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Turnpike property in optimal microbial metabolite production

J.-B. Caillau · W. Djema · J.-L. Gouzé · S. Maslovskaya ·
J.-B. Pomet

August, 2021

Abstract We consider the problem of maximization of metabolite production in bacterial cells formulated as
a dynamical optimal control problem (DOCP). By Pontryagin’s maximum principle, optimal solutions are con-
catenations of singular and bang arcs and exhibit the chattering or Fuller phenomenon, which is problematic for
applications. To avoid chattering, we introduce a reduced model which is still biologically relevant and retains the
important structural features of the original problem. Using a combination of analytical and numerical methods,
we show that the singular arc is dominant in the studied DOCPs and exhibits the turnpike property. This property
is further used in order to design simple and realistic sub-optimal control strategies.

Keywords biological systems · Fuller phenomenon · turnpike property

Mathematics Subject Classification (2000) 49K15 · 92C45

1 Introduction

Microbial species seek to spread as much as possible, according to the availability of nutrients and resources in
their surroundings, with the ultimate goal of invading their environment. As a result, when resources are lim-
ited, competition sets in between these single-cell organisms which naturally seek to keep themselves alive and
develop faster than other competitors. This Darwinian adaptation capacity defines the fitness degree of each mi-
croorganism. Such a process can be formulated as a maximization problem of the microbial growth rate in order
to outgrow the competitors. The microbial growth is described by ordinary differential equations and the so-called
self-replicator model, which is commonly used to study the problems of resources allocation in microorganisms
[13,20,11], under the assumption that microbial species aim to optimally use their available energy to grow. This
results in several applications in biotechnology, where the fitness of bacteria is used to optimize the production
of high valuated compounds. Our work fits into this perspective, by developing novel theoretical and synthetic
approaches for biotechnological applications. In this specific research area, optimal control theory has greatly
contributed to achieving a better understanding of natural biological phenomena, and more importantly, to effec-
tively controlling artificial cultures of microorganisms in biotechnological applications. Theoretical tools such as
Pontryagin’s Maximum Principle (PMP, [16]) are usually combined with numerical ones like the shooting method
or direct optimization approaches [2,3], in order to provide satisfactory solutions to challenging optimization
problems (DOCPs). The difficulty stems mainly from the strong nonlinearities of the models involving biological
and chemical constraints. The turnpike phenomenon, which states that under some conditions the optimal solution
of a given DOCP remains most of the time ‘close’ to an optimal steady-state, solution of an associated static-OCP
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(see, e.g., [18]), is expected to provide new insights into the DOCP itself. In particular, the static solution is easier
to determine and also to implement in practice. The concept of turnpike has been recently revisited in the liter-
ature and is gaining major attention within the area of optimal control [18,19,9] due to its various applications
and validity for different classes of problems. In particular, these phenomena have been reported notably in DOCP
dealing with the growth of microorganisms in biotechnological systems [23,7,10]. Among various approaches that
describe the turnpike behaviour of the optimal solutions, one can cite measure type estimates as in [10] (measure
turnpike) and exponential estimate as in [18] (exponential turnpike). In our case, we show that the exponential
turnpike property hold and use it to devise sub-optimal control strategies.

The contributions of the paper go in several directions. First we show that the local exponential turnpike
property holds on singular arcs. In contrast to known results on exponential turnpike in [18], we deal with singular
trajectories.Using Pontryagin Maximum Principle and hyperbolic properties of the Hamiltonian system verified
by extremals, we prove the turnpike property in the same manner as in [18,7]. Note that this result is in line
with [7] where the turnpike property is shown for singular trajectories, but different since in our case the singular
trajectories are of order two which strongly influences the extremal structure. Singular arcs play a major role in
the solutions of the considered DOCP as was discussed in [21] and as can be seen on Fig. 5. Turnpike properties
of singular arcs together with the stability of the static control allows us to construct a sub-optimal control strategy
by replacing the complicated singular control by a very simple constant control equal to the static control. The
contribution of the paper is related to the Fuller phenomenon. It is well known (see, e.g., [24]) that the connection
between bang arcs and singular arcs of intrinsic order two can only be achieved through chattering, that is by an
infinite number of switchings between bang arcs over a finite time interval. This is problematic for applications
and requires some approximation process, see for instance [6]. To tackle this issue we reduce the problem to a
simpler one which is biologically relevant and preserves most of the system structure while having the advantage
of reducing the order of the single arcs by one. Consequently, the connections between the new optimal control
regime no longer requires chattering. Analysis of the reduced problem can be used to derive the turnpike property
of the original problem since we also show that the singular flow of the two problems coincide. Thus, we construct
a sub-optimal open loop control law that exploits the turnpike property, with the benefits of avoiding chattering of
the original solutions.

The paper is organized as follows. In Sect. 2, we introduce the full and reduced models of metabolite pro-
duction and we state the DOCPs of interest. In Sect. 3, we present some numerical illustrations highlighting the
turnpike feature of the optimal solutions. Then, in Sect. 4, we focus on singular flow in the reduced DOCP, and we
prove the turnpike property along the singular trajectories. Sect. 5 is devoted to the turnpike property of singular
trajectories in the full DOCP. Finally, in Sect. 6, we develop numerical algorithms to solve both problems that are
based on singular arcs approximations by constant controls. The numerical results are detailed in Sect. 7.

2 Model of metabolite production

The extended self-replicator model that we consider was proposed by [11], this is a coarse-grained model of
resource allocation in bacteria. The cell dynamics comprises the gene expression machinery and the metabolic
machinery including production of some metabolite of interest. It also includes an external control which deter-
mines the proportion of resources allocated between the gene expression and the metabolic machinery. The key
elements in the reactions of the considered model are external substrate S, precursor metabolites P , gene expres-
sion machineryR, metabolic machineryM , metabolite of interestX , volume V = β(M+R), where β represents
the inverse of the cytoplasmic density. For the sake of simplicity, quantities of the system are expressed as con-
centrations, i.e., p = P

V , r = R
V , m = M

V , s = S
Vext

, x = X
V , where p, r and m are intracellular concentrations

of precursor metabolites, ribosomes and metabolic enzymes respectively, s is the extracellular concentration of
substrate with respect to a constant external volume Vext. The dynamics of m can be expressed in terms of r and
therefore is excluded from the analysis.

2.1 The full model

The general form of the model can be found in [11,23]. Following the modeling steps in [23,11], the synthesis
rates in the dynamics are further taken as Michaelis-Menten kinetics. This leads to different models depending
on environmental conditions. In our case we restrict our attention to the constant environmental conditions, when
s is constant. We are led to the following control system with u ∈ [0, 1] the control function representing the
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proportion of resources allocated to gene expression (r), while 1 − u is allocated to metabolism (m) which is
excluded from the system, 

ṗ = EM (1− r)− k1
p(1−r)
K1+p − (p+ 1) pr

K+p ,

ṙ = (u− r) pr
K+p ,

ẋ = k1
p(1−r)
K1+p −

pr
K+px,

V̇ = pr
K+pV,

(1)

with constant parameters EM ,K,K1, k1 and p, r, x,V satisfying, 0 < p, 0 < x, 0 < V, 0 ≤ r ≤ 1. Control u is
assumed to be a measurable function u : [0, T ]→ [0, 1]. We denote by U the set of such control functions and call
U the set of admissible controls. Thus, we are interested in maximization of the total quantity of the metabolite
of interest X produced during time T using the resource allocation u. For this, we introduce the cost function,
JX(u) = X(T ) − X0, with X0 = X(0) given. Using the dynamics of x,V in (1), the cost can be expressed in
variables (p, r, x) as follows,

JX =

∫ T

0

k1

x(t)

p(t)(1− r(t))
K1 + p(t)

dt, (2)

where (p(t), r(t), x(t)) satisfy (1) for any t ∈ [0, T ]. Notice that the dynamics of (p, r, x) do not depend on V .
We are led to the following optimal control problem. Find a control u(·) ∈ U which maximizes JX(u) for given
T and (p, r, x) satisfying, 

ṗ = EM (1− r)− k1
p(1−r)
K1+p − (p+ 1) pr

K+p ,

ṙ = (u− r) pr
K+p ,

ẋ = k1
p(1−r)
K1+p −

pr
K+px,

(3)

with given initial point (p0, r0, x0) and free final point at final-time T .
The existence of an optimal solution has already been shown in [23]. The preliminary analysis in [23], [21]
showed that the singular arcs are of order two which implies (cf. [24]) that any connection between bang arcs
and singular arc is realized by chattering, that is, infinite number of switchings between bang arcs during a finite-
time interval. The chattering phenomenon in optimal solution is problematic for application because it can not be
directly implemented. To tackle this issue we propose to consider a reduced control system for which most of the
structural properties still holds but the chattering phenomenon does not appear in optimal solutions. Notice first
that in the model defined by (3) and (2), the control u only appears in the dynamics of r and at the equilibrium of
r we have moreover u = r. In addition, r appears linearly in the dynamics of p and x and also in the cost (2).

