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Dissipative time-domain one-dimensional model for viscothermal acoustic propagation in wind instruments.

I. INTRODUCTION

Time-domain simulations of wind musical instruments require the choice of a balance between efficiency and accuracy. Real-time synthesis techniques, such as digital waveguide synthesis with lumped wall loss filter (Abel et al., 2003), [START_REF] Mignot | Digital Waveguide Modeling for Wind Instruments: Building a State-Space Representation Based on the Webster-Lokshin Model[END_REF], modal decomposition [START_REF] Silva | MoReeSC: a framework for the simulation and analysis of sound production in reed and brass instru-ments[END_REF], and Finite Difference -Time Domain [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF], favor their performance objective at the expense of model and discretization errors. By contrast, computer aided instrument prototyping requires a fine assessment of the physical phenomena occurring in the instrument, including dissipation and dispersion effects on propagative waves inside air filled pipes, caused by viscous and thermal boundary layers. The Navier-Stokes equations of fluid dynamics indeed do account for all these effects, but a practical understanding of the macroscopic phenomena from direct numerical simulation requires a tremendous computational effort. In the different characteristic regimes found in musical instruments, several approximate 3D or 1D models exhibit good accuracy and performance ; they are briefly reviewed thereafter. More details about the qualitative and quantitative fulfilment of their underlying assumptions can be found in [START_REF] Thibault | Viscothermal models for wind musical instruments[END_REF]. Most of them, including the prevalent model initially derived by (Zwikker and Kosten, 1949) (ZK), are naturally expressed in the frequency domain, which hampers their use for synthesising the sound of musical instruments by coupling the pipe to a nonlinear embouchure and using time-varying commands. This work focuses on the time domain formulation of a stable and accurate 1D model, and its numerical implementation based on a variational approach, aiming at computer aided instrument prototyping.

A. Viscous and thermal boundary layers in 3D

The Linearized Navier Stokes (LNS) equations, also called thermoviscoacoustic equations, describe the evolution of the acoustic density, pressure, temperature and velocity, which are small perturbations of a background medium assumed steady with no mean flow. They feature acoustic wave propagation, as well as viscous and thermal diffusion [START_REF] Tijdeman | On the propagation of sound waves in cylindrical tubes[END_REF].

For a domain filled with air bounded with rigid, non-porous isothermal walls, and when the acoustic wavelength is greater than the viscous and thermal characteristic lengths, the acoustic velocity and temperature are functions of the acoustic pressure and two potentials [START_REF] Kampinga | An efficient finite element model for viscothermal acoustics[END_REF], which are solution to non homogeneous heat equations with Dirich-let boundary conditions. The potentials are close to one in the bulk of the domain, and drop to zero near the walls. Then the acoustic pressure satisfies a Helmholtz equation with variable coefficients that explicitly depend on these potentials. This leads to the emergence of viscous and thermal boundary layers affecting the acoustic pressure.

When these boundary layers are thin with respect to the radius of the pipe, an asymptotic analysis justifies to model them as an effective wall impedance. In the interior domain, the acoustic pressure is then solution to a uniform 3D Helmholtz equation [START_REF] Cremer | On the acoustic boundary layer outside a rigid wall[END_REF], [START_REF] Bruneau | General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries[END_REF], [START_REF] Jith | Boundary layer impedance model to analyse the viscothermal acousto-elastic interactions in centrifugal compressors[END_REF], [START_REF] Berggren | Acoustic boundary layers as boundary conditions[END_REF].

B. Model reduction to 1D

In the case of a cylindrical pipe, [START_REF] Kirchhoff | Ueber den einfluss der wärmeleitung in einem gase auf die schallbewegung[END_REF] derives an implicit analytical dispersion relation to the LNS equations that must be solved iteratively, which does not offer a practical modeling framework. The reduced 1D model derived from an approximation of LNS by (Zwikker and Kosten, 1949) has been shown to be valid for audible frequencies and assuming the reduced frequency k = ωR/c is small, where ω is the angular frequency, R the radius of the pipe and c the celerity of the wave [START_REF] Tijdeman | On the propagation of sound waves in cylindrical tubes[END_REF]. More precisely, the average pressure along a pipe section p(x, ω), and the air flow v(x, ω), along the longitudinal spatial variable x ∈ [0, L], are solution to the so-called Zwikker and Kosten (ZK) model:

(ZK)        dp dx + jω ρ S 1 1 -F v (ω) v = 0, ( 1a 
)
dv dx + jω S ρc 2 [1 + (γ -1)F θ (ω)] p = 0, ( 1b 
)
where S is the pipe section, L its length, ρ the static density, γ the ideal gas constant, and coefficients F v and F θ describe the contribution of respectively viscous and thermal dissipation, as:

F v (ω) = φ R - jω ρ µ , F θ (ω) = φ R - jω ρ C P κ , with φ(α) = 2J 1 (α) αJ 0 (α) , ( 2 
)
where µ is the gas viscosity, κ the thermal conductivity, C p the specific heat with constant pressure (see Table I), and where J 0 and J 1 are zeroth-and first-order Bessel functions.

