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Abstract

The equivalent fluid model (EFM) describes the acoustic properties of rigid porous media by defining the
intra-pore fluid phase as a fluid with an effective density and an effective compressibility. Their definitions are
based on the dynamic tortuosity α and the normalized dynamic compressibility β. These physical quantities are
complex-valued functions depending on the frequency, and can be irrational as in the Johnson-Champoux-Allard-
Pride-Lafarge (JCAPL) model. Hence, the system of equations derived from the EFM can involve fractional
derivatives in the time domain. This paper presents an approach to formulate the EFM equations described by
the JCAPL model in the time domain, leading to an augmented system for which a proof of stability is given.
From the EFM, a model for numerical simulation is built with α and β approximated using a multipole model.
Sufficient stability conditions are then provided for the multipole-based EFM. Lastly, a numerical analysis is
carried out in order to illustrate the theoretical results and a simulation of the impedance tube experiment is
presented.

1 Introduction

Porous media are abundantly present in nature, and studied in various research fields (e.g. mechanics [23], geo-
sciences [17, 62], biophysics [29, 31, 60]). Porous media are also studied and manufactured for their acoustic
properties, which have been used extensively in room acoustics [48] and more recently in aeronautics [56, 64, 70].

In the general case of porous media with a fluid phase and a solid phase in motion, the macroscopic acoustic
behaviour is described by the Biot theory [9, 10]. In practice, the rigid-frame case described by the simpler equivalent
fluid model (EFM) [2] can be used as a good approximation in a wide range of applications [7]. When the rigid-
frame hypothesis is assumed, only the fluid phase of porous media is considered in the description of the acoustic
behaviour of the material. Adopting a macroscopic view, the material becomes equivalent, in terms of acoustic
behaviour, to that of a fluid with a complex-valued effective density and compressibility. Indeed, these physical
properties are frequency-dependent functions and are conveniently expressed by means of the dynamic tortuosity
α and the normalized dynamic compressibility β. Rewriting the equations controlling the acoustic behaviour of a
porous sample with α and β is valuable [73], as it separates the visco-inertial and thermal contributions, respectively.

When additional assumptions are made on the pore shape, the frequency asymptotic behaviour of the foregoing
two functions is known in the low (LF) and high (HF) frequency limits [20, 24, 38, 41]. However, except in the
simplest cases, no exact definition can be retrieved at all frequencies, and an adequate connection between low
and high frequency limits must be adopted. Various semi-phenomenological models predict α and β in the whole
frequency range such as the Höroshenkov model [35, 36], the Wilson model [67, 68], or the Johnson-Champoux-
Allard-Pride-Lafarge (JCAPL) model [20, 38, 41, 42, 58]. The JCAPL model, which can recover widely used simpler
models such as the JCA and JCAL models, relies on 9 physical parameters. This makes it the most complex of
the aforementioned models, although the number of parameters can be reduced in the case of porous media with
a pore size distribution close to log-normal [35]. However, a theoretical analysis based on the JCAPL model can
yield valuable insights on other models, via existing relations linking the models or similarities between them. If
the rigid assumption is relaxed, Johnson et al. [38] showed that identical complex-valued functions should appear
in the Biot model, resulting in the Biot-JKD model where the dynamic tortuosity is described by the JCA model.
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Therefore, the work done to manage the dynamic tortuosity and the dynamic compressibility is similar in both
approaches.

Thanks to the Biot theory and the EFM, numerical simulations of wave propagation in porous media can be
used to better predict sound attenuation [15] and material intrinsic properties [27, 59]. Although several models
exist to describe the acoustic behaviour of rigid porous media in the frequency domain, time-domain numerical
simulations are more suited to evaluate broadband signals interacting with porous media. In addition, a time-
domain representation is necessary in order to take into account non-linear behaviours. The main challenge of
working in the time domain arises from irrational terms contained in the complex-valued functions α and β, which
behave like fractional derivatives in the time domain. Numerous works [18, 32, 44, 45] have shown that the way to
address these irrational functions has been critical for the efficiency of numerical schemes, both in terms of speed
and data storage.

To tackle the time-domain representation of irrational transfer functions, a common practice is to use a diffusive
representation of their associated convolution operators [46, 53], or an oscillatory-diffusive (OD) representation
which covers a wider range of irrational functions [52]. A diffusive representation of convolution operators leads to
express them in the time domain by a continuum of diffusive variables. These variables, known as memory variables
in geophysics [19] and auxiliary variables in acoustic [25, 69], satisfy a first-order ordinary differential equation
(ODE) easier to manage for stability analysis and numerical schemes than an explicit formula of the convolution
products. Based on this approach, Blanc et al. [13, 14] used a diffusive representation of the shifted fractional
derivative involved in the dynamic tortuosity of the JCA model. They proved the well-posedness of the Biot-JKD
model and built an approximated model for it, coined Biot-DA (diffusive approximation) model. Another work
done by Ou [54] with a slightly different method based on a Stieljes function representation demonstrates that
the JCA dynamic tortuosity admits an integral representation formula (IRF), which can be recast into a diffusive
representation.

The discretization of a diffusive representation or of the IRF leads to a multipole model (MM) defined by
a discrete sum of elementary first or second-order low-pass systems, also known as IIR filter in digital signal
processing [1]. It is parametrized by a set of real or complex conjugate weights and poles, which are computed by a
straightforward discretization of the integral using quadrature formulas [11]. Recent works [4, 71] have also directly
adopted an MM for the dynamic variables α and β, obtaining the weights and poles by a Padé approximation
[66] or a vector fitting algorithm [30] based on experimental measurements. The key idea of working with an
MM representation is to obtain a time-domain representation involving convolution products, which can be readily
computed using additional first-order ODEs. This technique, originating partly from [16, 21, 39, 57, 63] and
classicaly used for diffusive representation [33] or recently for acoustic metamaterials [8] and dispersive materials
[5], has been recently called the auxiliary differential equation (ADE) method [25]. It results in an augmented
system which does not require storage of previous time-step solutions and can be solved by classical time-integration
schemes. Moreover, the ADE method applied after a minor recasting of the MM expression can ease the numerical
computation for schemes based on fluxes, as shown by Xie et al. [69].

By taking different approaches, several studies have expressed α and β as an MM but with some distinctions.
Zhao et al. [71] and Alomar et al. [4] worked with the EFM where the effective density and the effective compress-
ibility were approximated as MMs with a set of real and complex conjugate parameters. The real parameters are
known to describe dissipative processes, while the complex conjugate parameters were recently shown to be related
to locally-resonant behaviour [3]. By contrast, Xie et al. [69] used only real parameters to approach the dynamic
tortuosity in the Biot-JKD model, a choice justified by the IRF of α. Ou [54] showed that a Padé approximation
of the IRF of α can be described by real weights and poles, with a warranty of their signs. Moreover, Blanc et
al. [13] built the Biot-DA model with the dynamic tortuosity straightforwardly expressed as a real-parameter MM.
Then, they proved that their approximated model is stable under the condition of positive real weights. These latter
theoretical results with α described by the JCAL model tend to show that both α and β could be well approximated
by a real-parameter MM while having a stable and numerically tractable approximated model. Additionally, the
JCAL model was proved to be less accurate than the more general JCAPL model for rigid-frame porous medium
with cylindrical pores [40], a framework where the exact formula of α and β is given by Zwikker and Kosten [73].
Green’s functions calculated based on the effective frequency-dependent wavenumber were used by Kergomard et
al. to compare the two models in the time domain, leading to a closer approximation of the exact Green’s function
by the JCAPL model. It thus appears that a time-domain representation with the JCAPL model is desirable.
Moreover, to the best of the authors’ knowledge, no stability analysis has been conducted on the EFM with the
JCAPL model.

In the present work, the rigid-frame hypothesis is taken into account. In Section 2, a brief description of the
JCAPL-EFM and the procedure to recast α and β in an oscillatory-diffusive representation [52] are given. An
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investigation of the JCAPL-EFM based on the oscillatory-diffusive representation is carried out in Section 3. It
brings out the main novelty of the present work by extending the well-posedness proof of the Biot-JKD model [12] for
the JCAPL-EFM. Then in Section 4, a multipole-based approximation of α and β is taken and the ADE method
is applied following [4, 14, 69]. Next, a stability analysis on the system obtained is performed, giving sufficient
conditions on the multipole-based approximation to ensure the stability of the approximated EFM. In Section 5,
the validity and the efficiency of the proposed approach is demonstrated numerically, with a Discontinuous Galerkin
finite element method combined to a Runge-Kutta time scheme. Finally, a conclusion is drawn in Section 6.

2 Wave propagation in rigid porous media

The EFM is first recalled. Then, the details of the JCAPL model chosen to describe the dynamic tortuosity α
and normalized dynamic compressibility β are given. Next, an oscillatory-diffusive representation of the previous
functions is taken to get rid of irrational terms and perform a stability analysis. The techniques and procedure
used in this section are gathered in Monteghetti’s work [49, Chap. 2.1], which were applied to a wide range of
acoustical models [52]. Moreover, all equations are written in the Laplace domain in this section . Hence, it is
recalled that the one-sided Laplace transform of a locally integrable function G with finite exponential growth, i.e.
G ∈ L1

loc([0,∞)) with |G(t)| < A eσGt, is defined as Ĝ(s) :=
∫∞

0
G(t) e−stdt in the right half-plane R(s) > σG, with

σG the convergence abcissa.

2.1 Johnson-Champoux-Allard-Pride-Lafarge equivalent fluid model

The frequency-dependent equations controlling the equivalent acoustic behaviour of a rigid porous material are
expressed in the Laplace domain:{

ρ0 α(s) s û = −∇∇∇ p̂ ,
χ0 β(s) s p̂ = −∇∇∇ · û ,

(1)

where ρ0 is the fluid density and χ0 is the adiabatic compressibility. The macroscopic fluid velocity u(t,x) and the
acoustic pressure p(t,x) obtained by averaging the microscopic velocity and pressure fields over a representative
elementary volume, are defined on (0,∞)×Ω with Ω ∈ Rn. Note that the porous medium is considered isotropic at
the macroscopic scale herein, so α is a scalar term. Moreover, only the interconnected pore network is considered
in this work. Dead-end pores and isolated pores, often present in consolidated media, are not considered. The
JCAPL model gives an expression of the equivalent density ρ0α and the equivalent compressibility χ0β based on
the dynamic tortuosity (2) and the normalized dynamic compressibility (3), respectively. The physical quantities α
and β are intrinsically defined in the frequency domain (s = iω) and expressed in the time domain by convolution
operators.

α(s) := α∞

1 +
νφ

k0α∞

1

s

1− 2k0α∞

φΛ2

(
α0

α∞
− 1

) +
2k0α∞

φΛ2

(
α0

α∞
− 1

)√1 +
Λ2

ν

(
α0

α∞
− 1

)2

s


 , (2)

β(s) := γ − (γ − 1)

1 +
νφ

k′0Pr

1

s

1− 2k′0
φΛ′2 (α′0 − 1)

+
2k′0

φΛ′2 (α′0 − 1)

√
1 +

Λ′
2

ν
Pr (α′0 − 1)

2
s

−1

, (3)

where the physical parameters are: the kinematic viscosity ν, the porosity φ, the high-frequency limit of the
tortuosity α∞, the static viscous permeability k0, the characteristic viscous length Λ, the static viscous tortuosity
α0, the heat capacity ratio γ, the static thermal permeability k′0, the characteristic thermal length Λ′, the static
thermal tortuosity α′0 and the Prandtl number Pr. Hereafter, system (1) with α and β given by (2) and (3) is
referred to as the JCAPL-EFM.