2.2 The reduced model

Since r is the only variable whose time-derivative depends on the control, it is rather natural to consider the
reduced system where r is no longer a state variable but a "cheap" control. This idea, similar to taking velocities
as controls instead of forces for a mechanical systems, is standard [12] and also related to the Goh transformation
[1]; some authors call backstepping the process of deducing a feedback control for the full system from a feedback
control for the the reduced system [8]). The new state variables are (p, x) and the reduced system reads,{

ṗ = EM (1− r)− k1
p(1−r)
K1+p − (p+ 1) pr

K+p ,

ẋ = k1
p(1−r)
K1+p − x

pr
K+p .

(4)

As before, state (p, x) satisfy 0 < p, 0 < x and control r satisfies 0 ≤ r ≤ 1. The new DOCP (5) aims then to
find the control r maximizing the cost (2) under the dynamical constraint (4), the state constraint 0 < p, 0 < x
and control constraint 0 ≤ r ≤ 1. The initial position (p(0), x(0)) is fixed, while (p(T ), x(T )) is free, i.e.,

max
r∈Ur

∫ T

0

k1

x(t)

p(t)(1− r(t))
K1 + p(t)

dt
{

under the constraint of (4)
p(0) = p0, x(0) = x0, 0 < p, 0 < x, (5)

where Ur is the set of admissible controls, that is Ur = {r(·) measurable : 0 ≤ r(t) ≤ 1, t ∈ [0, T ]}. We will
call this optimal control problem the reduced problem.
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3 Numerical examples highlighting the turnpike features

In this section we provide numerical solutions obtained for both full and reduced models with specified parame-
ters. These solutions serve as illustration for the following sections and show what turnpike property of a trajectory
may look like. We anticipate on the next sections in two following ways.
- We say that an optimal solution is made of bang arcs, when the control is equal to either 1 or 0 (in both the
reduced and full problems, the control takes values in [0, 1], where 0 and 1 are the boundary points), and singular
arcs, when the control takes values in the interior of [0, 1]. In the obtained numerical solutions, we distinguish
singular or bang arcs by inspection.
- We use the notion of static optimal control problem which is defined in sections 4.2 and 5.
All the numerical solutions are obtained using direct numerical methods, which consist in solving a finite-dimensional
optimization problem obtained by discretizing the optimal control problem with respect to both time and space;
we use the bocop [17] software, that efficiently automatizes this procedure.

In this illustrative section, the parameters present in (2), (3), (4), (5) are fixed to:

EM = k1 = K1 = K = 1 .

3.1 Turnpike features in the reduced problem of metabolite production

In the reduced optimal control problem (5), we fix the initial condition to x(0) = p(0) = 1. Optimal solutions have
been computed1 for various values of T , results are discussed in Fig. 1-2. See conclusions at the end of Sect. 3.2.

T 10 15 18 20 24 26 28 –
t1 2.47 2.50 2.60 2.62 2.64 2.64 2.65 –
t2 62.01 6.67 11.67 14.69 16.72 20.73 22.77 –
T 30 35 40 45 50 55 60 65
t1 2.63 2.64 2.59 2.56 2.52 2.50 2.53 2.52
t2 26.82 31.85 36.88 41.94 47.00 52.03 57.00

T 70 80 90 100 120 125 135 150
t1 2.52 2.40 2.34 2.40 2.40 2.25 2.16 2.10
t2 67.06 77.12 87.12 97.20 117.36 122.25 132.30 147.60

T 200 230 250 280 300 310 320 –
t1 2.00 1.84 2.00 1.68 1.80 1.86 1.90 –
t2 197.60 227.70 248.00 277.76 298.20 308.14 318.08 –

Table 1: Values of the switching-instants t1, t2 for different time horizons [0, T ], where T ranges from 10 to 320.

3.2 Turnpike features in the full problem of metabolite production

Let us now consider the initial DOCP (3)-(2). We define the associate static optimization problem.
EM (1− r)− k1

p(1−r)
K1+p − (p+ 1) pr

K+p = 0,

(u− r) pr
K+p = 0,

k1
p(1−r)
K1+p −

pr
K+px = 0,

0 ≤ p, 0 < x, 0 ≤ r ≤ 1, 0 ≤ u ≤ 1}

max
(p,r,x,u)

k1

x

p(1− r)
K1 + p

(OCPstatic)

Proposition 3.1 Problem OCPstatic with parameters EM = k1 = K1 = K = 1, admits the unique solution.
This solution satisfies u = r, x = p(1−r)

pr , r = 1
p2+p+1

, where p is the unique p > 0 maximizing p
(p+1)(p2+p+1) .

1 Numerical experiments were run on bocop, with the following settings: discretization: Euler (implicit, 1-stage, order 1), time steps: 500,
Maximum number of iterations: 2000, NLP solver tolerance: 10−20. The values of t1 and t2 for each value of T used in Fig. 2 are given in
Tab. 1 for completeness.
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Fig. 1: On the left: the optimal control r(t), t ∈ [0, T ] with T = 15. On the right: the optimal control r(t),
t ∈ [0, T ] with T = 30. The observed optimal control structure is of type bang(1)-singular-bang(0); we call t1
the time at the end of the first bang arc and t2 the time at the end of the second and last one, they are marked on the
graphics. One observes that increasing the total duration T seems to increase the duration t2 − t1 of the singular
arc without notably changing the durations t1 and T − t2 of the bang arcs. This tendency is confirmed in Fig. 2.
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Fig. 2: The same computation as in Fig. 1 has been repeated for various values of T between 10 and 320, t1 and
t2 have been obtained for each of these values of T (see the table in Footnote 1) and we have plotted the values of
(t2 − t1)/T against T . This confirms that the time spent on a singular arc becomes drastically preponderant as T
becomes large.

Calculating the minimizing p = 0.5652 from Proposition 3.1, we deduce r = 0.5306, x = 0.8846, and u = r.
Let us fix the initial conditions to p(0) = x(0) = 1 and r(0) = 1/2. The optimal trajectories (p(t), r(t), x(t)),
obtained using the Bocop settings2, are illustrated in Fig. 3 and the optimal control u(t) given in Fig. 4. In Fig. 3,
we observe, similarly to the control, that the optimal trajectories evolve around the static point over the time
window where the control u is singular (Fig. 4).

The numerical results suggest the following properties:

– the duration of the singular phase increases when we increase the final time T (Fig. 2 and 5),
– the duration of the singular phase increases much faster than the duration of the phase characterized by bang

arcs when the time window [0, T ] is large,
– for sufficiently large T , the optimal trajectories (Fig. 3) and the optimal control (Fig. 4 and 1) , solutions of the

reduced and the full DOCPs, stay most of the time ‘close’ to the static steady-state solution of the associated
static-OCPs.

The property of optimal trajectories to stay the most of the time near a steady state when the final time is large
enough is well known in control theory and it refers to the turnpike phenomenon. Mathematically, turnpike can be
described in different terms, the most convenient in our case is the approach of [18] where it is characterized via
the following estimate at each time t ∈ [0, T ] for z = (p, r, x),

2 Final time T = 40 (time unit), discretization: Midpoint (implicit, 1-stage, order 1), time steps: 7000, Maximum number of iterations:
2000, NLP solver tolerance: 10−14.
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Fig. 3: The optimal trajectories for t ∈ [0, 40] in the numerical example of Sect. 3.2.
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Fig. 4: The optimal control u(t) for t ∈ [0, 40] in the example of Sect. 3.2.

‖u(t)− ū‖+ ‖z(t)− z̄‖ ≤ C
(
e−µt + e−µ(T−t)

)
,

for some positive parameters µ,C independent from T and for time T large enough. In the following sections
we will concentrate on proving the local turnpike property of singular arcs in both reduced and full cases.

4 Turnpike property of the singular flow of the reduced problem

4.1 Reduced problem

Let us start the analysis of the reduced problem defined by (4), (2) by considering the question of existence of
optimal solutions. First, for any fixed admissible control function r(·), solution of (4) exists and is well-defined
for any T ∈ R+ and the set {(p, x) : 0 < p, 0 < x} is positively invariant for the system (4), that is, for any
initial solution (p0, x0) satisfying 0 < p0, 0 < x0, the corresponding solution (p, x) of (4) satisfy 0 < p, 0 < x.
This can be shown by the same arguments as in [23,22]. The optimal control problem is stated for controls taking
values in compact [0, 1] and both integrand of the cost and the dynamics are affine in control. Thus, existence of
the optimal solutions is insured by standard Filippov’s theorem [1].

To analyse solutions of the reduced problem we apply the PMP [16]. It gives the first order optimality condition
and describes the trajectories which are candidates to be optimal solutions. Let us denote by zr = (p, x) the state,
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Fig. 5: The singular arc becomes preponderant when T increases.

by λr = (λp, λx) ∈ R2 the adjoint state and let λ0 ≤ 0. We write the cost (2) compactly JX =
∫ T

0
f0(z, r) and

denote byHr the following function called pseudo-Hamiltonian,

Hr(z, λ, λ0, r) = −λ0 f0 + λp ṗ+ λx ẋ.