Although it has been derived in the context of cylindrical geometries, model (ZK) has been used intensively for varying geometries, namely for S depending on the longitudinal variable

x. The classical horn equations describing plane wave propagation in an axisymmetric lossless pipe can be retrieved from an asymptotic analysis relying on Euler's equations in a pipe with varying section [START_REF] Rienstra | Webster's horn equation revisited[END_REF]. Model (ZK) can be seen as a perturbation of these horn equations, and has been employed for dissipative pipes with varying section for instance in [START_REF] Chaigne | Acoustics of musical instruments[END_REF], [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF], (Tournemenne Viscosity: µ = 1.708 × 10 -5 (1 + 0.0029 t) kg m -1 s -1

Thermal conductivity: κ = 5.77 × 10 -3 (1 + 0.0033 t) Cal/(ms and [START_REF] Tournemenne | A comparison of a one-dimensional finite element method and the transfer matrix method for the computation of wind music instrument impedance[END_REF] in the harmonic regime. Curvature of the wave fronts can occur in varying geometries and especially in the instrument bell, which can be modeled by an equation similar to (1) [START_REF] Hélie | One-dimensional acoustic models of horns and comparison with measurements[END_REF]. The present work focuses on viscothermal effects, and will neglect the curvature effects which may be included in future work.

The highly nonlinear dependency of F v and F θ with ω induces a nonlocal formulation in the time domain leading to mathematical and numerical intricacy, which motivates the present work.

C. Model approximations and time domain representations

Model (ZK) has been approximated for different frequency regimes and/or pipe sizes, especially when the Stokes number s = R ρω/µ is large [START_REF] Tijdeman | On the propagation of sound waves in cylindrical tubes[END_REF], [START_REF] Keefe | Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions[END_REF], [START_REF] Stinson | The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape[END_REF], [START_REF] Scheichl | On the calculation of the transmission line parameters for long tubes using the method of multiple scales[END_REF]. Terms in √ jω arise in the derived equations, leading in the time domain to fractional derivatives. Note that similar terms arise in the Webster-Lokshin 1D model which models the acoustic pressure close to the boundary layers using Cremer 3D effective wall impedance [START_REF] Hélie | One-dimensional acoustic models of horns and comparison with measurements[END_REF]. These terms can be treated numerically with approximations of diffusive representations [START_REF] Hélie | Diffusive representations for the analysis and simulation of flared acoustic pipes with visco-thermal losses[END_REF], [START_REF] Berjamin | Time-domain numerical modeling of brass instruments including nonlinear wave propagation, viscothermal losses, and lips vibration[END_REF]. Other approaches are based on direct diffusive representations of model (ZK) [START_REF] Thompson | Analog model for thermoviscous propagation in a cylindrical tube[END_REF], [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF], [START_REF] Schmutzhard | Parameter optimisation of a viscothermal time-domain model for wind instruments[END_REF].

D. Contribution and outline

One important aspect of space and time discretization of a model is to control the trade-off between accuracy and efficiency, in all targeted applications and configurations.

In the context of computer aided instrument prototyping, our purpose is to ensure numerical stability and quantify accuracy with respect to model (ZK). Energy-based methods have proven especially efficient to discretize wave equations in time [START_REF] Van Der Schaft | Port-hamiltonian systems: an introductory survey[END_REF], [START_REF] Bilbao | Direct simulation of reed wind instruments[END_REF], [START_REF] Cohen | Higher-order numerical methods for transient wave equations[END_REF], [START_REF] Hélie | Self-oscillations of a vocal apparatus: a port-hamiltonian formulation[END_REF], [START_REF] Chabassier | Construction and analysis of fourth order, energy consistent, family of explicit time discretizations for dissipative linear wave equations[END_REF] [START_REF] Chatziioannou | Investigating clarinet articulation using a physical model and an artificial blowing machine[END_REF]. The model of [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF], which satisfies an energy balance identity, is particularly suitable for physics-based sound synthesis. However, synthetizing sounds of a specific instrument with this model requires to run an optimization algorithm for every different value taken by the pipe radius and temperature before running time iterations. The present work makes this optimization step geometry-independent, by re-writing the model of [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF] with a new expression of the coefficients. Optimized constants are given in Table II and are usable directly in synthesis algorithms. The new coefficients of the model explicitly depend on the non-constant geometrical and physical parameters, therefore no optimization must be implemented nor launched before time iterations.

