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1 Introduction

Today, due to the large availability of data, various kinds of processes can
(and have to) be monitored using Statistical Process Monitoring (SPM) tech-
niques based on advanced control charts. These kinds of processes can be of
course industrial ones but, they can also be non industrial ones like in the
biological/health-care (diseases, like the Covid-19 for instance), the geological
(earthquakes or volcanic eruptions) or the accidental (traffic accidents, for-
est fires) fields. In all of these situations, people are usually focusing on two
characteristics:

1. the time T between two consecutive specific (usually, adverse) events of
interest E,

2. the amplitude X of each of these events.

The characteristics T and X defined above are the key factors to be monitored
for an event and they are usually referred to as the TBEA (Time Between
Events and Amplitude) characteristics. In general, a decrease in T and/or an
increase in X can result in a negative, hazardous or disastrous situation that
needs to be efficiently monitored with control charts.

The first TBE (i.e. without taking into account the amplitude characteristic)
type of control chart goes back to Calvin (1983), who proposed to monitor the
cumulative number of conforming items between two non-conforming ones.
The initial idea was to find a method to improve the traditional attribute
control charts that are known to be ineffective in the case of high-quality
processes in which the occurence of non-conforming products is very rare.
This initial idea has then been investigated by Lucas (1985) and Vardeman
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and Ray (1985) and, subsequently, many other researchers started to con-
tribute to this area. Radaelli (1998) proposed to design and implement one-
and two-sided Shewhart-type TBE control charts assuming that the counts
can be modeled as a homogeneous Poisson process. Gan (1998) developed an
EWMA (Exponentially Weighted Moving Average) control chart monitoring
the rate of occurrences of rare events based on the inter-arrival times of these
events. Benneyan (2001) used the geometric (“g” chart) and the negative bi-
nomial (called “h” chart) distributions in order to monitor the number of
cases between hospital-acquired infections. Xie et al. (2002) proposed a con-
trol chart for TBE data based on the exponential distribution while Borror
et al. (2003) extended it using a CUSUM (Cumulative Sum) scheme and eval-
uated its robustness in the case of the Weibull and lognormal distributions.
Liu et al. (2006) compared the ATS (Average Time to Signal) performance
of several continuous TBE charts including the CQC, CQC-r, exponential
EWMA and exponential CUSUM charts. Zhang et al. (2007) investigated the
case of gamma distributed TBE data and they developed a control chart based
on a random-shift model to compute the out-of-control ATS. In the case of
multistage manufacturing processes, Shamsuzzaman et al. (2009) developed
a control chart for TBE data and designed it using a statistical oriented ap-
proach while Zhang et al. (2011a) designed it using a first economic oriented
approach and Zhang et al. (2011b) developed it using a second economic ori-
ented approach assuming random process shifts. The use of supplementary
runs rules has also been proposed for monitoring TBE data by Cheng and
Chen (2011). Qu et al. (2014) studied some TBE control charts that can be
used for sampling inspection. Shafae et al. (2015) evaluated the performance
of three TBE CUSUM charts and Fang et al. (2016) proposed a generalized
group runs TBE chart for a homogenous Poisson failure process.

The first paper that proposed a combined scheme for monitoring the time
interval T of an event E as well as its amplitude X has been introduced by
Wu et al. (2009) who refered it to as a TBEA (Time Between Events and
Amplitude) chart. After this paper, several single TBEA charts have been
developed, see for instance Qu et al. (2013), Cheng et al. (2017), Ali and
Pievatolo (2018), Qu et al. (2018) and, very recently, Sanusi et al. (2020).

As it can be noticed, this stream of research is rather recent and few publi-
cations have already been devoted to. Therefore, the goal of this chapter is
to further investigate it and to hopefully open new research directions. More
specifically, this chapter will be splitted into three parts:

1. In section 2 we will introduce and compare three different statistics, de-
noted as Z1, Z2 and Z3, suitable for monitoring TBEA data, in the case
of four distributions (gamma, lognormal, normal and Weibull), when the
time T and the amplitude X are considered as independent random vari-
ables.
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2. In section 3, we will compare the three statistics introduced in section
2, for the same distributions, but considering that the time T and the
amplitude X are dependent random variables. A model based on three
types of Copulas will be used to define the dependence between T and X.

3. Finally, in section 4, in order to overcome the “distribution choice”
dilemma, we will introduce a distribution-free approach coupled with an
upper-sided EWMA scheme. In addition, a specific technique called “con-
tinuousify” will be presented in order to compute the Run Length proper-
ties of the proposed upper-sided EWMA TBEA control chart in a reliable
way.