Theorem 4.1 (Pontryagin Maximum Principle) If zr(·) is a trajectory of (4) which maximizes the cost (2) then
it is a projection of (zr(·), λr(·), λ0) satisfying on [0, T ] the following equations,{

żr = ∂
∂λrHr(zr, λr, λ0, r̃),λ̇r = − ∂
∂zrH

r(zr, λr, λ0, r̃),Hr(zr, λr, λ0, r̃) = maxr∈[0,1]Hr(zr, λr, λ0, r),
(6)

and the transversality condition associated with the final condition (p(T ), x(T )) ∈ Rn (free final condition),
λr(T ) = 0.

Pair (zr, λr) is called extremal. An extremal is called normal if the associated λ0 satisfies λ0 < 0 and abnormal
if λ0 = 0. System (6) is invariant under the rescaling of (λr(·), λ0) by any positive constant and it is standard
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to fix λ0 = −1 in case of normal extremals. From now on we will write Hr(zr, λr, r) for the normal pseudo-
Hamiltonian associated with λ0 = −1. By the same arguments as in [23] we deduce that the abnormal case λ0 = 0
is not possible. This is a consequence of the following properties of the optimal control problem: the dynamics of
the adjoint variable λ̇ is linear in λ and the transversality condition implies λ(T ) = 0.
The reduced control system (4) and f0(z, u) are affine in control r. Thus, by applying the PMP the corresponding
pseudo-Hamiltonian can be written in the following form,

Hr(zr, λr, r) = Hr
0 (zr, λr) + r Hr

1 (zr, λr),

where the switching function Hr
1 is defined as follows,

Hr
1 =

(
k1p

p+K1
− (p+ 1)p

K + p
− EM

)
λp −

(
k1p

p+K1
+

px

K + p

)
λx −

k1p

x(p+K1)
. (7)

From maximization condition in PMP, it follows that the value of the optimal control depends on the values of
the switching function Hr

1 . The dependence is as follows. If Hr
1 (zr(t), λr(t)) > 0 on some time interval [a1, b1]

then r(t) = 1 on [a1, b1]; if Hr
1 (zr(t), λr(t)) < 0 on some time interval [a2, b2] then r(t) = 0 on [a2, b2]. Finally,

if Hr
1 (zr(t), λr(t)) = 0 on some time interval [a3, b3] then the corresponding control r is singular on [a3, b3]. The

optimal control is then a concatenation of bang controls u ≡ 1, bang controls u ≡ 0 and singular controls.
From the transversality condition λr(T ) = 0, it follows that λp(T ) = λx(T ) = 0. Substituting λp(T ) =

λx(T ) = 0 in (7) and taking into account p, x > 0, we deduce Hr
1 (z(T ), λ(T )) 6= 0. By continuity of Hr

1 (t),
there exists ε > 0 such that Hr

1 (t) 6= 0 for t ∈ [T − ε, T ]. This implies that r is not singular on [T − ε, T ] which
means that any extremal ends with a bang arc. Moreover, from Hr

1 (T ) = − k1p
x(p+K1) < 0, we deduce that the final

bang control is r ≡ 0.

4.2 Static problem.

Now let us define the static problem corresponding to (5). In the static problem we are looking for the steady
state of the dynamics (4) at which the cost (2) reaches its maximum. Let us denote the dynamics (4) of zr by

˙(zr) = fr(z
r, r). The static problem is defined as follows.

max f0(zr, r), s.t.

{
fr(z

r, r) = 0,
0 < p, x, 0 ≤ r ≤ 1 (8)

Let us define in the same way the static problem corresponding to the original problem defined by (1), (2).

max f0(zr, r), s.t.

{
fr(z

r, r) = 0, (u− r) pr
K+p = 0,

0 < p, x, 0 ≤ r, u ≤ 1
(9)

As pr
K+p is non-negative, the solution of (9) satisfies either r = 0 or u = r. Both cost and equations in (9) do not

depend on u, therefore, in both cases, the optimal value of r coincides with the value optimal for (8). Hence, we
proved the following result.

Proposition 4.1 Solution (p, x, r) of the static problem (9) coincides with the solution of the static problem (8).

From the form of fr(zr, r) given by (4), r and x can be expressed as rational functions of p and the problem of
maximization of f0(zr, r) can be reformulated as a problem of maximization of a rational function f0(zr(p), r(p))
on p > 0. It was shown in [23], that the value of p maximising f0 is unique in the domain p > 0 for (9). As a
consequence of Proposition 4.1, the same holds for the reduced problem, i.e. for (8). We will call static point the
solution of the static-OCP.

4.3 Singular flow

Let us now consider in more details the singular control. First we denote Hr
01 = {Hr

0 , H
r
1} and by induction

Hr
0i = {Hr

0 , H
r
i } and Hr

1i = {Hr
1 , H

r
i }, where i is any sequence of 0s and 1s and {·, ·} is the Poisson bracket.

The singular control is the control corresponding to the case Hr
1 (t) ≡ 0 on some time interval. The value of

singular control can be obtained by differentiating Hr
1 (t) = 0, see [1,4] for more details. The order of the control
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is the smallest number d such that the control u can be expressed from, d2d

dt2d
Hr

1 (t) = 0. In the case of reduced
problem, the control can be obtained from, d2

dt2H
r
1 (zr, λr) = Hr

001(zr, λr) + rHr
101(zr, λr). Thus, the singular

control is of order 1 and is defined by: rs = −H
r
001(zr,λr)

Hr
101(zr,λr) . By [24], if the singular control is of order 1, then

the connection between bang control and singular control is a simple connection, that is, not by chattering. Thus,
chattering phenomenon does not occur in solutions to reduced problem. The extermal associated with the singular
control is called singular and belongs to the singular surface: Σr =

{
(zr, λr) ∈ R4 |Hr

1 = 0, Hr
01 = 0

}
.

Proposition 4.2 There exists a neighborhood of (p̄, x̄) solution of the static-OCP (8) where the singular surface
is defined by (λp, λx) = (λp(p, x), λx(p, x)) solution of,

a1(p, x)λp + b1(p, x)λx = c1(p, x),
a2(p, x)λp + b2(p, x)λx = c2(p, x), (10)

with coefficients a1, a2, b1, b2, c1, c2 defined by,

H1(p, x, λp, λx) = a1(p, x)λp + b1(p, x)λx − c1(p, x),
H01(p, x, λp, λx) = a2(p, x)λp + b2(p, x)λx − c2(p, x).

Proof. By definition of the singular surface, (λp, λx) satisfy (10), which admits a unique solution if and only if

the matrix ∆ =

(
a1 b1
a2 b2

)
is invertible. Let D = D(p, x) be the determinant of ∆. At an equilibrium of (4) we

have,

x =
(p+ 1)µ1

EM − µ1
, and r =

EM − µ1

EM − µ1 + (p+ 1)µ2
, (11)

with µ1 = k1p
K1+p , µ2 = p

K+p . Let us substitute x = x(p), r = r(p) from (11) in ∆(p, x) and f0(p, r, x). Then
the following identity obtained using Maple holds,

D(p, x(p)) f0(p, r(p), x(p)) =
p2(p+ 1)EMk1K1

(p+K)2(p+K1)2
6= 0.

We conclude that D(p̄, x̄) 6= 0. Function D(p, x) is continuous and thus it is different from zero in some
neighborhood of (p̄, x̄) which implies existence of a unique solution of system (10).

Substitution of the singular control rs in (6) gives{
żr = ∂H

∂λr (zr, λr, rs(z
r, λr)),

λ̇r = − ∂H
∂zr (zr, λ, rs(z

r, λr)). (12)

For any (zr, λr) ∈ Σr, singular Hamiltonian is defined by,

Hs(z
r, λr) = H(zr, λr, rs(z

r, λr)).

Thus, we can rewrite (12) on Σr as follows.{
żr = ∂Hs

∂λr (zr, λr),

λ̇r = −∂Hs

∂zr (zr, λr).
(13)

Proposition 4.3 Singular system (13) is Hamiltonian on Σr.

Proof. Let w be the symplectic form defined by the reduced problem (4), (2). In coordinates (zr, λr) we have
w = dzri ∧ dλri . To be symplectic, w|Σr

should be non-degenerate and closed, i.e. dw|Σr
= 0. It is closed by

definition of the exterior derivative, so we are left to show that it is non-degenerate. By definition, w|Σr
is non-

degenerate if for any q ∈ Σr and any X ∈ TqΣr we have (w(X,Y ) = 0 for all Y ∈ TqM) ⇒ (X = 0). The
tangent bundle TΣr is defined by,

TΣr = (Ker dH1 ∩Ker dH01)|Σr
= (span{H1,H01})⊥

∣∣∣
Σr

,

9



where f is defined by df = w(f , ·) for any function f : R4 → R. The symplectic orthogonal (span{H1,H01})⊥
is defined as follows,

(span{H1,H01})⊥ = {X ∈ R4 : w(X,H1) = w(X,H01) = 0}.

Symplectic form w is degenerate if and only if TΣr ∩ TΣr⊥ = 0, i.e.,

span{H1,H01} ∩ (span{H1,H01})⊥ = 0.