The model, presented in Sec. II along with its energy balance, is suitable for variational approximation, therefore naturally compatible for coupling with other energy-based models.

Its mathematical derivation is developed in Sec. III and a practical implementation method is proposed in Sec. IV along with a space and time discretization which guarantees a discrete energy identity and an algorithmic strategy for explicit update of the unknowns. A numerical scheme using 1D mixed spectral finite elements is proposed, allowing high-order space discretization leading to arbitrary accuracy. A comparison with other models is proposed in Sec. V.

Boundary conditions model the way waves are introduced at one boundary, or how they radiate in exterior air at the bell [START_REF] Rabiner | Digital processing of speech signals[END_REF], [START_REF] Dalmont | Radiation impedance of tubes with different flanges: numerical and experimental investigations[END_REF], [START_REF] Silva | Approximation formulae for the acoustic radiation impedance of a cylindrical pipe[END_REF], [START_REF] Monteghetti | Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized euler equations[END_REF]. Their energy-based time domain formulation can be intricate, and since it is not the scope of the present work, they are considered elementary (closed pipe, induced flow, or open pipe), and abusively omitted when non necessary.

II. MAIN RESULT

The acoustic pressure averaged on a pipe section and the volume flow can be modeled by the solutions p(x, t) and v(x, t) to the following system for x ∈]0, L[, t > 0, where N is an integer and v i (x, t), p 0 (x, t), p i (x, t) are 2N + 1 auxiliary variables:

                                                         ρ S ∂v ∂t + R 0 v + N i=1 R i (v -v i ) + ∂p ∂x = 0, (3a) 
S ρc 2 ∂p ∂t + G 0 (p -p 0 ) + N i=1 G i (p -p 0 -p i ) + ∂v ∂x = 0, (3b) 
L i dv i dt = R i (v -v i ), for 1 ≤ i ≤ N, (3c) 
C 0 dp 0 dt = G 0 (p -p 0 ) + N i=1 G i (p -p 0 -p i ), (3d) 
C i dp i dt = G i (p -p 0 -p i ) for 1 ≤ i ≤ N. (3e) 
The coefficients of this system are defined as

                         R 0 (x) = πµ S(x) 2 a 0 , (4a) 
L i (x) = ρ S(x) a i , R i (x) = πµ S(x) 2 a i b i , (4b) 
C 0 (x) = S(x)(γ -1) ρc 2 , G 0 = πκ(γ -1) ρ 2 c 2 C P a 0 , (4c) 
C i (x) = S(x)(γ -1) ρc 2 a i , G i = πκ(γ -1) ρ 2 c 2 C P a i b i , (4d) 
where the coefficients a i and b i are dimensionless constants obtained from an optimization procedure described in Section III, see Table II for N ∈ {2, 4, 8} and supplementary material SuppPub1.txt up to N=16 1 . We expect that increasing the value of N will make the solution closer to the original model (1), although it will also increase the number of auxiliary unknowns. The form of (3) is the same as the system used in [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF], but the values of the coefficients change, because the variable v represents here the acoustic flow. To conform to their notations, our formulas for R i and L i should be multiplied by S, and C i and G i should be divided by S.

This model is shown in Section III to satisfy the following energy balance identity

d dt E = -Q -p(L)v(L) + p(0)v(0), (5) 
E = 1 2 ˆΩ ρ S v 2 + S ρc 2 p 2 + C 0 p 2 0 + N i=1 C i p 2 i + N i=1 L i v 2 i , (6) 
Q = ˆΩ R 0 v 2 + N i=1 R i (v -v i ) 2 + G 0 (p -p 0 ) 2 + N i=1 G i (p -p 0 -p i ) 2 ≥ 0 (7)
The model hence dissipates energy through the negative term -Q, and can exchange work with other systems via its boundaries x = 0 and x = L.