Not to mention the large number of parameters, the intricacy of (2) and (3) comes mainly from the irrational
nature of the formulas, which share common features with fractional derivatives in the time domain. This makes
the stability analysis trickier, since the conventional methods do not work on systems with fractional differential
operators. An approach to tackle fractional derivatives is to work with their diffusive representation [46, 47]. The
next subsection is therefore dedicated to recasting (2) and (3) under a form which proves more tractable for a
stability analysis, and also for time-domain numerical schemes.
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2.2 Oscillatory-diffusive representation of the dynamic variables

Before looking at α and β, the example of the function q : s → 1/
√
s defined on C+

0 = {s ∈ C | R(s) > 0} is
recast as a diffusive representation, obtained by using the residue theorem on a Bromwich contour. The analytic
extension of q on C is therefore needed. However, the square root is multivalued on C, i.e. two values are possible
for any s ∈ C. Hence, the cut Γ = R− of the complex plane is chosen, which leads to work with q univalued on
C\Γ. Then, the computation of the jump q(ξe−iπ)− q(ξeiπ) across the cut Γ (ξ ∈ R−) exhibits the diffusive weight
µq associated with the diffusive representation

q(s) =

∫ ∞
0

µq(ξ)

s+ ξ
dξ, with µq(ξ) =

1

2iπ

[
q(ξe−iπ)− q(ξeiπ)

]
=

1

π
√
ξ

(ξ > 0). (4)

More generally, following the terminology of [49] (Chap. 2.1), a meromorphic function g : C\(−∞, γ0] → C
continuous at the endpoint γ0 ∈ R− and with poles at points sk, admits an oscillatory-diffusive (OD) representation

g(s) =
∑
k∈Z

rk
s− sk

+

∫ ∞
γ0

µ(ξ)

s+ ξ
dξ (R(s) > 0) , (5)

under the conditions

(i) g decays uniformly at infinity: sup
|s|=R

|g(s)| −−−−→
R→∞

0, (6a)

(ii) the weight µ(ξ) :=
1

2iπ

[
g(ξe−iπ)− g(ξeiπ)

]
satisfies

∫ ∞
0

|µ(ξ)|
1 + ξ

dξ <∞, (6b)

(iii) the series based on poles and residues must meet a growth condition. (6c)

The series parametrized by the residues rk and poles sk is called the oscillatory part of g and the integral term
is referred to as the diffusive part of g, defined by the diffusive weight µ. The diffusive part must satisfy the
integrability condition (6b) for (5) to be mathematically meaningful. The growth condition is not detailed herein
since the studied functions have a finite number of poles sk (see Theorem 2.16 in [49] for a full description of the
conditions).

This formulation represents a complex function with an infinite sum and a continuous superposition of first-order
systems, which leads to an MM expression once the diffusive part has been discretized. Because of the fractional
calculus tools [37] needed to express α and β with an OD representation, functions are defined in the complex plane
with their analytic extension and appropriate cuts.

2.2.1 Diffusive representation of the dynamic tortuosity

The dynamic tortuosity (7) is expressed in the Laplace domain with its analytic extension in the left half-plane to
find its diffusive representation. A definition of α on the whole complex plane would lead to a multivalued function,
which is inconsistent with the complex analysis techniques used to find its diffusive representation. Hence, a cut on
R− is chosen, leading to a single-valued dynamic tortuosity, which preserves hermitian symmetry.

α(s) = α∞

1 +
M

s
+N

√
1 +

s

L
− 1

s

 (s ∈ C\(−∞,−L]) , (7)

where M = νφ/(k0α∞), N = 2ν/
(
Λ2 (α0/α∞ − 1)

)
and L = ν/

(
Λ2 (α0/α∞ − 1)

2
)

are all positive real numbers.

A necessary condition for (7) to admit an OD representation is to vanish when the norm of s tends to infinity, which
is presently not the case as such. Consequently, the focus is solely on a part of α which contains the irrational terms
and decays at infinity. Several parts of (7) admit an OD representation, but to avoid unnecessary calculations, the
focus is on (8) below, which appears to be the same diffusive part as the Atalla and Sgard perforation model [6].

αd(s) :=
1

N

[
α(s)

α∞
− 1− M

s

]
=

√
1 +

s

L
− 1

s
(s ∈ C\(−∞,−L]) . (8)
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It has been shown in [52] that (8) has no singularities and admits the diffusive representation (9) with a positive
real-valued diffusive weight µJ satisfying the integrability condition (6b).

αd(s) =

∫ ∞
L

µJ(ξ)

s+ ξ
dξ (s ∈ C\(−∞,−L]) , (9)

where µJ(ξ) :=
1

π

√
ξ

L
− 1

ξ
(ξ ∈ [L,+∞)) . (10)

Finally, the dynamic tortuosity can be written with a diffusive representation as follows:

α(s) = α∞

[
1 +

M

s
+N

∫ ∞
L

µJ(ξ)

s+ ξ
dξ

]
(R(s) > 0) . (11)

2.2.2 Oscillatory-diffusive representation of the dynamic compressibility

The same methodology used to find the expression (11) for α is applied to the normalized dynamic compressibility
β. First, the latter is expressed in the Laplace domain with the positive parameters M ′, N ′ and L′ for the sake
of clarity. The extension to the left complex half-plane is done with the cut (−∞, L′] ⊂ R−, which keeps the
normalized dynamic compressibility single-valued:

β(s) = γ − (γ − 1)

1 +
M ′

s
+N ′

√
1 +

s

L′
− 1

s


−1

(s ∈ C\(−∞,−L′]) , (12)

where M ′ = νφ/(k′0Pr), N ′ = 2ν/
(

Λ′
2

(α′0 − 1)
)

and L′ = ν/
(

Λ′
2

(α′0 − 1)
2

Pr
)

. Unlike the dynamic tortuosity,

the portion of β which tends to zero when the modulus of s approaches infinity is not related to a known diffusive part
of functions studied in the literature. Hence, an investigation is done to find if (13) admits an OD representation.

βod(s) :=
β(s)− 1

γ − 1
=

N ′
√

1 +
s

L′
+M ′ −N ′

s+N ′
√

1 +
s

L′
+M ′ −N ′

(s ∈ C\(−∞,−L′]) . (13)

Its study leads to two different representations whether there exists s ∈ C\(−∞,−L′] such that the denominator of
(13) equals to zero or not. As fully detailed in A.1, the two cases can be distinguished by the sign of the quantity
M ′ − N ′ − L′ and thus by the physical parameters. Herein, the conditions differentiating the two cases are also
expressed through the static thermal tortuosity α′0 which we recall that it satisfies α′0 > 1 by definition.

First case: M ′ −N ′ − L′ > 0.
According to the definition of M ′, N ′ and L′, the condition of having M ′ −N ′ − L′ positive implies:

α′0 > 1 +
k′0
φΛ′2

1 +

√
1 +

φΛ′
2

k′0

 . (14)

As proved in A.1, the denominator of βod can never be zero in this case. Therefore, βod simply admits a diffusive
representation (15) with a diffusive weight (16), which is real-valued and positive (like µJ), and yields a well-posed
diffusive part.

βod(s) = N ′
∫ ∞
L′

νJ(ξ)

s+ ξ
dξ (s ∈ C\(−∞,−L′]) , (15)

νJ(ξ) :=
1

π

ξ

√
ξ

L′
− 1

(ξ −M ′ +N ′)2 +N ′2
(
ξ

L′
− 1

) (ξ ∈ [L′,+∞)) . (16)
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Second case: M ′ −N ′ − L′ < 0.
The condition of having M ′ −N ′ − L′ negative implies that

α′0 < 1 +
k′0
φΛ′2

1 +

√
1 +

φΛ′
2

k′0

 . (17)

In this case, βod has the same diffusive part as in the first case. However, it also admits an oscillatory part consisting
of one pole s0 with weight r0. Indeed, if the relation (17) is fulfilled, then βod has a unique negative singularity
s0 ∈ [−L′, 0 [ given by (85), with an associated positive residue r0 given by (86). As a result, the function βod can
be recast as:

βod(s) =
r0

s− s0
+N ′

∫ ∞
L′

νJ(ξ)

s+ ξ
dξ (s ∈ C\(−∞,−L′]) . (18)

Finally, in both cases, the normalized dynamic compressibility can be recast with an OD representation:

β(s) = 1 + (γ − 1)

[
r0

s− s0
+N ′

∫ ∞
L′

νJ(ξ)

s+ ξ
dξ

]
(R(s) > 0) , (19)

where r0 is taken null if M ′ −N ′ − L′ is positive.

The dynamic tortuosity and normalized dynamic compressibility of the JCAPL model can therefore be expressed
with (11) and (19), respectively. These expressions do not contain irrational terms with s and appear like an MM
with an infinite number of weights and poles. Hence, a discretization of their diffusive part leads straightforwardly
to an MM.

2.3 Discussion on the diffusive representation for other models

Identical techniques can be applied to other models. In this section, the Wilson model [67, 68] and the Horoshenkov
model [35, 36] are looked into in order to exhibit a diffusive representation which can be straightforwardly discretized
as an MM.

The Wilson dynamic tortuosity can be linked to the JCAPL one with the proper definition of M , N and L (see
Table 1). Moreover, the Wilson normalized dynamic compressibility can be expressed as follows:

βw(s) = 1 + (γ − 1)

∫ ∞
τ -1
e

νw(ξ)

s+ ξ
dξ (R(s) > 0) , (20)

where τe is the entropy-mode relaxation time. In contrast to the JCAPL model, the diffusive weight νw, whose
expression is given by (92), is a negative function. However, another representation of βw containing an extended
diffusive representation can be used to obtain a diffusive weight ν̃w that is always positive:

βw(s) = (γ − 1)

∫ ∞
τ -1
e

ν̃w(ξ)
1

s+ ξ
dξ + (γ − 1) τe

∫ ∞
τ -1
e

ν̃w(ξ)
s

s+ ξ
dξ (R(s) > 0) , (21)

where ν̃w > 0 is given by (95) in A.2 with the steps leading to (21).

The Horoshenkov model gives an expression of α and β similar to the JCAPL model with a slightly different
expression for the last terms that are in factor of N and N ′ in (7) and (12), respectively (a difference highlighted
in A.3). Therefore, the Horoshenkov model cannot be linked in a straightforward manner to the JCAPL model,
although we can show that it admits a similar diffusive representation regarding the dynamic tortuosity:

αh(s) = α∞

[
1 +

Mh

s
+Nh

∫ ∞
0

µh(ξ)

s+ ξ
dξ

]
(R(s) > 0) , (22)

with µh(ξ) =
1

π

√
ξ

Lh

ξ

Lh
+ 1

(ξ ∈ [0,+∞)) , (23)

where Mh = M = νφ/(k0α∞), Nh = θρ,1 and Lh = Mh/θ
2
ρ,3 . Here, the coefficients θρ,1 and θρ,3 are the Padé

approximant parameters used in the Horoshenkov model [35, 36]. Compared to the JCAPL model, the Horoshenkov

6



model exhibits a diffusive part where ξ = 0+ is reached, which induces a long-memory behaviour of the viscous
dissipation in the time-domain. The same remark can be done for the Horoshenkov normalized dynamic compress-
ibility (24), which is obtained by starting with a similar isolated term as in (13) and then by following the same
approach as for the JCAPL model.

βh(s) = 1 + (γ − 1)N ′h

∫ ∞
0

νh(ξ)

s+ ξ
dξ (R(s) > 0) , (24)

where νh, given in A.3, is a positive function on R+.

This section has gathered OD and diffusive representations of α and β described by different models. As
mentionned before, the Wilson dynamic tortuosity can be described by the JCAPL dynamic tortuosity. Moreover,
the JCAPL model is an extension of the JCAL and JCA models. Hence, with the right set of parameters, the
expression of the dynamic tortuosity and normalized dynamic compressibility given by the JCAPL model can cover
the JCAL and JCA models. The connections between these models are gathered in Table 1.

Table 1: Parameters of expressions (7) and (12) defining α and β given for several models, with the cross ×
indicating the impossibility to describe the corresponding model with these expressions.