We will show that w is non-degenerate by contradiction. Assume there exists a nonzero vector field X =
αH1 + βH01 such that w(X,H1) = 0 and w(X,H01) = 0. Then α = 0 and β = 0 or w(H1,H01) = 0. By
definition, w(H1,H01) = H101 which is nonzero in our case, so X = 0 which contradict our assumption. As a
result we showed that (Σr, w|Σr

) is a symplectic manifold. A flow of (13) is Hamiltonian if and only if it preserves
w|Σr

, see [1]. We have Lie derivative LH w|Σr
= iH ◦ dw|Σr

+ d ◦ iH w|Σr
and iH w|Σr

= iHw = dH as
H|Σr

is a section of TΣr. Therefore, LH w|Σr
= 0 and it completes the proof of the Proposition.

4.4 Turnpike theorem.

The main result of this section is given by Theorem 4.2, in which we show local exponential turnpike property of
a singular trajectory, solution of (13). We assume that a solution of (13) is well defined on a time interval [t1, t2].

Theorem 4.2 There exists a positive constant ε such that, if zr(·) is singular and satisfies (13) on [t1, t2], z̄r is the
solution of static OCP (8), and if

‖zr(t1)− z̄r‖+ ‖zr(t2)− z̄r‖ ≤ ε

then there exists C > 0 such that for any t ∈ [t1, t2] there holds

‖zr(t)− z̄r‖+ |rs(t)− r̄| ≤ C
(
eµ(t1−t) + eµ(t−t2)

)
(14)

where µ = p̄r̄
K+p̄ .

The singular arc belongs to 2-dimensional surface Σr and, by Proposition 4.2, can be parameterized by (p, x)
near the solution of the static problem (p̄, x̄). Notice that the singular control of the reduced problem rs is a
function only of p, and thus, we can rewrite the singular system as follows,{

ṗ = fp(p),

ẋ = fr(p)− pr(p)
K+p x.

(15)

Let us introduce perturbations of the singular arc on Σr near (p̄, x̄),

δp = p(t)− p̄ δx = x(t)− x̄, δr = r(t)− r̄. (16)

Be definition, (δp, δx) satisfy,

d

dt

(
δp
δx

)
= H

(
δp
δx

)
+

(
o1(δp, δx)
o2(δp, δx)

)
with H =

(
∗ 0
∗ − p̄r̄

K+p̄

)
(17)

and o1, o2 are C1 functions on some neighborhood of (0, 0) ∈ R2n which have a little-o behavior, in our frame-
work we will use the following definition of little-o functions:

‖o(x, y)‖
‖(x, y)‖

−−−−−−→
(x,y) → 0

0 (x, y) ∈ R2n. (18)

The linear part of (17) defines the linearized system,

d

dt

(
δp
δx

)
= H

(
δp
δx

)
. (19)

Lemma 4.1 MatrixH is hyperbolic with opposite eigenvalues.

10



Proof. Consider the linearized system (19) in canonical coordinates,

d

dt

(
δzs
δλs

)
= Hs

(
δzs
δλs

)
, (20)

whereHs is (2× 2) matrix of the form,

Hs =

(
∂2hs

∂λs∂zs
(z̄s, λ̄s)

∂2hs

∂λ2
s

(z̄s, λ̄s)
∂2hs

∂z2s
(z̄s, λ̄s) − ∂2hs

∂λs∂zs
(z̄s, λ̄s)

)
.

The matrixHs is traceless by construction and so isH as trace is invariant under a change of basis. Therefore,
eigenvalues ofH are µ and −µ with,

µ =
p̄r̄

K + p̄
> 0.

AsH is hyperbolic, there exists a change of coordinates,(
g
h

)
=

(
a1,1 a1,2

a2,1 a2,2

)(
δp
δx

)
,

such that (19) in these coordinates takes the following form,

d

dt

(
g
h

)
=

(
−µ 0
0 µ

)(
g
h

)
+

(
õ1(g, h)
õ2(g, h)

)
. (21)

Lemma 4.2 [15] For any T > 0 there exists ρ > 0 such that the following two statements hold.

– For any (g0, hT ) ∈ B(0, ρK ) there exists the unique (g, h) ∈ C1
(
[0, T ] ,R2

)
satisfying (21) and,{

g(0) = g0, h(T ) = hT ,

|g(t)|+ |h(t)| ≤ ρ, t ∈ [0, T ].

– The map Φ defined by Φ(g0, hT ) = (g(·), h(·)) is continuous.

Lemma 4.3 [15] Let µ ∈ R+ be the positive eigenvalue of H. There exists rµ ∈ (0,∞) independent of T ∈
(0,∞) and functions θ1, θ2 ∈ C0 ([0, r̄µ];R+) satisfying θi(β) −−−−−→

β → 0+
0 for i = 1, 2, such that if (g, h) satisfies

(21) and
|g(t)|+ |h(t)| ≤ rµ, t ∈ [0, T ],

then for any t ∈ [0, T ] there holds{
|g(t)| ≤ Cµ

(
|g(0)| e−µt + e−µ(T−t) |h(T )| θ1(‖h‖c0)

)
,

|h(t)| ≤ Cµ
(
|h(T )| e−µ(T−t) + e−µt |g(0)| θ2(‖g‖c0)

)
.

(22)

Proof of Theorem 4.2. By Proposition 4.2, there exists a neighborhood V ⊂ R2 of z̄r such that in this neighbor-
hood solutions of (13) can be parameterized by (p, x) and satisfy (15). Let us choose ε̃ such that zr satisfying
‖zr− z̄r‖ ≤ ε̃ belong to V . We consider the perturbed system (19). Applying Lemmas 4.2, 4.3 to the diagonalized
system (21), we have existence of rµ > 0 such that if{

g(0) = a1,1 p(0) + a1,2 x(0),

h(T ) = a2,1 p(T ) + a2,2 x(T )
(23)

satisfy |g(0)|+ |h(T )| ≤ rµ then (g(t), h(t)) satisfy (22) for t ∈ [0, T ] and any final time T . Coming back to the
initial coordinates (δp, δx), if,

|p(0)|+ |x(0)|+ |p(T )|+ |x(T )| ≤ ‖A‖ rµ,
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then,

|δp(t)|+ |δx(t)| ≤ ‖A‖−1 (|g(t)|+ |h(t)|) ,

and as (22) applies, there exists a positive constant C such that,

|δp(t)|+ |δx(t)| ≤ C
(
eµ(t1−t) + eµ(t−t2)

)
.

Note that there exists R = R(rµ) s.t. ‖δp(t)‖+ ‖δx(t)‖ ≤ R for all t ∈ [0, T ]. Along the singular arc, r is a
continuous function of (p, x), thus we get for δr

|δr(t)| ≤ sup
B((p̄,x̄),R)

|∇p r| |δp|+ sup
B((p̄,x̄),R)

|∇x r| |δx| .

As a conclusion, up to a change of constant C, we obtain (14) which ends the proof.

The obtained result concerns the singular trajectory, which may be a part of the optimal solution. What about
the whole solution? The numerical results obtained in Section 3.1 suggest that when the final time is big enough,
any optimal solution contains a singular arc. Moreover, the singular arc constitutes the major part of a solution and
this part grows relatively to the other part of trajectory when we increase the final time as was shown in Fig. 1.
As a result, numerical examples show that the turnpike occurs not only at the level of the singular arc but for the
whole trajectory. These observations lead us to the following conjecture.

Corollary 4.3. Fix (p0, x0) in (0,+∞)× (0,+∞). There exists a constant T0 > 0 such that for any T > T0 and
any optimal extremal t 7→ (zr(t), λr(t)) for problem (4)-(5) with initial condition (p0, x0), and with associated
control t 7→ r(t), the following upper-bound holds for any t in [0, T ]:

‖zr(t)− z̄‖+ |r(t)− r̄| ≤ C
(
e−µt + eµ(t−T )

)
.

5 Turnpike property of the singular flow of the original problem

Let us now come back to the original optimal control problem given by dynamics (3) and cost (2). The first steps in
the analysis of this optimal control problem were done in [23]. In particular, they showed the existence of optimal
solutions and using Bocop, they obtained numerical result showing the turnpike behavior of solutions. We will
go further in this section and show analytically that the singular arcs, parts of the extremal associated with the
singular control, admit the local turnpike property.

We denote by z = (p, r, x) the state, by λ = (λp, λr, λx) ∈ R3 the adjoint state. We denote by H the
pseudo-Hamiltonian associated with (3) and cost (2),

H(z, λ, u) = f0 + λp ṗ+ λr ṙ + λx ẋ.

It can be also written alternatively as an affine function of the control u,

H(z, λ, u) = H0(z, λ) + uH1(z, λ).

From PMP, each optimal z satisfies the generalized Hamiltonian system,{
ż = ∂

∂λH(z, λ, ũ),
λ̇ = − ∂

∂zH(z, λ, ũ),
H(z, λ, ũ) = maxu∈[0,1]H(z, λ, u).

