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Abstract
We consider the problem of maximization of metabolite production in bacterial cells
formulated as a dynamical optimal control problem (DOCP). According to Pontrya-
gin’s maximum principle, optimal solutions are concatenations of singular and bang
arcs and exhibit the chattering or Fuller phenomenon, which is problematic for appli-
cations. To avoid chattering, we introduce a reduced model which is still biologically
relevant and retains the important structural features of the original problem. Using
a combination of analytical and numerical methods, we show that the singular arc is
dominant in the studied DOCPs and exhibits the turnpike property. This property is
further used in order to design simple and realistic suboptimal control strategies.
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1 Introduction

Microbial species seek to spread as much as possible, according to the availability of
nutrients and resources in their surroundings, with the ultimate goal of invading their
environment. As a result, when resources are limited, competition sets in between
these single-cell organisms which naturally seek to keep themselves alive and develop
faster than other competitors. This Darwinian adaptation capacity defines the fitness
degree of each microorganism. Such a process can be formulated as a maximiza-
tion problem of the microbial growth rate in order to outgrow the competitors. The
microbial growth is described by ordinary differential equations and the so-called
self-replicator model, which is commonly used to study the problems of resources
allocation in microorganisms [14, 16, 24, 27], under the assumption that microbial
species aim to optimally use their available energy to grow. This results in several
applications in biotechnology, where the fitness of bacteria is used to optimize the
production of high valuated compounds. Our work fits into this perspective, by devel-
oping novel theoretical and synthetic approaches for biotechnological applications. In
this specific research area, optimal control theory has greatly contributed to achiev-
ing a better understanding of natural biological phenomena, and more importantly, to
effectively controlling artificial cultures of microorganisms in biotechnological appli-
cations. Theoretical tools such as Pontryagin’s maximum principle (PMP, [19]) are
usually combined with numerical ones like the shooting method or direct optimization
approaches [3, 4], in order to provide satisfactory solutions to challenging optimiza-
tion problems (DOCPs). The difficulty stems mainly from the strong nonlinearities of
the models involving biological and chemical constraints. The turnpike phenomenon,
which states that under some conditions the optimal solution of a given DOCP remains
most of the time close to an optimal steady-state, solution of an associated static-OCP
(see, e.g. [22]), is expected to provide new insights into the DOCP itself. In particular,
the static solution is easier to determine and also to implement in practice. The concept
of turnpike has been recently revisited in the literature and is gaining major attention
within the area of optimal control [17, 20, 23, 29] due to its various applications
and validity for different classes of problems. These phenomena have notably been
reported in DOCP dealing with the growth of microorganisms in biotechnological
systems [9, 12, 28]. Among various approaches that describe the turnpike behavior of
the optimal solutions, one can cite measure type estimates as in [12] (measure turn-
pike) and exponential estimate as in [22] (exponential turnpike). In our case, we show
that the exponential turnpike property hold and use it to devise suboptimal control
strategies.

The contributions of the paper go in several directions. First, we show that the local
exponential turnpike property holds on singular arcs. In contrast to known results on
exponential turnpike in [22], we deal with singular trajectories. Using Pontryagin’s
maximum principle and hyperbolic properties of the Hamiltonian system verified by
extremals, we prove the turnpike property in the same manner as in [9, 18, 22]. Note
that this result is in line with [9] where the turnpike property is shown for singular
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trajectories, but different since in our case the singular trajectories of the originalmodel
are of order two which strongly influences the extremal structure. Singular arcs play
a major role in the solutions of the considered DOCP as was discussed in [26] and as
can be seen on Fig. 5. Turnpike properties of singular arcs together with the stability
of the static control allow us to construct a suboptimal control strategy by replacing
the complicated singular control by a very simple constant control equal to the static
control. The paper also deals with the Fuller phenomenon. It is well known (see, e.g.
[30]) that the connection between bang arcs and singular arcs of intrinsic order two
can only be achieved through chattering, that is by an infinite number of switchings
between bang arcs over a finite time interval. This is problematic for applications and
requires some approximation process, see for instance [7]. To tackle this issue we
relax the problem to a simpler one which is biologically relevant and preserves most
of the system structure while having the advantage of reducing the order of the single
arcs by one. Consequently, the connections between the new optimal control regime
no longer require chattering. Analysis of the reduced problem can be used to derive
the turnpike property of the original problem since we also show that the singular
flow of the two problems coincide. Thus, we construct a suboptimal open loop control
law that exploits the turnpike property, with the benefits of avoiding chattering of the
original solutions.

The paper is organized as follows. In Sect. 2, we introduce the full and reduced
models of metabolite production and we state the DOCPs of interest. In Sect. 3, we
present some numerical illustrations highlighting the turnpike feature of the optimal
solutions. Then, in Sect. 4, we focus on the singular flow in the reduced DOCP, for
which we prove the turnpike property along the singular trajectories. Section 5 is
devoted to the turnpike property of singular trajectories in the full DOCP. Finally,
we develop numerical algorithms in Sect. 6 to solve both problems that are based on
singular arcs approximations by constant controls and provide numerical results in
Sect. 7.

2 Model of Metabolite Production

The extended self-replicator model that we consider was proposed by Giordano et
al. [14], this is a coarse-grained model of resource allocation in bacteria. The cell
dynamics comprises the gene expression machinery and the metabolic machinery
including production of some metabolite of interest. The key elements in the reac-
tions of the considered model are an external substrate S; a precursor metabolite P ,
which stands for the mass quantity of amino acids; a mass quantity of polymerase
and ribosomes R, which represent the gene expression machinery; a mass quantity of
enzymes involved in nutrient uptake and conversion to precursor M , which represent
the metabolic machinery; a metabolite of interest X ; and the volume V = β(M + R),
where β represents the inverse of the cytoplasmic density. The external substrate S
is transformed into precursor metabolites P , which are then consumed by the gene
expression and the metabolic machineries. Precursors M enable the conversion of
external substrates into precursors, while R is responsible for the production of M
and R itself. In addition, the model includes a metabolic pathway for the production
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of the metabolite of interest X . The allocation of resources over gene expression and
metabolic machinery is modeled by the control function u(t), which indicates the
proportional utilization of precursors for the synthesis of R and M .

For the sake of simplicity, the system variables are expressed per unit population
volume, which are called concentrations, i.e. p = P

V , r = R
V , m = M

V , s = S
Vext

,

x = X
V . The quantities p, r ,m are intracellular concentrations of precursormetabolites,

ribosomes and metabolic enzymes, respectively, s is the extracellular concentration
of substrate with respect to a constant external volume Vext. The m-dynamics can be
expressed in terms of r and therefore is excluded from the analysis.

2.1 The Full Model

The general form of the model can be found in [14, 28]. Following the modeling steps
in [14, 28], the synthesis rates in the dynamics are further taken as Michaelis–Menten
kinetics. This leads to different models depending on environmental conditions. In
our case we restrict our attention to the constant environmental conditions, when s
is constant. We are led to the following control system with u ∈ [0, 1] the control
function representing the proportion of resources allocated to gene expression (r ),
while 1 − u is allocated to metabolism (m) which is excluded from the system,

ṗ = EM (1 − r) − k1
p(1−r)
K1+p − (p + 1) pr

K+p ,

ṙ = (u − r) pr
K+p ,

ẋ = k1
p(1−r)
K1+p − pr

K+p x,

V̇ = pr
K+pV,

(1)

with constant parameters EM , K , K1, k1 and p, r , x,V satisfying 0 < p, 0 < x, 0 <

V, 0 ≤ r ≤ 1. The control u is assumed to be a measurable function u : [0, T ] →
[0, 1]. We denote by U the set of admissible controls. Thus, we are interested in
maximization of the total quantity of the metabolite of interest X produced during
time T using the resource allocation u. This amounts to maximizing the quantity
X(T ) − X(0). By Yegorov et al. [28,Property 3.3], it is equivalent to maximization
of ln X(T ). Using the dynamics of x,V in (1), the cost can be expressed in variables
(p, r , x) as follows (see [28] for details),

JX = ln X(T ) + Const =
∫ T

0

k1
x(t)

p(t)(1 − r(t))

K1 + p(t)
dt, (2)

where (p(t), r(t), x(t)) satisfy (1) for any t ∈ [0, T ]. Notice that the dynamics of
(p, r , x) do not depend on V . We are led to the following optimal control problem.
Find a control u(·) ∈ U which maximizes JX (u) for given T and (p, r , x) satisfying,

ṗ = EM (1 − r) − k1
p(1−r)
K1+p − (p + 1) pr

K+p ,

ṙ = (u − r) pr
K+p ,

ẋ = k1
p(1−r)
K1+p − pr

K+p x,

(3)
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with given initial point (p0, r0, x0) and free final point at final time T .
The existence of an optimal solution has already been shown in [28]. The analysis of

optimal solutions made in [26, 28] shows that the singular arcs are of order two which
suggests (cf. [30]) that any connection between bang and singular arcs is realized
by chattering, that is, by an infinite number of switchings between bang arcs over
a finite-time interval. The chattering phenomenon in optimal solution is delicate for
applications because it cannot be directly implemented. To tackle this issuewe propose
to consider a reduced control system for which most of the structural properties still
hold while the chattering phenomenon does not appear in optimal solutions. Notice
first that in themodel defined by (3) and (2), the control u only appears in the dynamics
of r ; moreover, at equilibrium we have u = r . In addition, r appears linearly in the
dynamics of p, x and in the Lagrange cost (2).