III. MATHEMATICAL DERIVATION

System (1) can be written as 023 15 × 10 -1 1.031 48 × 10 -3 2 6.452 52 × 10 -3 4.096 97 × 10 -6 Coefficients for N = 2 (17 it.) where the characteristic viscous and thermal times are given by

               dp dx + ρ S jω + G(τ v ω) τ v v = 0, ( 8a 
)
dv dx + S ρc 2     jω + γ -1 1 jω + τ θ G(τ θ ω)     p = 0, (8b) i a i b i 0 8 1 1.
i a i b i 0 8 1 2.101 57 × 10 -1 1.046 29 × 10 -2
τ v (x) := R(x) 2 ρ µ and τ θ (x) := R(x) 2 ρ C P κ , (9) 
and the loss coefficients depend on

G(ζ) := jζ φ( √ -jζ) 1 -φ( √ -jζ) , ∀ ζ ∈ R, ( 10 
)
where φ is given by ( 2). [START_REF] Hélie | Diffusive representations for the analysis and simulation of flared acoustic pipes with visco-thermal losses[END_REF].

Instead, in the same spirit as [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF], function G is approximated in the whole range of interest with a family of functions G N of the following form where (a i , b i ) i=1...N are real coefficients, that must be positive in order to ensure the passivity of the resulting time domain model. In contrast to what is used in [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF][START_REF] Schmutzhard | Parameter optimisation of a viscothermal time-domain model for wind instruments[END_REF], given a number of oscillators N , a single optimization must be performed to approximate G once and for all, rather than one optimization for every possible radius.

G N (ζ) = a 0 + N i=1 a i jζ b i jζ + 1 , (11) 

A. Optimization of the model coefficients

The objective function is chosen to be The positivity of (a i , b i ) i=1...N is enforced by expressing them as exp(a i ), exp(b i ) . This reparametrization warrants the use of unconstrained optimization algorithms, and is suitable to control the model's behavior on frequencies spanning several orders of magnitude. The BFGS algorithm [START_REF] Nocedal | Numerical optimization[END_REF] is then used to find a minimizer of function II gives values of coefficients (a i , b i ) that minimize this 2 error, for different values of N . Note that these coefficients do not depend on the geometry of the instrument, and can be readily used as given. The choice of N is a trade-off between the better precision enabled by using more additional variables, and the higher computing power required for simulation (see Sec. IV D).

E = M k=1 G N (ζ k ) G(ζ k ) -1 2 , ( 12 
)
E (a i , b i ) i=1...N . Table

B. Resulting family of models in the frequency domain

Replacing G with G N yields the following family of approximate models:

                     dp dx + ρ S jω + a 0 τ v + N i=1 a i jω b i τ v jω + 1 v = 0, dv dx + S ρc 2      jω + γ -1 1 jω + 1 a 0 τ θ + N i=1 a i jω b i τ θ jω+1      p = 0,
These equations can be written and represented using an equivalent electronic circuit with Foster structure at each abscissa x, as is done in [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF], by defining the coefficients R i , L i , C i and G i as in equations (4). Such a representation is useful, not only to obtain an explicit choice of state-space representation for the rational functions in (13), but also for the derivation of the energy balance.

C. Resulting family of models in the time domain

This family of models can be written in the time domain as follows

(M N )                                                    ρ S ∂v ∂t + ∂p ∂x + ∆ = 0, (14a) 
S ρc 2 ∂p ∂t + ∂v ∂x + m = 0, (14b) 
∆ = ∆ 0 + N i=1 ∆ i , m = m 0 + N i=1 m i , (14c) 
∆ 0 = R 0 v, m 0 = G 0 q 0 , (14d) 
∆ i = R i w i = L i d t v i , v = w i + v i , (14e) 
m = C 0 d t p 0 , p = p 0 + q 0 , (14f) 
m i = C i d t p i = G i q i , q 0 = p i + q i . ( 14g 
)
Eliminating the unknowns ∆, m, w i and q i directly leads to (3), where only 2N + 1 auxiliary variables are necessary.

D. Energy balance

The energy identity comes from the circuit representation [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF], and the associated equations ( 14). Let us multiply the first equation with v and the second equation with p, and integrate both in space over [0, L]. The terms v∆ and p m that arise can be interpreted as the power brought into the electronic circuit. They can be written, using the rest of system ( 14), as

             v∆ = R 0 v 2 + N i=1 R i w 2 i + L i 2 dv 2 i dt p m = C 0 2 dp 2 0 dt + G 0 q 2 0 + N i=1 G i q 2 i + C i 2 dp 2 i dt
Eliminating the same unknowns as before establishes the energy balance identity (5) where the energy is defined as ( 6) and the losses are given by (7).

IV. PRACTICAL IMPLEMENTATION

Space and time discretization of system (3) can be done with various numerical methods depending on the situation. In the context of sound synthesis, it is essential to design stable, accurate and efficient numerical schemes that couple the pipe with other elements such as the radiation at the bell, junctions with tone holes, or the embouchure, that can behave nonlinearly.

