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Abstract

The equivalent fluid model (EFM) describes the acoustic properties of rigid porous media by
defining the intra-pore fluid phase as a fluid with an effective density and an effective compress-
ibility. Their definitions are based on the dynamic tortuosity α and the normalized dynamic
compressibility β. These physical quantities are complex-valued functions depending on the fre-
quency, and can be irrational as in the Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model.
Hence, the system of equations derived from the EFM can involve fractional derivatives in the
time domain. This paper presents an approach to formulate the EFM equations described by the
JCAPL model in the time domain, leading to an augmented system for which a proof of stability
is given. From the EFM, a model for numerical simulation is built with α and β approximated
using a multipole model. Sufficient stability conditions are then provided for the multipole-based
EFM. Lastly, a numerical analysis is carried out in order to illustrate the theoretical results and a
simulation of the impedance tube experiment is presented.

1 Introduction

Porous media are abundantly present in nature, and studied in various research fields (e.g. mechanics
[23], geosciences [60, 17], biophysics [30, 28, 58]). Porous media are also studied and manufactured for
their acoustic properties, which have been used extensively in room acoustics [46] and more recently
in aeronautics [54, 62, 68].

In the general case of porous media with a fluid phase and a solid phase in motion, the macroscopic
acoustic behaviour is described by the Biot theory [9, 10]. In practice, the rigid-frame case described
by the simpler equivalent fluid model (EFM) [2] can be used as a good approximation in a wide range
of applications [7]. When the rigid-frame hypothesis is assumed, only the fluid phase of porous media is
considered in the description of the acoustic behaviour of the material. Adopting a macroscopic view,
the material becomes equivalent, in terms of acoustic behaviour, to that of a fluid with a complex-
valued effective density and compressibility. Indeed, these physical properties are frequency-dependent
functions and are conveniently expressed by means of the dynamic tortuosity α and the normalized
dynamic compressibility β. Rewriting the equations controlling the acoustic behaviour of a porous
sample with α and β is valuable [71], as it separates the visco-inertial and thermal contributions,
respectively.

When additional assumptions are made on the pore shape, the frequency asymptotic behaviour
of the foregoing two functions is known in the low (LF) and high (HF) frequency limits [37, 20, 24,
40]. However, except in the simplest cases, no exact definition can be retrieved at all frequencies,
and an adequate connection between low and high frequency limits must be adopted. Various semi-
phenomenological models predict α and β in the whole frequency range such as the Höroshenkov
model [34, 35], the Wilson model [65, 66], or the Johnson-Champoux-Allard-Pride-Lafarge (JCAPL)
model [37, 20, 40, 56, 41]. The JCAPL model, which can recover widely used simpler models such
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as the JCA and JCAL models, relies on 9 physical parameters. This makes it the most complex of
the aforementioned models, although the number of parameters can be reduced in the case of porous
media with a pore size distribution close to log-normal [34]. However, a theoretical analysis based
on the JCAPL model can yield valuable insights on other models, via existing relations linking the
models or similarities between them. If the rigid assumption is relaxed, Johnson et al. [37] showed
that identical complex-valued functions should appear in the Biot model, resulting in the Biot-JKD
model where the dynamic tortuosity is described by the JCA model. Therefore, the work done to
manage the dynamic tortuosity and the dynamic compressibility is similar in both approaches.

Thanks to the Biot theory and the EFM, numerical simulations of wave propagation in porous
media can be used to better predict sound attenuation [15] and material intrinsic properties [27, 57].
Although several models exist to describe the acoustic behaviour of rigid porous media in the frequency
domain, time-domain numerical simulations are more suited to evaluate broadband signals interacting
with porous media. In addition, a time-domain representation is necessary in order to take into account
non-linear behaviours. The main challenge of working in the time domain arises from irrational terms
contained in the complex-valued functions α and β, which behave like fractional derivatives in the time
domain. Numerous works [18, 31, 42, 43] have shown that the way to address these irrational functions
has been critical for the efficiency of numerical schemes, both in terms of speed and data storage.

To tackle the time-domain representation of irrational transfer functions, a common practice is
to use a diffusive representation of their associated convolution operators [51, 44], or an oscillatory-
diffusive (OD) representation which covers a wider range of irrational functions [50]. A diffusive
representation of convolution operators leads to express them in the time domain by a continuum
of diffusive variables. These variables, known as memory variables in geophysics [19] and auxiliary
variables in acoustic [25, 67], satisfy a first-order ordinary differential equation (ODE) easier to man-
age for stability analysis and numerical schemes than an explicit formula of the convolution products.
Based on this approach, Blanc et al. [13, 14] used a diffusive representation of the shifted fractional
derivative involved in the dynamic tortuosity of the JCA model. They proved the well-posedness of the
Biot-JKD model and built an approximated model for it, coined Biot-DA (diffusive approximation)
model. Another work done by Ou [52] with a slightly different method based on a Stieljes function rep-
resentation demonstrates that the JCA dynamic tortuosity admits an integral representation formula
(IRF), which can be recast into a diffusive representation.

The discretization of a diffusive representation or of the IRF leads to a multipole model (MM)
defined by a discrete sum of elementary first or second-order low-pass systems, also known as IIR
filter in digital signal processing [1]. It is parametrized by a set of real or complex conjugate weights
and poles, which are computed by a straightforward discretization of the integral using quadrature
formulas [11]. Recent works [69, 4] have also directly adopted an MM for the dynamic variables α
and β, obtaining the weights and poles by a Padé approximation [64] or a vector fitting algorithm [29]
based on experimental measurements. The key idea of working with an MM representation is to obtain
a time-domain representation involving convolution products, which can be readily computed using
additional first-order ODEs. This technique, originating partly from [21, 16, 38, 61, 55] and classicaly
used for diffusive representation [32] or recently for acoustic metamaterials [8] and dispersive materials
[5], has been recently called the auxiliary differential equation (ADE) method [25]. It results in an
augmented system which does not require storage of previous time-step solutions and can be solved by
classical time-integration schemes. Moreover, the ADE method applied after a minor recasting of the
MM expression can ease the numerical computation for schemes based on fluxes, as shown by Xie et
al. [67].

By taking different approaches, several studies have expressed α and β as an MM but with some
distinctions. Zhao et al. [69] and Alomar et al. [4] worked with the EFM where the effective density
and the effective compressibility were approximated as MMs with a set of real and complex conjugate
parameters. The real parameters are known to describe dissipative processes, while the complex
conjugate parameters were recently shown to be related to locally-resonant behavior [3]. By contrast,
Xie et al. [67] used only real parameters to approach the dynamic tortuosity in the Biot-JKD model,
a choice justified by the IRF of α. Ou [52] showed that a Padé approximation of the IRF of α can
be described by real weights and poles, with a warranty of their signs. Moreover, Blanc et al. [13]
built the Biot-DA model with the dynamic tortuosity straightforwardly expressed as a real-parameter
MM. Then, they proved that their approximated model is stable under the condition of positive real
weights. These latter theoretical results with α described by the JCA model tend to show that both
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α and β could be well approximated by a real-parameter MM while having a stable and numerically
tractable approximated model. However, the JCA model was shown to be less accurate than the more
general JCAPL model for rigid-frame porous medium with cylindrical pores [39]. It thus appears
that a time-domain representation with the JCAPL model is desirable. Moreover, to the best of the
authors’ knowledge, no stability analysis has been conducted on the EFM with the JCAPL model.

In the present work, the rigid-frame hypothesis is taken into account. In Section 2, a brief descrip-
tion of the JCAPL-EFM and the procedure to recast α and β in an oscillatory-diffusive representation
[50] are given. An investigation of the JCAPL-EFM based on the oscillatory-diffusive representation
is carried out in Section 3. It brings out the main novelty of the present work by extending the well-
posedness proof of the Biot-JKD model [12] for the JCAPL-EFM. Then in Section 4, a multipole-based
approximation of α and β is taken and the ADE method is applied following [67, 4, 14]. Next, a sta-
bility analysis on the system obtained is performed, giving sufficient conditions on the multipole-based
approximation to ensure the stability of the approximated EFM. In Section 5, the validity and the
efficiency of the proposed approach is demonstrated numerically, with a Discontinuous Galerkin finite
element method combined to a Runge-Kutta time scheme. Finally, a conclusion is drawn in Section 6.

2 Wave propagation in rigid porous media

The EFM is first recalled. Then, the details of the JCAPL model chosen to describe the dynamic
tortuosity α and normalized dynamic compressibility β are given. Next, an oscillatory-diffusive rep-
resentation of the previous functions is taken to get rid of irrational terms and perform a stability
analysis. The techniques and procedure used in this section are gathered in Monteghetti’s work [47,
Chap. 2.1], which were applied to a wide range of acoustical models [50]. Moreover, all equations
are written in the Laplace domain in this section . Hence, it is recalled that the one-sided Laplace
transform of a locally integrable function G with finite exponential growth, i.e. G ∈ L1

loc([0,∞)) with

|G(t)| < A eσGt, is defined as Ĝ(s) :=
∫∞

0
G(t) e−stdt in the right half-plane R(s) > σG, with σG the

convergence abcissa.

2.1 Johnson-Champoux-Allard-Pride-Lafarge equivalent fluid model

The frequency-dependent equations controlling the equivalent acoustic behaviour of a rigid porous
material are expressed in the Laplace domain:{

ρ0 α(s) s û = −∇∇∇ p̂ ,
χ0 β(s) s p̂ = −∇∇∇ · û ,

(1)

where ρ0 is the fluid density and χ0 is the adiabatic compressibility. The macroscopic fluid velocity
u(t,x) and the acoustic pressure p(t,x) obtained by averaging the microscopic velocity and pressure
fields over a representative elementary volume, are defined on (0,∞) × Ω with Ω ∈ Rn. Note that
the porous medium is considered isotropic at the macroscopic scale herein, so α is a scalar term. The
JCAPL model gives an expression of the equivalent density ρ0α and the equivalent compressibility χ0β
based on the dynamic tortuosity (2) and the normalized dynamic compressibility (3), respectively. The
physical quantities α and β are intrinsically defined in the frequency domain (s = iω) and expressed
in the time domain by convolution operators.