(24)

Each solution of (24) is a concatenation of bang and singular arcs, where by arcs we mean the parts of the
trajectory, singular arc is associated with singular control on the corresponding time interval, bang arc is associated
with the bang control.
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5.1 Singular flow

Let us focus on the singular arcs. It was shown in [23,21] that the singular controls are of order 2. By [24], the
connection between singular control of order 2 and bang control can be achieved only by chattering. The singular
control is of order 2, and thus, it can be obtained from d4

dt4H1(t) = 0, which leads to,

us = −H00001(z, λ)

H10001(z, λ)
.

The corresponding singular extremals belongs to the singular surface defined by,

Σ =
{

(z, λ) ∈ R6 |H1 = 0, H01 = 0, H001 = 0, H0001 = 0
}
.

As in the reduced problem, we substitute the expression of us as a function of (z, λ) in H(z, λ, u) and obtain
singular Hamiltonian Hs(z, λ) = H(z, λ, us(z, λ)). The system (24) becomes accordingly{

ż = ∂Hs

∂λ (z, λ),

λ̇ = −∂Hs

∂z (z, λ).
(25)

The flow of this system is the singular flow. Understanding properties of singular flow, we understand the proper-
ties of singular arcs, parts of optimal solution.

Proposition 5.1 Singular system (25) is Hamiltonian on Σ.

Proof. Let us show that w defined by w = dzi ∧ dλi restricted to Σ is symplectic. In this case we have,

TΣ = (span{H1,H01,H001,H0001})⊥
∣∣∣
Σ
.

We use the same kind of arguments as in Proposition 4.3 and assume that there exists nonzero vector field
X = α1H1 + α2H01 + α3H001 + α4H0001 such that w(X,H1) = 0, w(X,H01) = 0, w(X,H001) =
0, w(X,H0001) = 0. In this case it implies the following system of equations

0 H101 H1001 H10001

−H101 0 {H01, H001} ∗
−H1001 −{H01, H001} 0 ∗
−H10001 ∗ ∗ 0



α1

α2

α3

α4

 = 0

The system above admits a nontrivial solution if and only if the corresponding matrix is non-degenerate. By
applying Jacobi identity to H1001, we get H1001 = {H0, H101}. Taking into account that H101 = p

p+K H01, we
get H1001 = a1(z)H01 + a2(z)H001 = 0 for some functions a1, a2 smooth on the domain of definition. Next,
applying the Jacobi identity to {H01, H001} we get {H01, H001} = H01001 −H10001. Using the same arguments
as before, we get H01001 = b1(z)H01 + b2(z)H001 + b3(z)H001 = 0. Taking into account all the zero terms, the
matrix above can be written in the following triangular form

0 0 0 H10001

0 0 −H10001 ∗
0 H10001 0 ∗

−H10001 ∗ ∗ 0


which is of full rank in case H10001 6= 0. This condition holds for singular trajectories of order two, and thus, for
all singular trajectories in our case. This proves that X = 0 which contradicts the initial assumption and proves
that w restricted to Σ is symplectic. This implies that singular flow is Hamiltonian, we refer to Proposition 4.3 for
this final step of the proof.

We will now establish a relation between the singular flow of the original optimal control problem given by
dynamics (3) and cost (2) and the singular flow of the reduced problem (5).
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Theorem 5.1 If the singular control us satisfies 0 < us < 1, then singular trajectory (p(·), r(·), x(·)) of OCP
(1), (2) coincides with (p̃(·), r̃(·), x̃(·)) where r̃(·) is the singular control and (p̃(·), x̃(·)) is the singular trajectory
of (5). Moreover, the singular surface of OCP (1), (2) can be written as follows

Σ =
{

(p, r, x, λp, λr, λx) ∈ R6 | (p, x, λp, λx) ∈ Σr, λr = 0, r = rs
}
. (26)

Proof. A trajectory of (1), (2) is singular if and only if the following equality holds along the trajectory, H1 =
λrpr
K+p = 0. As we are restricted to the domain 0 < p, 0 < r < 1, the equality holds if and only if λr = 0. Now
notice that there holds,H = Hr

0 + r Hr
1 +H1 (u− r) , and therefore,

∂H
∂r

= Hr
1 + λr

p

K + p
(u− 2r). (27)

Let us differentiate λr = 0 along singular solutions of (24). Using (27), we get,

d

dt
λr = −∂H

∂r

∣∣∣∣
λr=0

= −Hr
1 = 0,

d2

dt2
λr = − d

dt

(
∂H
∂r

)∣∣∣∣
λr=0,λ̇r=0

= − d

dt
(Hr

1 ) = 0,

d3

dt3
λr = − d2

dt2

(
∂H
∂r

)∣∣∣∣
λr=0,λ̇r=0,λ̈r=0

= − d2

dt2
(Hr

1 ) = 0.

(28)

Now notice that the first two equations from (28) are equivalent to (10), and define the condition (p, x, λp, λx) ∈
Σr. The last equation from (28) can be written as,

d2

dt2
(Hr

1 ) = H001 + r H101,

thus, r satisfying this equation is exactly the singular control rs. On the other hand, the left-hand side of (28)
together with λr = 0 defines the singular surface of the initial OCP problem and so we get (26). Now it is
sufficient to notice that the dynamics of (p, x) in (1) does not depend on u, but depend on r which is given by
r = rs.

Moreover, near the static point, Σ can be expressed in a simple way.

Proposition 5.2 Near the solution of the static problem (8) the singular surface Σ can be parameterized by
zr = (p, x) and the singular extremal is the solution of Hamiltonian system,

żr = f(zr, rs(z
r)).

Proof. Using Proposition 4.2, we have λp = λp(p, x), λx = λx(p, x) and moreover we have r = rs(p, x), thus Σ
is parameterized by (p, x).

Remark 5.1 Symbolic calculations using Maple show that the singular control r = rs(p, x) is independent of x,
that is rs = rs(p).

5.2 Turnpike theorem

Now we are in the position to prove the turnpike property of singular arcs in case of the original optimal control
problem with dynamics (3) and cost (2).

Theorem 5.2 There exists a positive constant ε such that, if z(·) is singular and satisfies (25) on [t1, t2] ⊂ [0, T ],
z̄ = (z̄r, r̄) is the static point, solution of (8), and if

‖z(t1)− z̄‖+ ‖z(t2)− z̄‖ ≤ ε (29)

then there exists C > 0 such that for any t ∈ [t1, t2] there holds

‖z(t)− z̄‖+ |us(t)− ū| ≤ C
(
eµ(t1−t) + eµ(t−t2)

)
(30)

where µ = p̄r̄
K+p̄ .
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Proof. By Theorem 5.1, the singular trajectories in the original problem (3)-(2) and the reduced problem (4)-(2)
coincide. As a consequence on Theorem 4.2, condition (29) implies: |ps(t)− p̄| + |xs(t)− x̄| + |rs(t)− r̄| ≤
C
(
eµ(t1−t) + eµ(t−t2)

)
. Next, we are left to notice that the adjoint state λ is a rational function of (p, x, r) near

the stationary point (p̄, x̄, r̄) and the singular control us is a continuous function of (z, λ). This implies (30) up to
a new constant C and ends the proof.

In the case of optimal control problem (3)-(2), simulations show the predominance of the singular arcs and as
a consequence, we observe the turnpike of the full solution as can be seem in Fig. 5 where the results are shown
for increasing sequence of final times. As in the case of the reduced problem, we formulate a conjecture on the
turnpike property the whole optimal solutions of (3)-(2).

Conjecture 5.1 Fix (p0, x0, r0) in (0,+∞) × (0,+∞) × [0, 1]. There exists a constant T0 > 0 such that for any
T > T0 and any optimal extremal t 7→ (z(t), λ(t)) for problem (3)-(5) with initial condition (p0, x0, r0), and with
associated control t 7→ u(t), the following upper-bound holds for any t in [0, T ]:

‖z(t)− z̄‖+ |u(t)− ū| ≤ C
(
e−µt + eµ(t−T )

)
.

6 Suboptimal control strategies

6.1 Stability properties

In this section we show stability properties of the dynamical system obtained by taking the static value r̄ in the
reduced case and ū in the complete case as a constant control. This control choice is particularly interesting
because it permits to approximate the singular control as it is shown further in this section. The approximation of
the singular control is further used in the design of numerical methods for both reduced and full problems. The
stability properties justify the use of the constant control, that will allow reaching the turnpike exponentially fast,
while it would absolutely not be the case without stability. Notice that in our case the singular control is given
by a complicated rational function and the possibility to approximate this function by a simple constant control
without a significant loss in the cost is especially valuable for application.

6.1.1 Reduced case

We start the analysis of the stability properties by considering the case of the reduced problem (4), (2).

Theorem 6.1 Assume K = K1. Let (p̄, x̄, r̄) be the solution of the static problem (8) and let (p, x) be the solution
of (4) corresponding to r ≡ r̄ and the initial data (p(0), x(0)) = (p0, x0). Then there exist constants β = β(p0) >
0 and C = C(p0, x0) > 0 such that the following inequality holds for any t > 0

|p(t)− p̄|+ |x(t)− x̄| ≤ C e−βt. (31)

Proof. First let us denote ψ(p) = p
p+K . This function is strictly increasing and positive for p > 0. Remind if

r(t) = r̄ for t ∈ [0, T ] then (p̄, x̄) is the equilibrium of (4). This permits to rewrite (4) in the following form

ṗ = − 1

p+K

(
K (k1 (1− r̄) + r̄ (1 + p̄))

p̄+K
+ r̄p

)
(p− p̄) ,

ẋ = −r̄ψ(p) (x− x̄) ,

(32)

which can be written in a simpler form as

ṗ = −d1(p) (p− p̄) ,
ẋ = −d2(p) (x− x̄) .