2.2 The ReducedModel

Since r is the only variable whose time-derivative depends on the control, it is rather
natural to consider the reduced system where r is no longer a state variable but a
“cheap" control. This idea, similar to taking velocities as controls instead of forces
for a mechanical systems, is standard [15] and also related to the Goh transformation
[2]. Some authors call backstepping the process of deducing a feedback control for
the full system from a feedback control for the reduced system [10]. The new state
variables are (p, x) and the reduced system reads,

ṗ = EM (1 − r) − k1
p(1−r)
K1+p − (p + 1) pr

K+p ,

ẋ = k1
p(1−r)
K1+p − x pr

K+p .
(4)

As before, state (p, x) satisfies 0 < p, 0 < x and control r satisfies 0 ≤ r ≤ 1.
The new DOCP (5) aims then to find the control r maximizing the cost (2) under the
dynamical constraint (4), the state constraint 0 < p, 0 < x and control constraint
0 ≤ r ≤ 1. The initial position (p(0), x(0)) is fixed, while (p(T ), x(T )) is free. So
the problem is,

max
r∈Ur

∫ T

0

k1
x(t)

p(t)(1 − r(t))

K1 + p(t)
dt (5)

under the dynamical constraint (4) and p(0) = p0, x(0) = x0, 0 < p, 0 < x , where
Ur = {r(·) measurable : 0 ≤ r(t) ≤ 1, t ∈ [0, T ]} is the set of admissible controls.
We will call this optimal control problem the reduced problem. As a control, r is
not expected to be absolutely continuous anymore but only essentially bounded. (As
will be clear from the application of Pontryagin’s maximum principle, r will actually
be discontinuous.) Accordingly, the reduced problem appears as a relaxation of the
original one.
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3 Numerical Examples Highlighting the Turnpike Features

In this section we provide numerical solutions obtained for both full and reduced mod-
els with a particular choice of parameters EM = k1 = K1 = K = 1. These solutions
serve as illustration for the following sections and show what turnpike property of a
trajectory may look like. We anticipate on the next sections in the two following ways:
(i) we say that an optimal solution is made of bang arcs, when the control is equal to
either 1 or 0 (in both the reduced and full problems, the control takes values in [0, 1],
where 0 and 1 are the boundary points), and singular arcs, when the control takes
values in the interior of [0, 1]. In the obtained numerical solutions, we distinguish
between singular or bang arcs by inspection. (ii) We use the notion of static optimal
control problem which is defined in Sect. 4.2.

All the numerical solutions are obtained using direct numerical methods, which
consist in solving a finite-dimensional optimization problem obtained by discretizing
the optimal control problem; we use the bocop [21] software that efficiently autom-
atizes this procedure. In bocop, both the state and control are discretized on fixed
time grids. Depending on the numerical scheme chosen to approximate the dynamics
(Crank–Nicolson, e.g.), these grids may coincide or not. Enforcing the pointwise state
and control constraints at each grid point, one obtains a finite-dimensional optimiza-
tion problem. This transformation of the original optimal control problem (described
in C++ and text files) into a nonlinear mathematical program is performed by bocop.
The solver then relies on the very efficient code ipopt1 to solve the optimization
problem. A crucial step in the process is the generation of first and second order
derivatives needed for the optimization; these differentials are obtained by automatic
differentiation thanks to cppad.2 The whole process is embedded in bocop; the v2
version of the code provides aGUI to plot the output, while v3 is part of the ct project3

and has a python interface.

3.1 Turnpike Features in the Reduced Problem of Metabolite Production

In the reduced optimal control problem (5), we fix the initial condition to x(0) =
p(0) = 1. Optimal solutions have been computed4 For various values of T , the results
are discussed in Figs. 1 and 2. See conclusions at the end of Sect. 3.2.

1 https://coin-or.github.io/Ipopt/.
2 https://coin-or.github.io/CppAD.
3 https://ct.gitlabpages.inria.fr/gallery/.
4 Numerical experiments were run on bocop with the following settings; discretization: Euler (implicit,
1-stage, order 1), time steps: 500, Maximum number of iterations: 2000, NLP solver tolerance: 10−20. The
values of t1, t2 for each T used in Fig. 2 are given in Table 1.
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Fig. 1 On the left: the optimal control r(t), t ∈ [0, 15]. On the right: the optimal control r(t), t ∈ [0, 30].
The observed control structure is of type bang(1)-singular-bang(0); we call t1 the time at the end of the first
bang arc and t2 the time at the end of the second and last one, they are marked on the graphics. One observes
that increasing the total duration T seems to increase the duration t2 − t1 of the singular arc without notably
changing the durations t1 and T − t2 of the bang arcs. This tendency is confirmed in Fig. 2
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Fig. 2 The same computation as in Fig. 1 has been repeated for various values of T between 10 and 320,
t1 and t2 have been obtained for each T (see the table in Footnote 4) and we have plotted the values of
(t2 − t1)/T against T . This confirms that the time spent on a singular arc becomes preponderant as T
becomes large

Table 1 Values of the switching-instants t1, t2 for different time horizons [0, T ], where T ranges from 10
to 320

T 10 15 18 20 24 26 28 –

t1 2.47 2.50 2.60 2.62 2.64 2.64 2.65 –

t2 62.01 6.67 11.67 14.69 16.72 20.73 22.77 –

T 30 35 40 45 50 55 60 65

t1 2.63 2.64 2.59 2.56 2.52 2.50 2.53 2.52

t2 26.82 31.85 36.88 41.94 47.00 52.03 57.00 62.01

T 70 80 90 100 120 125 135 150

t1 2.52 2.40 2.34 2.40 2.40 2.25 2.16 2.10

t2 67.06 77.12 87.12 97.20 117.36 122.25 132.30 147.60

T 200 230 250 280 300 310 320 –

t1 2.00 1.84 2.00 1.68 1.80 1.86 1.90 –

t2 197.60 227.70 248.00 277.76 298.20 308.14 318.08 –
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3.2 Turnpike Features in the Full Problem of Metabolite Production

Let us now consider the initial DOCP (2)–(3). We define the associate static optimiza-
tion problem.

max
(p,r ,x,u)

k1
x

p(1 − r)

K1 + p
,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EM (1 − r) − k1
p(1−r)
K1+p − (p + 1) pr

K+p = 0,

(u − r) pr
K+p = 0,

k1
p(1−r)
K1+p − pr

K+p x = 0,

0 ≤ p, 0 < x, 0 ≤ r ≤ 1, 0 ≤ u ≤ 1.

(6)

Proposition 3.1 There exists a unique solution to (6) with parameters EM = k1 =
K1 = K = 1. This solution satisfies u = r , x = p(1−r)

pr , r = 1
p2+p+1

, where p is the

unique p > 0 maximizing p
(p+1)(p2+p+1)

.

Simple calculations give p = 0.5652, x = 0.8846 and r = u = 0.5306. The inequal-
ity constraints are not activated and can be disregarded in this case. The equality
constraints are qualified. Thus, by the Lagrange necessary condition [13], there exists
unique associated Lagrange multiplier λ̄. For more details on the qualification of the
constraints and the Lagrange necessary condition see [6]. Let us fix the initial condi-
tions to p(0) = x(0) = 1 and r(0) = 1/2. The optimal trajectories (p(t), r(t), x(t)),
obtained using the Bocop settings,5 are illustrated in Fig. 3 and the optimal control
is given in Fig. 4. In Fig. 3, we observe that the optimal trajectories evolve around the
static point over the time window where the control is singular (Fig. 4).

The numerical results suggest the following properties:

– the duration of the singular phase increases when we increase the final time T
(Figs. 2 and 5 ),

– the duration of the singular phase increases much faster than the duration of the
phase characterized by bang arcs when the time window [0, T ] is large,

– for sufficiently large T , the optimal trajectories (Fig. 3) and the optimal control
(Figs. 1 and 4) solutions of the reduced and the full DOCPs, stay most of the time
close to the solution of the associated static-OCPs.

The fact that optimal trajectories stay most of the time near a steady state when the
final time is large is known in control theory as the turnpike phenomenon. There
exist different types of turnpikes, the most suitable in our case being the exponential
turnpike property presented in [22]. At each time t ∈ [0, T ], the control u, the state z
and the adjoint state λ (defined in the next sections) satisfy the following estimate,

‖u(t) − ū‖ + ‖z(t) − z̄‖ + ‖λ(t) − λ̄‖ ≤ C
(
e−μt + e−μ(T−t)

)
,

for some positive parameters μ,C independent from T and for time T large enough.
In the following sections wewill concentrate on proving the local exponential turnpike
property of singular arcs.