α(s) := α∞

1 +
νφ

k0α∞

1

s

1− 2k0α∞

φΛ2

(
α0

α∞
− 1

) +
2k0α∞

φΛ2

(
α0

α∞
− 1

)√1 +
Λ2

ν

(
α0

α∞
− 1

)2

s


 ,

(2)

β(s) := γ − (γ − 1)

1 +
νφ

k′0Pr

1

s

1− 2k′0
φΛ′2 (α′0 − 1)

+
2k′0

φΛ′2 (α′0 − 1)

√
1 +

Λ′
2

ν
Pr (α′0 − 1)

2
s

−1

,

(3)

where the physical parameters are: the kinematic viscosity ν, the porosity φ, the high-frequency limit
of the tortuosity α∞, the static viscous permeability k0, the characteristic viscous length Λ, the static
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viscous tortuosity α0, the heat capacity ratio γ, the static thermal permeability k′0, the characteristic
thermal length Λ′, the static thermal tortuosity α′0 and the Prandtl number Pr. Hereafter, system (1)
with α and β given by (2) and (3) is referred to as the JCAPL-EFM.

Not to mention the large number of parameters, the intricacy of (2) and (3) comes mainly from the
irrational nature of the formulas, which share common features with fractional derivatives in the time
domain. This makes the stability analysis trickier, since the conventional methods do not work on
systems with fractional differential operators. An approach to tackle fractional derivatives is to work
with their diffusive representation [44, 45]. The next subsection is therefore dedicated to recasting (2)
and (3) under a form which proves more tractable for a stability analysis, and also for time-domain
numerical schemes.

2.2 Oscillatory-diffusive representation of the dynamic variables

Before looking at α and β, the example of the function q : s→ 1/
√
s defined on C+

0 = {s ∈ C | R(s) >
0} is recast as a diffusive representation, obtained by using the residue theorem on a Bromwich contour.
The analytic extension of q on C is therefore needed. However, the square root is multivalued on C,
i.e. two values are possible for any s ∈ C. Hence, the cut Γ = R− of the complex plane is chosen,
which leads to work with q univalued on C\Γ. Then, the computation of the jump q(ξe−iπ)− q(ξeiπ)
across the cut Γ (ξ ∈ R−) exhibits the diffusive weight µq associated with the diffusive representation

q(s) =

∫ ∞
0

µq(ξ)

s+ ξ
dξ, with µq(ξ) =

1

2iπ

[
q(ξe−iπ)− q(ξeiπ)

]
=

1

π
√
ξ

(ξ > 0). (4)

More generally, following the terminology of [47] (Chap. 2.1), a meromorphic function g : C\(−∞, γ0]→
C continuous at the endpoint γ0 ∈ R− and with poles at points sk, admits an oscillatory-diffusive (OD)
representation

g(s) =
∑
k∈Z

rk
s− sk

+

∫ ∞
γ0

µ(ξ)

s+ ξ
dξ (R(s) > 0) , (5)

under the conditions

(i) g decays uniformly at infinity: sup
|s|=R

|g(s)| −−−−→
R→∞

0, (6a)

(ii) the weight µ(ξ) :=
1

2iπ

[
g(ξe−iπ)− g(ξeiπ)

]
satisfies

∫ ∞
0

|µ(ξ)|
1 + ξ

dξ <∞, (6b)

(iii) the series based on poles and residues must meet a growth condition. (6c)

The series parametrized by the residues rk and poles sk is called the oscillatory part of g and the integral
term is referred to as the diffusive part of g, defined by the diffusive weight µ. The diffusive part must
satisfy the integrability condition (6b) for (5) to be mathematically meaningful. The growth condition
is not detailed herein since the studied functions have a finite number of poles sk (see Theorem 2.16
in [47] for a full description of the conditions).

This formulation represents a complex function with an infinite sum and a continuous superposition
of first-order systems, which leads to an MM expression once the diffusive part has been discretized.
Because of the fractional calculus tools [36] needed to express α and β with an OD representation,
functions are defined in the complex plane with their analytic extension and appropriate cuts.

2.2.1 Diffusive representation of the dynamic tortuosity

The dynamic tortuosity (7) is expressed in the Laplace domain with its analytic extension in the left
half-plane to find its diffusive representation. A definition of α on the whole complex plane would lead
to a multivalued function, which is inconsistent with the complex analysis techniques used to find its
diffusive representation. Hence, a cut on R− is chosen, leading to a single-valued dynamic tortuosity,
which preserves hermitian symmetry.

α(s) = α∞

1 +
M

s
+N

√
1 +

s

L
− 1

s

 (s ∈ C\(−∞,−L]) , (7)
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where M = νφ/(k0α∞), N = 2ν/
(
Λ2 (α0/α∞ − 1)

)
and L = ν/

(
Λ2 (α0/α∞ − 1)

2
)

are all positive

real numbers. A necessary condition for (7) to admit an OD representation is to vanish when the norm
of s tends to infinity, which is presently not the case as such. Consequently, the focus is solely on a
part of α which contains the irrational terms and decays at infinity. Several parts of (7) admit an OD
representation, but to avoid unnecessary calculations, the focus is on (8) below, which appears to be
the same diffusive part as the Atalla and Sgard perforation model [6].

αd(s) :=
1

N

[
α(s)

α∞
− 1− M

s

]
=

√
1 +

s

L
− 1

s
(s ∈ C\(−∞,−L]) . (8)

It has been shown in [50] that (8) has no singularities and admits the diffusive representation (9) with
a positive real-valued diffusive weight µJ satisfying the integrability condition (6b).

αd(s) =

∫ ∞
L

µJ(ξ)

s+ ξ
dξ (s ∈ C\(−∞,−L]) , (9)

where µJ(ξ) :=
1

π

√
ξ

L
− 1

ξ
(ξ ∈ [L,+∞)) . (10)

Finally, the dynamic tortuosity can be written with a diffusive representation as follows:

α(s) = α∞

[
1 +

M

s
+N

∫ ∞
L

µJ(ξ)

s+ ξ
dξ

]
(R(s) > 0) . (11)

2.2.2 Oscillatory-diffusive representation of the dynamic compressibility

The same methodology used to find the expression (11) for α is applied to the normalized dynamic
compressibility β. First, the latter is expressed in the Laplace domain with the positive parameters
M ′, N ′ and L′ for the sake of clarity. The extension to the left complex half-plane is done with the
cut (−∞, L′] ⊂ R−, which keeps the normalized dynamic compressibility single-valued:

β(s) = γ − (γ − 1)

1 +
M ′

s
+N ′

√
1 +

s

L′
− 1

s


−1

(s ∈ C\(−∞,−L′]) , (12)

where M ′ = νφ/(k′0Pr), N ′ = 2ν/
(

Λ′
2

(α′0 − 1)
)

and L′ = ν/
(

Λ′
2

(α′0 − 1)
2

Pr
)

. Unlike the dynamic

tortuosity, the portion of β which tends to zero when the modulus of s approaches infinity is not related
to a known diffusive part of functions studied in the literature. Hence, an investigation is done to find
if (13) admits an OD representation.

βod(s) :=
β(s)− 1

γ − 1
=

N ′
√

1 +
s

L′
+M ′ −N ′

s+N ′
√

1 +
s

L′
+M ′ −N ′

(s ∈ C\(−∞,−L′]) . (13)

Its study leads to two different representations whether there exists s ∈ C\(−∞,−L′] such that the
denominator of (13) equals to zero or not. As fully detailed in A.1, the two cases can be distinguished
by the sign of the quantity M ′ −N ′ −L′ and thus by the physical parameters. Herein, the conditions
differentiating the two cases are also expressed through the static thermal tortuosity α′0 which we recall
that it satisfies α′0 > 1 by definition.

First case: M ′ −N ′ − L′ > 0.
According to the definition of M ′, N ′ and L′, the condition of having M ′ −N ′ − L′ positive implies:

α′0 > 1 +
k′0
φΛ′2

1 +

√
1 +

φΛ′
2

k′0

 . (14)
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As proved in A.1, the denominator of βod can never be zero in this case. Therefore, βod simply admits
a diffusive representation (15) with a diffusive weight (16), which is real-valued and positive (like µJ),
and yields a well-posed diffusive part.

βod(s) = N ′
∫ ∞
L′

νJ(ξ)

s+ ξ
dξ (s ∈ C\(−∞,−L′]) , (15)

νJ(ξ) :=
1

π

ξ

√
ξ

L′
− 1

(ξ −M ′ +N ′)2 +N ′2
(
ξ

L′
− 1

) (ξ ∈ [L′,+∞)) . (16)

Second case: M ′ −N ′ − L′ < 0.
The condition of having M ′ −N ′ − L′ negative implies that

α′0 < 1 +
k′0
φΛ′2

1 +

√
1 +

φΛ′
2

k′0

 . (17)

In this case, βod has the same diffusive part as in the first case. However, it also admits an oscillatory
part consisting of one pole s0 with weight r0. Indeed, if the relation (17) is fulfilled, then βod has a
unique negative singularity s0 ∈ [−L′, 0 [ given by (83), with an associated positive residue r0 given
by (84). As a result, the function βod can be recast as:

βod(s) =
r0

s− s0
+N ′

∫ ∞
L′

νJ(ξ)

s+ ξ
dξ (s ∈ C\(−∞,−L′]) . (18)

Finally, in both cases, the normalized dynamic compressibility can be recast with an OD represen-
tation:

β(s) = 1 + (γ − 1)

[
r0

s− s0
+N ′

∫ ∞
L′

νJ(ξ)

s+ ξ
dξ

]
(R(s) > 0) , (19)

where r0 is taken null if M ′ −N ′ − L′ is positive.

The dynamic tortuosity and normalized dynamic compressibility of the JCAPL model can therefore
be expressed with (11) and (19), respectively. These expressions do not contain irrational terms with
s and appear like an MM with an infinite number of weights and poles. Hence, a discretization of their
diffusive part leads straightforwardly to an MM.

2.3 Discussion on the diffusive representation for other models

Identical techniques can be applied to other models. In this section, the Wilson model [65, 66] and the
Horoshenkov model [34, 35] are looked into in order to exhibit a diffusive representation which can be
straightforwardly discretized as an MM.