Variable Parameter JCAPL JCAL JCA Wilson Horoshenkov

M
νφ

k0α∞

νφ

k0α∞

νφ

k0α∞

2

τv

α N
2ν

Λ2
(
α0

α∞
− 1
) νφ

k0α∞

νφ

k0α∞

1

τv
×

L
ν

Λ2
(
α0

α∞
− 1
)2

νφ2Λ2

4k2
0α

2
∞

νφ2Λ2

4k2
0α

2
∞

1

τv

M’
νφ

k′0Pr

νφ

k′0Pr

8ν

Λ′2Pr

β N’
2ν

Λ′2 (α′0 − 1) Pr

νφ

k′0Pr

8ν

Λ′2Pr
× ×

L’
ν

Λ′2 (α′0 − 1)
2

Pr

νφ2Λ′
2

4k′0
2Pr

16ν

Λ′2Pr

Note that for the JCA and JCAL dynamic compressibility, the inequality M ′ − N ′ − L′ < 0 is always satisfied.
Hence, β always admits an OD representation for these two models.

3 Stability analysis of the Johnson-Champoux-Allard-Pride-Lafarge
equivalent fluid model

Based on diffusive representations, a stability analysis of the time-domain JCAPL-EFM is carried out thanks to an
energy approach. An introduction to the diffusive realization used to express the time convolution products ? with
a time-local representation is first given. The energy defined for the JCAPL-EFM is then presented, followed by a
proof of the JCAPL-EFM stability. We refer to [46] for the definitions and properties lying behind the mathematical
tools used in this section.

3.1 Extended diffusive realization

For a given transfer function Ĝ admitting a diffusive representation defined by a diffusive weight νG, the diffusive
realization of Ĝ applied to a scalar time-dependent function p is: yp(t,x) :=

∫ ∞
0

νG(ξ)ψ(ξ; t,x) dξ , (25)

∂tψ(ξ; t,x) = − ξ ψ(ξ; t,x) + p(t,x) , ψ(ξ; 0,x) = 0 . (26)
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The function p can be seen as an input of the convolution system G?p, while the function yp = G?p is the output,
and the state ψ is called the diffusive variable. However, the JCAPL transfer functions, α and β, are applied to
the time derivative of the velocity and pressure in the EFM. Hence, the desired diffusive realization makes use of
zp := G ? ∂tp as output. Such a realization is called an extended diffusive realization, and writes:

zp(t,x) :=

∫ ∞
0

νG(ξ) ∂tψ(ξ; t,x) dξ , (27)

with ψ solution of (26). In addition, an energy functional can be defined for the extended diffusive realization:

Eψ(t) :=
1

2

∫
Ω

∫ ∞
0

νG(ξ) ξ |ψ(ξ; t,x)|2 dξ dx , (28)

the derivative of which is:

d

dt
Eψ(t) =

∫
Ω

∫ ∞
0

νG(ξ) ξ ψ(ξ; t,x) ∂tψ(ξ; t,x) dξ dx (29a)

=

∫
Ω

∫ ∞
0

νG(ξ) [p(t,x)− ∂tψ(ξ; t,x)] ∂tψ(ξ; t,x) dξ dx (29b)

=

∫
Ω

p(t,x)

(∫ ∞
0

νG(ξ) ∂tψ(ξ; t,x) dξ

)
dx −

∫
Ω

∫ ∞
0

νG(ξ) (∂tψ(ξ; t,x))
2

dξ dx (29c)

=

∫
Ω

p(t,x) zp(t,x) dx −
∫

Ω

∫ ∞
0

νG(ξ) (∂tψ(ξ; t,x))
2

dξ dx. (29d)

Equation (26) is used to get (29b) from (29a). After some rearrangement, the last equation (29d) is obtained from
(29c) by using (27). If the diffusive weight νG is a positive function, then the second term of the right-hand side of
(29d) is always negative and a lossy power balance can be found for Eψ:

d

dt
Eψ(t) 6 (p, zp)L2(Ω) , (30)

where (· , ·)L2(Ω) denotes L2-inner product.

The extension of scalar extended diffusive realizations to the vector-valued case is straightforward. Next, anal-
ogous equations to those obtained for p are presented below for a vector of functions u, as it will be used for the
velocity field in the stability analysis. zu(t,x) :=

∫ ∞
0

µG(ξ) ∂tφφφ(ξ; t,x) dξ , (31)

∂tφφφ(ξ; t,x) = − ξ φφφ(ξ; t,x) + u(t,x) , φφφ(ξ; 0,x) = 0 . (32)

The energy functional associated with (31)-(32) and its derivative are:

Eφφφ(t) :=
1

2

∫
Ω

∫ ∞
0

µG(ξ) ξ ‖φφφ(ξ; t,x)‖2 dξ dx , (33)

d

dt
Eφφφ(t) =

∫
Ω

u(t,x) · zu(t,x) dx −
∫

Ω

∫ ∞
0

µG(ξ) ‖∂tφφφ(ξ; t,x)‖2 dξ dx 6 (u, zu)L2(Ω;R2) , (34)

where ‖ ‖ is the euclidian norm.

3.2 Energy balance

The JCAPL-EFM is first written in the Laplace domain (35) with the OD representations (11) and (19) of the
dynamic variables. For the sake of clarity, spatial, time and Laplace variables are omitted for the velocity u and
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the pressure p.
s û + M û + N

∫ ∞
L

µJ(ξ)
s û

s+ ξ
dξ = − 1

ρ0 α∞
∇∇∇ p̂ ,

s p̂ + (γ − 1)r0
s p̂

s− s0
+ (γ − 1)N ′

∫ ∞
L′

νJ(ξ)
s p̂

s+ ξ
dξ = − 1

χ0
∇∇∇ · û .

(35)

To express system (35) in the time domain, extended diffusive realizations are used for the diffusive part of both
equations with the vector-valued diffusive variable φφφ and the scalar diffusive variable ψ used for the velocity u and
the pressure p, respectively. Therefore, the term s û/(s+ ξ) (resp. s p̂/(s+ ξ)) in (35) are the Laplace transforms of
∂tφφφ (resp. ∂tψ), which is straightforward to verify from (32) (resp. (26)). Moreover, non-null initial conditions are
set for the diffusive variables to regularize the extended diffusive realization at t = 0 [43]. Indeed, they correspond
to null initial conditions for the time derivative of the diffusive variables, which is needed for the integrals of (36a)
and (36b) to be finite at t = 0.

∂tu + M u + N

∫ ∞
L

µJ(ξ) ∂tφφφ(ξ; t,x) dξ = − 1

ρ0 α∞
∇∇∇ p , (36a)

∂tp + (γ − 1) r0 ∂tψ(−s0; t,x) + (γ − 1)N ′
∫ ∞
L′

νJ(ξ) ∂tψ(ξ; t,x) dξ = − 1

χ0
∇∇∇ · u , (36b)

∂tφφφ(ξ; t,x) = − ξ φφφ(ξ; t,x) + u , (36c)

∂tψ(ξ; t,x) = − ξ ψ(ξ; t,x) + p , (36d)

φφφ(ξ; 0,x) = u(0,x)/ξ , (36e)

ψ(ξ; 0,x) = p(0,x)/ξ. (36f)

A particular feature appears in equation (36b), where an additional term with the diffusive variable ψ can exist
for an isolated point at ξ = −s0 > 0, associated with a fixed weight r0 > 0 (as previously explained in Section
2.2.2). Although it is separated from the diffusive representation in the third term of (36b), it is solution of the
same auxiliary equation (36d).

The classical mechanical energy is defined below, divided into a kinetic energy and a potential energy:

Em(t) :=
ρ0α∞

2

∫
Ω

‖u‖2 dx +
χ0

2

∫
Ω

p2dx . (37)

Additionally, based on (28) and (33) with the diffusive weights µG = µJ and νG = νJ (defined in (10) and (16),
respectively), a diffusive energy is defined as a linear combination of the energy associated with each diffusive
variables:

Ediff(t) := ρ0 α∞N Eφφφ(t) + χ0 (γ − 1)N ′Eψ(t) + χ0 (γ − 1)Eψ0
(t) , (38)

with Eψ0 the energy associated with the diffusive variable ψ evaluated at ξ = -s0, defined in (39). Therefore, it is
very similar to Eψ given in (28) with the residue r0 playing the role of a constant diffusive weight.

Eψ0
(t) :=

∫
Ω

r0 (−s0) |ψ(−s0; t,x)|2 dx . (39)

It is important to recall that in (39), r0 > 0 and s0 6 0, and thus Ediff is positive-definite. The global energy
functional associated with the extended dynamical system (36) with (u, p,φφφ, ψ) as state variables is defined below:

E(t) := Em(t) + Ediff(t), (40)

=
ρ0α∞

2

(∫
Ω

‖u‖2 dx + N

∫
Ω

∫ ∞
L

µJ(ξ) ξ ‖φφφ(ξ; t,x)‖2 dξ dx

)
+

χ0

2

(∫
Ω

p2 dx + (γ − 1)N ′
∫

Ω

∫ ∞
L′

νJ(ξ) ξ |ψ(ξ; t,x)|2 dξ dx + (γ − 1)

∫
Ω

r0 (−s0) |ψ(−s0; t,x)|2 dx

)
.

Note that the positivity of the JCAPL diffusive weights µJ and νJ enables to prove the positive-definiteness of E .
It is also a key aspect of the following proposition.
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Proposition 3.1. In a bounded domain Ω with no contribution at the boundary (either p = 0, or u ·n = 0 on ∂Ω),
the augmented energy E of the JCAPL-EFM satisties:

d

dt
E(t) = − ρ0 α∞M

∫
Ω

‖u‖2 dx− ρ0 α∞N

∫
Ω

∫ ∞
L

µJ(ξ) ‖∂tφφφ(ξ)‖2 dξ dx (41a)

− χ0 (γ − 1)N ′
∫

Ω

∫ ∞
L′

νJ(ξ) (∂tψ(ξ))
2

dξ dx − χ0 (γ − 1)

∫
Ω

r0 (∂tψ(−s0))
2

dξ dx , (41b)

6 0. (41c)

Hence, the augmented energy E is decreasing. Moreover, the dynamical system proves to be asymptotically stable,
i.e. (u, p,φφφ, ψ)→ (0, 0,0, 0) as t→∞ in the appropriate energy space.

Proof. (sketch of)
Let us first compute separately the derivative of the mechanical energy and the derivative of the energy associated
with the diffusive variables. In order to keep the proof readable, the time and spatial variables are omitted for all
functions.

• The derivative of the mechanical energy is first tackled. In the following calculations, equations (36a) and
(36b) are used to replace the spatial derivatives of u and p appearing in the first equality.

d

dt
Em(t) = ρ0 α∞

∫
Ω

u · ∂tu dx + χ0

∫
Ω

p ∂tp dx, (42a)

= −
∫
∂Ω

pu · n dσ − ρ0 α∞M

∫
Ω

‖u‖2 dx − ρ0 α∞N

∫
Ω

∫ ∞
L

µJ(ξ) u · ∂tφφφ(ξ) dξ dx (42b)

− χ0 (γ − 1)N ′
∫

Ω

∫ ∞
L′

νJ(ξ) p ∂tψ(ξ) dξ dx − χ0 (γ − 1)

∫
Ω

r0 p ∂tψ(−s0) dx, (42c)

= − ρ0 α∞M

∫
Ω

‖u‖2 dx − ρ0 α∞N

∫
Ω

u · zu dx − χ0 (γ − 1)N ′
∫

Ω

p zp dx − χ0 (γ − 1) r0

∫
Ω

p ∂tψ(−s0) dx.

(42d)

The integral on ∂Ω in (42b) stands for the classical interaction with the exterior of Ω, and is equal to zero when
either p = 0 or u · n = 0 at the boundary. Moreover, zu and zp are defined as in (31) and (27), respectively, with
the positive diffusive weights µG = µJ and νG = νJ. Note that the first term of equality (42d) is negative, while
the others do not have a definite sign.