5 Final time T = 40 (time unit), discretization: Midpoint (implicit, 1-stage, order 1), time steps: 7000,
Maximum number of iterations: 2000, NLP solver tolerance: 10−14.
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Fig. 3 The optimal trajectories for t ∈ [0, 40] in the numerical example of Sect. 3.2
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Fig. 4 The optimal control u(t) for t ∈ [0, 40] in the example of Sect. 3.2

4 Turnpike Property of the Singular Flow of the Reduced Problem

4.1 Reduced Problem

Let us start the analysis of the reduced problem defined by (2)–(4). Existence of an
optimal solution follows from Filippov’s theorem [2]. Let us recall the PMP [19] as a
necessary condition for optimality. Denoting by zr = (p, x) the state, by (λ0, λ

r ) =
(λ0, λp, λx ) ∈ R × R

2 the adjoint state, and writing the cost (2) compactly JX =∫ T
0 f 0(z, r), we denote byHr the pseudo-HamiltonianHr (zr , λr , λ0, r) = −λ0 f0 +

λp ṗ + λx ẋ .

Theorem 4.1 (Pontryagin’s maximum principle) If zr (·) is a trajectory of (4) which
maximizes the cost (2) then there exists a constant non-positive λ0 and a map λr (·),
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Fig. 5 The singular arc becomes preponderant when T increases

satisfying on [0, T ] the following equations,

żr = ∂

∂λr
Hr (zr , λr , λ0, r̃),

λ̇r = − ∂

∂zr
Hr (zr , λr , λ0, r̃),

Hr (zr , λr , λ0, r̃) = max
r∈[0,1]H

r (zr , λr , λ0, r), (7)

and the transversality condition associatedwith the final condition (p(T ), x(T )) ∈ R
n

is λr (T ) = 0. A map t �→ (zr (t), λr (t)) that satisfies these conditions is called an
extremal.
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An extremal is called normal if the associated λ0 satisfies λ0 < 0 and abnormal if
λ0 = 0. System (7) is invariant under the rescaling of (λr (·), λ0) by any positive
constant and it is standard to fix λ0 = −1 in case of normal extremals. As in [28],
we note that since there is no terminal constraint for this Lagrange optimal control
problem we are in the normal case. From now on we will write Hr (zr , λr , r) for the
normal pseudo-Hamiltonian associated with λ0 = −1. The reduced control system (4)
and f 0(z, u) are affine in the control r . Thus, by applying the PMP the corresponding
pseudo-Hamiltonian can bewritten Hr (zr , λr , r) = Hr

0 (zr , λr )+r Hr
1 (zr , λr ), where

the switching function Hr
1 is as follows,

Hr
1 =

(
k1 p

p + K1
− (p + 1)p

K + p
− EM

)
λp

−
(

k1 p

p + K1
+ px

K + p

)
λx − k1 p

x(p + K1)
. (8)

Frommaximization condition in PMP, it follows that the value of the optimal control
depends on the values of the switching function Hr

1 . The dependence is as follows.
If Hr

1 (zr (t), λr (t)) > 0 on some time interval [a1, b1] then r(t) = 1 on [a1, b1]; if
Hr
1 (zr (t), λr (t)) < 0 on some time interval [a2, b2] then r(t) = 0 on [a2, b2]. Finally,

if Hr
1 (zr (t), λr (t)) = 0 on some time interval [a3, b3] then the corresponding control

r is singular on [a3, b3]. The optimal control is then a concatenation of bang controls
u ≡ 1, bang controls u ≡ 0 and singular controls.

From the transversality condition λr (T ) = 0, it follows that λp(T ) = λx (T ) = 0.
Substituting λp(T ) = λx (T ) = 0 in (8) and taking into account p, x > 0, we deduce
Hr
1 (z(T ), λ(T )) �= 0. By continuity of Hr

1 (t), there exists ε > 0 such that r is not
singular on [T −ε, T ]which means that any extremal ends with a bang arc. Moreover,
from Hr

1 (T ) = − k1 p
x(p+K1) < 0, we deduce that the final bang control is r ≡ 0.

4.2 Static Problem

Now let us define the static problem corresponding to the reduced problem (5). In the
static problem we are looking for the steady state of the dynamics (4) at which the cost
(2) reaches its maximum. Let us denote the dynamics (4) of zr by ˙(zr ) = fr (zr , r).
The static problem is defined as follows.

max f 0(zr , r), s.t.

{
fr (zr , r) = 0,

0 < p, x, 0 ≤ r ≤ 1.
(9)

Let us define in the same way the static problem corresponding to the original problem
defined by (1), (2).

max f 0(zr , r), s.t.

{
fr (zr , r) = 0, (u − r) pr

K+p = 0,

0 < p, x, 0 ≤ r , u ≤ 1.
(10)
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As p
K+p is positive, the solution of (10) satisfies either r = 0 or u = r . At r = 0, we

have ẋ = k1 p
K1+p �= 0 (herewe avoid the case k1 = 0 because in this case f 0(zr , r) ≡ 0)

and fr (zr , r) = 0 is not satisfied. The solution of (10) satisfies therefore r > 0, u = r .
Both cost and equations in (10) do not depend on u, as a result, the value of r optimal
for (10) coincides with the value optimal for (9). Hence, we proved the following
result.

Proposition 4.1 Solution ( p̄, x̄ , r̄ ) of the static problem (10) coincides with the solution
of the static problem (9).

From the form of fr (zr , r) given by (4), r and x can be expressed as rational func-
tions of p and the problem of maximization of f 0(zr , r) can be reformulated as a
problem of maximization of a rational function f 0(zr (p), r(p)) on p > 0. It was
shown in [28] that the value of p maximizing f 0 is unique in the domain p > 0 for
(10). As a consequence of Proposition 4.1, the same holds for (9). The solution of the
static-OCP is called the static point. The inequality constraints are not activated and
can be disregarded in both cases (9) and (10), the equality constraints are qualified
at the optimum in both cases. With the same arguments as in [6], we can apply the
Lagrange necessary condition [13] to (9), (10) and deduce the existence of the unique
Lagrange multiplier. Here we are interested in the components of the Lagrange multi-
plier dual to the variables representing the state in the OCP counterparts of (9), (10).
Thus we denote by λ̄ the dual variables to ( p̄, x̄, r̄) and λ̄r the components of λ̄ dual
to ( p̄, x̄).

4.3 Singular Flow

Let us now consider in more details the singular control. First, we denote Hr
01 =

{Hr
0 , Hr

1 } and by induction Hr
0i = {Hr

0 , Hr
i } and Hr

1i = {Hr
1 , Hr

i }, where i is any
sequence of 0s and 1s and {·, ·} is the Poisson bracket. The singular control is the con-
trol corresponding to the case Hr

1 (t) ≡ 0 on some time interval. The value of singular
control can be obtained by differentiating Hr

1 (t) = 0, see [2, 5] for more details. The
order of the control is the smallest number d such that the control u can be expressed

from, d2d

dt2d
Hr
1 (t) = 0. In the case of reduced problem, the control can be obtained

from, d2

dt2
Hr
1 (zr , λr ) = Hr

001(z
r , λr ) + r Hr

101(z
r , λr ). Thus, the singular control is of

order 1 and is defined by: rs = − Hr
001(z

r ,λr )

Hr
101(z

r ,λr )
. According to [30], if the singular control

is of order 1, then the connection between bang control and singular control is a simple
connection: the chattering phenomenondoes not occur in solutions to the reducedprob-
lem. The extremals associated with the singular control are called singular extremals;
they stay in the singular surface: Σr = {(zr , λr ) ∈ R

4 | Hr
1 = 0, Hr

01 = 0
}
.

Proposition 4.2 In some neighborhood of ( p̄, x̄) solution of the static-OCP (9), the
singular surface is a smooth surface defined by (λp, λx ) = (λp(p, x), λx (p, x))
solution of the following nonsingular linear equation:

a1(p, x)λp + b1(p, x)λx = c1(p, x),

a2(p, x)λp + b2(p, x)λx = c2(p, x),
(11)

123



Journal of Optimization Theory and Applications

with coefficients a1, a2, b1, b2, c1, c2 defined by,

H1(p, x, λp, λx ) = a1(p, x)λp + b1(p, x)λx − c1(p, x),

H01(p, x, λp, λx ) = a2(p, x)λp + b2(p, x)λx − c2(p, x).

Proof By definition of the singular surface, (λp, λx ) satisfy (11), which admits a

unique solution if and only if the matrix Δ =
(
a1 b1
a2 b2

)
is invertible. Let D = D(p, x)

be the determinant of Δ. At an equilibrium of (4) we have,

x = (p + 1)μ1

EM − μ1
and r = EM − μ1

EM − μ1 + (p + 1)μ2
, (12)

with μ1 = k1 p / (K1 + p) and μ2 = p / (K + p). Substituting (12) into Δ(p, x) and
f 0(p, r , x) yields, through symbolic computations conducted in Maple,

D(p, x(p)) f 0(p, r(p), x(p)) = p2(p + 1)EMk1K1

(p + K )2(p + K1)2
.