The Wilson dynamic tortuosity can be linked to the JCAPL one with the proper definition of M ,
N and L (see Table 1). Moreover, the Wilson normalized dynamic compressibility can be expressed
as follows:

βw(s) = 1 + (γ − 1)

∫ ∞
τ -1
e

νw(ξ)

s+ ξ
dξ (R(s) > 0) , (20)

where τe is the entropy-mode relaxation time. In contrast to the JCAPL model, the diffusive weight
νw, whose expression is given by (90), is a negative function. However, another representation of βw

containing an extended diffusive representation can be used to obtain a diffusive weight ν̃w that is
always positive:

βw(s) = (γ − 1)

∫ ∞
τ -1
e

ν̃w(ξ)
1

s+ ξ
dξ + (γ − 1) τe

∫ ∞
τ -1
e

ν̃w(ξ)
s

s+ ξ
dξ (R(s) > 0) , (21)

where ν̃w > 0 is given by (93) in A.2 with the steps leading to (21).
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The Horoshenkov model gives an expression of α and β similar to the JCAPL model with a slightly
different expression for the last terms that are in factor of N and N ′ in (7) and (12), respectively (a
difference highlighted in A.3). Therefore, the Horoshenkov model cannot be linked in a straightforward
manner to the JCAPL model, although we can show that it admits a similar diffusive representation
regarding the dynamic tortuosity:

αh(s) = α∞

[
1 +

Mh

s
+Nh

∫ ∞
0

µh(ξ)

s+ ξ
dξ

]
(R(s) > 0) , (22)

with µh(ξ) =
1

π

√
ξ

Lh

ξ

Lh
+ 1

(ξ ∈ [0,+∞)) , (23)

where Mh = M = νφ/(k0α∞), Nh = θρ,1 and Lh = Mh/θ
2
ρ,3 . Here, the coefficients θρ,1 and θρ,3 are

the Padé approximant parameters used in the Horoshenkov model [34, 35]. Compared to the JCAPL
model, the Horoshenkov model exhibits a diffusive part where ξ = 0+ is reached, which induces a
long-memory behaviour of the viscous dissipation in the time-domain. The same remark can be done
for the Horoshenkov normalized dynamic compressibility (24), which is obtained by starting with a
similar isolated term as in (13) and then by following the same approach as for the JCAPL model.

βh(s) = 1 + (γ − 1)N ′h

∫ ∞
0

νh(ξ)

s+ ξ
dξ (R(s) > 0) , (24)

where νh, given in A.3, is a positive function on R+.

This section has gathered OD and diffusive representations of α and β described by different
models. As mentionned before, the Wilson dynamic tortuosity can be described by the JCAPL dynamic
tortuosity. Moreover, the JCAPL model is an extension of the JCAL and JCA models. Hence,
with the right set of parameters, the expression of the dynamic tortuosity and normalized dynamic
compressibility given by the JCAPL model can cover the JCAL and JCA models. The connections
between these models are gathered in Table 1.

Table 1: Parameters of expressions (7) and (12) defining α and β given for several models, with the
cross × indicating the impossibility to describe the corresponding model with these expressions.

Variable Parameter JCAPL JCAL JCA Wilson Horoshenkov

M
νφ

k0α∞

νφ

k0α∞

νφ

k0α∞

2

τv

α N
2ν

Λ2
(
α0

α∞
− 1
) νφ

k0α∞

νφ

k0α∞

1

τv
×

L
ν

Λ2
(
α0

α∞
− 1
)2

νφ2Λ2

4k2
0α

2
∞

νφ2Λ2

4k2
0α

2
∞

1

τv

M’
νφ

k′0Pr

νφ

k′0Pr

8ν

Λ′2Pr

β N’
2ν

Λ′2 (α′0 − 1) Pr

νφ

k′0Pr

8ν

Λ′2Pr
× ×

L’
ν

Λ′2 (α′0 − 1)
2

Pr

νφ2Λ′
2

4k′0
2Pr

16ν

Λ′2Pr

Note that for the JCA and JCAL dynamic compressibility, the inequality M ′ −N ′ − L′ < 0 is always
satisfied. Hence, β always admits an OD representation for these two models.
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3 Stability analysis of the Johnson-Champoux-Allard-Pride-
Lafarge equivalent fluid model

Based on diffusive representations, a stability analysis of the time-domain JCAPL-EFM is carried
out thanks to an energy approach. An introduction to the diffusive realization used to express the
time convolution products ? with a time-local representation is first given. The energy defined for the
JCAPL-EFM is then presented, followed by a proof of the JCAPL-EFM stability. We refer to [44] for
the definitions and properties lying behind the mathematical tools used in this section.

3.1 Extended diffusive realization

For a given transfer function Ĝ admitting a diffusive representation defined by a diffusive weight νG,
the diffusive realization of Ĝ applied to a scalar time-dependent function p is: yp(t,x) :=

∫ ∞
0

νG(ξ)ψ(ξ; t,x) dξ , (25)

∂tψ(ξ; t,x) = − ξ ψ(ξ; t,x) + p(t,x) , ψ(ξ; 0,x) = 0 . (26)

The function p can be seen as an input of the convolution system G?p, while the function yp = G?p is
the output, and the state ψ is called the diffusive variable. However, the JCAPL transfer functions, α
and β, are applied to the time derivative of the velocity and pressure in the EFM. Hence, the desired
diffusive realization makes use of zp := G ? ∂tp as output. Such a realization is called an extended
diffusive realization, and writes:

zp(t,x) :=

∫ ∞
0

νG(ξ) ∂tψ(ξ; t,x) dξ , (27)

with ψ solution of (26). In addition, an energy functional can be defined for the extended diffusive
realization:

Eψ(t) :=
1

2

∫
Ω

∫ ∞
0

νG(ξ) ξ |ψ(ξ; t,x)|2 dξ dx , (28)

the derivative of which is:

d

dt
Eψ(t) =

∫
Ω

∫ ∞
0

νG(ξ) ξ ψ(ξ; t,x) ∂tψ(ξ; t,x) dξ dx (29a)

=

∫
Ω

∫ ∞
0

νG(ξ) [p(t,x)− ∂tψ(ξ; t,x)] ∂tψ(ξ; t,x) dξ dx (29b)

=

∫
Ω

p(t,x)

(∫ ∞
0

νG(ξ) ∂tψ(ξ; t,x) dξ

)
dx −

∫
Ω

∫ ∞
0

νG(ξ) (∂tψ(ξ; t,x))
2

dξ dx (29c)

=

∫
Ω

p(t,x) zp(t,x) dx −
∫

Ω

∫ ∞
0

νG(ξ) (∂tψ(ξ; t,x))
2

dξ dx. (29d)

Equation (26) is used to get (29b) from (29a). After some rearrangement, the last equation (29d) is
obtained from (29c) by using (27). If the diffusive weight νG is a positive function, then the second
term of the right-hand side of (29d) is always negative and a lossy power balance can be found for Eψ:

d

dt
Eψ(t) 6 (p, zp)L2(Ω) , (30)

where (· , ·)L2(Ω) denotes L2-inner product.

The extension of scalar extended diffusive realizations to the vector-valued case is straightforward.
Next, analogous equations to those obtained for p are presented below for a vector of functions u, as
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it will be used for the velocity field in the stability analysis. zu(t,x) :=

∫ ∞
0

µG(ξ) ∂tφφφ(ξ; t,x) dξ , (31)

∂tφφφ(ξ; t,x) = − ξ φφφ(ξ; t,x) + u(t,x) , φφφ(ξ; 0,x) = 0 . (32)

The energy functional associated with (31)-(32) and its derivative are:

Eφφφ(t) :=
1

2

∫
Ω

∫ ∞
0

µG(ξ) ξ ‖φφφ(ξ; t,x)‖2 dξ dx , (33)

d

dt
Eφφφ(t) =

∫
Ω

u(t,x) · zu(t,x) dx −
∫

Ω

∫ ∞
0

µG(ξ) ‖∂tφφφ(ξ; t,x)‖2 dξ dx 6 (u, zu)L2(Ω;R2) , (34)

where ‖ ‖ is the euclidian norm.

3.2 Energy balance

The JCAPL-EFM is first written in the Laplace domain (35) with the OD representations (11) and
(19) of the dynamic variables. For the sake of clarity, spatial, time and Laplace variables are omitted
for the velocity u and the pressure p.

s û + M û + N

∫ ∞
L

µJ(ξ)
s û

s+ ξ
dξ = − 1

ρ0 α∞
∇∇∇ p̂ ,

s p̂ + (γ − 1)r0
s p̂

s− s0
+ (γ − 1)N ′

∫ ∞
L′

νJ(ξ)
s p̂

s+ ξ
dξ = − 1

χ0
∇∇∇ · û .

(35)

To express system (35) in the time domain, extended diffusive realizations are used for the diffusive
part of both equations with the vector-valued diffusive variable φφφ and the scalar diffusive variable
ψ used for the velocity u and the pressure p, respectively. Therefore, the term s û/(s + ξ) (resp.
s p̂/(s + ξ)) in (35) are the Laplace transforms of ∂tφφφ (resp. ∂tψ), which is straightforward to verify
from (32) (resp. (26)). Moreover, non-null initial conditions are set for the diffusive variables. They
correspond to null initial conditions for the time derivative of the diffusive variables, which is needed
for the integrals of (36a) and (36b) to be finite at t = 0.

∂tu + M u + N

∫ ∞
L

µJ(ξ) ∂tφφφ(ξ; t,x) dξ = − 1

ρ0 α∞
∇∇∇ p , (36a)

∂tp + (γ − 1) r0 ∂tψ(−s0; t,x) + (γ − 1)N ′
∫ ∞
L′

νJ(ξ) ∂tψ(ξ; t,x) dξ = − 1

χ0
∇∇∇ · u , (36b)

∂tφφφ(ξ; t,x) = − ξ φφφ(ξ; t,x) + u , (36c)

∂tψ(ξ; t,x) = − ξ ψ(ξ; t,x) + p , (36d)

φφφ(ξ; 0,x) = u(0,x)/ξ , (36e)

ψ(ξ; 0,x) = p(0,x)/ξ. (36f)

A particular feature appears in equation (36b), where an additional term with the diffusive variable ψ
can exist for an isolated point at ξ = −s0 > 0, associated with a fixed weight r0 > 0 (as previously
explained in Section 2.2.2). Although it is separated from the diffusive representation in the third term
of (36b), it is solution of the same auxiliary equation (36d).