2 TBEA charts for independent Times and Amplitudes

2.1 Model

Let D0 = 0, D1, D2, . . . be the dates of occurrence of a specific negative event
E, let T1 = D1−D0, T2 = D2−D1, . . . be the time intervals between two con-
secutive occurrences of the event E and let X1, X2, . . . be the corresponding
magnitudes of this event occurring at times D1, D2, . . . (see Figure 1). It must
be noted that D0 = 0 is the date of a “virtual” event which has no amplitude
associated with.

D0 = 0 D1 D2 D3 · · ·

· · ·

· · ·

T1 T2 T3

X1 X2 X3

Times





Dates





Amplitudes





Fig. 1. Dates of occurrence D0 = 0, D1, D2, . . ., time intervals T1 = D1 − D0,
T2 = D2 −D1, . . . and amplitudes X1, X2, . . . of a negative event E

In this section, we assume that T and X are two mutually independent contin-
uous random variables, both defined on [0,+∞). Let FT (t|θT ) and FX(x|θX)
be the c.d.f. (cumulative distribution function) of T and X, respectively, and
let fT (t|θT ) and fX(x|θX) be the p.d.f. (probability distribution function) of
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T and X, respectively, where θT and θX are the corresponding vector of pa-
rameters. Let also define µT = E(T ), µX = E(X), σT = σ(T ) and σX = σ(X)
be the expectation and standard-deviation of T and X, respectively. By defini-
tion, when the process is in-control, we have θT = θT0

, θX = θX0
, µT = µT0

,
µX = µX0 , σT = σT0 , σX = σX0 and, when the process is out-of-control, we
have θT = θT1 , θX = θX1 , µT = µT1 , µX = µX1 , σT = σT1 , σX = σX1 .

Because the reference scales for the random variables T and X can be very
different and, in order to not favour one random variable over the other one, we
suggest to define (and work with) the “normalized to the mean” new random
variables T ′ and X ′ as the in-control standardized counterparts of T and X,
i.e.

T ′ =
T

µT0

,

X ′ =
X

µX0

.

Clearly, when the process is in-control we have E(T ′) = E(X ′) = 1.

2.2 Statistics to be monitored

In order to simultaneously monitor the time T between an event E and its
amplitude X, we suggest to define several dedicated statistics Z = Z(T ′, X ′),
functions of the random variables T ′ and X ′, satisfying the following two
properties:

Z ↑ if either T ′ ↓ or X ′ ↑, (1)

Z ↓ if either T ′ ↑ or X ′ ↓ . (2)

Of course, there are many possible choices for the statistic Z. A first possible
choice for the statistic Z (denoted as the Z1 statistic) satisfying properties
(1) and (2) is simply

Z1 = X ′ − T ′. (3)

This random variable is defined on (−∞,+∞) and its c.d.f. FZ1(z|θZ) and
p.d.f. fZ1

(z|θZ) can be obtained by integrating (see Figure 2 (a) and (b)) over
all the couples (X ′, T ′) ∈ R+2 satisfying Z1 = X ′−T ′ ≤ z, and they are equal
to

FZ1(z|θZ) = 1− µX0

∫ +∞

0

FT ((x− z)µT0 |θT )fX(xµX0 |θX)dx, (4)

fZ1
(z|θZ) = µT0

µX0

∫ +∞

0

fT ((x− z)µT0
|θT )fX(xµX0

|θX)dx, (5)
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X ′ − T ′ ≤ z

X ′

T ′

0

X ′ − T ′ ≤ z

X ′

T ′

0 z

(a) (b)

X ′

T ′ ≤ z

X ′

T ′

0

X ′ +
1

T ′ ≤ z

z
X ′

T ′

0

(c) (d)

Fig. 2. Integration areas used for statistics (a) and (b) Z1, (c) Z2 and (d) Z3

where θZ = (θT ,θX) is the corresponding combined vector of parameters.

A second possible choice for the statistic Z (denoted as the Z2 statistic)
satisfying properties (1) and (2) is defining it as the ratio between the two
characteristics of an event E:

Z2 =
X ′

T ′
. (6)

This random variable is defined on [0,+∞) and its c.d.f. FZ2(z|θZ) and p.d.f.
fZ2

(z|θZ) can be obtained by integrating (see Figure 2 (c)) over all the couples

(X ′, T ′) ∈ R+2 satisfying Z2 = X′

T ′ ≤ z, and they are equal to
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FZ2
(z|θZ) = 1− µX0

∫ +∞

0

FT

(xµT0

z
|θT
)
fX(xµX0

|θX)dx, (7)

fZ2(z|θZ) =
µT0

µX0

z2

∫ +∞

0

xfT

(xµT0

z
|θT
)
fX(xµX0 |θX)dx. (8)