The current article proposes to use one-dimensional finite elements in space followed by an energy-consistent time discretization, in order to ensure numerical stability via an energy technique and to provide a numerical method that will easily extend to the presence of couplings. For the sake of simplicity, but without loss of generality, it is assumed that the outwards pipe flow is equal to given values λ -(t) and λ + (t) respectively at the pipe entrance and bell. In the presence of realistic coupling terms at the entrance and bell, these values will be unknowns and will require additional equations to be evaluated.

A. One-dimensional finite elements for space discretization

The finite element method (FEM) relies on a variational formulation (weak form) of the entire system in usual infinite dimensional functional spaces [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] to which belong p, v, p 0 , p i and v i , followed by the definition of finite dimensional spaces in which we seek numerically the approximate solutions p h , v h , p h,0 , p h,i and v h,i . One possible choice, called Mixed Spectral FEM, is described in (Tournemenne and Chabassier, 2019) and is followed here. It consists in using as finite dimensional spaces the set of piecewise polynomial functions of the spatial variable x, element by element, where jumps across element edges are authorized for v h and v h,i but not for p h , p h,0 and p h,i . These polynomial functions are chosen as the Lagrange interpolation polynomials on the Gauss-Lobatto points of each element. The order of the polynomial functions is called the order of the FEM and will be noted r thereafter. Finally, the integral terms coming from the variational formulation are evaluated using a quadrature formula based on the same Gauss-Lobatto points, so that mass matrices are diagonal [START_REF] Cohen | Higher-order numerical methods for transient wave equations[END_REF].

This procedure results in the definition of matrices that replace all the spatial operators in (3). The following "semi-discrete system" is obtained. Let V h , V h,i , P h , P h,0 , P h,i be the vectors of coordinates of resp. v h , v h,i , p h , p h,0 and p h,i in the spanning basis of the finite elements, and see [START_REF] Tournemenne | A comparison of a one-dimensional finite element method and the transfer matrix method for the computation of wind music instrument impedance[END_REF] for the definition of the matrices

M V h , M P h , B h , E h . The diagonal matrices R h,0 , R h,i , G h,0 , G h,i , C h,0 , C h,i and L h,i , are
obtained via a similar procedure to the diagonal mass matrices M V h and M P h .

                                                       M V h ∂V h ∂t + R h,0 V h + N i=1 R h,i (V h -V h,i ) -B h P h = 0, (16a) 
M P h ∂P h ∂t + G h,0 (P h -P h,0 ) + N i=1 G h,i (P h -P h,0 -P h,i ) (16b) +B * h V h + λ + E + h + λ -E - h = 0, (16c) L h,i ∂V h,i ∂t = R h,i (V h -V h,i ), for 1 ≤ i ≤ N, (16d) 
C h,0 ∂P h,0 ∂t = G h,0 (P h -P h,0 ) (16e) + N i=1 G h,i (P h -P h,0 -P h,i ), (16f) C h,i ∂P h,i ∂t = G h,i (P h -P h,0 -P h,i ), for 1 ≤ i ≤ N. ( 16g 
)
One advantage of this formulation is the natural treatment of the boundary conditions λ ± , which can become Lagrange multipliers for coupling with other systems. This semi-discrete system satisfies an analogue of the previous energy identity (5) where the continuous spatial norms are replaced with their semi discrete counterparts.

Note that the semi-discrete system ( 16) can be straightforwardly adapted for computation in the harmonic regime. This leads to one totally discrete system per value of ω, where the operator ∂ t is replaced with a multiplication with jω, which requires a sparse matrix inversion per ω.

B. Energy consistent time discretization

For time discretization, an interleaved scheme similar to [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF] is used. The time step is denoted ∆t, and the step number n, so that t = n∆t. Unknowns P h , P h,0 and P h,i are evaluated at integer times {0, 1, 2, . . .}, whereas V h and V h,i are evaluated on a staggered time grid { 1 /2, 3 /2, 5 /2, . . .}. Let us define the discrete operators δ and µ acting on any vector sequence {X n } n∈N as

δX n+ 1 2 = X n+1 -X n ∆t , µX n+ 1 2 = X n+1 + X n 2 . ( 17 
)
Conversely, if {Y n+ 1 2 } n is a sequence with indices on the staggered grid, {δY n } n is defined at integer times. The proposed totally discrete scheme reads