Coefficients d1, d2 have the following properties. First, d1(p) > d1(0) for any p > 0 and d1(0) > 0. Second,
d2(p(t)) is such that d2(p(t)) > d2(p0) if p0 < p̄ and d2(p(t)) > d2(p̄) if p0 > p̄. Let us denote Vp = |p(t)− p̄|,
Vx = |x(t)− x̄|. Outside p = p̄ and x = x̄, we have, V̇p ≤ −d1Vp, and V̇x ≤ −d2Vx, with d1 = d1(0) and
d2 = min{d2(p0), d2(p̄)}. This is enough to deduce (31).
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In general there are no relations between K,K1, so let us consider the case when K = K1 is not necessarily
satisfied. Without any assumption on parameters, the following Lemma holds.

Lemma 6.1 Point (p̄, x̄) is the unique stable equilibrium of (4) with r ≡ r̄ in Ω.

Proof. The uniqueness is a consequence of the uniqueness of the equilibrium (p̄, r̄, x̄) of (1). The linearized matrix
of (4) is of the following form(

−(p̄+ 1)µ′2(p̄, r̄)− µ2(p̄, r̄)− µ′1(p̄, r̄) 0
∗ −µ1(p̄, r̄)

)
,

with µ1 = k1p(1−r)
K1+p and µ2 = pr

K+p . As µ1(p̄, r̄), µ2(p̄, r̄), µ′1(p̄, r̄), µ′2(p̄, r̄) are positive, both eigenvalues of the
matrix above are negative. Therefore, (p̄, x̄) is a stable equilibrium.

Let us denote by (pr̄, xr̄) the solution of (4) with constant control r = r̄ defined on some time interval [0, T̃ ].

Lemma 6.2 There exist δ, µ, C > 0 such that if, |pr̄(0)− p̄|+ |xr̄(0)− x̄| ≤ δ, then,

|pr̄(t)− p̄|+ |xr̄(t)− x̄| ≤ C e−µt, for t ∈ [0, T̃ ].

Corollary 6.2. There exist positive constants ε, T0 such that, if t2 − t1 > T0 and,

|ps(t1)− p̄|+ |xs(t1)− x̄|+ |ps(t2)− p̄|+ |xs(t2)− x̄| ≤ ε,

then there exists C,CJ > 0 such that for any t ∈ [0, T̃ ] there holds,

|ps(t)− pr̄(t)|+ |xs(t)− xr̄(t)|+ ≤ C
(
e−νt + e−ν(T̃−t)

)
,

and, |J(rs)− J(r̄)| ≤ CJ
(

1− e−νT̃
)
.

6.1.2 Complete case (full model)

Similar properties hold for the initial OCP (3), (2).

Lemma 6.3 Point (p̄, r̄, x̄) is the unique stable equilibrium of (3) with u ≡ ū in Ω.

Just as before, we denote by (pū, rū, xū) the solution of (4) with constant control u ≡ ū defined on some time
interval [0, T̃ ].

Lemma 6.4 There exist δ, µ∗, C > 0 s.t if, |pū(0) − p̄| + |rū(0) − r̄| + |xū(0) − x̄| ≤ δ, then, |pū(t) − p̄| +
|rū(0)− r̄|+ |xū(t)− x̄| ≤ C e−µ∗t, for t ∈ [0, T̃ ].

Corollary 6.3. There exist positive constants ε, T0 such that, if t2 − t1 > T0 and,

|ps(t1)− p̄|+ |rs(t1)− r̄|+ |xs(t1)− x̄|+ |ps(t2)− p̄|+ |rs(t2)− r̄|+ |xs(t2)− x̄| ≤ ε,

then there exists C,CJ > 0 such that for any t ∈ [0, T̃ ] there holds,

|ps(t)− pū(t)|+ |rs(t)− rū(t)|+ |xs(t)− xū(t)|+ ≤ C
(
e−νt + e−ν(T̃−t)

)
,

and, |J(us)− J(ū)| ≤ CJ
(

1− e−νT̃
)
.
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6.2 Numerical algorithm for the reduced problem.

Numerical solutions of the reduced problem obtained using direct method implemented in Bocop software show
that, for different parameters K,K1, k, EM , different initial data (p0, x0) and different final times T , the obtained
solutions are always with at most 3 arcs, see Section 3.1 for an example in case EM = k1 = K1 = K = 1. More-
over, the solutions with exactly 3 arcs are the most frequent solutions and occur when final time is large. In case of
3-arcs solution, the observed structure is Bang-Singular-Bang (B-S-B). We will take advantage of this observation
and assume in following that solutions of the reduced problem have at most 3 arcs and the sequence of the arcs
is a sub-sequence of B-S-B. With this assumption, we will construct a new algorithm useful for applications, in
which we will approximate the singular arc by a trajectory with the constant control r = r̄, from the solution of
the static problem (8).
Let us define a new optimisation problem associated with the reduced problem (5). We will use the notation
zr = (p, x) and żr = fr(z

r, r) for the dynamics (4). We choose a control r in (4) in such a way that the dynamics
takes the following form, {

żr = fr(z
r, r1), t ∈ [0, T1),

żr = fr(z
r, r̄), t ∈ [T1, T2),

żr = fr(z
r, r2), t ∈ [T2, T ],

(33)

where r̄ is the solution of the static–OCP (8), r1, r2, T1, T2 are parameters satisfying 0 ≤ r1, r2 ≤ 1 and 0 ≤
T1 ≤ T2 ≤ T . A reasonable next step is to find r1, r2, T1, T2 which maximize the cost (2) subject to (33). For this,
we notice first that from the preliminary analysis in Section 4.1 it follows that the optimal control of the reduced
OCP is zero during the final bang arc, meaning that r ≡ 0 on some time interval [t̃, T ]. Therefore, we will set
r2 = 0, this will reduce the dimension of the optimisation problem. Finally, the new optimisation problem writes,

max

∫ T

0

k1

x(t)

p(t)(1− r(t))
K1 + p(t)

dt

{
(p, x, r) satisfy (33),
0 ≤ r1 ≤ 1, r2 = 0,
0 ≤ T1 ≤ T2 ≤ T.

(34)

Proposition 6.1 The optimisation problem (34) admits a solution.

Proof. Notice first that (34) is an optimisation problem where we maximize the cost with respect to 3 parameters
r1, T1, T2. This becomes apparent when we write (34) equivalently as follows,

max
0≤r1≤1

0≤T1≤T2≤T

∫ T1

0

k1

xr1 (t)

pr1 (t)(1 − r1)

K1 + pr1 (t)
dt +

∫ T2

T1

k1

xr̄(t)

pr̄(t)(1 − r̄)

K1 + pr̄(t)
dt +

∫ T

T2

k1

x0(t)

p0(t)

K1 + p0(t)
dt, (35)

with the notation (pr∗(·), xr∗(·)) for the flow of (4) with control r set to be r(·) ≡ r∗. Notice that the flow
(pr∗(·), xr∗(·)) is a continuous function of r∗, therefore, the cost is a continuous function of r1. Moreover, as
T1, T2 only appear in the cost as the integral limits, the cost depends continuously on T1, T2. As a result, we
maximize a continuous function on a compact set {(r1, T1, T2) : 0 ≤ r1 ≤ 1, 0 ≤ T1 ≤ T2 ≤ T}. Such a
maximization problem admits a solution.

If we assume that the solutions of the reduced problem (4), (2) are of B - S - B structure, with the third arc
corresponding to control r(·) ≡ 0, then (34) approximates the solutions by replacing the middle arc by a constant
value r(·) ≡ r̄. The idea of replacing a complicated singular control by a simple constant control is important for
applications. By solving (34), we choose moreover the best control values and switching times for such a control
structure. By Lemma 6.2 and Corollary 6.2, the behaviour of solutions of (4) with r(·) ≡ 0 is very similar to the
turnpike behaviour of the singular arc (approaches the static point exponentially fast), moreover, the error com-
mitted by setting the control r(·) ≡ r̄ in place of r(·) = rs(·) is bounded. The numerical simulations show even a
better result when compared to the solutions obtained using the standard direct optimization method, see Section
7 for the comparison of the two methods. As shown in Sect. 7, the relative error is small, and for large T the 3-arc
algorithm described above provide even better result.
For the numerical solution of (34) we use Bocop software with the option of maximization with respect to param-
eters and not the control function as it is done to solve standard DOCPs. In practice, this problem can be solved by
any nonlinear programming solver. The discretization of the dynamical part of the constraint in (35) can be done
in various ways just as in case of the direct methods for DOCPs (see [2] for direct methods in optimal control). We
choose the approach of complete state discretization implemented in Bocop. In this case the differential equation
becomes just a finite number of constraints in our nonlinear program. In the following numerical results we com-
pare solutions of the reduced DOCP (5) obtained using direct method and the corresponding solutions of (34), to
obtain both solutions we use Bocop software and the same discretization method. The comparison is done for the
same parameters K,K1, k, EM , initial data (p0, x0) and final times T .
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6.3 Numerical algorithm for the original problem.