Finally, a third possible choice for the statistic Z (denoted as the Z2 statistic)
satisfying properties (1) and (2) is

Z3 = X ′ +
1

T ′
. (9)

This random variable which should be considered as a hybrid of the two
previous ones is also defined on [0,+∞) and its c.d.f. FZ3

(z|θZ) and p.d.f.
fZ3

(z|θZ) can be obtained by integrating (see Figure 2 (d)) over all the couples
(X ′, T ′) ∈ R+2 satisfying Z3 = X ′ + 1

T ′ ≤ z, and they are equal to

FZ3(z|θZ) = FX(zµX0 |θX)− µX0

∫ z

0

FT

(
µT0

z − x |θT
)
fX(xµX0 |θX)dx,

(10)

fZ3
(z|θZ) = µT0

µX0

∫ z

0

1

(z − x)2
fT

(
µT0

z − x |θT
)
fX(xµX0

|θX)dx. (11)

More details on how to derive the c.d.f. and p.d.f. of statistics Z1, Z2 and Z3

provided above can be found in the Appendix section of Rahali et al. (2019).
Concerning these c.d.f. and p.d.f. it has to be noted that it is generally not
possible to obtain a closed form solution for them and the only solution is to
numerically compute these ones by using quadrature techniques.

2.3 Control limit

As it is more important to detect an increase in Z (in order to avoid more
damages or injuries, for instance) rather than a decrease, we suggest to only
define an upper control limit UCLZ for the TBEA charts based on statistics
Z ∈ {Z1, Z2, Z3} as

UCLZ = F−1Z (1− α|θZ0), (12)

where α is the type I error, θZ0 = (θT0 ,θX0) and F−1Z (. . . |θZ0) is the inverse
c.d.f. of Z numerically obtained by solving equation FZ(z|θZ0) = α for z using
a one dimension root finder.

2.4 Time to Signal properties

The type II error β of the upper-sided TBEA charts based on statistic Z ∈
{Z1, Z2, Z3} is equal to

β = FZ(UCLZ |θZ1), (13)
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where θZ1
= (θT1

,θX1
). The out-of-control ATS (Average Time to Signal) and

SDTS (Standard Deviation Time to Signal) of the upper-sided TBEA charts
based on statistic Z ∈ {Z1, Z2, Z3} can be obtained using the expectation and
variance of compound random variables (see also Rahali et al. (2019) for more
details) and they are equal to

ATS1 =
µT1

1− β , (14)

SDTS1 =

√
σ2
T1

1− β +
µ2
T1
β

(1− β)2
. (15)

When the process is in-control, we have 1−β = α and, consequently, we have
the following equivalence for the in-control ATS

ATS0 =
µT0

α
⇔ α =

µT0

ATS0
.

2.5 Comparative studies

As in Rahali et al. (2019), in order to compare the three TBEA charts defined
in sub-section 2.2 and based on the statistics Z ∈ {Z1, Z2, Z3} we have cho-
sen to investigate four different types of distribution that are only dependent
on two parameters a and b. The choice of the Gamma, Lognormal, Normal
and Weibull distributions is driven by the fact that these ones are very often
selected to model time oriented random variables. For this reason, the two
parameters beta distribution has been excluded from the benchmark as it is
rarely selected for representing time oriented variables. Of course, more com-
plex distributions could have been considered (like the four parameters Beta
or Johnson’s distributions) but, due to the fact that only the nominal mean µ0

and standard-deviation σ0 are assumed to be known, we restricted our choice
to a selection of two parameters distributions. These distributions are sum-
marized in Table 1 with their names, parameter settings and p.d.f. f(x|a, b).
In this table, fNor(. . . ) stands for the p.d.f. of the normal (0, 1) distribution.

Table 1. Distributions used for the comparison of the 3 TBEA charts

Names Parameters f(x|a, b)

Gamma a > 0, b > 0
exp(− x

b
)xa−1

baΓ (a)

Lognormal a, b > 0
(
b
x

)
fNor(a+ b ln(x))

Normal a, b > 0 1
b
fNor

(
x−a
b

)

Weibull a > 0, b > 0 a
b

(
x
b

)a−1
exp

(
−
(
x
b

)a)
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More specifically, we have selected 9 different in-control configurations to be
investigated for T (the normal distribution has not been considered as a pos-
sible choice for the time between events) and 11 in-control configurations to
be investigated for X, i.e. a total of 99 scenarios for (T,X). All of them (see
Table 2) are such that the in-control mean is µ0 = 10 and the in-control
standard-deviation is σ0 ∈ {1, 2, 5} (except for the normal distribution, where
σ0 ∈ {1, 2} only). In addition, Table 2 also provides the values of the in-control
parameters a0 and b0 and the corresponding skewness coefficient γ0.

