating are close to 1050 m−1. The errors for fitting parameter β2 can
seem to increase as the glued length decreases. However, this error is more related to the
level of noise (due in large part to vibrations of the hydraulic testing system). Indeed, the
noise increases along the optical fiber and the smallest bonding lengths are localized near
the end of the optical fiber. This phenomenon is more visible for the polyimide-coated fiber
than for acrylate-coated fiber as it is characterized by a shorter strain transfer. The strain
transfer of polyimide-coated fiber operates steeply over few millimeters contrary to a few
centimeters for the acrylate-coated fiber. Given the spatial sampling of the measurements
(0.65 mm), only five to six points are “useful” for the model fitting of the polyimide-coated
fiber’s strain profile. This explains the difficulty of estimating β1 and β2 and the large
dispersion of values obtained in Figure 11 for the polyimide-coated fiber. For the optical
fiber with an acrylate coating, in Figure 12, values around 180 m−1 and 32 m−1 have been
found for β1 and β2, respectively. These values of strain lag parameters are very much
smaller than the ones obtained for the optical fiber with a polyimide coating. Thus, these
results confirm that the higher the strain lag parameter is, the shorter the strain transfer
distance is and, therefore, the more accurate the strain gradient measurements are. To
further highlight the importance of strain transfer, in particular, in the presence of localized
strain gradients, a non-uniform strain field case study is presented in the following part of
this paper.

Figure 11. Fitting parameters β1 and β2 of the strain profiles obtained by optical fibers with poly-
imide coating.
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Figure 12. Fitting parameters β1 and β2 of the strain profiles obtained by optical fibers with acry-
late coating.

4.2. Non-Uniform Strain Field
4.2.1. Description of the Experiment

In order to obtain a non-uniform strain field, a steel specimen (dimensions of the
plate: 1015 cm × 5 cm × 5 mm; Young’s modulus: 200 GPa) with a hole (diameter: 2.5 cm)
in the middle has been tested in tensile. Figure 13a shows the specimen in the wedge
grips of servohydraulic testing system. A constant force of 8 kN (value low enough to
avoid plasticity in the material) has been applied on the steel plate instrumented by two
optical fibers. Similarly to the previous experiment, the same optical interrogator is used
for distributed strain profiles measurements. In this case, both types of optical fibers were
bonded over 60 cm length at 9 mm from the specimen edges as shown in Figure 13b. The
tensile test has also been repeated twice and each optical fiber was interrogated separately
in order to reduce the sensing length and to avoid having measurements that are too noisy
due to the testing system vibrations.

4.2.2. Results and Discussions

In order to determine the strain profile εm(x) at the location of the optical fibers (at
9 mm from the edge of the steel plate), a finite element analysis has been performed.
As shown in Figure 14, a symmetric quarter model was considered by using a plane
strain computation in the elastic domain. Note that the optical fiber sensors have not been
included in the simulation. Concerning the meshing, quad elements were used in the upper
part of the specimen to extract the longitudinal strain profile at the location of the optical
fiber on the entire length of the steel plate. The result of the finite element analysis is shown
in dark-red dashed curves in both graphs of Figure 15. In the same figure, the strain profiles
measured for the optical fibers (bonded on 60 cm length) having an acrylate (red curve in
the upper graph) and a polyimide (green curve in the lower graph) coating are also plotted.
As expected, the presence of a hole in the steel plate induces a peak of strain covering a
distance of around 10 cm. However, it can be observed that the highest peak is obtained
for the optical fiber with a polyimide coating. On both sides of this peak, the deformation
along the specimen is constant, whereas the strain measurement decreases slowly for the
optical fiber with an acrylate coating. The comparison of strain profile calculated from
finite element analysis with the measurements shows once again the importance of strain
transfer in distributed strain measurements, particularly in the presence of strain gradients.
Ignoring this effect and using an optical fiber with a low value of the strain lag parameter
can result in misinterpretation and, even worse, the underestimation of strain.
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(a) (b)

Figure 13. Experiment description of non-uniform strain field measurements. (a) Photography of the
instrumented specimen under tensile test. (b) Schematic presentation of the specimen instrumentation.

Figure 14. Finite element analysis of the sample (from ABAQUS by Dassault Systems®).