Since the right-hand side is different from 0, we conclude that D( p̄, x̄) �= 0. The
function D(p, x) is continuous and thus it is different from zero in some neighborhood
of ( p̄, x̄), which implies existence of a unique solution of system (11). 	


Substitution of the singular control rs in (7) gives, with Hr defined from Hr right
after (7),

żr = ∂Hr

∂λr
(zr , λr , rs(z

r , λr )), λ̇r = −∂Hr

∂zr
(zr , λ, rs(z

r , λr )). (13)

Defining the singular Hamiltonian by Hs(zr , λr ) = Hr (zr , λr , rs(zr , λr )), and since
the derivative of H with respect to its third argument (control r ) is zero on Σr , we can
rewrite (13) as follows:

żr = ∂Hs

∂λr
(zr , λr ), λ̇r = −∂Hs

∂zr
(zr , λr ), (zr , λr ) ∈ Σr , (14)

and we have the following result (Proof in “Appendix A”).

Proposition 4.3 The singular system (14) is the Hamiltonian system associated with
the smooth Hamiltonian Hs on the smooth submanifold Σr in a neighborhood of
( p̄, x̄, λp( p̄, x̄), λx ( p̄, x̄)).

By a straightforward adaptation of arguments from [6], we have the following relation
between the equilibrium of singular Hamiltonian system and the static point.

Theorem 4.2 Point (z̄r , λ̄r ) with rs(z̄r , λ̄r ) ∈ (0, 1) is an equilibrium of the singular
Hamiltonian system (14) if and only if (z̄r , r̄) with r̄ = rs(z̄r , λ̄r ) is an extremal value
of the static problem (9).
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4.4 Turnpike Theorem

The main result of this section is given by Theorem 4.3, in which we show local
exponential turnpike property of a singular extremal, solution of (14). We assume that
a solution of (14) is well defined on a time interval [t1, t2].
Theorem 4.3 There exists ε > 0 such that, if zr (·) is singular and satisfies (14) on
[t1, t2] , z̄r is the solution of static OCP (9), and if

‖zr (t1) − z̄r‖ + ‖zr (t2) − z̄r‖ ≤ ε,

then there exists C > 0 such that for any t ∈ [t1, t2] there holds

‖zr (t) − z̄r‖ + ‖λr (t) − λ̄r‖ + |rs(t) − r̄ | ≤ C
(
eμ(t1−t) + eμ(t−t2)

)
, (15)

where μ = p̄ r̄ /(K + p̄) .

The singular arc belongs to 2-dimensional surface Σr and, by Proposition 4.2, can
be parameterized by (p, x) near the solution of the static problem ( p̄, x̄). Notice that
the singular control of the reduced problem rs is a function only of p, and thus, we
can rewrite the singular system as follows,

ṗ = f p(p), ẋ = fr (p) − pr(p)

K + p
x . (16)

Let us introduce perturbations of the singular arc on Σr near ( p̄, x̄), δ p = p(t) −
p̄, δx = x(t) − x̄, δr = r(t) − r̄ .

By definition, (δ p, δx) satisfy,

d

dt

(
δ p
δx

)
= H

(
δ p
δx

)
+
(
o1(δ p, δx)
o2(δ p, δx)

)
with H =

(
∗ 0
∗ − p̄r̄

K+ p̄

)
, (17)

and o1, o2 are C1 functions on some neighborhood of (0, 0) ∈ R
2n which have a

little-o behavior. The linear part of (17) defines the linearized system,

d

dt

(
δ p
δx

)
= H

(
δ p
δx

)
. (18)

Lemma 4.1 The matrix H is hyperbolic with opposite eigenvalues.

Proof Consider the linearized system (18) in canonical coordinates,

d

dt

(
δzs
δλs

)
= Hs

(
δzs
δλs

)
, Hs =

⎛
⎝

∂2hs
∂λs∂zs

(z̄s, λ̄s)
∂2hs
∂λ2s

(z̄s, λ̄s)
∂2hs
∂z2s

(z̄s, λ̄s) − ∂2hs
∂λs∂zs

(z̄s, λ̄s)

⎞
⎠ . (19)
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The matrix Hs is traceless, and thus, so is H. Therefore, eigenvalues of H are μ, −μ

with, μ = p̄r̄

K + p̄
> 0. 	


As H is hyperbolic, there exists a change of coordinates A = (ai, j ), (g, h)� =
A(δ p, δx)�, such that (18) in these coordinates takes the following form,

d

dt

(
g
h

)
=
(−μ 0

0 μ

)(
g
h

)
+
(
õ1(g, h)

õ2(g, h)

)
. (20)

Lemma 4.2 [18] For any T > 0 there exists ρ > 0 such that the following two
statements hold.

– For any (g0, hT ) ∈ B(0, ρ
K ) there exists the unique (g, h) ∈ C1

(
[0, T ] ,R2

)
satisfying (20) and g(0) = g0, h(T ) = hT , |g(t)| + |h(t)| ≤ ρ, t ∈ [0, T ].

– The map Φ defined by Φ(g0, hT ) = (g(·), h(·)) is continuous.
Lemma 4.3 [18] Let μ ∈ R+ be the positive eigenvalue of H. There exists rμ ∈
(0,∞) independent of T ∈ (0,∞) and functions θ1, θ2 ∈ C0

([0, r̄μ];R+
)
satisfying

θi (β) −−−−−→
β → 0+ 0 for i = 1, 2, such that if (g, h) satisfies (20) and |g(t)| + |h(t)| ≤

rμ, t ∈ [0, T ], then for any t ∈ [0, T ] there holds

|g(t)| ≤ Cμ

(
|g(0)| e−μt + e−μ(T−t) |h(T )| θ1(‖h‖c0)

)
,

|h(t)| ≤ Cμ

(
|h(T )| e−μ(T−t) + e−μt |g(0)| θ2(‖g‖c0)

)
. (21)

Proof of Theorem 4.3 By Proposition 4.2, there exists a neighborhood V ⊂ R
2 of z̄r

such that in this neighborhood solutions of (14) can be parameterized by (p, x) and
satisfy (16). Let us choose ε̃ such that zr satisfying ‖zr − z̄r‖ ≤ ε̃ belong to V . We
consider the perturbed system (18). Applying Lemmas 4.2 and 4.3 to the diagonalized
system (20), we have existence of rμ > 0 such that if

g(0) = a1,1 δ p(0) + a1,2 δx(0),

h(T ) = a2,1 δ p(T ) + a2,2 δx(T ) (22)

satisfy |g(0)| + |h(T )| ≤ rμ then (g(t), h(t)) satisfy (21) for t ∈ [0, T ] and any
final time T . Coming back to the initial coordinates (δ p, δx), if, |δ p(0)| + |δx(0)| +
|δ p(T )| + |δx(T )| ≤ ‖A‖ rμ, then,

|δ p(t)| + |δx(t)| ≤ ‖A‖−1 (|g(t)| + |h(t)|) ,

and as (21) applies, there exists a positive constant C such that,

|δ p(t)| + |δx(t)| ≤ C
(
eμ(t1−t) + eμ(t−t2)

)
.
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Note that along the singular arc, r is a continuous functions of (p, x). By Proposi-
tion 4.2, λs = λs(p, x) continuous near z̄r . As a conclusion, up to a change of constant
C , we obtain (15) which ends the proof. 	


The obtained result concerns a singular arc. What about the whole solution? The
numerical results obtained in Sect. 3.1 suggest that when the final time is large, any
optimal solution contains a singular arc. Moreover, the singular arc constitutes the
major part of a solution and this part grows relatively to the other part of trajectory
whenwe increase the final time as in Fig. 1. These observations lead us to the following
conjecture.

5 Turnpike Property of the Singular Flow of the Original Problem

Let us now come back to the original OCP given by dynamics (3) and cost (2). The
first steps in the analysis of this OCP were done in [28]. In particular, they showed
the existence of optimal solutions, the obtained numerical results showing signs of
the turnpike behavior of solutions and analytic results showing the absence of the
so-called exact turnpike (see [28] for more details). We will go further in the analysis
of the turnpike property and show analytically that the singular arcs admit the local
exponential turnpike property.

We denote by z = (p, r , x) the state, by λ = (λp, λr , λx ) ∈ R
3 the adjoint state,

and by H the pseudo-Hamiltonian associated with (3) and cost (2): H(z, λ, u) =
f0 +λp ṗ+λr ṙ +λx ẋ .Wemay also define as follows H0 and H1, in a unique way of
expressingH as an affine function of the control:H(z, λ, u) = H0(z, λ)+u H1(z, λ).