The idea of approximating solutions with a simple piecewise constant control strategy which was described in
case of the reduced problem applies in case of the original problem (3), (2) with small modifications. From PMP
it follows that H1(T ) = 0, so we can not conclude on the exact value of the control during the final arc as it
was done in the reduced case. Therefore, if we approximate a solution with 3 consecutive constant controls, the
value of the last control remains an optimisation parameter. We use the notation z = (p, r, x) and ż = f(z, u) for
the dynamics (3). The 3-arcs strategy leads to the following dynamics with ū the corresponding value from the
solution of the static problem. {

ż = f(z, u1), t ∈ [0, T1)
ż = f(z, ū), t ∈ [T1, T2)
ż = f(z, u2), t ∈ [T2, T ].

(36)

The resulting optimization problem has the following form.

max

∫ T

0

k1

x(t)

p(t)(1− r(t))
K1 + p(t)

dt, s.t.,


(p, x, r) satisfy (36),
0 ≤ u1, u2 ≤ 1,

0 ≤ T1 ≤ T2 ≤ T
(37)

Using the same arguments as in the proof of Proposition 6.1, we get the existence of a solution of (37).

Proposition 6.2 The optimisation problem (37) admits a solution.

Solution’s structure of the complete optimal control problem (3), (2) is more complicated than in the reduced
case as the connection between bang arcs and singular arcs is achieved by chattering. It is standard to approxi-
mate chattering by finite number of bang arcs in numerical methods, see [25], but there is no general theory on
such an approach, the method should be adapted to the concrete problem under consideration. Assume that all
optimal solutions of problem (3), (2) have only one singular arc. In this case, the 3-arcs solution represents an
approximation where all the bang-arcs, including chattering, before and after the singular arc are replaced by a
single arc corresponding to a constant control, and the singular arc is approximated by an arc corresponding to
the control u = ū. Notice that solution of (3) with u = ū converges exponentially to z̄, and thus, is exponentially
close to the singular arc, just as in the reduced case as shown in Corollary 6.3. In the following numerical results
we confirm that the numerical solution of (37) approximate well the numerical solution of the complete optimal
control problem (3), (2) in both cases solutions are compared to the results of the direct method and are obtained
using Bocop .

7 Numerical results

In this section, we provide various implementation results and numerical examples exploiting the generic algo-
rithms established in Sections 6.2, 6.3. For that, we use the open source optimal control toolbox Bocop. The
results obtained using 3-arc algorithms are compared to the standard direct optimization approach implemented
also in Bocop. Note that the introductory examples developed in Section 3 rely upon the direct optimization
method as well and are realized using Bocop.

EM k1 K1 K
2.5 1.2 1.4 1.6

Table 2: Numerical values of the parameters of the model (4), used in the illustrations in Examples 1-2 in Sect.
7, for the reduced problem. In this case, we note that u = r, the static solution of the static-OCP (9), is given by
u = r = 0.6.

Example 7.1 [Reduced self-replicator model]
In the first numerical example, we illustrate the model behavior (using the parameters in Tab. 2 along with the
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Bocop settings3 and we provide the optimal state and co-state trajectories, along with the optimal control r(t),
using a direct optimization method applied to the reduced DOCP. These solutions clearly exhibit a turnpike be-
havior, associated with the singular arc regime, as illustrated in Fig. 6-7.
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Fig. 6: (a) The optimal p(t) and r(t) over [0, 100], associated with the control given in Fig. 7. The control is
provided by Bocop, numerically using a direct method solving the reduced DOCP. The initial states are given by
p(0) = x(0) = 20. (b) The optimal co-state trajectories λp(t) and λr(t) over [0, 100], associated with the control
given in Fig. 7. We note that the transversality conditions (from the PMP) are satisfied.
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Fig. 7: The numerical optimal control r(t), over [0, 100], derived from the reduced DOCP (Example 1), compared
to the 3–arcs approximation (Example 2). The 3–arcs sub-optimal control consists of three pieces: r1 (active
over [0, t1], with t1 = 2.9288) which is set to be free in the optimization algorithm, i.e. r1 as t1 and t2 are
the optimization variables. Then, the phase of the control over [t1, t2], where the optimized t2 is given by t2 =
97.1477, which is the static point r2 = r = 0.6. Finally, the control r3 is set to zero in this problem (from the
PMP necessary conditions).

3 Numerical experiments were run on bocop when T ranges from 20 to 280 (see Tab. 3), with the following settings. Discretization: Euler
(implicit, 1-stage, order 1), time steps: 500, Maximum number of iterations: 2000, NLP solver tolerance: 10−18.
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Example 7.2 [Reduced self-replicator model – 3-arcs]
Now, we consider the numerical method based on the 3 arcs approximation, considering the reduced problem,
using the Bocop settings4. Indeed, the results provided in Example 1 clearly show the relevance of the use of
constant control r during the singular regime. First, let us show for T = 100 the sub-optimal control and the sub-
optimal trajectories illustrated, respectively, in Fig. 7 and 8, obtained using the model parameters in Tab. 2. Next,
we obtained several numerical results for different final-times T , in order to compare the standard direct numerical
approach and the approach by the 3-arcs algorithm. The results are given in Tab. 3. The comparison is done by
considering the relative error of the numerically obtained value functions of the two algorithms, that is the maximal
cost value, for different final times, ε(T ) = C3−arcs(T )−CDOCP (T )

CDOCP (T ) , where CDOCP (T ) is the maximal value of
the cost obtained using standard direct approach and C3−arcs(T ) is the value obtained by the 3-arc algorithm,
the both values are considered as functions of the final time T . Notice that we do not take the absolute value of
difference, C3−arcs(T ) − CDOCP (T ). This is done in order to capture which cost provides the better result at
each time T . Notice that the considered OCPs are formulated as a maximization problems. Thus, if the values of
ε(T ) is positive then the maximal cost value obtained by the 3-arc algorithm is larger than the value obtained by
the direct method. This indicates the better performance of the control strategy obtained by the 3-arc algorithm
for this concrete time choice T . In the same way, the negative values of ε(T ) imply the better performance of
the direct method for the corresponding values T . As we showed further both for the reduced and the complete
models, the 3–arc algorithms show the better performance when T grows.
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Fig. 8: These are the reconstituted sub-optimal trajectories p(t) and x(t) in the 3–arcs method, steered over [0, 100]
by the sub-optimal control r(t) given in Fig. 7. We recall that the optimized time-switching instants are given by
t1 = 2.9288 and t2 = 97.1477. The initial conditions in this case are given by, p(0) = x(0) = 20.

T 20 40 60 80 100 120 140
Reduced DOCP cost 10.3791 16.2434 22.1082 27.9735 33.8393 39.7055 45.5721
Reduced Cost3−arcs 10.4107 16.2974 22.1841 28.0709 33.9578 39.8447 45.7317

T 160 180 200 220 240 260 280
Reduced DOCP cost 4.52314 51.439 57.3062 63.174 69.0418 74.91 80.7786
Reduced Cost3−arcs 4.53117 51.6188 57.5058 63.3929 69.2801 75.1673 81.0545

Table 3: The cost associated to the numerical methods: DOCP cost stands for the direct optimization solving the
initial DOCP, and Cost3−arcs gives the cost of the numerical method fixing the singular regime to r.

Clearly, as illustrated in Tab. 3 and Fig. 9, the costs of the numerical direct method solving the reduced original
DOCP and the numerical algorithm based on the 3-arcs approach, are substantially similar. We even note in this
case that the maximization achieved by the 3-arcs algorithm is slightly better than the free Bocop case when the
final-time increases. These comparative results were obtained for equivalent numerical discretization methods and
may slightly vary according to the selected ODE-discretization schemes.

4 Numerical experiments were run on bocop for T = 70 (time unit), with the following settings. Discretization:Lobatto IIIC
(implicit, 4-stage, order 6), time steps: 500, Maximum number of iterations: 2000, NLP solver tolerance: 10−18.
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Fig. 9: Using the data in Tab. 3, the relative error characterizing the use of the two numerical method is represented
for T , the final-time, varying between 20 and 280. The cost CDOCP stands for the direct optimization in Bocop,
while C3−arcs stands for the cost using the 3 arcs approach. The second method is clearly more efficient when T
becomes large. The comparison is made on the basis of equivalent Bocop settings.

Let us now perform similar numerical examples based on the dynamics of the full model (3). The biological
parameters in this case are given in Tab. 4. The results obtained in Examples 7.3-7.4 using appropriate Bocop
settings are summarized in Tab. 6 in Appendix B.

EM k1 K1 K
2 1.2 1.4 1.6

Table 4: Numerical values of the biological parameters of the models (3)-(4) used in the numerical illustrations in
Section 7 in Examples 3-4 for the full problem. In this case, we note that u, the static solution of the static-OCP,
is given by u = 0.58.