                                                                         M V h δV n h + R h,0 µV n h + N i=1 R h,i µ(V h -V h,i ) n -B h P n h = 0, ( 18a 
)
M P h δP n+ 1 2 h + G h,0 µ(P h -P h,0 ) n+ 1 2 + N i=1 G h,i µ(P h -P h,0 -P h,i ) n+ 1 2 + B * h V n+ 1 2 h +λ n+ 1 2 + E + h + λ n+ 1 2 -E - h = 0, (18b) L h,i δV n h,i = R h,i µ(V h -V h,i ) n , ∀i, (18c) 
C h,0 δP

n+ 1 2 h,0 = G h,0 µ(P h -P h,0 ) n+ 1 2 + N i=1 G h,i µ(P h -P h,0 -P h,i ) n+ 1 2 , (18d) C h,i δP n+ 1 2 h,i = G h,i µ(P h -P h,0 -P h,i ) n+ 1 2 , ∀i. (18e) 
This system can be interpreted as an interleaved leap-frog scheme for pressure and flow, combined with an implicit midpoint resolution of the electronic circuit identities. It satisfies the following discrete equivalent of the energy balance (5) (see Appendix):

δE n+ 1 2 h = -µQ n+ 1 2 h,visc + Q n+ 1 2 h,therm + S n+ 1 2 h ( 19 
)
where the discrete energy is defined as

E n h = E n h,V + E n h,P + µE n h,visc + E n h,therm + e n h . (20) 
The different terms of energy are defined as

E n h,V := 1 2 µV n h 2 M V h , E n h,P := 1 2 P n h 2 M P h E n+ 1 2 h,visc := N i=1 1 2 V n+ 1 2 h,i 2 L h,i E n h,therm := 1 2 P n h,0 2 C h,0 + N i=1 1 2 P n h,i 2 C h,i e n h := ∆t 2 8 µV n h + N i=1 R -1 h,0 R h,i µ(V h -V h,i ) n 2 R h,0 Q n h,visc := µV n h,0 2 R h,0 + N i=1 µ(V h -V h,i ) n 2 R h,i Q n+ 1 2 h,therm := µ(P h -P h,0 ) n+ 1 2 2 G h,0 + N i=1 µ(P h -P h,0 -P h,i ) n+ 1 2 2 G h,i S n+ 1 2 h := -λ n+ 1 2 + (E + h ) * µP n+ 1 2 h -λ n+ 1 2 -(E - h ) * µP n+ 1 2 h where R h,0 = R h,0 (M V h ) -1 R h,0 ,
and for any time series of vectors {X n } n , {Y n } n , their scalar product is defined as

(X n , Y m ) = k X n k Y m
k and the weighted norm, for any non negative matrix A, is

X n A = (AX n , X n ) 1 /2
. This energy is positive as soon as the modified mass matrix M P h , defined as

M P h = M P h - ∆t 2 4 B * h (M V h ) -1
B h is a positive quadratic form. This leads to the following stability condition:

∆t ≤ 2 ρ (M P h ) -1 B * h (M V h ) -1 B h
which is the same condition as for solving the lossless wave equation with the classical leapfrog scheme [START_REF] Chabassier | Introduction and study of fourth order theta schemes for linear wave equations[END_REF]. Showing the convergence of the discrete scheme, as ∆t and h tend to zero, is out of the scope of the present work but it is expected that the dissipation of a positive energy will enable such a result [START_REF] Chabassier | Space/time convergence analysis of a class of conservative schemes for linear wave equations[END_REF].

C. Explicit update of the unknowns

One of the advantages of the of spectral finite elements is that

M P h , M V h , L h,i , C h,0 and C h,i
are diagonal matrices, making them trivial to invert. Thanks to an algorithmic elimination strategy, which can also be interpreted as a Schur complement, an explicit update of the unknowns is possible and is given in Appendix B. This approach generalizes the one given in Table I of [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF] for finite differences, to finite elements of arbitrary order in matrix notations.

D. Accuracy and efficiency

Model ( 18) is applied to a simplified natural trumpet of total length 1.335 m. The pipe comprises two parts: a cylinder, followed by a "Bessel horn":

R(x) =            6 × 10 -3 m if 0 < x < 0.716, γ(x -x P ) -α if 0.716 < x < 1.335,
where α = 0.7 is the parameter of the Bessel horn. Constants γ = 4.404 37 × 10 -3 m and

x P = 1.358 97 m are chosen such that the radius is continuous at the junction, and that the bell radius is 60 mm, see Fig. 3. For simplicity, we assume a zero-pressure condition at the bell. An impulse response is computed by setting the input boundary term to a prescribed flow -λ

n+ 1 2 - = v 0 (n + 1 2 )∆t , with v 0 (t) =            8V 0 3t 1 sin 4 π t t 1 if 0 < t < t 1 , 0 otherwise, (22) 
where the duration of the impulse is t 1 = 4 × 10 -4 s and the total injected volume is V 0 = 1 × 10 -7 m 3 . At the bell an elementary open condition p = 0 is applied: the generalization to more realistic radiation impedances is a natural possible extension of the present work.