From PMP, each optimal z(·) satisfies, for some λ(·), the generalized Hamiltonian
system,

ż = ∂

∂λ
H(z, λ, ũ),

λ̇ = − ∂

∂z
H(z, λ, ũ),

H(z, λ, ũ) = max
u∈[0,1]H(z, λ, u). (23)

Each solution of (23) is a concatenation of bang and singular arcs.

5.1 Singular Flow

Let us focus on the singular arcs. Itwas shown in [26, 28] that, at least in a neighborhood
of the static equilibrium,

H1 = λr p r

K + p
, H101 = p

K + p
H01, H10001 �= 0. (24)
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As a result, singular controls are of order 2 and are obtained from d4

dt4
H1(t) = 0:

us = −H00001(z, λ)

H10001(z, λ)
. (25)

The corresponding singular extremals belong to the singular surface defined by,

Σ =
{
(z, λ) ∈ R

6 | H1 = 0, H01 = 0, H001 = 0, H0001 = 0
}

.

Notice that H1 = 0 implies λr = 0, as we work locally near the static point. As
in the reduced problem, we substitute the expression of us as a function of (z, λ) in
H(z, λ, u) and obtain the singular Hamiltonian Hs(z, λ) = H(z, λ, us(z, λ)). The
system (23) becomes accordingly

ż = ∂Hs

∂λ
(z, λ) , λ̇ = −∂Hs

∂z
(z, λ) , (z, λ) ∈ Σ . (26)

The flow of this system is called the singular flow. It is characterized by the following
result, similar to Proposition 4.3, and whose proof is also deferred to “Appendix A”.

Proposition 5.1 Σ is a smooth submanifold of co-dimension 4 and the singular system
(26) is the Hamiltonian system on Σ associated with the Hamiltonian Hs.

We will now establish a relation between the singular flow of the original optimal
control problemgiven by dynamics (3) and cost (2) and the singular flowof the reduced
problem (5).

Theorem 5.1 If the singular control us given by (25) satisfies 0 < us < 1, then
singular trajectory (p(·), r(·), x(·)) of OCP (1), (2) coincides with ( p̃(·), r̃(·), x̃(·))
where r̃(·) is the singular control and ( p̃(·), x̃(·)) is the singular trajectory of (5).
Moreover, the singular surface of OCP (1), (2) can be written as follows

Σ =
{
(p, r , x, λp, λr , λx ) ∈ R

6 | (p, x, λp, λx ) ∈ Σr , λr = 0, r = rs
}

. (27)

Proof A trajectory of (1), (2) is singular if and only if λr = 0. Notice that, H =
Hr
0 + r Hr

1 + H1 (u − r) , and therefore,

∂H
∂r

= Hr
1 + λr

p

K + p
(u − 2r). (28)
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Let us differentiate λr = 0 along singular solutions of (23). Using (28), we get,

d

dt
λr = −∂H

∂r

∣∣∣∣
λr=0

= −Hr
1 = 0,

d2

dt2
λr = − d

dt

(
∂H
∂r

)∣∣∣∣
λr=0,λ̇r=0

= − d

dt

(
Hr
1

) = 0,

d3

dt3
λr = − d2

dt2

(
∂H
∂r

)∣∣∣∣
λr=0,λ̇r=0,λ̈r=0

= − d2

dt2
(
Hr
1

) = 0.

(29)

Now notice that the first two equations from (29) are equivalent to (11) and define
the condition (p, x, λp, λx ) ∈ Σr . The last equation from (29) can be written as,
d2

dt2
(
Hr
1

) = H001 + r H101, thus, r satisfying this equation is exactly the singular
control rs . On the other hand, the left-hand side of (29) together with λr = 0 defines
the singular surface of the initialOCPproblemand soweget (27). Finally, the dynamics
of (p, x) in (1) does not depend on u, but depend on r which is given by r = rs . 	

Proposition 5.2 At least for (p, x, r) close to the solution ( p̄, x̄, r̄)of the static problem
(9), (p, x) can be chosen as coordinates on the singular surface Σ , i.e. the latter has
an equation of the form r = rs(p, x), λ = A(p, x) with some smooth function A; in
these coordinates, the equation for the singular extremals are:

żr = fr (z
r , rs(z

r )).

Proof By Proposition 4.2, λp = λp(p, x), λx = λx (p, x) and r = rs(p, x), thus Σ

is parameterized by (p, x). 	

Remark 5.1 Symbolic calculations usingMaple show that r = rs(p, x) is independent
of x , that is rs = rs(p).

The following counterpart of Theorem 4.2 states the relation between the static
point and the equilibrium of the singular Hamiltonian system.

Theorem 5.2 Point (z̄, λ̄) with us(z̄, λ̄) ∈ (0, 1) is an equilibrium of the singular
Hamiltonian system (26) if and only if (z̄, ū) with ū = us(z̄, λ̄) is an extremal value
of the static problem (10).

5.2 Turnpike Theorem

We are in position to prove the local exponential turnpike property of singular arcs of
the original problem.

Theorem 5.3 There exists ε > 0 such that, if z(·) is singular and satisfies (26) on
[t1, t2] ⊂ [0, T ], z̄ = (z̄r , r̄) is the static point, solution of (9), and if

‖z(t1) − z̄‖ + ‖z(t2) − z̄‖ ≤ ε, (30)
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then there exists C > 0 such that for any t ∈ [t1, t2] there holds

‖z(t) − z̄‖ + |us(t) − ū| + ‖λ(t) − λ̄‖
≤ C

(
eμ(t1−t) + eμ(t−t2)

)
, (31)

where μ = p̄ r̄ /(K + p̄) .

Proof By Theorem 5.1, the singular trajectories in the original problem (2)–(3) and
the reduced problem (2)–(4) coincide. As a consequence on Theorem 4.3, condition
(30) implies, ‖zs(t) − z̄‖ + ‖λ(t) − λ̄‖ + |rs(t) − r̄ | ≤ C

(
eμ(t1−t) + eμ(t−t2)

)
. We

notice that λr = 0 and that the singular control us is a continuous function of (z, λ).
This implies (31), up to some update of the constant C , which ends the proof. 	

In the case of optimal control problem (2)–(3), simulations show the predominance
of the singular arcs and as a consequence, we observe the turnpike of the full solution
as can be seen in Fig. 5 where the results are shown for increasing sequence of final
times. As in the case of the reduced problem, we formulate a conjecture on the turnpike
property of the optimal solutions of (2)–(3).

6 Suboptimal Control Strategies

6.1 Stability Properties

In this section we show stability properties of the dynamical systems obtained by
taking the static value r̄ in the reduced case and ū in the complete case as a constant
control. This control choice is particularly interesting because it provides a very simple
but efficient approximation of the singular control. This approximation is further used
in the design of numerical methods for both reduced and full problems. The stability
properties justify the use of the constant control that will allow to reach the turnpike
exponentially fast. (It would not be the case without stability.) Notice that in our case
the singular control is given by a complicated rational function and the possibility to
approximate this function by a simple constant control without a significant loss in
the cost is particularly useful for applications.

6.1.1 Reduced Case

We start the analysis of the stability properties by considering the case of the reduced
problem (4), (2).

Theorem 6.1 Assume K = K1. Let ( p̄, x̄, r̄) be the solution of the static prob-
lem (9) and let (p, x) be the solution of (4) corresponding to r ≡ r̄ and the initial
data (p(0), x(0)) = (p0, x0). Then there exist constants β = β(p0) > 0 and
C = C(p0, x0) > 0 such that the following inequality holds for any t > 0

|p(t) − p̄| + |x(t) − x̄ | ≤ C e−βt . (32)
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Proof First, let us denoteψ(p) = p
p+K . This function is strictly increasing andpositive

for p > 0. Recall if r(t) = r̄ for t ∈ [0, T ] then ( p̄, x̄) is the equilibrium of (4). This
permits to rewrite (4) in the following form

ṗ = − 1

p + K

(
K (k1 (1 − r̄) + r̄ (1 + p̄))

p̄ + K
+ r̄ p

)
(p − p̄) ,

ẋ = −r̄ψ(p) (x − x̄) ,

(33)

which can bewritten in a simpler form as ṗ = −d1(p) (p − p̄) , ẋ = −d2(p) (x − x̄).
Coefficients d1, d2 satisfy d1(p) > d1(0) for any p > 0 and d1(0) > 0 and, in addition,
d2(p(t)) is such that d2(p(t)) > d2(p0) if p0 < p̄ and d2(p(t)) > d2( p̄) if p0 > p̄.
Let us denote Vp = |p(t) − p̄|, Vx = |x(t) − x̄ |. Outside p = p̄ and x = x̄ , we have,
V̇p ≤ −d1Vp, and V̇x ≤ −d2Vx , with d1 = d1(0) and d2 = min{d2(p0), d2( p̄)}. This
implies (32). 	


In general there is no relation between K , K1, so let us consider the case without
assumptions on parameters.

Lemma 6.1 Point ( p̄, x̄) is the unique stable equilibrium of (4) with r ≡ r̄ in Ω .