The classical mechanical energy is defined below, divided into a kinetic energy and a potential
energy:

Em(t) :=
ρ0α∞

2

∫
Ω

‖u‖2 dx +
χ0

2

∫
Ω

p2dx . (37)
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Additionally, based on (28) and (33) with the diffusive weights µG = µJ and νG = νJ (defined in (10)
and (16), respectively), a diffusive energy is defined as a linear combination of the energy associated
with each diffusive variables:

Ediff(t) := ρ0 α∞N Eφφφ(t) + χ0 (γ − 1)N ′Eψ(t) + χ0 (γ − 1)Eψ0(t) , (38)

with Eψ0 the energy associated with the diffusive variable ψ evaluated at ξ = -s0, defined in (39).
Therefore, it is very similar to Eψ given in (28) with the residue r0 playing the role of a constant
diffusive weight.

Eψ0
(t) :=

∫
Ω

r0 (−s0) |ψ(−s0; t,x)|2 dx . (39)

It is important to recall that in (39), r0 > 0 and s0 6 0, and thus Ediff is positive-definite. The
global energy functional associated with the extended dynamical system (36) with (u, p,φφφ, ψ) as state
variables is defined below:

E(t) := Em(t) + Ediff(t), (40)

=
ρ0α∞

2

(∫
Ω

‖u‖2 dx + N

∫
Ω

∫ ∞
L

µJ(ξ) ξ ‖φφφ(ξ; t,x)‖2 dξ dx

)
+

χ0

2

(∫
Ω

p2 dx + (γ − 1)N ′
∫

Ω

∫ ∞
L′

νJ(ξ) ξ |ψ(ξ; t,x)|2 dξ dx + (γ − 1)

∫
Ω

r0 (−s0) |ψ(−s0; t,x)|2 dx

)
.

Note that the positivity of the JCAPL diffusive weights µJ and νJ enables to prove the positive-
definiteness of E . It is also a key aspect of the following proposition.

Proposition 3.1. In a bounded domain Ω with no contribution at the boundary (either p = 0, or
u · n = 0 on ∂Ω), the augmented energy E of the JCAPL-EFM satisties:

d

dt
E(t) = − ρ0 α∞M

∫
Ω

‖u‖2 dx− ρ0 α∞N

∫
Ω

∫ ∞
0

µJ(ξ) ‖∂tφφφ(ξ)‖2 dξ dx (41a)

− χ0 (γ − 1)N ′
∫

Ω

∫ ∞
0

νJ(ξ) (∂tψ(ξ))
2

dξ dx − χ0 (γ − 1)

∫
Ω

r0 (∂tψ(−s0))
2

dξ dx ,

(41b)

6 0. (41c)

Hence, the augmented energy E is decreasing. Moreover, the dynamical system proves to be asymptot-
ically stable, i.e. (u, p,φφφ, ψ)→ (0, 0,0, 0) as t→∞ in the appropriate energy space.

Proof. (sketch of)
Let us first compute separately the derivative of the mechanical energy and the derivative of the
energy associated with the diffusive variables. In order to keep the proof readable, the time and
spatial variables are omitted for all functions.

• The derivative of the mechanical energy is first tackled. In the following calculations, equations
(36a) and (36b) are used to replace the spatial derivatives of u and p appearing in the first equality.
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d

dt
Em(t) = ρ0 α∞

∫
Ω

u · ∂tu dx + χ0

∫
Ω

p ∂tp dx, (42a)

= −
∫
∂Ω

pu · n dσ − ρ0 α∞M

∫
Ω

‖u‖2 dx − ρ0 α∞N

∫
Ω

∫ ∞
L

µJ(ξ) u · ∂tφφφ(ξ) dξ dx

(42b)

− χ0 (γ − 1)N ′
∫

Ω

∫ ∞
L′

νJ(ξ) p ∂tψ(ξ) dξ dx − χ0 (γ − 1)

∫
Ω

r0 p ∂tψ(−s0) dx, (42c)

= − ρ0 α∞M

∫
Ω

‖u‖2 dx − ρ0 α∞N

∫
Ω

u · zu dx − χ0 (γ − 1)N ′
∫

Ω

p zp dx − χ0 (γ − 1) r0

∫
Ω

p ∂tψ(−s0) dx.

(42d)

The integral on ∂Ω in (42b) stands for the classical interaction with the exterior of Ω, and is equal to
zero when either p = 0 or u · n = 0 at the boundary. Moreover, zu and zp are defined as in (31) and
(27), respectively, with the positive diffusive weights µG = µJ and νG = νJ. Note that the first term
of equality (42d) is negative, while the others do not have a definite sign.

• The derivative of the energy resulting from the auxiliary variables is now addressed. The previous
expressions (29d) and (34) of the derivatives of the energy defined for the extended diffusive realization
is used in the next calculations, with the same zu and zp used for the mechanical energy.

d

dt
Ediff(t) = ρ0 α∞N

d

dt
Eφφφ(t) + χ0 (γ − 1)N ′

d

dt
Eψ(t) − χ0 (γ − 1)

d

dt
Eψ0

(t), (43a)

= − ρ0 α∞N

∫
Ω

∫ ∞
0

µJ(ξ) ‖∂tφφφ(ξ)‖2 dξ dx + ρ0 α∞N

∫
Ω

u · zu dx (43b)

− χ0 (γ − 1)N ′
∫

Ω

∫ ∞
0

νJ(ξ) (∂tψ(ξ))
2

dξ dx + χ0 (γ − 1)N ′
∫

Ω

p zp dx (43c)

− χ0 (γ − 1)

∫
Ω

r0 (∂tψ(−s0))
2

dξ dx + χ0 (γ − 1)

∫
Ω

r0 p ∂tψ(−s0) dx. (43d)

The last term of (43a) is handled with the same approach used in (29), i.e. using (26) to rewrite
the term −s0ψ(−s0). The weight r0 and the diffusive weights µJ and νJ are known to be positive,
therefore, the first terms of (43b), (43c) and (43d) are negative. However, the last term of each of
these three lines does not have a known sign, but it is always the opposite of the one found in (42d).

• Let us now focus on the global energy E , and more particularly on the sign-varying terms in
Em and Ediff. Summing up relations (42d) and (43), respectively, leads to the cancelling of the last
three terms of (42d) by the last term of (43b), (43c) and (43d), respectively. Consequently, the only
remaining terms in the derivative of the augmented energy E are all negative:

d

dt
E(t) =

d

dt
Em(t) +

d

dt
Ediff(t), (44a)

= − ρ0 α∞M

∫
Ω

‖u‖2 dx − ρ0 α∞N

∫
Ω

∫ ∞
0

µJ(ξ) ‖∂tφφφ(ξ)‖2 dξ dx (44b)

− χ0 (γ − 1)N ′
∫

Ω

∫ ∞
0

νJ(ξ) (∂tψ(ξ))
2

dξ dx − χ0 (γ − 1)

∫
Ω

r0 (∂tψ(−s0))
2

dξ dx,

(44c)

6 0. (44d)

Assuming that functions are defined in some appropriate functional spaces, relation (40) implies the
stability of the JCAPL-EFM, i.e. E(t) 6 E(t = 0); care must be taken that since pressure p is defined
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up to an additive constant, the appropriate functional space will include the zero mean pressure∫
Ω
pdx = 0 as a constraint. Moreover, following results from [45], [48] and references therein, the

asymptotic stability of the augmented system can be proved: it means that all the components of the
augmented state vector (u, p,φφφ, ψ) tend to zero in the appropriate energy space, as t tends to infinity.

A similar global energy functional can be defined with the diffusive representation of the Horoshenkov
model. The diffusive weights (23) and (98) being positive, the same conclusion is drawn: the Horoshenkov
model is stable. However, despite the positive diffusive weights obtained for the Wilson model, the
extended diffusive representation in βw prevents one from applying the same methodology. In fact,
a second-order derivative appears when multiplying βw by the derivative of p. In order to work with
the functional spaces needed for the proof of stability based on diffusive representations, an extended
diffusive representation applied to the derivative of the input p can be used for the Wilson-EFM. How-
ever, this formulation does not lead to an energy balance where terms without definite sign cancel each
other as in the JCAPL-EFM. Hence, no conclusion can be drawn for the stability of the Wilson-EFM.

4 Equivalent fluid model based on multipole model

An approximated model for the EFM using an MM to describe α and β is proposed in this section.
An investigation is done on the multipole-based EFM to find sufficient conditions depending on the
MM parameters to ensure its stability.

4.1 Multipole model approximation

The dynamic tortuosity and normalized dynamic compressibility can be recast in the Laplace domain
with a continuous superposition of first-order systems. This result, shown in Section 2 for several
models, justifies an approximation of these quantities for numerical modeling by a finite number of
first-order system, namely an MM. Consequently, α and β are chosen to be approximated by the
complex functions αmm and βmm defined by:

αmm(s) = c0 +
c−1

s
+

K∑
k=1

rk
s− sk

, (45)

βmm(s) = c′0 +
c′−1

s
+

K′∑
k=1

r′k
s− s′k

. (46)

The coefficients c0, c−1, c′0 and c′−1 are obtained from the asymptotic behaviour of α and β. Hence,
one obtains in a straightforward manner that c0 = α∞, c−1 = νφ/k0 = α∞M , c′0 = 1 and c′−1 = 0.
However, they are not replaced by their value in this section in order to keep a symmetric form of the
equations facilitating the reading. The weights rk and r′k and the poles sk and s′k are the parameters
interpreted as the MM degrees of freedom, computed with optimization approaches or quadrature
methods. In a general MM, these parameters can be complex, going by conjugate pairs when the MM
satisfies the reality condition (g(s) ∈ R+ for s ∈ R+). Herein, the parameters rk, r′k, sk and s′k are
assumed real due to the OD representations of α and β. Indeed, these representations have a real-valued
diffusive weight and the possible oscillatory part in the JCAPL normalized dynamic compressibility is
described by real parameters too. This choice matches the approximations of the Biot-JKD equations
[14, 53]. Moreover, the latest numerical studies based on MMs for wave propagation in conventional
porous media with only a dissipative nature [4, 70] use real parameters, which is consistent with the
previous section.

By injecting (45) and (46) into the EFM equations (1) and by using the original strategy brought
out in [67], which consists in using the partial fraction decomposition

s

s− sk
= 1 +

sk
s− sk

, (47)
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the following system is obtained:
s û +

(
c−1

c0
+

K∑
k=1

rk
c0

)
û +

K∑
k=1

rksk
c0

1

s− sk
û = − 1

ρ0c0
∇∇∇p̂ ,

s p̂ +

c′−1

c′0
+

K′∑
k=1

r′k
c′0

 p̂ +

K′∑
k=1

r′ks
′
k

c′0

1

s− s′k
p̂ = − 1

χ0c′0
∇∇∇ · û .