The numerical scheme ( 18) is used to compute the impulse response at the temperature t = 20 • C with 34 elements of order 10 and a time step ∆t = 3.185 × 10 -6 s, which is the largest value satisfying the stability condition (21) . The final time is set to T = 0.2 s. Finally Fig. 7 shows the consecutive relative L ∞ -error in time of the impulse response with respect to the number of finite elements. As the spatial discretization of the pipe is refined, the time step is decreased by choosing the largest possible value given by the stability condition (21). The obtained impulse response is interpolated on a fixed time grid and compared. The resulting space-time convergence curve displays a second order rate of convergence.

V. COMPARISON WITH OTHER MODELS

Model (3) is compared with several models of the literature, in time domain and in frequency domain. The comparison includes two reduced 1D models: model (ZK) (1) and Webster-Loskhin model (WL) developed in [START_REF] Hélie | One-dimensional acoustic models of horns and comparison with measurements[END_REF], without the hypothesis of curved wavefronts, which is out of the scope of the present article. They are compared to 3D linear acoustic equations in the air column, associated with effective wall impedance boundary conditions of two types: from [START_REF] Cremer | On the acoustic boundary layer outside a rigid wall[END_REF] with an incident angle of π/2 noted (Cr), and from (Berggren et al., 2018) noted (BBN). All 3D solutions are obtained using finite elements for the spatial discretization using the software Montjoie 2 , in an axisymmetric configuration. The numerical solution relies on a curved mesh of the simplified natural closer to (WL) which indeed relies on Cremer wall impedances, and (BBN) to (ZK). It can be noted that the difference in resonance frequency (up to 1% i.e. 17 cents) between models is of the same order as the differential pitch sensitivity of the ear (around 4 cents) [START_REF] Micheyl | Influence of musical and psychoacoustical training on pitch discrimination[END_REF]. Fig. 10 quantitatively compares the models. With model (ZK) taken as a reference, the largest error of the other models on the impulse response is calculated. This error amounts to 1.5% for (WL). For the numerical schemes, the discrepancy results from two kinds of 

G h = G h,0 + i G h,i , R h = R h,0 + i R h,i , C h,0 = C h,0 + ∆t 2 G h .
The next iterates P n+1 h , P n+1 h,0 , P n+1 h,i , V

n+ 3 /2 h , V n+ 3 /2 h,i
can be computed as follows, where all the matrices to invert are diagonal, beginning with P n+1 h : 

M P h + ∆t 2 C -1 h,0 C h,0 G h P n+1 h = M P h -∆t 2 C -1 h,0 C h,0 G h P n h + ∆t C -1 h,0 C h,0 G h P n h,0 + ∆t i C -1 h,0 (G -1 h,i + ∆t 2 C -1 h,i ) -1 C h,0 P n h,i -∆t B * h V n+ 1 2 + λ n+ 1 2 + E + h + λ n+ 1 2 -E - h .

Now that

M V h + ∆t 2 R h V n+ 3 2 h = M V h -∆t 2 R h V n+ 1 2 h + ∆t i (R -1 h,i + ∆t 2 L -1 h,i ) -1 V n+ 1 2 h,i + ∆tBP n+1 h Finally, V n+ 3 2 h,i
is obtained as

L h,i + ∆t 2 R h,i V n+ 3 2 h,i = L h,i - ∆t 2 R h,i V n+ 1 2 h,i + ∆t 2 R h,i (V n+ 1 2 h + V n+ 3 2 h
).

1 See supplementary material at https://asa.scitation.org/doi/suppl/10.1121/10.0005537 for the tables of coefficients (a i , b i ) for N = 0 to 16. 