The differences in calculated and measured strain profiles can be more clearly un-
derstood by using the proposed strain transfer. For this reason, the strain profile in the
core of both optical fibers has been calculated by using the proposed general solution
(Equations (28a)–(28c)) with the strain lag parameters estimated in the experiment of uni-
form strain field. The strain profile obtained by finite element analysis has then been
used to calculate the strain profile in the core of each of the two optical fibers with the
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following strain lag parameters: β1 = 180 m−1 and β2 = 31 m−1 for the optical fiber with
acrylate coating and β1 = 1770 m−1 and β2 = 1050 m−1 for the optical fiber with polyimide
coating. Note that the calculation of Equations (28a)–(28c) has been performed by using a
numerical integration based on Simpson’s rule. A linear interpolation has also been used
to obtained the strain profile εm(x) (calculated from the finite element analysis) at fixed
spatial sampling accounting for the variable mesh sizes (small meshes in the area near the
hole and large meshes in the area where the strain is almost constant). For comparison
with the measured strain profiles, the results of the strain profile’s calculations are also
plotted in Figure 15 (violet curves in the upper and lower graphs). A very good agreement
between the measured and calculated strain profiles can be noticed. This result shows
that the general solution proposed in this paper can be applied for the non-uniform strain
profile εm(x).

Figure 15. Comparisons of strain profile measured and calculated for the optical fibers with polyimide and acrylate coating.

It should be emphasized that the general solution is an efficient tool for determining
the strain profiles in the core of an optical fiber provided that the correct strain lag param-
eters values are used. As a reminder, they depend both on the type of the optical fiber
(or cable) used as a sensor and on its attachment to the surface or inside the material. For
instance, the type of adhesive for surface-mounting or the procedure of surface preparation
can result in different strain lag parameter values for the same optical fiber, and they
are difficult to predict. Indeed, many parameters used in the Equation (11) of the strain
lag parameter, for instance the interface stiffness parameters, are not well known and
are difficult to measure. It is then recommended to perform tests on specimens as those
performed in this paper to estimate the strain lag parameter for a given system: optical
fiber/adhesive/surface or optical fiber/host material. It is worth also noting that finite
element analysis that would include the optical fiber sensor requires the same parameters
as those included in the expression of the strain lag parameter. However, due to the small
dimensions of the optical fiber, a very fine meshing is generally required that may result
in a high number of nodes and a long computation time. It could be also interesting
to perform a finite element analysis without the optical fiber in order to estimate a non-
uniform strain profile at the location of the optical fiber and then to calculate the strain
profile in the core of the optical fiber. This should allow the estimation of the strain transfer
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effect on the strain profile measurements and, thus, to choose the best system optical
fiber/adhesive/surface or optical fiber/host material. It is also important to highlight the
fact that the measurements shown in this paper have been obtained with a high spatial
resolution optical interrogator (0.65 mm gage pitch and 1.30 mm gage length according
to manufacturer’s datasheet of ODISI-B). Measurements using lower spatial resolution
instruments (for instance few centimeters or more) could result in additional measurement
error due to an averaging effect. This effect is not taken into account in this paper since a
high spatial resolution optical interrogator has been used.

5. Conclusions

In this paper, a general solution (Equations (28a)–(28c)) for determining the strain
profile in the core of a distributed optical fiber sensor under any arbitrary strain fields is pre-
sented for the first time. This general solution permits the description of the strain transfer
in distributed optical fiber sensors. It is based on a governing equation (Equation (12)) that
is valid for embedded or surface attached optical fiber sensors, as discussed in Section 2.2,
and includes a new set of boundary conditions (Equations (16a)–(18b)). This general so-
lution has been validated experimentally by two experiments where the strain profiles
measured with an optical interrogator possessing high spatial resolution (few millimeters)
have been found in very good agreement with those obtained from the general solution.

It is worth remembering that the strain transfer phenomenon depends both on the
type of optical fibers (or cables) used as a sensor and on its attachment to the surface
or embedding in the material. The strain lag parameters defined in the general solution
permits the completely characterization of this phenomenon. However, the estimations
of these parameters from the geometrical and mechanical properties of the optical fiber
sensors and the attachment conditions may often be inaccurate due to different parameters,
such as interface stiffness parameters which are hardly known and difficult to measure.
It is then recommended to perform more experimental tests to measure the strain lag
parameters similar to those presented in Section 4.1.