(48)

The ADE method [25] is applied on (48), describing the set of equations in the time-domain with
causal convolutions computed through the auxiliary functions φkφkφk and ψk.

∂tu +
1

ρ0c0
∇∇∇p +

(
c−1

c0
+

K∑
k=1

rk
c0

)
u +

K∑
k=1

rksk
c0

φkφkφk = 0 , (49a)

∂tp +
1

χ0c′0
∇∇∇ · u +

c′−1

c′0
+

K′∑
k=1

r′k
c′0

 p +

K′∑
k=1

r′ks
′
k

c′0
ψk = 0 , (49b)

∂tφkφkφk = skφkφkφk + u (∀ k ∈ [[1,K]]), (49c)

∂tψk = s′k ψk + p (∀ k ∈ [[1,K ′]]). (49d)

The additional initial conditions needed for the auxiliary functions depend on the principal variables

φkφkφk(0,x) = −u(0,x)/sk , (50)

ψk(0,x) = −p(0,x)/s′k , (51)

although in practice, the initial pressure and velocity fields in a porous media are null.

Thanks to the partial fraction decomposition (47) done before applying the inverse Laplace trans-
form, there is no spatial derivative in the additional equations (49c) and (49d). Hence, when the
system is discretized with a numerical scheme based on fluxes, these fluxes depend on the velocity
and pressure, but not on the auxiliary variables. Consequently, the problem to solve at each mesh
interface does not grow with the number of additional variables. Moreover, for problems with multiple
subdomains, there are no additional fluxes to manage at the interface between them.

4.2 Stability analysis

In section 3, the stability of the JCAPL-EFM was proved. Consequently, the approximated EFM
should be built in such a way to keep the same stability property. Therefore, a stability analysis of
the multipole-based EFM is performed in order to find sufficient conditions to ensure its stability. It is
performed through the energy functional (52) defined analogously to the JCAPL-EFM global energy
E given equation (40). Here, the energy functional Ea can be seen as an approximation of E with a
discrete sum of diffusive variables.

Ea(t) =
ρ0

2

(
c0

∫
Ω

‖u‖2 dx +

K∑
k=1

∫
Ω

rk (−sk) ‖φkφkφk‖2 dx

)
+
χ0

2

c′0 ∫
Ω

p2 dx +

K′∑
k=1

∫
Ω

r′k (−s′k) |ψk|2 dx

 ,

(52)

which derivative is:

d

dt
Ea(t) = −ρ0 c−1

∫
Ω

‖u‖2 dx − χ0 c
′
−1

∫
Ω

p2 dx −
∫
∂Ω

pu · n dσ

−ρ0

K∑
k=1

rk

∫
Ω

‖∂tφkφkφk‖2 dx − χ0

K′∑
k=1

r′k

∫
Ω

(∂tψk)
2

dx .

(53)

From these last two equations, combined with the fact that ρ0, χ0, c0, c−1, c′0 and c′−1 are necessarily
positive or null for conventional porous materials, the stability of the multipole-based EFM can be
ensured under two sufficient conditions summarized in lemma 4.1.
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Lemma 4.1. In a bounded domain Ω with no contribution at the boundary (either p = 0, or u ·n = 0
on ∂Ω), the approximated augmented energy Ea is positive-definite and decreasing under the conditions:

- the poles (sk, s
′
k)k are negative real numbers, (C1)

- the weights (rk, r
′
k)k are positive real numbers. (C2)

As a result, if (C1) and (C2) are fulfilled, then the multipole-based EFM is stable. It should be pointed
out that the first condition (C1), which is extended for complex parameters by having the real part
of the poles negative, is a necessary condition to have stable solutions. The methods used in the
literature for wave propagation in porous media [67, 14, 69, 4] already satisfy this condition. The
second condition (C2) is analogous to the positivity of the JCAPL diffusive weights µJ and νJ needed
to prove its stability.

5 Numerical analysis

In the following, two numerical studies are carried out. An energy analysis is first conducted in
Section 5.2 on the discretized equations with a toy model. A more involved numerical analysis is then
performed in Section 5.3, where a numerical porous material of realistic intrinsic properties placed in
a 2D simulation mimicking an impedance tube experiment is considered. Prior to that, the numerical
scheme is introduced. The choice made in this work is to use a fourth-order Runge-Kutta scheme [63]
for the discretization in time. The space discretization is handled by a Discontinuous Galerkin (DG)
scheme, a method well suited for acoustic problems [22].

5.1 Numerical scheme

Based on the theoretical results given in Sections 3 and 4 on the JCAPL-EFM stability and the
multipole-based approximation, a numerical scheme is built to solve the augmented system (49). The
system is rewritten below in hyperbolic form:

∂tq +Ax∂xq +Ay∂yq +Bq = S, (54)

with the state variables q =
(
u v p φX1 . . . φXK φY1 . . . φYK ψ1 . . . ψK′

)T
. The auxil-

iary variables φXk and φYk are associated with the two velocity components u and v, respectively, and
ψk are the auxiliary variables associated with p. The vector S is the source term and the Jacobian
matrices Ax and Ay are defined as:

Ax =



0 0 1
ρ0c0

0 . . . 0

0 0 0 0 . . . 0
1

χ0c′0
0 0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 0


, Ay =



0 0 0 0 . . . 0
0 0 1

ρ0c0
0 . . . 0

0 1
χ0c′0

0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 0



 (u, v, p)

 (φXk , φ
Y
k , ψk)

,

(55)

where c0 and c′0 are some MM parameters, see equations (45) and (46). The relaxation matrix B is
detailed in B, equation (99), and is in charge of the coupling between the auxiliary variables and the
principal ones.

As noticed in [67], the advantage of (49), obtained in this format thanks to (47), is the absence
of the auxiliary variables in the numerical flux used for the communication between the DG cells. As
detailed in B, the time-domain system obtained without using the partial fractional decomposition (47)

has different Jacobian matrices Ãx and Ãy in which lines associated with φXk , φYk and ψk have non-
null terms (see equation (104)). This is similar to other implementations [14, 26] where the auxiliary
equations contain time or spatial derivatives of the principal variables. In the latter cases, when the
number of auxiliary variables grows, the numerical cost increases more than for problems where no
numerical flux is associated with the auxiliary equations.
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5.1.1 Space discretization

Let Ω ⊂ R2 be the computational domain for which there is a partition (Th) where h denotes the
maximal diameter of the partition elements. The approximation space is taken as Vh := {v | ∀T ∈
Th, v|T ∈ Pk(T )} where Pk(T ) is the space of polynomials of degree at most k. A basis {λij ∈ Pk(Ti), j =
1 . . . d} with d = (k + 1)(k + 2)/2 is defined for each element Ti ∈ Th. Hence, a scalar function q is
approximated on a cell Ti by:

qh(x, t) :=

d∑
j=1

qi,jh (t)λij(x). (56)

Based on (56), the vector of solutions qh(x, t) = (uh vh ph) is defined. Applying the DG method [33]
results in:

d

dt

∫
Ti

qh(x, t)λij dΩ +

∫
Ti

F(qh(x, t)) · ∇λij dΩ−
∫
∂Ti

F∗(qe
h(x, t),qi

h(x, t)) · ni λ
i
j dσ +

∫
Ti

b(qh(x, t))λij dΩ = 0,

(57)

where F(qh) = (Axqh, Ayqh), b(qh) = Bqh, ni = (nix, n
i
y) is the outward unit normal to the edge

∂tTi and F∗ is the numerical flux. The solution qh on the edge of a cell Ti is denoted qi
h or qe

h when
the interior or the exterior value of T is taken, respectively. In this work, the numerical flux used is
the vector splitting

F∗(qi
h,q

e
h) = A+qi

h +A−qe
h, (58)

where incoming waves and outcoming waves are seperated in A+ and A−. The latter contain respec-
tively the positive eigenvalues and the negative eigenvalues of A = Axnx + Ayny. This flux solves
exactly the monodimensional Riemann problem with constant coefficients. Note that for the boundary
∂Ω, the centered flux

F∗BC(qi
h,q

e
h) := A

qi
h + qe

h

2
, (59)

is enforced with qe
h representing a ghost state defined with qi

h. Finally, the semi-discrete equation
reads:

M
dQh

dt
(t) := KQh(t) + S̃(t), (60)

where Qh is the unknown and S̃ is the source term.

5.1.2 Time discretization

The inversion of the mass matrix M in (60) is straighforward thanks to its block diagonal structure
where each block is small enough to compute its inverse straighforwardly. Hence, the space discretiza-
tion (60) can be rewritten

dQh

dt
(t) = Lh(t,Qh(t)) = DQh(t) + G(t), (61)

with Lh the semi-discete operator, D = M−1K and G = M−1S̃. The RKF84 eight-stage fourth-order
2N-storage Runge–Kutta method [63] is used for the time discretization as in [49]. It has been shown
to be very efficient when combined with a DG space discretization for wave propagation problems.

Let {tn}Nn=0 be a partition of [0,T]⊂ R+, ∆t = tn+1 − tn the time step and Qh
n the approximated

solution at time tn. The steps of the RKF84 algorithms are

q(0) = Qh
n, (62a)

dq(i) = Aidq(i−1) + Lh

(
tn + ci∆t,q

(i−1)
)
, (62b)

q(i) = q(i−1) +Bidq(i), for i = 1 . . . 8, (62c)

Qh
n+1 = q(8), (62d)
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where the coefficients Ai, Bi and ci are given Table A.9 in [63].

The stability condition for a scalar equation
dq

dt
= d q writes:

|R(z)| 6 1, (63)

where R(z) = qn+1/qn and z = d∆t. Consequently, the stability condition depends on the time and
space discretization, the advection velocity but also on the poles present in the auxiliary equations.
The stability condition can also be expressed with the Courant number C as:

C = dm
∆t

h
6 C∗, (64)

with dm the spectral radius of D and C∗ the maximal Courant number given in [63] for different
wavenumber and element size h in 1D. The time step for the studied numerical simulation is therefore
chosen so as to ensure the stability of the time scheme.