Proof The uniqueness is a consequence of the uniqueness of the equilibrium ( p̄, r̄ , x̄)
of (1). The linearized matrix of (4) is of the following form

(−( p̄ + 1)μ′
2( p̄, r̄) − μ2( p̄, r̄) − μ′

1( p̄, r̄) 0
∗ −μ1( p̄, r̄)

)
,

with μ1 = k1 p(1−r)
K1+p and μ2 = pr

K+p . As μ1( p̄, r̄), μ2( p̄, r̄), μ′
1( p̄, r̄), μ

′
2( p̄, r̄) are

positive, both eigenvalues of the matrix above are negative. Therefore, ( p̄, x̄) is a
stable equilibrium. 	

Let us denote by (pr̄ , xr̄ ) the solution of (4) with constant control r = r̄ defined on
some time interval [0, T̃ ].
Lemma 6.2 There exist δ, μ, C > 0 such that if, |pr̄ (0) − p̄| + |xr̄ (0) − x̄ | ≤ δ,

then,

|pr̄ (t) − p̄| + |xr̄ (t) − x̄ | ≤ C e−μt , for t ∈ [0, T̃ ].

Corollary 6.2 There exist positive constants ε, T0 such that, if t2 − t1 > T0 and,

|ps(t1) − p̄| + |xs(t1) − x̄ | + |ps(t2) − p̄| + |xs(t2) − x̄ | ≤ ε,

then there exists C,CJ > 0 such that for any t ∈ [0, T̃ ] there holds,

|ps(t) − pr̄ (t)| + |xs(t) − xr̄ (t)| ≤ C
(
e−νt + e−ν(T̃−t)

)
,

|J (rs) − J (r̄)| ≤ CJ

(
1 − e−νT̃

)
.
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6.1.2 Complete Case (Full Model)

Similar properties hold for the initial OCP (2)–(3).

Lemma 6.3 Point ( p̄, r̄ , x̄) is the unique stable equilibrium of (3) with u ≡ ū in Ω .

As before, we denote by (pū, rū, xū) the solution of (4) with constant control u ≡ ū
defined on [0, T̃ ].
Lemma 6.4 There exist δ, μ∗, C > 0 s.t if, |pū(0)− p̄|+|rū(0)−r̄ |+|xū(0)− x̄ | ≤ δ,

then, |pū(t) − p̄| + |rū(0) − r̄ | + |xū(t) − x̄ | ≤ C e−μ∗t , for t ∈ [0, T̃ ].
Corollary 6.3 There exist positive constants ε, T0 such that, if t2 − t1 > T0 and,

|ps(t1) − p̄| + |rs(t1) − r̄ | + |xs(t1) − x̄ | + |ps(t2) − p̄| + |rs(t2) − r̄ | + |xs(t2) − x̄ | ≤ ε,

then there exist C,CJ > 0 s.t. for any t ∈ [0, T̃ ] the following holds:

|ps(t) − pū(t)| + |rs(t) − rū(t)| + |xs(t) − xū(t)| + ≤ C
(
e−νt + e−ν(T̃−t)

)
,

|J (us) − J (ū)| ≤ CJ

(
1 − e−νT̃

)
.

6.2 Numerical Algorithm for the Reduced Problem

One of the practical applications of the turnpike property is the advantage in the devel-
opment of the numerical methods. It can be used to improve the standard numerical
methods: for improvements in direct and indirect numerical methods, see [8, 22]; for
MPC in case of infinite horizon problems, see [11]. It was suggested much earlier in
[25] for linear quadratic problem with fixed endpoints, and in [1] for general nonlin-
ear OCPs with fixed endpoints, to approximate the solution by gluing the solutions of
the corresponding backward and forward infinite horizon problems. In our case, we
suggest an even simpler construction of a suboptimal control strategy which is easy
to calculate and implement on the one hand and shows good approximation results on
the other hand.

Numerical solutions of the reduced problem obtained using direct method imple-
mented in Bocop software show that, for different parameters, initial data and final
times, the obtained solutions are always with at most 3 arcs (see Sect. 3.1 for example
in case EM = k1 = K1 = K = 1). Moreover, the solutions with exactly 3 arcs are
the most frequent solutions and occur when final time is large. For such solutions,
the observed structure is Bang–Singular–Bang (B–S–B). We will take advantage of
this observation and assume in following that solutions of the reduced problem have
at most 3 arcs and the sequence of the arcs is a sub-sequence of B–S–B. With this
assumption, we will construct a new algorithm to approximate the singular arc by a
trajectory with the constant control r = r̄ , from the solution of the static problem (9).
Let us define a new optimization problem associated with the reduced problem (5).
We will use the notation zr = (p, x) and żr = fr (zr , r) for the dynamics (4). We
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choose a control r in (4) in such a way that the dynamics takes the following form,

żr = fr (zr , r1), t ∈ [0, T1),
żr = fr (zr , r̄), t ∈ [T1, T2),
żr = fr (zr , r2), t ∈ [T2, T ],

(34)

where r̄ is the solution of the static–OCP (9), r1, r2, T1, T2 are parameters satisfying
0 ≤ r1, r2 ≤ 1 and 0 ≤ T1 ≤ T2 ≤ T . A reasonable next step is to find r1, r2, T1, T2
which maximize the cost (2) subject to (34). For this, we notice first that from the
preliminary analysis in Sect. 4.1 it follows that the optimal control of the reduced OCP
is zero during the final bang arc, meaning that r ≡ 0 on some time interval [t̃, T ].
Therefore, we will set r2 = 0, this will reduce the dimension of the optimization
problem. Finally, the new optimization problem writes,

max
∫ T

0

k1
x(t)

p(t)(1 − r(t))

K1 + p(t)
dt

{
(p, x, r) satisfy (34), 0 ≤ r1 ≤ 1, r2 = 0,

0 ≤ T1 ≤ T2 ≤ T .
(35)

Proposition 6.1 There exists an optimal solution to the optimization problem (35).

Proof Problem (35) can be rewritten as follows with
(
pr∗(·), xr∗(·)

)
the flow of (4)

with control r set to r(·) ≡ r∗,

max
0≤r1≤1

0≤T1≤T2≤T

∫ T1

0

k1
xr1(t)

pr1(t)(1 − r1)

K1 + pr1(t)
dt +

∫ T2

T1

k1
xr̄ (t)

pr̄ (t)(1 − r̄)

K1 + pr̄ (t)
dt

+
∫ T

T2

k1
x0(t)

p0(t)

K1 + p0(t)
dt .

Thus, we maximize a continuous function on a compact set {(r1, T1, T2) : 0 ≤ r1 ≤
1, 0 ≤ T1 ≤ T2 ≤ T }. Such a maximization problem admits a solution. 	


The idea of replacing a complicated singular control by a simple constant control is
important for applications. By solving (35), we choose, moreover, the best control val-
ues and switching times for such a control structure. By Lemma 6.2 and Corollary 6.2,
the behavior of solutions of (4) with r(·) ≡ 0 is very similar to the turnpike behavior of
the singular arc. Moreover, the error committed by setting the control r(·) ≡ r̄ in place
of r(·) = rs(·) is bounded. The numerical simulations show even better results when
compared to the solutions obtained using the standard direct optimization method, see
Sect. 7. For the numerical solution of (35) we use Bocop software. In practice, this
problem can be solved by any nonlinear programming solver. The discretization of
the dynamical part of the constraint in (35) can be done in various ways just as in case
of the direct methods for DOCPs (see [3] for direct methods in optimal control). We
choose the approach of state and control discretization implemented in Bocop.
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6.3 Numerical Algorithm for the Original Problem

The idea of approximating solutions with a simple piecewise constant control strategy
which was described in case of the reduced problem applies in case of the original
OCP (3), (2) with small modifications. From PMP it follows that H1(T ) = 0, so we
cannot conclude on the exact value of the control during the final arc as it was done in
the reduced case. Therefore, if we approximate a solution with 3 consecutive constant
controls, the value of the last control remains an optimization parameter. We use the
notation z = (p, r , x) and ż = f (z, u) for the dynamics (3). The 3-arc strategy leads
to the following dynamics with ū the corresponding value from the solution of the
static problem.

ż = f (z, u1), t ∈ [0, T1)
ż = f (z, ū), t ∈ [T1, T2)
ż = f (z, u2), t ∈ [T2, T ].

(36)

The resulting optimization problem has the following form,

max
∫ T

0

k1
x(t)

p(t)(1 − r(t))

K1 + p(t)
dt, s.t.

{
(p, x, r) satisfy (36),

0 ≤ u1, u2 ≤ 1, 0 ≤ T1 ≤ T2 ≤ T .
(37)

Using the same arguments as in the proof of Proposition 6.1, we get the existence of
a solution of (37).

Proposition 6.2 There exists an optimal solution to the optimization problem (37).