Although this paper is focused on the presentation of the theoretical background
and the validation of a general solution to determine the strain profile in the core of a
distributed optical fiber sensor under any arbitrary strain fields with two types of optical
fiber, further studies can be performed to investigate the strain transfer for a larger variety
of optical cables used in distributed sensing and to test different methods to measure the
strain lag parameters. It should be also interesting to study the effect of temperature, aging
and fatigue on the strain lag parameter. These different studies could be the basis for a
standardized characterization of the optical fiber/optical cables used in distributed sensing.
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Appendix A. Strain-Lag Parameter for a Three-Layers and Four-Layers System

In three-layers system, the strain-lag parameter β can be obtained by following the
same method presented in the Section 2.1 and by only considering coating #1 in Figure 2.
For more readability, the result of the calculation is expressed in the following form:

β2 =
1
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where the following is the case.
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In the same way, the strain-lag parameter β for four-layers system can determined by
considering only the coatings #1 and #2 in Figure 2. The calculation gives us the following.
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Appendix B. Particular Solution of Equation (12)

In order to find a particular solution of Equation (12), it is assumed that the solution
can be written as follows:

ε
p
f (x) = A(x) exp(β x) + B(x) exp(−β x) (A4)

where A(x) and B(x) are unknown functions that we are looking for. To perform this, the
derivative of (A4) is first calculated.

ε
p ′
f (x) = A′(x) exp(β x) + β A(x) exp(β x) + B′(x) exp(−β x)− β B(x) exp(−β x) (A5)
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The following condition is imposed.

A′(x) exp(β x) + B′(x) exp(−β x) = 0 (A6)

Consequently, Equation (A5) is reduced to the following.

ε
p ′
f (x) = β A(x) exp(β x)− β B(x) exp(−β x) (A7)

The derivative of Equation (A7) provides the following.

ε
p ′′
f (x) = A′(x) β exp(β x) + β2 A(x) exp(β x)− B′(x) β exp(−β x) + β2 B(x) exp(−β x) (A8)

By introducing (A7) and (A8) in (12), the following equation can be obtained.

A′(x) β exp(β x)− B′(x) β exp(−β x) = −β2 εm(x) (A9)

By using the condition (A6), the following equation on A(x) can be deduced.

A′(x) = − β

2
εm(x) exp(−β x) (A10)

In the same manner, an equation on B(x) can also be obtained.

B′(x) =
β

2
εm(x) exp(β x) (A11)

At this point, we must note the following:∫ x

0
A′(x′) dx′ = A(x)− A(0) (A12)

and ∫ x

0
B′(x′) dx′ = B(x)− B(0) (A13)

Moreover, the following conditions are supposed to be verified:

A(0) =0 (A14a)

B(0) =0 (A14b)

such that the following can be obtained.

A(x) =
∫ x

0
A′(x′) dx′ (A15a)

B(x) =
∫ x

0
B′(x′) dx′ (A15b)

By incorporating (A15a) and (A15b) in Equation (A4), ε f (x)can be expressed as
follows.

ε
p
f (x) =

∫ x

0
A′(x′) dx′ exp(β x) +

∫ x

0
B′(x′) dx′ exp(−β x) (A16)

In this last expression, A′(x′) and A′(x′) can be replaced by the relations (A10)
and (A11).

ε
p
f (x) = − β

2

∫ x

0
εm(x′) exp(−β x′) dx′ exp(β x) +

β

2

∫ x

0
εm(x′) exp(β x′) dx′ exp(−β x) (A17)
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By rearranging Equation (A17), the expression of a particular solution of Equation (12)
can be written as follows.

ε
p
f (x) = −β

∫ x

0
εm(x′) sinh(β(x− x′)) dx′ (A18)

Appendix C. Derivation of the Parameters A1, B1, A2, B2, A3 and B3

♦ Case: 0 ≤ x ≤ a

Using the boundary condition (16a) (ε f 1(0) = 0), it can be deduced immediately from
Equation (20) that A1 and B1 must verify the following equation.

A1 = −B1 (A19)

Consequently, Equation (20) can be rewritten as follows.

ε f 1(x) = 2 A1 sinh(β1 x) (A20)

As ε f 1(a) = εa, A1 is given by the following.

A1 =
εa

2 sinh(β1 a)
(A21)

♦ Case: a ≤ x ≤ b

As ε f 2(a) = εa and ε f 2(b) = εb and by noticing that ε
p
f 2(a) = 0, the contants A2 and

B2 must verify the following new set of equations.

A2 exp(β2 a) + B2 exp(−β2 a) = εa (A22a)

A2 exp(β2 b) + B2 exp(−β2 b) + ε
p
f 2(b) = εb (A22b)

♦ Case: b ≤ x ≤ L
As ε f 3(b) = εb and with the boundary condition (16b) (ε f 3(L) = 0), A3 and B3 must

verify the following new set of equations.