• The derivative of the energy resulting from the auxiliary variables is now addressed. The previous expressions
(29d) and (34) of the derivatives of the energy defined for the extended diffusive realization is used in the next
calculations, with the same zu and zp used for the mechanical energy.

d

dt
Ediff(t) = ρ0 α∞N

d

dt
Eφφφ(t) + χ0 (γ − 1)N ′

d

dt
Eψ(t) − χ0 (γ − 1)

d

dt
Eψ0

(t), (43a)

= − ρ0 α∞N

∫
Ω

∫ ∞
L

µJ(ξ) ‖∂tφφφ(ξ)‖2 dξ dx + ρ0 α∞N

∫
Ω

u · zu dx (43b)

− χ0 (γ − 1)N ′
∫

Ω

∫ ∞
L′

νJ(ξ) (∂tψ(ξ))
2

dξ dx + χ0 (γ − 1)N ′
∫

Ω

p zp dx (43c)

− χ0 (γ − 1)

∫
Ω

r0 (∂tψ(−s0))
2

dξ dx + χ0 (γ − 1)

∫
Ω

r0 p ∂tψ(−s0) dx. (43d)

The last term of (43a) is handled with the same approach used in (29), i.e. using (26) to rewrite the term −s0ψ(−s0).
The weight r0 and the diffusive weights µJ and νJ are known to be positive, therefore, the first terms of (43b),
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(43c) and (43d) are negative. However, the last term of each of these three lines does not have a known sign, but
it is always the opposite of the one found in (42d).

• Let us now focus on the global energy E , and more particularly on the sign-varying terms in Em and Ediff.
Summing up relations (42d) and (43), respectively, leads to the cancelling of the last three terms of (42d) by the
last term of (43b), (43c) and (43d), respectively. Consequently, the only remaining terms in the derivative of the
augmented energy E are all negative:

d

dt
E(t) =

d

dt
Em(t) +

d

dt
Ediff(t), (44a)

= − ρ0 α∞M

∫
Ω

‖u‖2 dx − ρ0 α∞N

∫
Ω

∫ ∞
L

µJ(ξ) ‖∂tφφφ(ξ)‖2 dξ dx (44b)

− χ0 (γ − 1)N ′
∫

Ω

∫ ∞
L′

νJ(ξ) (∂tψ(ξ))
2

dξ dx − χ0 (γ − 1)

∫
Ω

r0 (∂tψ(−s0))
2

dξ dx, (44c)

6 0. (44d)

Assuming that functions are defined in some appropriate functional spaces, relation (40) implies the stability of the
JCAPL-EFM, i.e. E(t) 6 E(t = 0); care must be taken that since pressure p is defined up to an additive constant,
the appropriate functional space will include the zero mean pressure

∫
Ω
p dx = 0 as a constraint. Moreover, following

results from [47], [50] and references therein, the asymptotic stability of the augmented system can be proved: it
means that all the components of the augmented state vector (u, p,φφφ, ψ) tend to zero in the appropriate energy
space, as t tends to infinity.

A similar global energy functional can be defined with the diffusive representation of the Horoshenkov model.
The diffusive weights (23) and (100) being positive, the same conclusion is drawn: the Horoshenkov model is stable.
However, despite the positive diffusive weights obtained for the Wilson model, the extended diffusive representation
in βw prevents one from applying the same methodology. In fact, a second-order derivative appears when multiplying
βw by the derivative of p. In order to work with the functional spaces needed for the proof of stability based on
diffusive representations, an extended diffusive representation applied to the derivative of the input p can be used for
the Wilson-EFM. However, this formulation does not lead to an energy balance where terms without definite sign
cancel each other as in the JCAPL-EFM. Hence, no conclusion can be drawn for the stability of the Wilson-EFM.

4 Equivalent fluid model based on multipole model

An approximated model for the EFM using an MM to describe α and β is proposed in this section. An investigation
is done on the multipole-based EFM to find sufficient conditions depending on the MM parameters to ensure its
stability.

4.1 Multipole model approximation

The dynamic tortuosity and normalized dynamic compressibility can be recast in the Laplace domain with a
continuous superposition of first-order systems. This result, shown in Section 2 for several models, justifies an
approximation of these quantities for numerical modeling by a finite number of first-order system, namely an MM.
Consequently, α and β are chosen to be approximated by the complex functions αmm and βmm defined by:

αmm(s) = c0 +
c−1

s
+

K∑
k=1

rk
s− sk

, (45)

βmm(s) = c′0 +
c′−1

s
+

K′∑
k=1

r′k
s− s′k

. (46)

The coefficients c0, c−1, c′0 and c′−1 are obtained from the asymptotic behaviour of α and β. Hence, one obtains in a
straightforward manner that c0 = α∞, c−1 = νφ/k0 = α∞M , c′0 = 1 and c′−1 = 0. However, they are not replaced
by their value in this section in order to keep a symmetric form of the equations facilitating the reading. The
weights rk and r′k and the poles sk and s′k are the parameters interpreted as the MM degrees of freedom, computed
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with optimization approaches or quadrature methods. In a general MM, these parameters can be complex, going
by conjugate pairs when the MM satisfies the reality condition (g(s) ∈ R+ for s ∈ R+). Herein, the parameters
rk, r′k, sk and s′k are assumed real due to the OD representations of α and β. Indeed, these representations have
a real-valued diffusive weight and the possible oscillatory part in the JCAPL normalized dynamic compressibility
is described by real parameters too. This choice matches the approximations of the Biot-JKD equations [14, 55].
Moreover, the latest numerical studies based on MMs for wave propagation in conventional porous media with only
a dissipative nature [4, 72] use real parameters, which is consistent with the previous section.

By injecting (45) and (46) into the EFM equations (1) and by using the original strategy brought out in [69],
which consists in using the partial fraction decomposition

s

s− sk
= 1 +

sk
s− sk

, (47)

the following system is obtained:
s û +

(
c−1

c0
+

K∑
k=1

rk
c0

)
û +

K∑
k=1

rksk
c0

1

s− sk
û = − 1

ρ0c0
∇∇∇p̂ ,

s p̂ +

c′−1

c′0
+

K′∑
k=1

r′k
c′0

 p̂ +

K′∑
k=1

r′ks
′
k

c′0

1

s− s′k
p̂ = − 1

χ0c′0
∇∇∇ · û .

(48)

The ADE method [25] is applied on (48), describing the set of equations in the time-domain with causal convolutions
computed through the auxiliary functions φkφkφk and ψk.

∂tu +
1

ρ0c0
∇∇∇p +

(
c−1

c0
+

K∑
k=1

rk
c0

)
u +

K∑
k=1

rksk
c0

φkφkφk = 0 , (49a)

∂tp +
1

χ0c′0
∇∇∇ · u +

c′−1

c′0
+

K′∑
k=1

r′k
c′0

 p +

K′∑
k=1

r′ks
′
k

c′0
ψk = 0 , (49b)

∂tφkφkφk = skφkφkφk + u (∀ k ∈ [[1,K]]), (49c)

∂tψk = s′k ψk + p (∀ k ∈ [[1,K ′]]). (49d)

The additional initial conditions needed for the auxiliary functions depend on the principal variables

φkφkφk(0,x) = −u(0,x)/sk , (50)

ψk(0,x) = −p(0,x)/s′k , (51)

mimicking the general initial conditions (36e) and (36f), although in practice, the initial pressure and velocity fields
in a porous media are null.

Thanks to the partial fraction decomposition (47) done before applying the inverse Laplace transform, there
is no spatial derivative in the additional equations (49c) and (49d). Hence, when the system is discretized with
a numerical scheme based on fluxes, these fluxes depend on the velocity and pressure, but not on the auxiliary
variables. Consequently, the problem to solve at each mesh interface does not grow with the number of additional
variables. Moreover, for problems with multiple subdomains, there are no additional fluxes to manage at the
interface between them.

4.2 Stability analysis

In section 3, the stability of the JCAPL-EFM was proved. Consequently, the approximated EFM should be built
in such a way to keep the same stability property. Therefore, a stability analysis of the multipole-based EFM is
performed in order to find sufficient conditions to ensure its stability. It is performed through the energy functional
(52) defined analogously to the JCAPL-EFM global energy E given equation (40). Here, the energy functional Ea
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can be seen as an approximation of E with a discrete sum of diffusive variables.

Ea(t) =
ρ0

2

(
c0

∫
Ω

‖u‖2 dx +

K∑
k=1

∫
Ω

rk (−sk) ‖φkφkφk‖2 dx

)
+
χ0

2

c′0 ∫
Ω

p2 dx +

K′∑
k=1

∫
Ω

r′k (−s′k) |ψk|2 dx

 ,

(52)

which derivative is:

d

dt
Ea(t) = −ρ0 c−1

∫
Ω

‖u‖2 dx − χ0 c
′
−1

∫
Ω

p2 dx −
∫
∂Ω

pu · n dσ

−ρ0

K∑
k=1

rk

∫
Ω

‖∂tφkφkφk‖2 dx − χ0

K′∑
k=1

r′k

∫
Ω

(∂tψk)
2

dx .

(53)

From these last two equations, combined with the fact that ρ0, χ0, c0, c−1, c′0 and c′−1 are necessarily positive or
null for conventional porous materials, the stability of the multipole-based EFM can be ensured under two sufficient
conditions summarized in lemma 4.1.

Lemma 4.1. In a bounded domain Ω with no contribution at the boundary (either p = 0, or u · n = 0 on ∂Ω), the
approximated augmented energy Ea is positive-definite and decreasing under the conditions:

- the poles (sk, s
′
k)k are negative real numbers, (C1)

- the weights (rk, r
′
k)k are positive real numbers. (C2)

As a result, if (C1) and (C2) are fulfilled, then the multipole-based EFM is stable. It should be pointed out that
the first condition (C1), which is extended for complex parameters by having the real part of the poles negative, is
a necessary condition to have stable solutions. The methods used in the literature for wave propagation in porous
media [4, 14, 69, 71] already satisfy this condition. The second condition (C2) is analogous to the positivity of the
JCAPL diffusive weights µJ and νJ needed to prove its stability. It is also similar to the stability conditions given
by Blanc et al. [13] for the Biot-DA model.

5 Numerical implementation

In the following, two numerical studies are carried out. An energy analysis is first conducted in Section 5.2 on the
discretized equations with a toy model. A more involved numerical analysis is then performed in Section 5.3, where
a numerical porous material of realistic intrinsic properties placed in a 2D simulation mimicking an impedance tube
experiment is considered. Prior to that, the numerical scheme is introduced. The choice made in this work is to
use a fourth-order Runge-Kutta scheme [65] for the discretization in time. The space discretization is handled by
a Discontinuous Galerkin (DG) scheme, a method well suited for acoustic problems [22].

5.1 Numerical scheme

Based on the theoretical results given in Sections 3 and 4 on the JCAPL-EFM stability and the multipole-based
approximation, a numerical scheme is built to solve the augmented system (49). The system is rewritten below in
hyperbolic form:

∂tq +Ax∂xq +Ay∂yq +Bq = S, (54)

with the state variables q =
(
u v p φX1 . . . φXK φY1 . . . φYK ψ1 . . . ψK′

)T
. The auxiliary variables

φXk and φYk are associated with the two velocity components u and v, respectively, and ψk are the auxiliary variables
associated with p. The vector S is the source term and the Jacobian matrices Ax and Ay are defined as:

Ax =



0 0 1
ρ0c0

0 . . . 0

0 0 0 0 . . . 0
1

χ0c′0
0 0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 0


, Ay =



0 0 0 0 . . . 0
0 0 1

ρ0c0
0 . . . 0

0 1
χ0c′0

0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 0



 (u, v, p)

 (φXk , φ
Y
k , ψk)

, (55)
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where c0 and c′0 are some MM parameters, see equations (45) and (46). The relaxation matrix B is detailed in B,
equation (101), and is in charge of the coupling between the auxiliary variables and the principal ones.