5.2 Energy analysis

The toy model studied in this section is built with MMs for α and β described by negative poles and
different sets of weights. The weights are varied to explore cases where the stability condition (C2) is
fulfilled or not, in order to highlight the influence of the weights’ sign.

5.2.1 Multipole-model parameters

The approximated EFM (54) is first solved for αmm(s) = 1 and βmm(s) = 1, a case describing a
medium without dissipative acoustic properties. In that case, c0 = c′0 = 1, c−1 = c′−1 = 0 and no pole
is used (and therefore no auxiliary function). Then, we keep αmm(s) = 1 and we consider 3 different
multipole-based approximations of:

βtoy(s) := 1 +

√
s+ 2

s+ 1
, (65)

which is a simplified model of βod given in (19). Indeed, βtoy can be decomposed as a sum of a
single-pole term and a diffusive part: βtoy(s) = 1 + 1/(s+ 1) +

∫∞
L′=2

νtoy(ξ)/(s+ ξ) dξ with νtoy(ξ) =√
ξ − 2/(ξ−1) > 0. The positive diffusive weight and the positive residue of the single pole make clear

that βtoy is a passive transfert function, namely R (βtoy(s)) > 0 for R(s) > 0. However, the multipole-
based approximation does not take into account the known oscillatory-diffusive representation of βtoy

in order to adopt a general approach where no analytical studies have been done before. Therefore,
the multipole-based approximation is built from expression (65).

The MMs consist of a maximum of 4 poles and weights computed via the vector fitting algorithm
[29] in order to fit βtoy over the frequency range [0.1Hz,100Hz]. The constraint of 8 parameters is chosen
arbitrarily in order to work with a small number of poles and weights. All the MM parameters are
gathered in Table 2 with the non-dissipative case labeled as ”Case 0”. The Bode diagram comparing
the MMs, with the reference function βtoy is shown in Fig. 1.

Table 2: Parameters of the multipole toy models associated with the 4 studied cases. The bold values
are chosen arbitrarily while the other obtained with the vector fitting are rounded to two decimals
places.

Constants Weights Poles Condition (C2)

c′0 c′−1 r′0 r′1 r′2 r′3 s′0 s′1 s′2 s′3 rk > 0
Case 0: (β0) 1 0 0 0 0 0 0 0 0 0 -
Case 1: (β1) 1 0 1.21 2.77 22.40 0 -1.12 -12.46 -267.63 0 3

Case 2: (β2) 1 0 4.37 -4 2.62 17.60 -1.55 -2 -6.21 -160.51 7

Case 3: (β3) 1 0 -1 1.94 2.07 17.58 -0.5 -0.68 -7.16 -161.44 7

The set of parameters obtained for the first MM complies with the stability condition (C1) and (C2).
In the last two cases, one of the poles is fixed with a negative weight. The remaining couples of weights

16



and poles are then computed to fit βtoy. Therefore, the vector fitting is used to find a set of 3 weights
and poles for each MM in order to have the same degree of freedom in the optimization algorithm.
The main difference between the MM parameters lies in the sign of the weights. Although the negative
weights are fixed in this study in order to emphasize the consequences of not meeting the stability
condition given in Section 4, the vector fitting, among others, applied on physical problems can give
negative weights because of the data to fit (e.g. experimental measurements) or an ill-posed problem.

Figure 1: Bode diagram comparing βtoy with the MMs defined in Table 2 and obtained via the vector
fitting algorithm applied on the frequency range delimited by the vertical black dashed lines.

5.2.2 Numerical simulation

A square domain Ω = [0, 1] × [0, 1] is considered and discretized with triangle elements on which
polynomials of degree 5 are defined for the DG method. A non-physical porous media is assumed
for the whole domain, with ρ0 = 1, χ0 = 1 and a0 = 1 the speed of sound in the medium without
dissipation. The boundaries are taken as hard walls, and there is therefore no contribution with the
exterior of Ω. The initial condition is based on a gaussian-type source

p0(x, y) = A (x− x0) e−B((x−x0)2+(y−y0)2), (66)

defined in the center of Ω, i.e. x0 = y0 = 0.5. The initial velocity and pressure are

p(0,x) = p0(x, y), (67)

u(0,x) = −∇p0(x, y), (68)

with A=20 and B=80. Applying the fast Fourier transform (FFT) on the initial wave, which propagates
at the speed a0 in the medium without dissipative behaviour, shows that the frequency content of the
initial condition is included in [0.1Hz, 10Hz]. Hence, in order to have approximately 10 DG nodes for
the minimal wavelength λmin = ap/fmax = 0.07 (ap = 1/

√
ρ0 χ0 αβ is the speed in the dissipative

medium), the mesh is built with a space discretization h ≈ 0.08.

The square domain with the gaussian-type source in its center is showed in Fig. 2a. For each
case, the wave propagating within the rigid wall box is simulated for a given amount of time, taken
dimensionless in this section. The pressure fields for cases 0 and 3 at t = 3 are shown in Fig. 2. The
other two cases are not shown because the pressure fields are very similar to the one in Fig. 2c for
t = 3.
At each time step, the total energy in the domain is computed from equation (52). For each set of
parameters, the energy normalized by its value at t = 0 is displayed in Fig. 3. In case 0, where no
dissipation is expected, the energy is indeed constant and equal to 1 due to the normalization. In case
1, the MM only has positive weights, complying with the condition (C2) for a stable scheme. The
energy associated with this case is always decreasing, which illustrates the stability of the multipole-
based EFM. Despite the trend of a decreasing energy for case 3 where negative weights are considered,
the medium is active and creates energy at certain times, which is inconsistent with the dissipative
acoustic behaviour of porous media. This unintended increasing energy phenomena is highlighted by
this example, comforting the idea that, in general, working with negative weights precludes any proof
of stability. However, the multipole-based EFM solved with MMs containing negative weights does
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(a) t = 0, (b) Case 0 at t = 3, (c) Case 3 at t = 3,

Figure 2: Pressure field at the initial time and at time t=3 for the non-dissipative Case 0 and the
Case 3 (see Table 2). Note the change of level scales between the figures.

not always lead to an increase of the energy, as shown with case 2, since this abnormal phenomenon
may be hidden by the dissipation from the terms with positive weights. Consequently, care must be
taken when working with negative weights for exclusively-dissipative acoustic porous media, and it is
recommended to use only positive weights.
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Figure 3: Energy over time for the MMs given in Tab. 2, with increasing parts of the energy marked
in red. A zoom on the energy variations for t ∈ [5, 10] is shown in the right figure.

5.3 Impedance tube simulation

In order to simulate an impedance tube experiment, the intrinsic properties of a porous sample are
first used to infer the values of the chosen MM parameters. Two domains are then considered in the
simulation, representing the air in the tube and the rigidly backed porous sample. A pulse is used as
the incident wave. The numerical pressures along the tube are used to obtain the surface impedance
and reflection coefficient of the sample in the frequency domain, thus mimicking an experiment.

5.3.1 Multipole-model parameters

The porous sample considered in this analysis is a melamine foam whose parameters are described in
Table 2 Section 4.3 of [3], where the authors assumed that the sample is a rigid-frame porous media,
and approximated its acoustic behaviour through the JCAL model. Hence, the parameters α0 and α′0,
which are known to be difficult to measure and to identify precisely [59], are not given. We therefore
define the parameters M , N , L, M ′, N ′ and L′ in Table 3 through the JCAL model (see Table 1).
Given these parameters, one is able to obtain the expressions of α and β in the whole frequency range
of interest with (7) and (12). From these expressions in the frequency domain, one can attempt to
retrieve the MM parameters. In this study it is achieved using a vector fitting approach to best fit
the transfer functions α and β on [10Hz, 10 000Hz]. These fits, as well as the selected parameters, are
given in Figs. 4 and 5 and Table 4, respectively. Despite the quite limited number of poles, an excellent
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Table 3: Values of the parameters defining α and β equations (7) and (12) based on Table 2 Section
4.3 of [3].

α β
M N L M’ N’ L’

3636.73 3636.73 3802.89 5275.18 5275.18 8355.88

agreement is obtained over the chosen frequency band, and also at the lowest frequencies. Note that the

Table 4: Parameters of the MMs approximating α and β (Table 3) with the values in bold obtained
analytically and the others obtained with the vector fitting (rounded to two decimals places).

c0 c−1 r0 r1 r2 s0 s1 s2

αmm 1 3636.73 1 095.24 4 366.96 35 109.67 -6 801.60 -25 854.33 -237 436.69
βmm 1 0 2 702.69 2 583.21 29 032.63 -3 866.60 -18 711.08 -179 034.54

β̃mm 1 0 2 817.98 3 354.14 32 878.37 -3 926.70 -24 405.26 -227 291.46

isolated pole of β is computed analytically. Therefore, the weight r0 and pole s0 is straightforwardly
deduced for βmm. The vector fitting directly applied on β without taking into account the known single
pole leads to β̃mm. It will not be used further but it is given here to display the similarity between
βmm and β̃mm, particularly the pole s0 and weight r0 given by the optimization procedure which are
similar to the analytical ones.

Figure 4: Bode diagram of the dynamic tortuosity α and its multipole-based approximation αmm.

Figure 5: Bode diagram of the dynamic tortuosity β and its multipole-based approximation βmm.

5.3.2 Numerical simulation

An impedance tube is now considered, and approximated by a 2D representation. Unless explicitly
mentioned, the dimensions are given in meters. A schematics of the mesh for the domain Ω = [0, 1]×
[0, 0.04], used by the fifth-order DG solver to discretize the equations is displayed in Fig. 6. Note

19



the existence of two zones: the air Ωa = [0, 0.92] × [0, 0.04] associated with the blue mesh, in which
the classical linearized Euler equations are solved, and the porous sample Ωp = [0.92, 1] × [0, 0.04] of
thickness denoted lp = 8cm, associated with the brown mesh, where equations (49) are solved. The
porous domain is backed by a rigid wall, simulated by a fully reflective boundary condition, as for the
boundary at y = 0 and y = 0.04. A non-reflecting boundary condition is imposed at the left boundary
x = 0. At the interface between the domains, a numerical flux vector splitting is selected to weakly
enforce the continuity conditions:

φair uair = φpor upor , (69)

pair = ppor , (70)

with φair = 1.

x

y

Figure 6: Mesh of the impedance tube with the microphone representing the postion (x1 = 0.6) where
the numerical pressure is recorded.