Example 7.3 [Full self-replicator model]
Firstly, we illustrate for a fixed final-time T = 70 the model behavior and provide the optimal state trajectories,
co-state trajectories and the associated optimal control u(t), using a direct optimization method applied to the
complete DOCP. A chattering phenomenon appears in the optimal control in Fig. 10. As in the reduced problem,
these solutions clearly exhibit the turnpike-type behavior, associated with the singular arc regime, as illustrated in
Fig. 10-11.

In the last numerical example, we apply the 3-arcs based algorithm to the full problem. For that we perform
several numerical simulations for different final-times T , given in Tab. 4.

Example 7.4 [Full self-replicator model — Solution with the 3-arcs algorithm]
Now, we consider the full model (3), associated with the 3-arcs optimization problem (37). The biological param-
eters are given in Tab. 4, implemented in Bocop along with the Bocop settings5. The results when T varies from
70 to 470 are listed in Tab. 6.

r Results for T = 70:

5 Numerical experiments were run on bocop, when T ranges from 70 to 470 (see Tab. 6), with the following settings. Discretization: Euler
(implicit, 1-stage, order 1), time steps: 500, Maximum number of iterations: 2000, NLP solver tolerance: 10−20.
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Fig. 10: The optimal control u(t) over [0, 70] in Example 3.
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Fig. 11: The optimal state trajectories (a) and co-state trajectories (b) corresponding to the optimal control given in
Fig. 10. The trajectories in (a)-(b) exhibit as expected the turnpike-type behavior. Notice also that the transversality
conditions (i.e., λ(T ) = 0 from the PMP) are satisfied in (b).

The (sub)optimal control using the 3-arcs is given in Fig. 12. The corresponding reconstituted model trajecto-
ries are given in Fig. 13.
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Fig. 12: The reconstituted optimal 3-arcs (sub)optimal control u(t) for t ∈ [0, 70]. In this case u2 = u = 0.58.
See Tab. 6 for values of t1, t2 and the corresponding cost.
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Fig. 13: The reconstituted (sub)optimal trajectories resulting from the 3-arcs approach, derived from the
(sub)optimal control u(t) given in Fig. 12 for t ∈ [0, 70].

r Results for T = 470:

The control obtained using the 3-arcs algorithm is given in Fig. 14. The corresponding reconstituted model
trajectories are given in Fig. 15.
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Fig. 14: The reconstituted optimal 3-arcs control u(t) for t ∈ [0, 470]. In this case u2 = u = 0.58. See Tab. 6 for
the values of t1, t2 and the corresponding cost.
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Fig. 15: The reconstituted (sub)optimal trajectories resulting from the 3-arcs approach, derived from the
(sub)optimal control u(t) given in Fig. 14 for t ∈ [0, 470].

Using the data given in Tab. 6, we deduce the relative error committed between the two numerical methods
is substantially minor. The difference increases slowly when T is very large to the favor of the effective three
arcs approximation. Indeed, we note that when T increases, the approximated 3-arcs algorithm has better yields
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than the original DOCP (for equivalent discretization method and same time-steps in Bocop). However, overall,
the results of both numerical methods are substantially similar, which comforts strongly the use of the simplest
sub-optimal control as an alternative effective control strategy.
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Fig. 16: The relative error in the costs committed when T varies from 70 to 470. The comparison is made on the
basis of the Bocop settings given in Appendix B.

8 Conclusion

We made the first steps in showing the turnpike property of the optimal solutions. We extended the existing
theoretical approach from [18] on the local exponential turnpike property to our case with the singular arcs. The
Pontryagin maximum principle together with numerical methods permitted us to deduce the possible structure of
the solutions with predominance of the singular arc. In addition, we introduced the reduced model which permits to
avoid the chattering phenomenon. Finally, we designed simple sub-optimal open loop strategies for both reduced
and complete models. These strategies are easier to implement from a biological and experimental point of view.
The efficiency of the method was shown on numerical examples. For future work, we will further use the solution
of the reduced OCP for construction of the control strategies for the original OCP. The other direction on which
we will focus is the establishment of global turnpike behavior in the studied class of OCPs dedicated to bacterial
growth, in particular using dissipativity features [10,14].
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A Bocop settings and results used in Section 3.1

T 10 15 18 20 24 26 28 –
t1 2.47 2.50 2.60 2.62 2.64 2.64 2.65 –
t2 62.01 6.67 11.67 14.69 16.72 20.73 22.77 –
T 30 35 40 45 50 55 60 65
t1 2.63 2.64 2.59 2.56 2.52 2.50 2.53 2.52
t2 26.82 31.85 36.88 41.94 47.00 52.03 57.00

T 70 80 90 100 120 125 135 150
t1 2.52 2.40 2.34 2.40 2.40 2.25 2.16 2.10
t2 67.06 77.12 87.12 97.20 117.36 122.25 132.30 147.60

T 200 230 250 280 300 310 320 –
t1 2.00 1.84 2.00 1.68 1.80 1.86 1.90 –
t2 197.60 227.70 248.00 277.76 298.20 308.14 318.08 –

Table 5: The values of the switching instants t1 and t2 for different time horizons [0, T ], where T ranges from 10
to 320.
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T u1 u2 u3 t1 t2 Cost3−arcs DOCP cost
70 1 0.58 0 1.9364 62.8107 17.0796 17.0731
72 1 0.58 0 1.9380 64.8107 17.5989 17.5917
74 1 0.58 0 1.9397 66.8108 18.1181 18.1103
76 1 0.58 0 1.9413 68.8108 18.6374 18.6288
80 1 0.58 0 2.1631 72.8469 19.6044 19.6660
85 1 0.58 0 2.1820 77.8477 20.8987 20.9625
90 1 0.58 0 2.0482 82.8231 22.2403 22.2591
95 1 0.58 0 2.0580 87.8234 23.5369 23.5556
100 1 0.58 0 2.0679 92.8237 24.8335 24.8521
110 1 0.58 0 2.0872 102.8242 27.4267 27.4452
120 1 0.58 0 2.1066 112.8246 30.0201 30.0383
130 1 0.58 0 2.1261 122.8251 32.6136 32.6315
140 1 0.58 0 2.1456 132.8256 35.2072 35.2246
150 1 0.58 0 2.0745 142.8175 37.8272 37.8178
160 1 0.58 0 2.0877 152.8177 40.4224 40.4111
170 1 0.58 0 2.1009 162.8179 43.0175 43.0043
180 1 0.58 0 2.1131 172.8181 45.6127 45.5977
190 1 0.58 0 2.1263 182.8183 48.2080 48.191
200 1 0.58 0 2.1395 192.8185 50.8033 50.7843
210 1 0.58 0 2.1517 202.8187 53.3987 53.3777
220 1 0.58 0 2.1649 212.8189 55.9941 55.9711
230 1 0.58 0 2.1771 222.8191 58.5896 58.5646
240 1 0.58 0 2.1903 232.8193 61.1850 61.158
250 1 0.58 0 2.2025 242.8195 63.7806 63.7515
260 0.9774 0.58 0 2.3202 252.8202 66.3762 66.345
270 0.9044 0.58 0 2.7646 262.8226 68.9722 68.9385
280 1 0.58 0 2.1922 272.8172 71.5802 71.5321
290 1 0.58 0 2.2034 282.8173 74.1762 74.1258
300 0.9867 0.58 0 2.2748 292.8178 76.7723 76.7193
310 0.9202 0.58 0 2.6536 302.8195 79.3686 79.3129
320 0.8648 0.58 0 3.0923 312.82137 81.9653 81.9066
330 0.8222 0.58 0 3.5538 322.8228 84.5624 84.5003
340 0.7917 0.58 0 3.9899 332.8239 87.1598 87.094
370 0.7856 0.58 0 4.0906 362.8226 94.9563 94.8752
380 0.7324 0.58 0 5.3045 372.8265 97.5512 97.469
390 0.7246 0.58 0 5.5538 382.8268 100.1490 100.063
400 0.7181 0.58 0 5.7811 392.8271 102.7480 102.657
420 0.7080 0.58 0 6.1835 412.8275 107.9440 107.844
440 0.7004 0.58 0 6.5278 432.8279 113.1410 113.032
450 0.6973 0.58 0 6.6830 442.8280 115.7390 115.626
470 0.6920 0.58 0 6.9632 462.8282 120.936 120.814

Table 6: Here we use the optimization method based on the 3–arcs, where u2 is fixed to the static solution u2 = u
(where u = 0.58 is the solution of the static-OCP in the full model, corresponding to the parameters in Tab. 4),
while u1 and u3 are free. The optimal solution provided by Bocop reveals that u3 is always zero. The last phase is
characterized by β = Tf − t2, on which u3 = 0 is active, does not vary significantly when the final-time T ranges
from 70 to 470. On the other hand, the singular phase over α = t2 − t1, during which the control is exactly fixed
to u = u2 = 0.58, increases significantly with respect to T . We also notice that the first phase covering [0, t1] has
an optimal control u1 = 1 from T = 70 to approximately 260, then the optimal u1 is slowly decreasing while t1
is slowly increasing w.r.t. T .
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