As noticed in [69], the advantage of (49), obtained in this format thanks to (47), is the absence of the auxiliary
variables in the numerical flux used for the communication between the DG cells. As detailed in B, the time-domain
system obtained without using the partial fractional decomposition (47) has different Jacobian matrices Ãx and

Ãy in which lines associated with φXk , φYk and ψk have non-null terms (see equation (106)). This is similar to
other implementations [14, 26] where the auxiliary equations contain time or spatial derivatives of the principal
variables. In the latter cases, when the number of auxiliary variables grows, the numerical cost increases more than
for problems where no numerical flux is associated with the auxiliary equations.

5.1.1 Space discretization

Let Ω ⊂ R2 be the computational domain for which there is a partition (Th) where h denotes the maximal diameter
of the partition elements. The approximation space is taken as Vh := {v | ∀T ∈ Th, v|T ∈ Pk(T )} where Pk(T ) is the

space of polynomials of degree at most k. A basis {λij ∈ Pk(Ti), j = 1 . . . d} with d = (k+ 1)(k+ 2)/2 is defined for
each element Ti ∈ Th. Hence, a scalar function q is approximated on a cell Ti by:

qh(x, t) :=

d∑
j=1

qi,jh (t)λij(x). (56)

Based on (56), the vector of solutions qh(x, t) = (uh vh ph) is defined. Applying the DG method [34] results in:

d

dt

∫
Ti

qh(x, t)λij dΩ +

∫
Ti

F(qh(x, t)) · ∇λij dΩ−
∫
∂Ti

F∗(qe
h(x, t),qi

h(x, t)) · ni λ
i
j dσ +

∫
Ti

b(qh(x, t))λij dΩ = 0,

(57)

where F(qh) = (Axqh, Ayqh), b(qh) = Bqh, ni = (nix, n
i
y) is the outward unit normal to the edge ∂tTi and F∗ is

the numerical flux. The solution qh on the edge of a cell Ti is denoted qi
h or qe

h when the interior or the exterior
value of T is taken, respectively. In this work, the numerical flux used is the vector splitting

F∗(qi
h,q

e
h) = A+qi

h +A−qe
h, (58)

where incoming waves and outcoming waves are seperated in A+ and A−. The latter contain respectively the
positive eigenvalues and the negative eigenvalues of A = Axnx+Ayny. This flux solves exactly the monodimensional
Riemann problem with constant coefficients. Note that for the boundary ∂Ω, the centered flux

F∗BC(qi
h,q

e
h) := A

qi
h + qe

h

2
, (59)

is enforced with qe
h representing a ghost state defined with qi

h. Finally, the semi-discrete equation reads:

M
dQh

dt
(t) := KQh(t) + S̃(t), (60)

where Qh is the unknown and S̃ is the source term.

5.1.2 Time discretization

The inversion of the mass matrix M in (60) is straighforward thanks to its block diagonal structure where each
block is small enough to compute its inverse straighforwardly. Hence, the space discretization (60) can be rewritten

dQh

dt
(t) = Lh(t,Qh(t)) = DQh(t) + G(t), (61)

with Lh the semi-discete operator, D = M−1K and G = M−1S̃. The RKF84 eight-stage fourth-order 2N-storage
Runge–Kutta method [65] is used for the time discretization as in [51]. It has been shown to be very efficient when
combined with a DG space discretization for wave propagation problems.
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Let {tn}Nn=0 be a partition of [0,T]⊂ R+, ∆t = tn+1 − tn the time step and Qh
n the approximated solution at

time tn. The steps of the RKF84 algorithms are

q(0) = Qh
n, (62a)

dq(i) = Aidq(i−1) + Lh

(
tn + ci∆t,q

(i−1)
)
, (62b)

q(i) = q(i−1) +Bidq(i), for i = 1 . . . 8, (62c)

Qh
n+1 = q(8), (62d)

where the coefficients Ai, Bi and ci are given Table A.9 in [65].

The stability condition for a scalar equation
dq

dt
= d q writes:

|R(z)| 6 1, (63)

where R(z) = qn+1/qn and z = d∆t. The stability condition can also be expressed with the Courant number C as:

C = dm
∆t

h
6 C∗, (64)

with dm the spectral radius of D and C∗ the maximal Courant number given in [65] for different wavenumber
and element size h in 1D. Consequently, the stability condition depends on the time and space discretization, the
advection velocity, and on the poles present in the auxiliary equations. The latter could penalize the stability
condition, especially at high frequencies where higher poles (in absolute value) are needed to accurately fit the
dynamic variables. To circumvent this problem, another approach based on the splitting method [43] can be used,
making the stability condition independent of the poles by resolving the ADE exactly. However, the range of
frequencies studied in the numerical simulations herein does not involve poles that are significantly impacting the
stability condition.

5.2 Energy analysis

The toy model studied in this section is built with MMs for α and β described by negative poles and different sets
of weights. The weights are varied to explore cases where the stability condition (C2) is fulfilled or not, in order to
highlight the influence of the weights’ sign.

5.2.1 Multipole-model parameters

The approximated EFM (54) is first solved for αmm(s) = 1 and βmm(s) = 1, a case describing a medium without
dissipative acoustic properties. In that case, c0 = c′0 = 1, c−1 = c′−1 = 0 and no pole is used (and therefore no
auxiliary function). Then, we keep αmm(s) = 1 and we consider 3 different multipole-based approximations of:

βtoy(s) := 1 +

√
s+ 2

s+ 1
, (65)

which is a simplified model of βod given in (19). Indeed, βtoy can be decomposed as a sum of a single-pole term and
a diffusive part: βtoy(s) = 1 + 1/(s+ 1) +

∫∞
L′=2

νtoy(ξ)/(s+ ξ) dξ with νtoy(ξ) =
√
ξ − 2/(ξ − 1) > 0. The positive

diffusive weight and the positive residue of the single pole make clear that βtoy is a passive transfer function, namely
R (βtoy(s)) > 0 for R(s) > 0. However, the multipole-based approximation does not take into account the known
oscillatory-diffusive representation of βtoy in order to adopt a general approach where no analytical studies have
been done before. Therefore, the multipole-based approximation is built from expression (65).

The MMs consist of a maximum of 4 poles and weights computed via the vector fitting algorithm [30] in order to
fit βtoy over the frequency range [0.1Hz,100Hz]. The constraint of 8 parameters is chosen arbitrarily in order to work
with a small number of poles and weights. All the MM parameters are gathered in Table 2 with the non-dissipative
case labeled as ”Case 0”. The Bode diagram comparing the MMs, with the reference function βtoy is shown in
Fig. 1.
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Table 2: Parameters of the multipole toy models associated with the 4 studied cases. The bold values are chosen
arbitrarily while the other obtained with the vector fitting are rounded to two decimals places.

Constants Weights Poles Condition (C2)

c′0 c′−1 r′0 r′1 r′2 r′3 s′0 s′1 s′2 s′3 rk > 0

Case 0: (β0) 1 0 0 0 0 0 0 0 0 0 -

Case 1: (β1) 1 0 1.21 2.77 22.40 0 -1.12 -12.46 -267.63 0 3

Case 2: (β2) 1 0 4.37 -4 2.62 17.60 -1.55 -2 -6.21 -160.51 7

Case 3: (β3) 1 0 -1 1.94 2.07 17.58 -0.5 -0.68 -7.16 -161.44 7

The set of parameters obtained for the first MM complies with the stability condition (C1) and (C2). In the last
two cases, one of the poles is fixed with a negative weight. The remaining couples of weights and poles are then
computed to fit βtoy. Therefore, the vector fitting is used to find a set of 3 weights and poles for each MM in order
to have the same degree of freedom in the optimization algorithm. The main difference between the MM parameters
lies in the sign of the weights. Although the negative weights are fixed in this study in order to emphasize the
consequences of not meeting the stability condition given in Section 4, the vector fitting, among others, applied
on physical problems can give negative weights because of the data to fit (e.g. experimental measurements) or an
ill-posed problem.

Figure 1: Bode diagram comparing βtoy with the MMs defined in Table 2 and obtained via the vector fitting
algorithm applied on the frequency range delimited by the vertical black dashed lines.

Additionally, a comparison of the MM approximations and toy model are shown in the time domain. The focus
is specifically on the function

B̂toy(s) := βtoy(s)− 1 =

√
s+ 2

s+ 1
=

1

s+ 1
+

1√
s+ 2 + 1

, (66)

in order to just keep the diffusive part that is approximated. Then, the time-domain representation of (66) is

Btoy(t) = e−t +
e−2t

t0.5
E0.5,0.5

(
−
√
t
)

(67)

where E0.5,0.5 is the Mittag-Leffler function with two parameters (both equal to 0.5 in (67)). The latter is computed

using the Mittag-Leffler function [28]. The MMs B̂k(s) = βk(s) − 1 are displayed in the time domain with the
analytical solution (67) in Fig. 2
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Figure 2: Time response of the MMs approximating Btoy (left) with the absolute error (right) when compared to the
analytical solution Btoy.

The increasing error at short time is due to the error made at high frequencies, slightly visible on the MMs in
Fig. 1. A way to improve drastically the approximation is to add parameters in the MMs. In this study, a small
number of poles is deliberately chosen to highlight the impact of negative poles in a MM.

5.2.2 Numerical simulation

A square domain Ω = [0, 1] × [0, 1] is considered and discretized with triangle elements on which polynomials of
degree 5 are defined for the DG method. A non-physical porous media is assumed for the whole domain, with
ρ0 = 1, χ0 = 1 and a0 = 1 the speed of sound in the medium without dissipation. The boundaries are taken
as hard walls, and there is therefore no contribution with the exterior of Ω. The initial condition is based on a
Gaussian-type source

p0(x, y) = A (x− x0) e−B((x−x0)2+(y−y0)2), (68)

defined in the center of Ω, i.e. x0 = y0 = 0.5. The initial velocity and pressure are

p(0,x) = p0(x, y), (69)

u(0,x) = −∇p0(x, y), (70)

with A=20 and B=80. Applying the fast Fourier transform (FFT) on the initial wave, which propagates at the
speed a0 in the medium without dissipative behaviour, shows that the frequency content of the initial condition
is included in [0.1Hz, 10Hz]. Hence, in order to have approximately 10 DG nodes for the minimal wavelength
λmin = ap/fmax = 0.07 (ap = 1/

√
ρ0 χ0 αβ is the speed in the dissipative medium), the mesh is built with a space

discretization h ≈ 0.08.

The square domain with the gaussian-type source in its center is showed in Fig. 3a. For each case, the wave
propagating within the rigid wall box is simulated for a given amount of time, taken dimensionless in this section.
The pressure fields for cases 0 and 3 at t = 3 are shown in Fig. 3. The other two cases are not shown because the
pressure fields are very similar to the one in Fig. 3c for t = 3.
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(a) t = 0, (b) Case 0 at t = 3, (c) Case 3 at t = 3,

Figure 3: Pressure field at the initial time and at time t=3 for the non-dissipative Case 0 and the Case 3 (see Table
2). Note the change of level scales between the figures.

At each time step, the total energy in the domain is computed from equation (52). For each set of parameters,
the energy normalized by its value at t = 0 is displayed in Fig. 4. In case 0, where no dissipation is expected,
the energy is indeed constant and equal to 1 due to the normalization. In case 1, the MM only has positive
weights, complying with the condition (C2) for a stable scheme. The energy associated with this case is always
decreasing, which illustrates the stability of the multipole-based EFM. Despite the trend of a decreasing energy for
case 3 where negative weights are considered, the medium is active and creates energy at certain times, which is
inconsistent with the dissipative acoustic behaviour of porous media. This unintended increasing energy phenomena
is highlighted by this example, comforting the idea that, in general, working with negative weights precludes any
proof of stability. However, the multipole-based EFM solved with MMs containing negative weights does not always
lead to an increase of the energy, as shown with case 2, since this abnormal phenomenon may be hidden by the
dissipation from the terms with positive weights. Consequently, care must be taken when working with negative
weights for exclusively-dissipative acoustic porous media, and it is recommended to use only positive weights.