The solution structure of the complete OCP (2)–(3) is more complicated than in the
reduced case as the connection between bang arcs and singular arcs is achieved by
chattering. Although it is standard to approximate chattering by a finite number of bang
arcs in numerical methods (see, e.g. [31]), the method must be adapted to the concrete
problem under consideration. Assume that all optimal solutions of problem (2)–(3)
have only one singular arc. In this case, the 3-arc solution represents an approximation
where all the bang-arcs, including chattering, before and after the singular arc are
replaced by a single arc corresponding to a constant control, and the singular arc is
approximated by an arc corresponding to the control u = ū. Notice that solution of
(3) with u = ū is exponentially close to the singular arc, just as in the reduced case
as shown in Corollary 6.3. In the following numerical results we confirm that the
numerical solution of (37) provide a very good approximation.

7 Numerical Results

In this section,weprovide thenumerical results showing theperformanceof thegeneric
algorithms established in Sects. 6.2 and 6.3. For that, we use the open source optimal
control toolbox Bocop. The results obtained using 3-arc algorithms are compared to
the standard direct optimization approach implemented also in Bocop. Note that the
introductory examples developed in Sect. 3 rely upon the same direct optimization
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Table 2 Values of the
parameters in (4), used in
Examples 7.1–7.2 for the
reduced problem

EM k1 K1 K

2.5 1.2 1.4 1.6

0 20 40 60 80 100
0
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20(a)
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-0.2
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0.4

0.6

0.8

1

1.2(b)

Fig. 6 a The optimal state p(t), r(t) on time interval [0, 100]. The initial states are given by p(0) = x(0) =
20. b The optimal co-state λp(t), λr (t) on time interval [0, 100], the transversality condition (λ = 0) is
satisfied

method and are realized using Bocop. The idea of the direct numerical method [3] is
based on the complete discretization of the OCP and formulation of the corresponding
Nonlinear Program. This step is integrated in Bocop and below we specify the choice
of the discretization methods in Footnotes 6, 7, 8; the NLP solver in Bocop is IPOPT.

Example 7.1 (Reduced self-replicator model) In the first numerical example, we
use the parameters in Table 2 along with the Bocop settings6 and we provide the
optimal state and co-state trajectories, along with the optimal control r(t), using a
direct optimization method applied to the reduced DOCP. These solutions visually
exhibit a turnpike behavior, as illustrated in Figs. 6 and 7.

Example 7.2 (Reduced self-replicator model—3-arc)
Now, we consider the numerical method based on the 3-arc approximation applied

to the reduced problem, using the Bocop settings.7 The suboptimal control and the
suboptimal trajectories obtained using the model parameters in Table 2 are shown in
Figs. 7 and 8 . Next, we show the numerical results obtained for different final-times T ,

6 Numerical experiments were run on bocop when T ranges from 20 to 280 (see Table 3), with the
following settings. Discretization: Euler (implicit, 1-stage, order 1), time steps: 500, Maximum number of
iterations: 2000, NLP solver tolerance: 10−18.
7 Numerical experiments were run on bocop for T ranges from 20 to 280 (see Table 3), with the following
settings. Discretization: Lobatto IIIC (implicit, 4-stage, order 6), time steps: 500, Maximum number of
iterations: 2000, NLP solver tolerance: 10−18.
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0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Fig. 7 Optimal control r(t) on time interval [0, 100], compared to the 3-arcs approximation (Example 2),
t1, t2, are the optimization parameters form the 3-arc algorithm
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Time, t

0
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10

15

20

Fig. 8 suboptimal trajectories p(t), x(t) obtained by the 3-arcs method, defined on [0, 100]. The initial
conditions are p(0) = x(0) = 20

in order to compare the standard direct numerical approach and the approach by the 3-
arc algorithm. The results are given in Table 3. The comparison is done by considering
the relative error of the numerically obtained value functions of the two algorithms,
that is the maximal cost value, for different final times, ε(T ) = C3-arcs(T )−CDOCP(T )

CDOCP(T )
,

where CDOCP(T ) is the maximal value of the cost obtained using standard direct
approach and C3-arcs(T ) is the value obtained by the 3-arc algorithm, the both values
are considered as functions of the final time T .

As illustrated in Table 3 and Fig. 9, the costs obtained by the two numerical
approaches are substantially similar. These comparative results were obtained for
equivalent numerical discretization methods and may slightly vary according to the
selected ODE-discretization schemes.

Let us now perform similar numerical examples based on the dynamics of the full
model (3). The biological parameters in this case are given in Table 4. The results
obtained in Examples 7.3–7.4 using appropriate Bocop settings are summarized in
Table 5.
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Table 3 The cost associated with the numerical methods: DOCP cost stands for the direct optimization
solving the initial DOCP, and Cost3-arcs gives the cost of the 3-arc method

T 20 40 60 80 100 120 140

Reduced DOCP cost 10.3791 16.2434 22.1082 27.9735 33.8393 39.7055 45.5721

Reduced Cost3-arcs 10.4107 16.2974 22.1841 28.0709 33.9578 39.8447 45.7317

T 160 180 200 220 240 260 280

Reduced DOCP cost 4.52314 51.439 57.3062 63.174 69.0418 74.91 80.7786

Reduced Cost3-arcs 4.53117 51.6188 57.5058 63.3929 69.2801 75.1673 81.0545

0 50 100 150 200 250 300
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6 10-3

Fig. 9 Using the data in Table 3, the relative error is represented for T varying between 20 and 280. The
cost CDOCP stands for the direct optimization in Bocop, while C3-arcs stands for the cost using the 3-arc
approach

Table 4 Parameters used in
Examples 7.3–7.4 for the
original OCP (3), (2)

EM k1 K1 K

2 1.2 1.4 1.6

Example 7.3 (Full self-replicator model) First, we consider the numerical results
obtained using a standard direct optimization method applied to the complete OCP
(3), (2). A chattering phenomenon appears in the optimal control in Fig. 10. As in the
reduced problem, these solutions visually exhibit the turnpike behavior, as illustrated
in Figs. 10 and 11.
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Fig. 10 The optimal control u(t) over [0, 70] in Example 3
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Fig. 11 The optimal state (a) and co-state (b) trajectories obtained by standard direct approach in Bocop

Example 7.4 (Full self-replicator model—Solution with the 3-arc algorithm) Let
us now consider the numerical results obtained using the 3-arc algorithm (37) applied
to the complete OCP (3), (2). We perform numerical simulations for different final-
times T , given in Table 4. The biological parameters are given in Table 4, implemented
in Bocop along with the Bocop settings.8 The results when T varies from 70 to 470
are listed in Table 5.

Results for T = 70:The suboptimal control and corresponding trajectories for T = 70
obtained by the 3-arc algorithm are given in Figs. 12 and 13, respectively.

Using the data given in Table 5, we conclude that the relative error committed
by the 3-arc approach is substantially minor, see the left graph of Fig. 14. The dif-
ference increases slowly when T is very large to the favor of the effective three
arcs approximation. Indeed, we note that when T increases, the approximated 3-
arc algorithm has better yields than the original DOCP (for equivalent discretization
method and same time-steps in Bocop). On right graph of Fig. 14, you can also find

8 Numerical experiments were run on bocop, when T ranges from 70 to 470 (see Table 5), with the
following settings. Discretization: Euler (implicit, 1-stage, order 1), time steps: 500, Maximum number of
iterations: 2000, NLP solver tolerance: 10−20.
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Fig. 12 The suboptimal control u(t) for t ∈ [0, 70]
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Fig. 13 The suboptimal trajectories for t ∈ [0, 70]
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Fig. 14 Left: the relative error in the costs committed when T varies from 70 to 470. Right: control error
‖ubocop(t) − u3arcs(t)‖2

‖ubocop(t) − u3arcs(t)‖2, which shows how well the control obtain by the 3arc algo-
rithm approximates the solution obtained by bocop. The observed results comfort the
use of the simplest suboptimal control as an alternative effective control strategy.
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8 Conclusion

Wemade the first steps in showing the role of the turnpike property for the optimization
of metabolite production. We adapted the existing theoretical approach from [22] for
the local exponential turnpike property to the singular arcs of order 1 and 2 appearing in
our case. Pontryagin’s maximum principle together with numerical methods allowed
us to deduce the structure of the solutions with predominance of the singular arc. In
addition, the introduced reduced model permits to avoid the chattering phenomenon.
Finally, we designed simple suboptimal open loop strategies for both reduced and
complete models. These strategies are easier to implement from a biological and
experimental point of view. The efficiency of the method was shown on numerical
examples. For future work, we will further use the solution of the reduced OCP to
construct control strategies for the original OCP. Another direction of research is to
establish global turnpike behavior in the studied class of OCPs dedicated to bacterial
growth, possibly trying to rely on dissipativity features [12, 17]. Whatever the order of
the singular arcs coming into play, one expects that some turnpike property would hold
not only along the singular arc, but also for the whole optimal trajectory where initial
and terminal bang arcs (including those corresponding to the Fuller phenomenon) are
only corrections made to accommodate boundary conditions.
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A Proof of Propositions 4.3 and 5.1

Some notions of geometric control theory and differential forms are used in these
proofs more heavily than in the rest of the paper; the unfamiliar reader is referred
to [2]. Recall that a Hamiltonian vector field H on a manifold M is defined by a
function H : M → R (Hamiltonian) and a symplectic form ω (non-degenerate skew-
symmetric closed differential form of degree 2); the vector field is then the onlyH such
that dH = ω(H, .). Recall also that the Poisson bracket of two smooth functions H1
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and H2 satisfies: {H1, H2} = ω(H1,H2) = H1 H2 = −H2 H1. Let us now describe
a general situation that encompasses both proofs.