Table 2. In-control configurations to be investigated

Distributions T X a0 b0 µ0 σ0 γ0

Gamma • • 100 0.1 10 1 0.2
• • 25 0.4 10 2 0.4
• • 4 2.5 10 5 1

Lognormal • • -23.0334 10.0249 10 1 0.3010
• • -11.5277 5.0494 10 2 0.6080
• • -4.6382 2.1169 10 5 1.6250

Normal ◦ • 10 1 10 1 0
◦ • 10 2 10 2 0

Weibull • • 12.1534 10.4304 10 1 -0.7155
• • 5.7974 10.7998 10 2 -0.3519
• • 2.1013 11.2906 10 5 0.5664

The upper control limits UCLZ for the three TBEA charts based on statistics
Z ∈ {Z1, Z2, Z3}, satisfying ATS0 = 370.4, have been obtained in Table 3 for
the 99 possible scenarios defined in Table 2. As it can be seen, regardless of
the statistic Z and the distribution of X, these upper control limits tend to be
similar if σ0 is small (say σ0 = 1) and the distribution of T is either gamma
or lognormal. But, when T follows a Weibull distribution, the control limits
are larger than those of the gamma or lognormal distributions.

When an out-of-control situation occurs in a TBEA process (corresponding
to an upper shift in Z), it can be due to i) a mean shift only in the time
T from µT0

to µT1
= δTµT0

, ii) a mean shift only in the amplitude X from
µX0 to µX1 = δXµX0 , or iii) a combination of the two previous cases, where
δT ≤ 1 and δX ≥ 1 are the parameters quantifying the change in the time and
amplitude, respectively. But, as the actual values of δT and δX are usually
unknown by the practitioner, it is therefore difficult to evaluate the three
TBEA charts based on statistics Z ∈ {Z1, Z2, Z3} using the ATS1 criterion
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Table 3. Upper control limits UCLZ for the three TBEA charts based on statistics
Z ∈ {Z1, Z2, Z3}, satisfying ATS0 = 370.4

Statistic Z1

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 0.273 0.458 1.177 0.275 0.471 1.234 0.268 0.429 0.252 0.400 1.096
Gamma 2 0.404 0.547 1.213 0.405 0.556 1.266 0.402 0.527 0.394 0.509 1.138

5 0.755 0.852 1.395 0.755 0.855 1.431 0.754 0.844 0.752 0.836 1.341

1 0.271 0.457 1.177 0.273 0.471 1.234 0.266 0.428 0.249 0.399 1.096
Lognormal 2 0.391 0.540 1.212 0.392 0.550 1.264 0.389 0.520 0.380 0.500 1.136

5 0.682 0.794 1.369 0.682 0.799 1.408 0.681 0.783 0.678 0.772 1.312

1 0.293 0.465 1.178 0.295 0.478 1.235 0.289 0.438 0.277 0.410 1.097
Weibull 2 0.460 0.578 1.219 0.460 0.587 1.271 0.458 0.562 0.454 0.547 1.145

5 0.823 0.908 1.418 0.823 0.910 1.452 0.823 0.902 0.822 0.896 1.369

Statistic Z2

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 1.314 1.500 2.226 1.316 1.513 2.280 1.310 1.474 1.296 1.448 2.148
Gamma 2 1.590 1.735 2.422 1.591 1.742 2.463 1.588 1.720 1.583 1.706 2.359

5 3.615 3.713 4.315 3.615 3.713 4.308 3.615 3.712 3.615 3.711 4.309

1 1.310 1.498 2.225 1.312 1.511 2.279 1.306 1.472 1.291 1.445 2.147
Lognormal 2 1.555 1.708 2.405 1.556 1.715 2.447 1.553 1.692 1.547 1.677 2.341

5 2.820 2.941 3.623 2.820 2.942 3.623 2.820 2.937 2.819 2.934 3.603

1 1.356 1.524 2.238 1.358 1.537 2.291 1.353 1.500 1.343 1.476 2.160
Weibull 2 1.762 1.875 2.507 1.762 1.881 2.550 1.761 1.865 1.758 1.856 2.447

5 4.934 5.010 5.502 4.934 5.010 5.492 4.934 5.010 4.934 5.010 5.506

Statistic Z3

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 2.299 2.474 3.188 2.301 2.488 3.245 2.295 2.447 2.282 2.419 3.107
Gamma 2 2.566 2.668 3.277 2.567 2.676 3.328 2.565 2.653 2.561 2.640 3.204