Figure 4: Energy over time for the MMs given in Tab. 2, with increasing parts of the energy marked in red. A
zoom on the energy variations for t ∈ [6, 12] is shown in the right figure.

5.3 Impedance tube simulation

In order to simulate an impedance tube experiment, the intrinsic properties of a porous sample are first used to
infer the values of the chosen MM parameters. Two domains are then considered in the simulation, representing
the air in the tube and the rigidly backed porous sample. A pulse is used as the incident wave. The numerical
pressures along the tube are used to obtain the surface impedance and reflection coefficient of the sample in the
frequency domain, thus mimicking an experiment.
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5.3.1 Multipole-model parameters

The porous sample considered in this analysis is a melamine foam whose parameters are described in Table 2 Section
4.3 of [3], where the authors assumed that the sample is a rigid-frame porous media, and approximated its acoustic
behaviour through the JCAL model. Hence, the parameters α0 and α′0, which are known to be difficult to measure
and to identify precisely [61], are not given. We therefore define the parameters M , N , L, M ′, N ′ and L′ in Table
3 through the JCAL model (see Table 1).

Table 3: Values of the parameters defining α and β equations (7) and (12) based on Table 2 Section 4.3 of [3].

α β

M N L M’ N’ L’

3636.73 3636.73 3802.89 5275.18 5275.18 8355.88

Given these parameters, one is able to obtain the expressions of α and β in the whole frequency range of interest
with (7) and (12). From these expressions in the frequency domain, one can attempt to retrieve the MM parameters.
In this study, it is achieved using a vector fitting approach to best fit the transfer functions α and β on [10Hz,
10 000Hz], with details about the algorithm parameters used to obtain the MMs in C.1. These fits, as well as the
selected parameters, are given in Figs. 5 and 6 and Table 4, respectively. Despite the limited number of poles, an
excellent agreement is obtained over the chosen frequency band, and also at the lowest frequencies. The reader is
referred to C.2 for results about the convergence of the MM as a function of the number of poles for the studied
case.

Table 4: Parameters of the MMs approximating α and β (Table 3) with the values in bold obtained analytically
and the others obtained with the vector fitting (rounded to two decimals).

c0 c−1 r0 r1 r2 s0 s1 s2

αmm 1 3636.73 1 095.24 4 366.96 35 109.67 -6 801.60 -25 854.33 -237 436.69

βmm 1 0 1 089.18 1 041.04 11 700.15 -3 866.60 -18 711.08 -179 034.54

β̃mm 1 0 1 135.64 1 351.72 13 249.98 -3 926.70 -24 405.26 -227 291.46

Note that the isolated pole of β is computed analytically. Therefore, the weight r0 and pole s0 is straightforwardly
deduced for βmm. The vector fitting directly applied on β without taking into account the known single pole leads
to β̃mm. It will not be used further but it is given here to display the similarity between βmm and β̃mm, particularly
the pole s0 and weight r0 given by the optimization procedure which are similar to the analytical ones.

5.3.2 Numerical simulation

An impedance tube is now considered, and approximated by a 2D representation. Unless explicitly mentioned,
the dimensions are given in meters. A schematics of the mesh for the domain Ω = [0, 1] × [0, 0.04], used by the
fifth-order DG solver to discretize the equations is displayed in Fig. 7. Note the existence of two zones: the air
Ωa = [0, 0.92]× [0, 0.04] associated with the blue mesh, in which the classical linearized Euler equations are solved,
and the porous sample Ωp = [0.92, 1] × [0, 0.04] of thickness denoted lp = 8cm, associated with the brown mesh,
where equations (49) are solved. The porous domain is backed by a rigid wall, simulated by a fully reflective
boundary condition, as for the boundary at y = 0 and y = 0.04. A non-reflecting boundary condition is imposed
at the left boundary x = 0. At the interface between the domains, a numerical flux vector splitting is selected to
weakly enforce the continuity conditions:

φair uair = φpor upor , (71)

pair = ppor , (72)

with φair = 1.

19



Figure 5: Bode diagram of the dynamic tortuosity α and its multipole-based approximation αmm with vertical
black dashed lines delimiting the frequency range of MM approximation.

Figure 6: Bode diagram of the dynamic tortuosity β and its multipole-based approximation βmm with vertical
black dashed lines delimiting the frequency range of MM approximation.

x

y

Figure 7: Mesh of the impedance tube with the microphone representing the postion (x1 = 0.6) where the numerical
pressure is recorded.

A plane wave propagating in the tube is created by a pulse (68) initialized in the left part of the air domain:

p(0,x) = p0(x, 0) (x < 0.2), (73)

u(0,x) = p0(x, 0)/(ρ0a0) (x < 0.2), (74)

and null for x > 0.2. The values of the parameters are defined such that the frequency content extends from 100Hz
to 10kHz: xs = 0.1, ys = 0, A=104.28 and B=2000. The mesh (and the DG order) is adapted (h ≈ 2cm) so
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that more than 10 points per wavelength are obtained at 10kHz (λmin = ap/fmax = 0.5cm). Note that in the
porous sample, the speed of sound is lower than in the ambient open air (ap = 1/

√
ρ0 χ0 αβ > a0 = 340m.s−1).

Moreover, the initialization of the simulation with a plane wave in the left part of the domain instead of a point
source precludes the propagation of additional cut-on acoustic modes. Based on the highest pole in the MMs and
the advection velocity constraining the stability condition (64), a time step ∆t = 10−7s was selected.

The pressure is recorded at all time steps of the simulations, at one location along the side wall of the tube,
to mimic a flush-mounted microphone. The microphone is located at a distance 32cm from the sample, to allow
for an easy separation between incident and reflected waves in the time domain. Two cases are then simulated:
the 1m-long tube with the porous media and a 92cm-long tube without the porous media. The recorded signals
at the second location are shown in Fig. 8, where the incident wave is first seen, followed by the reflected waves
(at the first interface, and then the successive waves that have travelled within the sample). An FFT analysis is
then performed to analyze the signal in the frequency domain by focusing only on the reflected waves. The time
zone to watch was obtained by knowing that the initial pulse is defined for x ∈ [0, 0.2] and it travels in the tube at
340m.s−1. Consequently, the microphone will have seen all the incident wave at t = 1.8ms.

The transfer function of the microphone for both cases is then used to evaluate the reflection coefficient of the
sample. Indeed, the pressure field inside the tube can write, in the frequency domain, as

P (ω, x) = A+ e−ikx +A− e+ikx, (75)

where k = ω/a0 is the wavenumber and A+ and A− the incident and reflected wave amplitudes, respectively.
Moreover, the wave amplitudes are related by the reflection coefficient R through the relation A− = RA+. In the
case of a rigid wall, R = 1. Hence, after applying the FFT on the numerical pressure of the reflected wave in both
cases (with and without the porous sample), R is evaluted by dividing the frequency-dependent pressure obtained
with the porous material by the frequency-dependent pressure obtained with the rigid wall.

The reflection coefficient is then used to determine the surface impedance:

Z(ω) =
1 +R(ω)

1−R(ω)
, (76)

which is compared with the theoretical value:

Z(ω) = −i

√
α(iω)

β(iω)
cot

(
lp
a0
ω
√
α(iω)β(iω)

)
, (77)

known for plane wave propagating in a tube containing a porous material backed by a rigid surface [2, Chap. 2].
Equation (77) is also used to display in Fig. 9 the JCAL analytical reflection coefficient, where it is compared with
the reflection coefficient computed using the numerical pressure signals.

Figure 8: Numerical pressure signal over time at (x,y)
= (0.6,0.04), position of Mic. 2 in Fig. 7.

Figure 9: Absolute value of the reflection coefficient
obtained with the JCAL model and computed from the
numerical pressure signal. Vertical black dashed lines
delimit the frequency range of MM approximation.

A comparison between the numerically evaluated impedance obtained with (76) by the numerical pressure
and the initial true impedance computed thanks to (77) based on the JCAL model is displayed in Fig. 10. The
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superimposition of the two curves in the frequency-band of interest is striking, which contributes to verify the good
implementation of the method presented in Section 4. To supplement these results, a detailed analysis on the level
of error between the theoretical and numerical results is given in D.

Figure 10: Real (left) and imaginary (right) part of the surface impedance with vertical black dashed line delimiting the
frequency range of MM approximation.

The present approach represents rigid porous media in a volumic way, as opposed to a time-domain impedance
boundary condition (TDIBC) [52] where liners are considered as a surface boundary condition. The latter approach
also relies on the oscillo-diffusive representation of a time-domain operator. While useful for classical acoustic liners
based on a single degree of freedom (perforated plate over cavity), the TDIBC approach could show its limits for
complex materials (i.e., meta-surface and multi-layer liners), as the impedance operator could become too complex
for the diffusive representation to handle. On the other hand, the present approach can represent individually each
element of such a complex acoustic liner at the price of an extended simulation domain. The operators that need to
be discretized remain α and β, and do not gain in complexity, since they are associated with individual materials.

Moreover, the results of this section show that with only 3 poles in the MMs for each dynamic variables, α and
β, a fine approximation of the porous-media acoustic behaviour can be done over 3 frequency decades. They are
also quite correct outside the frequency range of approximation for almost twice the maximum frequency of the
range of approximation. Additional tests (not shown here for conciseness) showed that, in general, MMs fitting the
JCAPL model for a narrow band of frequencies gives a well-approximated model over a wider range of frequencies.
This behaviour could be explained by the smoothness of the JCAPL model. Hence, for instance, ultrasound waves,
where a significant amount of anti-resonances are present per decade, could be well approximated with a small
amount of poles.

6 Conclusion

A formulation of the JCAPL model for wave propagation in rigid isotropic media was proposed in the time domain.
Both the dynamic tortuosity α and compressibility β were defined with an oscillatory-diffusive (OD) representation
with positive weights. The initial set of equations was then recast into an augmented system in the time domain,
where diffusive variables are used as a time-local representation of the convolution operators. Expressing the
JCAPL-EFM with an OD representation allowed the proof of its stability. This representation provides insights
into the behaviour of the model and helps guiding the choices made when approximating the model. A similar
approach can also cover the stability proof of the Horoshenkov-EFM, which shows the possible use of our method
for other models than those treated in the present work.

In addition to the JCAPL and Horoshenkov models, the Wilson model was shown to admit a diffusive representa-
tion. These representations consist of a continuous superposition of first-order systems which are straightforwardly
discretized as a multipole model (MM) with a finite number of first-order systems whose poles are real-valued. It
is consistent with the existing time-domain studies in the literature [13, 69] on porous materials without locally-
resonant behaviour [3], for which MMs with real parameters are used. The same approach can also be applied
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to metamaterials with known expressions of the dynamic variables, with the distinction that complex conjugate
parameters may arise. Hence, MMs appear to be a well-suited approximation for several models of α and β.

From this observation and the diffusive-based JCAPL-EFM, a multipole-based approximation was adopted to
approach the model prior to its numerical implementation in an acoustic 2D DG solver. A stability analysis was
performed on the multipole-based version of the EFM. A sufficient stability condition was found to be the positivity
of all the weights in the MM terms, a condition similar to the positivity of the diffusive weight needed to prove the
stability of the JCAPL-EFM.

A numerical analysis was conducted to illustrate the stability condition on a toy model, highlighting possible non-
dissipative phenomena for MM having negative weights. A more involved numerical simulation was then performed
in a multi-zone domain, to validate the numerical integration with analytical data mimicking an impedance tube
experiment.