A3 exp(β1 b) + B3 exp(−β1 b) + ε
p
f 3(b) = εb (A23a)

A3 exp(β1 L) + B3 exp(−β1 L) + ε
p
f 3(L) = 0 (A23b)

From (A23b), it becomes immediately clear that B3 is given by the following.

B3 = −
(

A3 exp(2 β1 L) + ε
p
f 3(L) exp(β1 L)

)
(A24)

Consequently, Equation (24) can be rewritten as follows:

ε f 3(x) = A3 (exp(β1 x)− exp(β1(2 L− x))− ε
p
f 3(L) exp(β1(L− x) + ε

p
f 3(x) (A25)

and the constant A3 can be expressed for x = b as the following.

A3 =
ε

p
f 3(L) exp(β1(L− b))− ε

p
f 3(b) + εb

exp(β1 x)− exp(β1 (2 L− b))
(A26)

From Equations (A21) and (A22a), the quantity εa can be removed which gives us the
following.

2 A1 sinh(β1 a)− A2 exp(β2 a)− B2 exp(−β2 a) = 0 (A27)
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In the same way, from Equations (A22b), (A23a) and (A24), the quantity εb can be
removed, which results in the following relation.

A2 exp(β2 b) + B2 exp(−β2 b) + ε
p
f 2(b)− A3 (exp(β1 b)− exp(2 β1 L))+

ε
p
f 3(L) exp(β1(L− b))− ε

p
f 3(b) = 0 (A28)

By calculating the derivatives of ε f 1(x), ε f 2(x) and ε f 3(x) from Equations (A20), (22)

and (A25) (and noting that
dε

p
f 2(x)
dx

∣∣∣∣
x=a

= 0) and by using the conditions (17a) and (17b),

the two following equations can be obtained:

2 β1 A1 cosh(β1 a)− β2 A2 exp(β2 a) + β2 B2 exp(−β2 a) = 0 (A29)

and

β2 A2 exp(β b)− β2 B2 exp(−β b) +
dε

p
f 2(x)

dx

∣∣∣∣∣∣
x=b

− β1 A3 (exp(β1 b) + exp(β1 (2 L− b)))−

β1 ε
p
f 3(L) exp(β1 (L− b))−

dε
p
f 3(x)

dx

∣∣∣∣∣∣
x=b

= 0. (A30)

In Equations (A27)–(A30), A1, A2, B2 and A3 are unknown constants that can be
determined by rewriting the latter equations in the matrix form given by Equation (25). By
applying Cramer’s rule, the parameters A1, A2, B2 and A3 are given by the following:

A1 =
β2

K exp(β1 L)

[
(R4 + β1 R3) exp(β1 (2 L− b))− (R4 − β1 R3) exp(β1 b)

]
(A31a)

A2 =
1

2 K exp(β1 L)

{
(β2 − β1)

[
(R4 − β1 R3) exp(β1 (b− a)− β2 a)−

(R4 + β1 R3) exp(β1 (2 L− b− a)− β2 a)

]

(β1 + β2)

[
(R4 + β1 R3) exp(β1 (2 L− b + a)− β2 a)−

(R4 − β1 R3) exp(β1 (b + a)− β2 a)

]}
(A31b)

B2 =
1

2 K exp(β1 L)

{
(β2 − β1)

[
(β1 R3 − R4) exp(β1 (a + b) + β2 a)+

(R4 + β1 R3) exp(β1 (2 L− b + a) + β2 a)

]

(β1 + β2)

[
(R4 − β1 R3) exp(β1 (b− a) + β2 a)−

(R4 + β1 R3) exp(β1 (2 L− b− a) + β2 a)

]}
(A31c)
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A3 =
1

2 K exp(β1 L)

{
(β2 − β1)

[
(R4 − β2 R3) exp(β2 (b− a)− β1 a)−

(R4 + β2 R3) exp(β2 (a− b) + β1 a)

]

(β1 + β2)

[
(R4 + β2 R3) exp(β2 (a− b)− β1 a)−

(R4 − β2 R3) exp(β2 (b− a) + β1 a)

]}
(A31d)

where R3 and R4 are given by Equations (26c) and (26d) and the expression of coefficient
K is as follows.

K =(β1 − β2)
2 sinh((β1 + β2) (b− a)− β1 L)

− (β1 + β2)
2 sinh((β1 − β2) (b− a)− β1 L)

+ 2 (β2
1 − β2

2) sinh(β2 (b− a)) cosh(β1 (a + b− L)) (A32)
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