Let M be a manifold of dimension 2n, ω a symplectic form on M , and consider
2p + 1 smooth functions H , g1, . . . , g2p (p > 0) from M to R. Assume (i) that
N := {g1 = · · · = g2p = 0} is a smooth submanifold of M of co-dimension 2d, i.e.
dg1 ∧ · · · ∧ dg2p does not vanish on N , (ii) that the functions {H , g1}, …, {H , g2p}
are identically zero on N (this means that the submanifold N is invariant by the flow
ofH, because it translates into Lie derivatives:H g1 = · · · = H g2p = 0), (iii) that the
restriction ω|N of the form ω to N is non-degenerate. Then the restriction H|N of H
to N is the Hamiltonian vector field (wrt. ω|N ) on N associated with the Hamiltonian
H |N . Indeed, H|N defines a vector field on N because (ii) implies that H(x) ∈ Tx N
for all x in N ; d(H |N ) = (ω|N )(H|N , .) is true by restriction (even if ω|N were
degenerate), and does imply the above property because ω|N is a symplectic form on
N , being closed (dω = 0 follows automatically by restriction) and non-degenerate, as
assumed in (iii). We now prove the propositions by checking that points (i), (ii) and
(iii) hold in both cases.

Proof of Proposition 4.3 Let us apply the above when p = 1, H0, H1 are two smooth
functions, g1 = H1, g2 = {H0, H1} = H01, H101 = {H1, H01} is assumed9 to not
vanish on M , H = H0 + us H1 with us = −H001/H101. Point (i) holds because
dH1, dH01 are linearly independent at points where H101 is nonzero (apply λ0dH1 +
λ1dH01 to the vector fields H1 and H01 successively). Point (ii) is satisfied because
{H , g1} = {H0 + us H1, H1} = H01 + {us, H1} H1 and

{H , g2} = {H0 + us H1, H01} = H001 + us H101︸ ︷︷ ︸
=0

+{us, H01} H1, (38)

while H1 and H01 are zero on N . Point (iii) is satisfied because, for any x in N , Tx N ,
as a subspace of TxM , is the annihilator of {dH1(x), dH01(x)}, or equivalently the
ω-orthogonal to the vector space L spanned byH1(x),H01(x); the restriction of ω(x)
to the 2-dimensional L is nondegenerate because ω(H1,H01) = H101 �= 0, and this
implies that the restriction to its ω-orthogonal is nondegenerate as well. The precise
case of Proposition 4.3 is retrieved for n = 2,M = R

4 with coordinates (p, x, λp, λx ),
N is Σr , ω = dλp ∧ dp + dλx ∧ dx , and Hamiltonian Hs . 	

Proof of Proposition 5.1 Let us apply the above under the following assumptions that
hold in Proposition 5.1 (in particular according to (24)): take p = 2, H0, H1 two
smooth functions, g1 = H1, g2 = {H0, H1} = H01, g3 = {H0, H01} = H001,
g4 = {H0, H001} = H0001, assume that H10001 = {H1, H0001} does not vanish on M ,
and define H = H0+us H1 with us = −H00001/H10001.We also assume that there are
two smooth functions a1, a2 such that H101 = a1 H1 +a2 H01. Point (i) holds because
dH1, dH01, dH001, dH0001 are linearly independent at points where H10001 is nonzero
(apply λ1dH1+λ2dH01+λ3dH001+λ4dH0001 to the vector fieldsH1,H01,H001 and
H0001, successively). Point (ii) is obvious for g1, g2, g3, and {H , g4} = {us, H0001} H1,

9 This can be achieved locally by replacing M with an open neighborhood of a point x such that H1(x) =
H01(x) = 0, H101(x) �= 0
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similarly to (38). Let us turn to point (iii). For any x in N , as a subspace of TxM , Tx N
is the annihilator of {dH1(x), dH01(x), dH001(x), dH0001(x)}, or equivalently the ω-
orthogonal of the vector space generated by H1(x),H01(x), H001(x),H0001(x). The
restriction of ω(x) to this vector space is non-degenerate because its matrix in the
previous basis is

⎛
⎜⎜⎝

0 0 0 H10001(x)
0 0 −H10001(x) ∗
0 H10001(x) 0 ∗

−H10001(x) ∗ ∗ 0

⎞
⎟⎟⎠ ,

where the Jacobi identity, the relation H101 = a1 H1 + a2 H01, and the fact that
H1, . . . , H0001 vanish on N have been used to obtain the upper triangular structure.
The precise case of Proposition 5.1 is retrieved for n = 3, M = R

6 with coordinates
(p, x, r , λp, λx , λr ), N is Σ , ω = dλp ∧dp+dλx ∧dx +dλr ∧dr , and Hamiltonian
Hs . 	


B 3-Arc Optimization Results in the Full-Model

See Table 5.

Table 5 Here we use the optimization method based on the 3 arcs, where u2 is fixed to the static solution
u2 = u (where u = 0.58 is the solution of the static-OCP in the full model, corresponding to the parameters
in Table 4), while u1 and u3 are free

T u1 u2 u3 t1 t2 Cost3-arcs DOCP cost

70 1 0.58 0 1.9364 62.8107 17.0796 17.0731

72 1 0.58 0 1.9380 64.8107 17.5989 17.5917

74 1 0.58 0 1.9397 66.8108 18.1181 18.1103

76 1 0.58 0 1.9413 68.8108 18.6374 18.6288

80 1 0.58 0 2.1631 72.8469 19.6044 19.6660

85 1 0.58 0 2.1820 77.8477 20.8987 20.9625

90 1 0.58 0 2.0482 82.8231 22.2403 22.2591

95 1 0.58 0 2.0580 87.8234 23.5369 23.5556

100 1 0.58 0 2.0679 92.8237 24.8335 24.8521

110 1 0.58 0 2.0872 102.8242 27.4267 27.4452

120 1 0.58 0 2.1066 112.8246 30.0201 30.0383

130 1 0.58 0 2.1261 122.8251 32.6136 32.6315

140 1 0.58 0 2.1456 132.8256 35.2072 35.2246

150 1 0.58 0 2.0745 142.8175 37.8272 37.8178

160 1 0.58 0 2.0877 152.8177 40.4224 40.4111
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Table 5 continued

T u1 u2 u3 t1 t2 Cost3-arcs DOCP cost

170 1 0.58 0 2.1009 162.8179 43.0175 43.0043

180 1 0.58 0 2.1131 172.8181 45.6127 45.5977

190 1 0.58 0 2.1263 182.8183 48.2080 48.191

200 1 0.58 0 2.1395 192.8185 50.8033 50.7843

210 1 0.58 0 2.1517 202.8187 53.3987 53.3777

220 1 0.58 0 2.1649 212.8189 55.9941 55.9711

230 1 0.58 0 2.1771 222.8191 58.5896 58.5646

240 1 0.58 0 2.1903 232.8193 61.1850 61.158

250 1 0.58 0 2.2025 242.8195 63.7806 63.7515

260 0.9774 0.58 0 2.3202 252.8202 66.3762 66.345

270 0.9044 0.58 0 2.7646 262.8226 68.9722 68.9385

280 1 0.58 0 2.1922 272.8172 71.5802 71.5321

290 1 0.58 0 2.2034 282.8173 74.1762 74.1258

300 0.9867 0.58 0 2.2748 292.8178 76.7723 76.7193

310 0.9202 0.58 0 2.6536 302.8195 79.3686 79.3129

320 0.8648 0.58 0 3.0923 312.82137 81.9653 81.9066

330 0.8222 0.58 0 3.5538 322.8228 84.5624 84.5003

340 0.7917 0.58 0 3.9899 332.8239 87.1598 87.094

370 0.7856 0.58 0 4.0906 362.8226 94.9563 94.8752

380 0.7324 0.58 0 5.3045 372.8265 97.5512 97.469

390 0.7246 0.58 0 5.5538 382.8268 100.1490 100.063

400 0.7181 0.58 0 5.7811 392.8271 102.7480 102.657

420 0.7080 0.58 0 6.1835 412.8275 107.9440 107.844

440 0.7004 0.58 0 6.5278 432.8279 113.1410 113.032

450 0.6973 0.58 0 6.6830 442.8280 115.7390 115.626

470 0.6920 0.58 0 6.9632 462.8282 120.936 120.814
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