A perspective for future studies consists in relaxing the rigid-frame hypothesis, in order to work with poroelastic
materials. Another avenue of research could be the extension of the present work to inhomogeneous materials. Both
these considerations could benefit the fields of acoustics, biomechanics and geophysics.

Acknowledgment This research has been financially supported by ONERA and by ISAE-SUPAERO, through
the EUR TSAE under grant ANR-17-EURE-0005.
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A Representation of the dynamic variables

This appendix recalls the expression of the JCAPL, Wilson and Horoshenkov models and gathers their reformulation
based on an OD representation.

A.1 Johnson-Champoux-Allard-Pride-Lafarge model

The JCAPL model is recalled below with the paramaters M , N , L, M ′, N ′ and L′ defined in Section 2.

α(s) = α∞

1 +
M

s
+N

√
1 +

s

L
− 1

s

 (s ∈ C\(−∞,−L]) , (78)

β(s) = γ − (γ − 1)

1 +
M ′

s
+N ′

√
1 +

s

L′
− 1

s


−1

(s ∈ C\(−∞,−L′]) . (79)

The peculiarity of (79) lies in the oscillatory part of its OD representation (19) which exists under the condition
(17) given in Section 2. The steps to obtain this condition are detailed below, followed by the expressions of the
isolated pole and its associated weight when they exist.

The function studied is first recalled:

βod(s) :=
β(s)− 1

γ − 1
=

M ′ +N ′
(√

1 +
s

L′
− 1

)
s+N ′

√
1 +

s

L′
+M ′ −N ′

(s ∈ C\(−∞,−L′]) . (80)

The diffusive part of (80) is computed with (54). However, just by looking at the expression of βod, one can
speculate on the existence of singularities which are directly linked to the oscillatory part. Therefore, the focus is
on the denominator of (80), and specifically on its zeros. Let us then define:

Q(s) := s+N ′
√

1 +
s

L′
+M ′ −N ′ (s ∈ C\(−∞,−L′]) . (81)

A change of variables ϕ : λ→ L′
(
λ2 − 1

)
simplifies the expression (81) into a second-order polynomial:

Q̃(λ) := Q(ϕ(λ)) = L′λ2 +N ′λ+ (M ′ −N ′ − L′) (R(λ) > 0) . (82)

As a result, any root λr of Q̃ with a positive real part implies that βod has a singularity at ϕ-1(λr). A brief study

of the imaginary part of (82) shows that Q̃ does not admit any root in C+
0 \R+, with C+

0 = {s ∈ C | R(s) > 0}.
Hence, the roots of Q̃ on C+ are necessarily real, if they exist. Then, by solving the polynomial on R , we find that:

• if M ′ −N ′ − L′ > 0, then Q̃(λ) > 0 for all positive real λ (however, Q̃ may have negative roots),

• if M ′−N ′−L′ < 0, then there exists two roots of Q̃. If it is the case, one of the roots is always negative and
the other, denoted λ0, is always included in ]0, 1[.

In the second case where M ′ − N ′ − L′ is negative, the positive root of Q̃ can be shown to be in ]0, 1[ by simply

noticing that Q̃(0) = M ′ −N ′ − L′ < 0 and Q̃(1) = M ′ > 0. These results are highlighted Fig. 11 with both cases
displayed.

In that respect, one can conclude that in the second case, i.e. M ′ − N ′ − L′ < 0, βod has a singularity at s0

parametrized by λ0, which leads to the existence of an oscillatory part. Moreover, the weight r0 associated with
the pole s0 is the residue of βod at s0, defined as:

r0 := lim
ε→0

1

2jπ

∮
|s−s0|=ε

βod(s) ds.
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Figure 11: Polynomial Q̃ for two set of parameters: the dotted line ( ) is associated with the case
M′ −N′ − L′ > 0, the solid line ( ) is associated with the case M′ −N′ − L′ < 0.

Consequently, under condition (17) for the existence of an isolated pole, βod consists of a single pole and a
diffusive part, both obtained by using the Bromwich contour Fig. 12:

βod(s) =
r0

s− s0
+N ′

∫ ∞
L′

ν(ξ)

s+ ξ
dξ (R(s) > 0) , (83)

where ν(ξ) :=
1

π

ξ

√
ξ

L′
− 1

(ξ −M ′ +N ′)2 +N ′2
(
ξ

L′
− 1

) (ξ ∈ ]L′,+∞[) , (84)

s0 := L′
(
λ2

0 − 1
)
< 0, (85)

r0 := 2L′λ0
M ′ +N ′(λ0 − 1)

2L′λ0 +N ′
> 0, (86)

with λ0 :=
−N ′ +

√
N ′2 − 4L′(M ′ −N ′ − L′)

2L′
, (87)

I(s)

R(s)
×
s0

Γ′ •
−L′

Figure 12: Bromwich contour used to find the OD representation of the dynamic compressibility β.

Therefore, the normalized dynamic compressibility is expressed as follows:

β(s) = 1 + (γ − 1)

[
r0

s− s0
+N ′

∫ ∞
L′

ν(ξ)

s+ ξ
dξ

]
(R(s) > 0) . (88)

Based on the values taken by λ0, the residue r0 is always positive while the pole s0 is always negative if it exists.
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A.2 Wilson model

The Wilson model describes the dynamic tortuosity and the normalized dynamic compressibility as follows:

αw(s) =
(1 + τvs)

1/2

(1 + τvs)1/2 − 1

(
s ∈ C\(−∞,−τ -1

v ]
)

, (89)

βw(s) =
(1 + τes)

1/2

(1 + τes)1/2 + γ − 1

(
s ∈ C\(−∞,−τ -1

e ]
)

, (90)

where τv and τe are the vorticity-mode relaxation time and the entropy-mode relaxation time, respectively. A
simple diffusive representation (20) is proposed for (90) in Section 2 and recalled below with the expression of the
associated negative diffusive weight.

βw(s) = 1 + (γ − 1)

∫ ∞
τ -1
e

νw(ξ)

s+ ξ
dξ (R(s) > 0) , (91)

with νw(ξ) =
−1

π

√
τeξ − 1

(τeξ − 1) + (γ − 1)
2

(
ξ ∈ [τ -1

e ,+∞)
)

. (92)

Here, we look for another representation of βw with a positive diffusive weight. For this purpose, we worked on the
following function:

βw(s)

1 + τes
=

1

(1 + τes) + (γ − 1)(1 + τes)1/2

(
s ∈ C\(−∞,−τ -1

e ]
)

, (93)

which admits a diffusive representation:

βw(s)

1 + τes
=

∫ ∞
τ -1
e

ν̃w(ξ)

s+ ξ
dξ (R(s) > 0) , (94)

with ν̃w(ξ) =
1

π

√
τeξ − 1

(τeξ − 1)2 + (γ − 1)
2

(τeξ − 1)

(
ξ ∈ (τ -1

e ,+∞)
)

. (95)

It leads to express βw as a sum of a diffusive representation and an extended diffusive representation:

βw(s) = (γ − 1)

∫ ∞
τ -1
e

ν̃w(ξ)

s+ ξ
dξ + (γ − 1)τe

∫ ∞
τ -1
e

ν̃w(ξ)
s

s+ ξ
dξ (R(s) > 0) , (96)

The first term of the right-hand side of (96) is a conventional diffusive part, and the last term of the right-hand
side is said to be extended by differentiation because of the factor s.

A.3 Horoshenkov model

The dynamic variables expressed by the Horoshenkov model are described in the Laplace domain:

αh(s) = α∞

1 +
Mh

s
+Nh

1√
s

Lh
+ 1

 (s ∈ C\(−∞,−L]) , (97)

βh(s) = γ − (γ − 1)

1 +
M ′h
s

+N ′h
1√
s

L′h
+ 1


−1

(s ∈ C\(−∞,−L′]) , (98)

where Mh = νφ/(k0α∞), Nh = θρ,1 and Lh = Mh/θ
2
ρ,3 for the dynamic tortuosity and M ′h = νφ/ (k′0Pr), N ′h = θc,1

and L′h = M ′h/θ
2
c,3 for the normalized dynamic compressibility. θρ,1, θρ,3, θc,1 and θc,3 are the Padé approximant

parameters used in the Horoshenkov model [35, 36]. A comparison between the Horoshenkov model (97)-(98) and
the JCAPL model (78)-(79) highlights similarities between their expressions and one different term which implies
different OD representations.

26



The normalized dynamic compressibility of the Horoshenkov model admits a diffusive representation:

βh(s) = 1 + (γ − 1)N ′h

∫ ∞
0

νh(ξ)

s+ ξ
dξ (R(s) > 0) , (99)

with νh(ξ) =
1

π

ξ2

√
ξ

L′h

ξ

L′h
(ξ −M ′h)

2
+ ((1 +N ′h)ξ −M ′h)

2
> 0 (ξ ∈ [0,+∞)) . (100)

B Multipole-based model

This section details system (49), written in hyperbolic form (54), and the analogous system obtained without
applying the partial fraction decomposition (47). First, system (49) is detailed below:

∂t



u
v
p

ΦX

ΦY

Ψ

 +



0 0
1

ρ0c0
Or Or Or

0 0 0 Or Or Or

1

χ0c′0
0 0 Or Or Or

Oc Oc Oc O O O
Oc Oc Oc O O O
Oc Oc Oc O O O


∂x



u
v
p

ΦX

ΦY

Ψ

 +



0 0 0 Or Or Or

0 0
1

ρ0c0
Or Or Or

0
1

χ0c′0
0 Or Or Or

Oc Oc Oc O O O
Oc Oc Oc O O O
Oc Oc Oc O O O


∂y



u
v
p

ΦX

ΦY

Ψ

 +



c−1

c0
+

K∑
k=1

rk
c0

0 0
RS

c0
Or Or

0
c−1

c0
+

K∑
k=1

rk
c0

0 Or
RS

c0
Or

0 0
c′−1

c′0
+

K′∑
k=1

r′k
c′0

Or Or
R′S′

c′0
-1 Oc Oc -S O O
Oc -1 Oc O -S O
Oc Oc -1 O O -S′





u
v
p

ΦX

ΦY

Ψ

 = 0 ,

(101)

where:
• the row vectors are: RS =

(
r1s1 r2s2 . . . rK−1sK−1 rKsK

)
,

R′S′ =
(
r′1s
′
1 r′2s

′
2 . . . r′K−1s

′
K−1 r′Ks

′
K

)
,

• the pole matrices are: S =



s1 0 . . . . . . 0

0 s2
. . .

...
...

. . .
. . .

. . .
...

...
. . . sK−1 0

0 . . . . . . 0 sK


, and S′ =



s′1 0 . . . . . . 0

0 s′2
. . .

...
...

. . .
. . .

. . .
...

...
. . . s′K−1 0

0 . . . . . . 0 s′K


,

• the all-ones column vector is: 1 =

1
...
1

 ,

• the zero matrices are: O (square matrix), Or (row matrix) and Oc (column matrix).