  Sound velocity: c = 331.45 T /T 0 m s -1 Density: ρ = 1.2929 T 0 /T kg m -3

  2 4.075 43 × 10 -2 4.020 92 × 10 -4 3 8.148 25 × 10 -3 1.622 09 × 10 -5 4 1.961 59 × 10 -3 5.688 60 × 10 -7 Coefficients for N = 4 (23 it.) 864 11 × 10 -1 3.168 42 × 10 -2 2 8.063 38 × 10 -2 5.883 91 × 10 -3 3 3.520 99 × 10 -2 1.112 01 × 10 -3 4 1.533 51 × 10 -2 2.116 66 × 10 -4 5 6.695 83 × 10 -3 4.045 03 × 10 -5 6 2.932 51 × 10 -3 7.735 96 × 10 -6 7 1.328 25 × 10 -3 1.444 92 × 10 -6 8 9.403 66 × 10 -4 1.483 83 × 10 -7 Coefficients for N = 8 (114 it.) TABLE II. Coefficients (a i , b i ), optimized for M = 100 values of ζ ranging from 8 to 2 × 10 6 , covering radii of 1 × 10 -3 m to 0.1 m and frequencies of 20 Hz to 2 × 10 4 Hz. In parentheses: number of iterations to reach the stagnation threshold 10 -8 .

  FIG. 1. Dimensionless loss coefficient G(ζ), w.r.t. dimensionless frequency ζ. The range of interest

  FIG. 2. Relative error between G and G N , as a function of dimensionless frequency ζ, for several

FIG. 3 .

 3 FIG. 3. The simplified natural trumpet : radius w.r.t. position along bore

Fig. 4 FIG. 4 .

 44 Fig. 4 displays the computed impulse response, i.e. the evolution of the pressure at the

Fig 5 FIG

 5 Fig 5 displays the energy distribution with respect to time, according to the definitions

  FIG. 8. Impulse response: evolution of the pressure at the entrance of the simplified trumpet

  error: model error, and discretization error. The former is due to approximation (11) and can be reduced by increasing N ; the latter is due to the numerical scheme (18) and can be reduced by decreasing the time step ∆t, as done in Fig 10.For N = 8 the model error compared to (ZK) is observed to be about 0.14%, and for N = 16 it is less than 0.02%.VI. CONCLUSIONS AND PROSPECTSThis work presents a 1D model for viscothermal wave propagation suitable for timedomain simulation, which makes use of an adjustable number of auxiliary unknowns. It is derived from an approximation of the loss coefficients of the Zwikker-Kosten model with rational functions over the whole range of frequencies and radii of musical acoustics. The proposed improvement upon previous work is that the coefficient optimization procedure has been done only once, as the objective function does not depend on temperature or pipe radius. It leads to a closed-form for the resulting model, where the user only needs to specify the instrument geometry and physical constants. Numerical comparison with 3D models show that the approximation error is smaller than the discrepancies between different models. The use of auxiliary variables induces a numerical burden which was to be expected for accounting for viscothermal effects. The model satisfies an energy identity and is therefore suitable for time-domain coupling with other models as sound radiation, or reed evolution, which are a possible extension of this work. This work could be extended to include additional forms of acoustic losses, such as wall admittance due to porosity, or to better justify its use in tubes with variable cross-sectional area.Taking the scalar product of µ(18a) with µµV yields M V µδV + µ∆, µµV -(BµP, µµV ) = 0. The scalar product of (18b) with µP gives M P δP + m, µP + (B * V, µP ) + λ -E -+ λ + E + , µP B and C are treated separately.Using (A3) and the values of A , B and C , and replacing ∆ with its value, leads to the expected relation (19
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  http://montjoie.gforge.inria.fr 3 http://openwind.gitlabpages.inria.fr/web Abel, J., Smyth, T., and O. Smith, J. (2003). "A simple, accurate wall loss filter for acoustic tubes," International Conference on Digital Audio Effects 2003 Proceedings, London, UK 2003, 53-57.

TABLE I

 I 

. Numerical values

[START_REF] Chaigne | Acoustics of musical instruments[END_REF] 

of air constants used in the model. t is the temperature in Celsius, and T the absolute temperature with T 0 = 273.15K.
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	APPENDIX B: EXPLICIT UPDATE OF THE UNKNOWNS
	Assume P n h , P n h,0 , P n h,i , V h n+ 1 /2	, V h,i n+ 1 /2	are known. Define

 (21) 

APPENDIX A: DISCRETE ENERGY BALANCE 1. Useful identities Using discrete-time operators µ and δ defined in (17), the following identities, implicitly centered in t n+ 1 2 , hold

Notations

In this appendix, for the sake of brevity, subscripts h and time integers n and n + 1 /2 are omitted. We denote

≡ C 0 δP 0 . Moreover we use the notations defined in section IV B.

Now, the discrete work (∆, µV ) writes

Moreover, the discrete work (m, µP ) writes

, µ(P -P 0 ))

Finally, using (A1b) and commutativity of µ and δ,