A plane wave propagating in the tube is created by a pulse (66) initialized in the left part of the
air domain:

p(0,x) = p0(x, 0) (x < 0.2), (71)

u(0,x) = p0(x, 0)/(ρ0a0) (x < 0.2), (72)

and null for x > 0.2. The values of the parameters are defined such that the frequency content
extends from 100Hz to 10kHz: xs = 0.1, ys = 0, A=104.28 and B=2000. The mesh (and the DG
order) is adapted (h ≈ 2cm) so that more than 10 points per wavelength are obtained at 10kHz
(λmin = ap/fmax = 0.5cm). Note that in the porous sample, the speed of sound is lower than in the
ambient open air (ap = 1/

√
ρ0 χ0 αβ > a0 = 340m.s−1). Moreover, the initialization of the simulation

with a plane wave in the left part of the domain instead of a point source precludes the propagation
of additional cut-on acoustic modes. Based on the highest pole in the MMs and the advection velocity
1/χ0 associated with p, which are of the same order, a time step ∆t = 10−7s was selected.

The pressure is recorded at all time steps of the simulations, at one location along the side wall of
the tube, to mimic a flush-mounted microphone. The microphone is located at a distance 32cm from
the sample, to allow for an easy separation between incident and reflected waves in the time domain.
Two cases are then simulated: the 1m-long tube with the porous media and a 92cm-long tube without
the porous media. The recorded signals at the second location are shown in Fig. 7, where the incident
wave is first seen, followed by the reflected waves (at the first interface, and then the successive waves
that have travelled within the sample). An FFT analysis is then performed to analyze the signal in
the frequency domain by focusing only on the reflected waves. The time zone to watch was obtained
by knowing that the initial pulse is defined for x ∈ [0, 0.2] and it travels in the tube at 340m.s−1.
Consequently, the microphone will have seen all the incident wave at t = 1.8ms.

The transfer function of the microphone for both cases is then used to evaluate the reflection
coefficient of the sample. Indeed, the pressure field inside the tube can write, in the frequency domain,
as

P (ω, x) = A+ e−ikx +A− e+ikx, (73)

where k = ω/a0 is the wavenumber and A+ and A− the incident and reflected wave amplitudes,
respectively. Moreover, the wave amplitudes are related by the reflection coefficient R through the
relation A− = RA+. In the case of a rigid wall, R = 1. Hence, after applying the FFT on the
numerical pressure of the reflected wave in both cases (with and without the porous sample), R
is evaluted by dividing the frequency-dependent pressure obtained with the porous material by the
frequency-dependent pressure obtained with the rigid wall.
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The reflection coefficient is then used to determine the surface impedance:

Z(ω) =
1 +R(ω)

1−R(ω)
, (74)

which is compared with the theoretical value:

Z(ω) = −i

√
α(iω)

β(iω)
cot

(
lp
a0
ω
√
α(iω)β(iω)

)
, (75)

known for plane wave propagating in a tube containing a porous material backed by a rigid surface
[2, Chap. 2]. Equation (75) is also used to display in Fig. 8 the JCAL analytical reflection coefficient,
where it is compared with the reflection coefficient computed using the numerical pressure signals.

Figure 7: Numerical pressure signal over time at
(x,y) = (0.6,0.1), position of Mic. 2 in Fig. 6.

Figure 8: Absolute value of the reflection coeffi-
cient obtained with the JCAL model and com-
puted from the numerical pressure signal.

A comparison between the numerically evaluated impedance obtained with (74) by the numerical
pressure and the initial true impedance computed thanks to (75) based on the JCAL model is displayed
in Figs. 9 and 10. The superimposition of the two curves in the frequency-band of interest is striking,
which contributes to verify the good implementation of the method presented in Section 4.

Figure 9: Real part of the impedance. Figure 10: Imaginary part of the impedance.

The present approach represents rigid porous media in a volumic way, as opposed to a time-
domain impedance boundary condition (TDIBC) [50] where liners are considered as a surface boundary
condition. The latter approach also relies on the oscillo-diffusive representation of a time-domain
operator. While useful for classical acoustic liners based on a single degree of freedom (perforated plate
over cavity), the TDIBC approach could show its limits for complex materials (i.e., meta-surface and
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multi-layer liners), as the impedance operator could become too complex for the diffusive representation
to handle. On the other hand, the present approach can represent individually each element of such a
complex acoustic liner at the price of an extended simulation domain. The operators that need to be
discretized remain α and β, and do not gain in complexity, since they are associated with individual
materials.

Moreover, the results of this section show that with only 3 poles in the MMs for each dynamic
variables, α and β, a fine approximation of the porous-media acoustic behaviour can be done over 3
frequency decades. They are also quite correct outside the frequency range of approximation for almost
one decade. Some tests seems to show that, in general, MMs fitting the JCAPL model for a narrow
band of frequencies gives a well-approximated model over a wider range of frequencies. This behaviour
could be explained by the smoothness of the JCAPL model. Hence, for instance, ultrasound waves,
where a significant amount of anti-resonances are present per decade, could be well approximated with
a small amount of poles.

6 Conclusion

A formulation of the JCAPL model for wave propagation in rigid isotropic media was proposed in the
time domain. Both the dynamic tortuosity α and compressibility β were defined with an oscillatory-
diffusive (OD) representation with positive weights. The initial set of equations was then recast into an
augmented system in the time domain, where diffusive variables are used as a time-local representation
of the convolution operators. The JCAPL-EFM expressed with an OD representation made possible
the proof of its stability. A similar approach can also cover the stability proof of the Horoshenkov-
EFM, which shows the potentiality of the method, and its possible use for other models than those
treated in the present work.

In addition to the JCAPL and Horoshenkov models, the Wilson model was shown to admit a
diffusive representation. These representations are a continuous superposition of first-order systems
which are straightforwardly discretized as a multipole model (MM) with a finite number of first-order
systems whose poles are real-valued. Hence, MMs appear to be a well-suited approximation for several
models of α and β.

From this observation and the diffusive-based JCAPL-EFM, a multipole-based approximation was
adopted to approach the model prior to its numerical implementation in an acoustic 2D DG solver.
A stability analysis was performed on the multipole-based version of the EFM. From this, a sufficient
stability condition was found to be the positivity of all the weights in the MM terms, a condition
similar to the positivity of the diffusive weight needed to prove the stability of the JCAPL-EFM.

A numerical analysis was conducted to illustrate the stability condition on a toy model, highlighting
possible non-dissipative phenomena for MM having negative weights. A more involved numerical
simulation was then performed in a multi-zone domain, to validate the numerical integration with
analytical data mimicking an impedance tube experiment.
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through the EUR TSAE under grant ANR-17-EURE-0005.

22



A Representation of the dynamic variables

This appendix recalls the expression of the JCAPL, Wilson and Horoshenkov models and gathers their
reformulation based on an OD representation.

A.1 Johnson-Champoux-Allard-Pride-Lafarge model

The JCAPL model is recalled below with the paramaters M , N , L, M ′, N ′ and L′ defined in Section
2.

α(s) = α∞

1 +
M

s
+N

√
1 +

s

L
− 1

s

 (s ∈ C\(−∞,−L]) , (76)

β(s) = γ − (γ − 1)

1 +
M ′

s
+N ′

√
1 +

s

L′
− 1

s


−1

(s ∈ C\(−∞,−L′]) . (77)

The peculiarity of (77) lies in the oscillatory part of its OD representation (19) which exists under the
condition (17) given in Section 2. The steps to obtain this condition are detailed below, followed by
the expressions of the isolated pole and its associated weight when they exist.

The function studied is first recalled:

βod(s) :=
β(s)− 1

γ − 1
=

M ′ +N ′
(√

1 +
s

L′
− 1

)
s+N ′

√
1 +

s

L′
+M ′ −N ′

(s ∈ C\(−∞,−L′]) . (78)

The diffusive part of (78) is computed with (54). However, just by looking at the expression of βod,
one can speculate on the existence of singularities which are directly linked to the oscillatory part.
Therefore, the focus is on the denominator of (78), and specifically on its zeros. Let us then define:

Q(s) := s+N ′
√

1 +
s

L′
+M ′ −N ′ (s ∈ C\(−∞,−L′]) . (79)

A change of variables ϕ : λ→ L′
(
λ2 − 1

)
simplifies the expression (79) into a second-order polynomial:

Q̃(λ) := Q(ϕ(λ)) = L′λ2 +N ′λ+ (M ′ −N ′ − L′) (R(λ) > 0) . (80)

As a result, any root λr of Q̃ with a positive real part implies that βod has a singularity at ϕ-1(λr).

A brief study of the imaginary part of (80) shows that Q̃ does not admit any root in C+
0 \R+, with

C+
0 = {s ∈ C | R(s) > 0}. Hence, the roots of Q̃ on C+ are necessarily real, if they exist. Then, by

solving the polynomial on R , we find that:

• if M ′−N ′−L′ > 0, then Q̃(λ) > 0 for all positive real λ (however, Q̃ may have negative roots),

• if M ′ −N ′ −L′ < 0, then there exists two roots of Q̃. If it is the case, one of the roots is always
negative and the other, denoted λ0, is always included in ]0, 1[.

In the second case where M ′ −N ′ − L′ is negative, the positive root of Q̃ can be shown to be in ]0, 1[

by simply noticing that Q̃(0) = M ′ −N ′ − L′ < 0 and Q̃(1) = M ′ > 0. These results are highlighted
Fig. 11 with both cases displayed.

In that respect, one can conclude that in the second case, i.e. M ′ − N ′ − L′ < 0, βod has a
singularity at s0 parametrized by λ0, which leads to the existence of an oscillatory part. Moreover,
the weight r0 associated with the pole s0 is the residue of βod at s0, defined as:

r0 := lim
ε→0

1

2jπ

∮
|s−s0|=ε

βod(s) ds.
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Figure 11: Polynomial Q̃ for two set of parameters: the dotted line ( ) is associated with the case
M′ −N′ − L′ > 0, the solid line ( ) is associated with the case M′ −N′ − L′ < 0.