Starting from the EFM equations and the multipole-based approximations (45) and (46) of α and β, respectively,
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the system in the Laplace domain writes:
s û +

c−1

c0
û +

K∑
k=1

rk
c0

s

s− sk
û = − 1

ρ0c0
∇∇∇p̂ ,

s p̂ +
c′−1

c′0
p̂ +

K′∑
k=1

r′k
c′0

s

s− s′k
p̂ = − 1

χ0c′0
∇∇∇ · û ,

(102)

In contrast to (48), no partial fraction decomposition is applied in (102). Applying the inverse Laplace tranform
on (102) leads to the time-domain system

∂tu +
1

ρ0c0
∇∇∇p +

c−1

c0
u +

K∑
k=1

rk
c0
φkφkφk = 0 , (103a)

∂tp +
1

χ0c′0
∇∇∇ · u +

c′−1

c′0
p +

K′∑
k=1

r′k
c′0
ψk = 0 , (103b)

∂tφkφkφk = skφkφkφk + ∂tu (∀ k ∈ [[1,K]]), (103c)

∂tψk = s′k ψk + ∂tp (∀ k ∈ [[1,K ′]]), (103d)

which writes

∂tu +
1

ρ0c0
∇∇∇p +

c−1

c0
u +

K∑
k=1

rk
c0
φkφkφk = 0 , (104a)

∂tp +
1

χ0c′0
∇∇∇ · u +

c′−1

c′0
p +

K′∑
k=1

r′k
c′0
ψk = 0 , (104b)

∂tφkφkφk +
1

ρ0c0
∇∇∇p +

c−1

c0
u +

K∑
j=1

rj
c0
φjφjφj − skφkφkφk = 0 (∀k ∈ [[1,K]]), (104c)

∂tψk +
1

χ0c′0
∇∇∇ · u +

c′−1

c′0
p +

K′∑
j=1

r′j
c′0
ψj − s′k ψk = 0 (∀k ∈ [[1,K ′]]). (104d)

after replacing the derivatives in the auxiliar equations (103c) and (103d) by using (103a) and (103b) respectively.
The hyperbolic form of (104) reads

∂tq + Ãx∂xq + Ãy∂yq + B̃q = F, (105)

where q is given in Section 5 and

Ãx =



0 0 1
ρ0c0

0 . . . . . . . . . 0

0 0 0 0 . . . . . . . . . 0
1

χ0c
′
0

0 0 0 . . . . . . . . . 0

0 0 1
ρ0c0

0 . . . . . . . . . 0
...

...
...

...
...

0 0 1
ρ0c0

0 . . . . . . . . . 0

0 0 0 0 . . . . . . . . . 0
...

...
...

...
...

0 0 0 0 . . . . . . . . . 0
1

χ0c
′
0

0 0 0 . . . . . . . . . 0

...
...

...
...

...
1

χ0c
′
0

0 0 0 . . . . . . . . . 0



, Ãy =



0 0 0 0 . . . . . . . . . 0
0 0 1

ρ0c0
0 . . . . . . . . . 0

0 1
χ0c

′
0

0 0 . . . . . . . . . 0

0 0 0 0 . . . . . . . . . 0
...

...
...

...
...

0 0 0 0 . . . . . . . . . 0
0 0 1

ρ0c0
0 . . . . . . . . . 0

...
...

...
...

...
0 0 1

ρ0c0
0 . . . . . . . . . 0

0 1
χ0c

′
0

0 0 . . . . . . . . . 0

...
...

...
...

...
0 1

χ0c
′
0

0 0 . . . . . . . . . 0



 (u, v, p)

 φXk

 φYk

 ψk

.

(106)
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C Parameter selection and convergence of the vector fitting algorithm

This Appendix describes the way vector fitting was used in this work. Details on the convergence of the MM for
the JCAPL model are also given.

C.1 Multipole-model approximation via vector fitting

In this article, the approach used to build the MMs is the vector fitting for which detailed results are given in
[30]. The MMs built with this algorithm depends on the behaviour of the complex-valued function to approxi-
mate, the physical parameters, the frequency range of approximation and the optimization-algorithm parameters
(starting poles, number of iterations, degrees of freedom). For example, in the toy model case Section 5.2, the MM
approximation is being sought as:

B̂MM(s) =
∑
k

rk
s− sk

. (107)

The vector fitting can take into account an additional constant parameter, denoted c0 herein, as a degree of freedom
to improve the approximation on the delimited frequency range.

B̂MMc(s) =
∑
k

rk
s− sk

+ c0. (108)

By doing so, the approximation B̂4 of βtoy, built as (108), is different from B̂1 = β1 − 1, built as (107) with the
same amount of poles. The parameters of the two MMs are given in Table 5 describing two different time responses,
and therefore, describing different errors when compared with the toy-model time response. This is shown in Fig.
13. Hence, a study on the vector fitting applied to the JCAPL model should not be straighforwardly generalized
to other problems and other initialization parameters of the vector fitting.

Table 5: Parameters of the multipole toy models associated with case 1 studied in section 5.2 (Table 2) and case 4
for which the constant value c′0 is a parameter of the vector fitting.

Constant Weights Poles

c′0 r′0 r′1 r′2 s′0 s′1 s′2

Case 1: (B̂1) 0 1.21 2.77 22.40 -1.12 -12.46 -267.63

Case 4: (B̂4) 0.03 1.15 1.89 8.20 -1.07 -8.79 -91.19

Figure 13: Time response of the MM 1 and 4 approximating Btoy (left) with the absolute error (right) when compared to
the analytical solution Btoy.
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The description of the algorithm parameters used for the different studies of the present article are gathered
in this paragraph. First, the approximation is always done on the diffusive part of the studied transfer functions
(βtoy − 1 for the toy model equation (65) in section 5.2.1, αd and βod given in equations (8) and (13)). This
choice originates from the seek of an approximation of solely the irrational terms that complexify the time-domain
problem. For instance, an MM approximation of the whole JCAPL-α expression (7) can be obtained, but leads to
approximate terms as α∞M/s which inverse Laplace transform are known and straighfowardly tackled. Second,
the three main points of the algorithm initialization that were varied in this study are: the starting pole values,
the number of iteration of the algorithm and the number of poles. No additional parameters were added in the
MM approximation. A wrong choice of the starting pole values can give an ill-conditioned problem. To prevent it,
the poles were always logarithmically spaced in the studied frequency range and 20 iterations were chosen, which
is large enough to converge to the same solution even with slightly different starting poles.

C.2 Convergence of the multipole-model approximation for the JCAPL model

In this section, the focus is on the convergence of the MM as a function of the number of poles for the JCAPL model,
specifically the modified dynamic variables αd and βod defined in (8) and (13), respectively. The parameters M , N ,
L, M ′, N ′ and L′, on which the modified dynamic variables depend on, are those given in Table 3. Consequently,
the results shown below are given specifically for the MM approximation of the JCAPL model describing the studied
melamine foam to give valuable insights of the problem, and the results should not be straighforwardly generalized
to other problems.

The relative maximal error is displayed in Fig. 14 for different frequency range of approximation. The same
approach to initialize the vector fitting for each number of poles and each frequency range is used, as detailed in
the previous section C.1.

Figure 14: Relative maximal error of MMs fitting the modified dynamic variables on different frequency ranges.

It is clear that adding poles improves the fit of MM, and Fig. 14 shows that the relative maximal error of the
magnitude decreases exponentially with the number of parameters. Additionally, the larger the frequency range of
interest, the higher the number of poles needed to fit a same amount of frequency decades for the JCAPL model.

D Discussion on the accuracy of the numerical impedance tube results

A closer look at the numerical results for the impedance tube simulation is given in this section. First, the absolute
error on the surface impedance values is displayed in Fig. 15.
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(a) Linear scale. (b) Logarithmic scale.

Figure 15: Absolute error of the surface impedance for the impedance tube simulation with vertical black dashed lines
delimiting the frequency range of MM approximation.

Figure 15b shows that the absolute error on the real part of the surface impedance is greater than for its
imaginary part, except for low frequencies. However, the order of magnitude of the imaginary part varies from the
real part of the surface impedance: the imaginary part is higher than the real part for low frequencies and lower
for high frequencies (see Fig. 16). Furthermore, the relative errors displayed in Fig. 17 are similar for both real and
imaginary parts, despite the singularities of the imaginary relative error induced by the zero values of the imaginary
part. The increasing error at low frequencies is thus due to the increasing magnitude of the imaginary part at low
frequencies (the relative error stays almost constant in this range of frequencies as shown in Fig. 17).

Figure 16: Real (left) and imaginary (right) part of the surface impedance with abcissa in logarithmic scale and vertical
black dashed lines delimiting the frequency range of MM approximation.
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Figure 17: Relative error of the surface impedance for the impedance tube simulation with vertical black dashed lines
delimiting the frequency range of MM approximation.

Consequently, the error made on the real part of the impedance is more important than on the imaginary part, but,
relatively to their order of magnitude, the error is similar, estimated at 10−2 in the frequency range of approximation.
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mique: Définition de paramètres géométriques, analogie electromagnétique, temps de relaxation. PhD thesis,
Le Mans, 1993.

[42] Denis Lafarge, Pavel Lemarinier, Jean F. Allard, and Viggo Tarnow. Dynamic compressibility of air in porous
structures at audible frequencies. The Journal of the Acoustical Society of America, 102(4):1995–2006, 1997.

[43] Bruno Lombard and Denis Matignon. Diffusive Approximation of a Time-Fractional Burger’s Equation in
Nonlinear Acoustics. SIAM Journal on Applied Mathematics, 76(5):1765–1791, 2016.

[44] Jian-Fei Lu and Andrzej Hanyga. Wave field simulation for heterogeneous porous media with singular memory
drag force. Journal of Computational Physics, 208(2):651–674, 2005.

[45] Yder J. Masson and Steven R Pride. Finite-difference modeling of Biot’s poroelastic equations across all
frequencies. Geophysics, 75(2):N33 – N41, March 2010.

[46] Denis Matignon. An introduction to fractional calculus. In Patrice Abry, Paulo Goncalvès, and Jacques Levy-
Vehel, editors, Scaling, Fractals and Wavelets, volume 1 of Digital signal and image processing series, pages
237–277. ISTE - Wiley, London : ISTE ; Hoboken, NJ : Wiley, 2009.

[47] Denis Matignon and Christophe Prieur. Asymptotic stability of linear conservative systems when coupled with
diffusive systems. ESAIM: Control, Optimisation and Calculus of Variations, 11(3):487–507, 2005.

[48] C. Méjean, M. Badard, R. Benzerga, C. Le Paven-Thivet, and A. Sharaiha. Rigid composite materials for
anechoic chamber application. Materials Research Bulletin, 96:94–99, 2017. The 9th international conference
on the Microwave Materials and Their Applications.

[49] Florian Monteghetti. Analysis and Discretization of Time-Domain Impedance Boundary Conditions in Aeroa-
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turbulence distortion on leading-edge noise reduction by means of porosity. Journal of Sound and Vibration,
485:115561, 2020.

[71] Jing Zhao, Ming Bao, Xiaolin Wang, Hyojin Lee, and Shinichi Sakamoto. An equivalent fluid model based
finite-difference time-domain algorithm for sound propagation in porous material with rigid frame. The Journal
of the Acoustical Society of America, 143(1):130–138, 2018.

[72] Jing Zhao, Zhifei Chen, Ming Bao, and Shinichi Sakamoto. Prediction of sound absorption coefficients of
acoustic wedges using finite-difference time-domain analysis. Applied Acoustics, 155:428–441, 2019.

[73] Cornelis Zwikker and Cornelis Willem Kosten. Sound absorbing materials. Elsevier publishing company, 1949.

36


	Introduction
	Wave propagation in rigid porous media
	Johnson-Champoux-Allard-Pride-Lafarge equivalent fluid model
	Oscillatory-diffusive representation of the dynamic variables
	Diffusive representation of the dynamic tortuosity
	Oscillatory-diffusive representation of the dynamic compressibility

	Discussion on the diffusive representation for other models

	Stability analysis of the Johnson-Champoux-Allard-Pride-Lafarge equivalent fluid model
	Extended diffusive realization
	Energy balance

	Equivalent fluid model based on multipole model
	Multipole model approximation
	Stability analysis

	Numerical implementation
	Numerical scheme
	Space discretization
	Time discretization

	Energy analysis
	Multipole-model parameters
	Numerical simulation

	Impedance tube simulation
	Multipole-model parameters
	Numerical simulation


	Conclusion
	Representation of the dynamic variables
	Johnson-Champoux-Allard-Pride-Lafarge model
	Wilson model
	Horoshenkov model

	Multipole-based model
	Parameter selection and convergence of the vector fitting algorithm
	Multipole-model approximation via vector fitting
	Convergence of the multipole-model approximation for the JCAPL model

	Discussion on the accuracy of the numerical impedance tube results