Consequently, under condition (17) for the existence of an isolated pole, βod consists of a single
pole and a diffusive part, both obtained by using the Bromwich contour Fig. 12:

βod(s) =
r0

s− s0
+N ′

∫ ∞
L′

ν(ξ)

s+ ξ
dξ (R(s) > 0) , (81)

where ν(ξ) :=
1

π

ξ

√
ξ

L′
− 1

(ξ −M ′ +N ′)2 +N ′2
(
ξ

L′
− 1

) (ξ ∈ ]L′,+∞[) , (82)

s0 := L′
(
λ2

0 − 1
)
< 0, (83)

r0 := 2L′λ0
M ′ +N ′(λ0 − 1)

2L′λ0 +N ′
> 0, (84)

with λ0 :=
−N ′ +

√
N ′2 − 4L′(M ′ −N ′ − L′)

2L′
, (85)

I(s)

R(s)
×
s0

Γ′ •
−L′

Figure 12: Bromwich contour used to find the OD representation of the dynamic compressibility β.

Therefore, the normalized dynamic compressibility is expressed as follows:

β(s) = 1 + (γ − 1)

[
r0

s− s0
+N ′

∫ ∞
L′

ν(ξ)

s+ ξ
dξ

]
(R(s) > 0) . (86)

Based on the values taken by λ0, the residue r0 is always positive while the pole s0 is always negative
if it exists.
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A.2 Wilson model

The Wilson model describes the dynamic tortuosity and the normalized dynamic compressibility as
follows:

αw(s) =
(1 + τvs)

1/2

(1 + τvs)1/2 − 1

(
s ∈ C\(−∞,−τ -1

v ]
)

, (87)

βw(s) =
(1 + τes)

1/2

(1 + τes)1/2 + γ − 1

(
s ∈ C\(−∞,−τ -1

e ]
)

, (88)

where τv and τe are the vorticity-mode relaxation time and the entropy-mode relaxation time, respec-
tively. A simple diffusive representation (20) is proposed for (88) in Section 2 and recalled below with
the expression of the associated negative diffusive weight.

βw(s) = 1 + (γ − 1)

∫ ∞
τ -1
e

νw(ξ)

s+ ξ
dξ (R(s) > 0) , (89)

with νw(ξ) =
−1

π

√
τeξ − 1

(τeξ − 1) + (γ − 1)
2

(
ξ ∈ [τ -1

e ,+∞)
)

. (90)

Here, we look for another representation of βw with a positive diffusive weight. For this purpose, we
worked on the following function:

βw(s)

1 + τes
=

1

(1 + τes) + (γ − 1)(1 + τes)1/2

(
s ∈ C\(−∞,−τ -1

e ]
)

, (91)

which admits a diffusive representation:

βw(s)

1 + τes
=

∫ ∞
τ -1
e

ν̃w(ξ)

s+ ξ
dξ (R(s) > 0) , (92)

with ν̃w(ξ) =
1

π

√
τeξ − 1

(τeξ − 1)2 + (γ − 1)
2

(τeξ − 1)

(
ξ ∈ (τ -1

e ,+∞)
)

. (93)

It leads to express βw as a sum of a diffusive representation and an extended diffusive representation:

βw(s) = (γ − 1)

∫ ∞
τ -1
e

ν̃w(ξ)

s+ ξ
dξ + (γ − 1)τe

∫ ∞
τ -1
e

ν̃w(ξ)
s

s+ ξ
dξ (R(s) > 0) , (94)

The first term of the right-hand side of (94) is a conventional diffusive part, and the last term of the
right-hand side is said to be extended by differentiation because of the factor s.

A.3 Horoshenkov model

The dynamic variables expressed by the Horoshenkov model are described in the Laplace domain:

αh(s) = α∞

1 +
Mh

s
+Nh

1√
s

Lh
+ 1

 (s ∈ C\(−∞,−L]) , (95)

βh(s) = γ − (γ − 1)

1 +
M ′h
s

+N ′h
1√
s

L′h
+ 1


−1

(s ∈ C\(−∞,−L′]) , (96)

where Mh = νφ/(k0α∞), Nh = θρ,1 and Lh = Mh/θ
2
ρ,3 for the dynamic tortuosity and M ′h =

νφ/ (k′0Pr), N ′h = θc,1 and L′h = M ′h/θ
2
c,3 for the normalized dynamic compressibility. θρ,1, θρ,3,

θc,1 and θc,3 are the Padé approximant parameters used in the Horoshenkov model [34, 35]. A compar-
ison between the Horoshenkov model (95)-(96) and the JCAPL model (76)-(77) highlights similarities
between their expressions and one different term which implies different OD representations.
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The normalized dynamic compressibility of the Horoshenkov model admits a diffusive representa-
tion:

βh(s) = 1 + (γ − 1)N ′h

∫ ∞
0

νh(ξ)

s+ ξ
dξ (R(s) > 0) , (97)

with νh(ξ) =
1

π

ξ2

√
ξ

L′h

ξ

L′h
(ξ −M ′h)

2
+ ((1 +N ′h)ξ −M ′h)

2
> 0 (ξ ∈ [0,+∞)) . (98)

B Multipole-based model

System (49) written in hyperbolic form (54) is detailed below:

∂t



u
v
p

ΦX

ΦY

Ψ

 +



0 0
1

ρ0c0
Or Or Or

0 0 0 Or Or Or

1

χ0c′0
0 0 Or Or Or

Oc Oc Oc O O O
Oc Oc Oc O O O
Oc Oc Oc O O O


∂x



u
v
p

ΦX

ΦY

Ψ

 +



0 0 0 Or Or Or

0 0
1

ρ0c0
Or Or Or

0
1

χ0c′0
0 Or Or Or

Oc Oc Oc O O O
Oc Oc Oc O O O
Oc Oc Oc O O O


∂y



u
v
p

ΦX

ΦY

Ψ

 +



c−1

c0
+

K∑
k=1

rk
c0

0 0
RS

c0
Or Or

0
c−1

c0
+

K∑
k=1

rk
c0

0 Or
RS

c0
Or

0 0
c′−1

c′0
+

K′∑
k=1

r′k
c′0

Or Or
R′S′

c′0
-1 Oc Oc -S O O
Oc -1 Oc O -S O
Oc Oc -1 O O -S′





u
v
p

ΦX

ΦY

Ψ

 = 0 ,

(99)

where:
• the row vectors are: RS =

(
r1s1 r2s2 . . . rK−1sK−1 rKsK

)
,

R′S′ =
(
r′1s
′
1 r′2s

′
2 . . . r′K−1s

′
K−1 r′Ks

′
K

)
,

• the pole matrices are: S′ =



s1 0 . . . . . . 0

0 s2
. . .

...
...

. . .
. . .

. . .
...

...
. . . sK−1 0

0 . . . . . . 0 sK


, and S′ =



s′1 0 . . . . . . 0

0 s′2
. . .

...
...

. . .
. . .

. . .
...

...
. . . s′K−1 0

0 . . . . . . 0 s′K


,

• the all-ones column vector is: 1 =

1
...
1

 ,

• the zero matrices are: O (square matrix), Or (row matrix) and Oc (column matrix).

Starting from the EFM equations and the multipole-based approximations (45) and (46) of α and
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β, respectively, the system in the Laplace domain writes:
s û +

c−1

c0
û +

K∑
k=1

rk
c0

s

s− sk
û = − 1

ρ0c0
∇∇∇p̂ ,

s p̂ +
c′−1

c′0
p̂ +

K′∑
k=1

r′k
c′0

s

s− s′k
p̂ = − 1

χ0c′0
∇∇∇ · û ,

(100)

In contrast to (48), no partial fraction decomposition is applied in (100). Applying the inverse Laplace
tranform on (100) leads to the time-domain system

∂tu +
1

ρ0c0
∇∇∇p +

c−1

c0
u +

K∑
k=1

rk
c0
φkφkφk = 0 , (101a)

∂tp +
1

χ0c′0
∇∇∇ · u +

c′−1

c′0
p +

K′∑
k=1

r′k
c′0
ψk = 0 , (101b)

∂tφkφkφk = skφkφkφk + ∂tu (∀ k ∈ [[1,K]]), (101c)

∂tψk = s′k ψk + ∂tp (∀ k ∈ [[1,K ′]]), (101d)

which writes

∂tu +
1

ρ0c0
∇∇∇p +

c−1

c0
u +

K∑
k=1

rk
c0
φkφkφk = 0 , (102a)

∂tp +
1

χ0c′0
∇∇∇ · u +

c′−1

c′0
p +

K′∑
k=1

r′k
c′0
ψk = 0 , (102b)

∂tφkφkφk +
1

ρ0c0
∇∇∇p +

c−1

c0
u +

K∑
j=1

rj
c0
φjφjφj − skφkφkφk = 0 (∀k ∈ [[1,K]]), (102c)

∂tψk +
1

χ0c′0
∇∇∇ · u +

c′−1

c′0
p +

K′∑
j=1

r′j
c′0
ψj − s′k ψk = 0 (∀k ∈ [[1,K ′]]). (102d)

after replacing the derivatives in the auxiliar equations (101c) and (101d) by using (101a) and (101b)
respectively. The hyperbolic form of (102) reads

∂tq + Ãx∂xq + Ãy∂yq + B̃q = F, (103)

where q is given in Section 5 and

Ãx =



0 0 1
ρ0c0

0 . . . . . . . . . 0

0 0 0 0 . . . . . . . . . 0
1

χ0c
′
0

0 0 0 . . . . . . . . . 0

0 0 1
ρ0c0

0 . . . . . . . . . 0
...

...
...

...
...

0 0 1
ρ0c0

0 . . . . . . . . . 0

0 0 0 0 . . . . . . . . . 0
...

...
...

...
...

0 0 0 0 . . . . . . . . . 0
1

χ0c
′
0

0 0 0 . . . . . . . . . 0

...
...

...
...

...
1

χ0c
′
0

0 0 0 . . . . . . . . . 0



, Ãy =



0 0 0 0 . . . . . . . . . 0
0 0 1

ρ0c0
0 . . . . . . . . . 0

0 1
χ0c

′
0

0 0 . . . . . . . . . 0

0 0 0 0 . . . . . . . . . 0
...

...
...

...
...

0 0 0 0 . . . . . . . . . 0
0 0 1

ρ0c0
0 . . . . . . . . . 0

...
...

...
...

...
0 0 1

ρ0c0
0 . . . . . . . . . 0

0 1
χ0c

′
0

0 0 . . . . . . . . . 0

...
...

...
...

...
0 1

χ0c
′
0

0 0 . . . . . . . . . 0



 (u, v, p)

 φXk

 φYk

 ψk

.

(104)
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