5 4.587 4.604 4.764 4.587 4.605 4.807 4.587 4.604 4.587 4.603 4.738

1 2.295 2.472 3.188 2.297 2.486 3.244 2.291 2.445 2.277 2.416 3.107
Lognormal 2 2.530 2.641 3.266 2.531 2.649 3.317 2.529 2.625 2.524 2.611 3.193

5 3.787 3.817 4.084 3.787 3.818 4.127 3.787 3.815 3.787 3.813 4.043

1 2.342 2.499 3.196 2.344 2.512 3.252 2.339 2.472 2.329 2.445 3.115
Weibull 2 2.742 2.812 3.357 2.743 2.819 3.413 2.742 2.801 2.740 2.793 3.282

5 5.912 5.921 6.002 5.912 5.922 6.024 5.912 5.921 5.912 5.921 5.994
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defined in (14) that depends on a specific values for δT and/or δX . For this
reason, it is therefore preferable to use the following more general criterion
denoted as EATS1 (Expected Average Time to Signal) and defined as

EATS1 =
∑

δT∈ΩT

∑
δX∈ΩX

fδT (δT )fδX (δX)ATS1(δT , δX),

where ΩT and ΩX are the sets of the potential shifts for δT and δX , re-
spectively, and fδX (δX) and fδT (δT ) are the probability mass functions of
the shifts δT and δX over the sets ΩT and ΩX . In this chapter, we adopt
the classical assumption that confines fδT (δT ) and fδX (δX) to be discrete
uniform distributions over ΩT and ΩX , respectively. If we want to inves-
tigate i) a mean shift only due to the time T then we suggest to fix
ΩT = {0.5, 0.55, . . . , 0.9, 0.95} and ΩX = {1}, ii) a mean shift only due to the
amplitude X then we suggest to fix ΩT = {1} and ΩX = {1.1, 1.2, . . . , 1.9, 2}
and iii) a mean shift due to the time T and the amplitude X then we suggest
to fix ΩT = {0.5, 0.55, . . . , 0.9, 0.95} and ΩX = {1.1, 1.2, . . . , 1.9, 2}.

For the 99 possible scenarios defined in Table 2, Table 4 gives the EATS1 val-
ues of the three TBEA charts based on statistics Z ∈ {Z1, Z2, Z3} when
ΩT = {0.5, 0.55, . . . , 0.9, 0.95} and ΩX = {1.1, 1.2, . . . , 1.9, 2}. Values of
EATS1 in bold characters are the smallest ones among statistics Z1, Z2 or
Z3. From Table 4, it can be deduced that when there is a shift in both T
and X, the most efficient statistic is Z1 (in 56% of the cases with an average
EATS1 value EATS1 = 14.91), followed by statistic Z2 (in 35% of the cases
with EATS1 = 29.15) and, finally, statistic Z3 (in only 5% of the cases with
EATS1 = 11.74).

The cases where the mean shift is only due to the time T or the mean shift
is only due to the amplitude X have both been investigated in Rahali et al.
(2019) (see Tables 3 and 4, pages 245–246). In these cases, the conclusions are

• if the mean shift is only due to the time T , then the most efficient statistic
is Z3 (in 71% of the cases with EATS1 = 59.88) followed by Z2 (in 29%
of the cases with EATS1 = 71.82) while the statistic Z1 never provides
the smallest EATS1 and should not be considered here as an efficient
monitoring statistic.

• if the mean shift is only due to the amplitude X, then the statistic Z1 is
the best option as it always gives the smallest EATS1 values, regardless of
the combination under consideration. In this case, Z2 and Z3 should not
be considered as potential efficient monitoring statistics.

2.6 Illustrative example

This illustrative example has been detailed for the first time in Rahali et al.
(2019) and it is based on a real data set concerning the time (T in days)
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Table 4. EATS1 values when ΩT = {0.5, 0.55, . . . , 0.9, 0.95} and ΩX =
{1.1, 1.2, . . . , 1.9, 2} for the three TBEA charts based on statistics Z ∈ {Z1, Z2, Z3}

Statistic Z1

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 8.4 12.4 47.8 8.5 13.0 55.9 8.4 11.3 8.1 10.4 38.6
Gamma 2 10.5 14.5 48.7 10.5 15.0 56.2 10.4 13.6 10.2 12.8 40.1

5 16.9 21.2 52.5 16.9 21.5 58.4 16.9 20.5 16.8 19.9 45.6

1 8.4 12.4 47.8 8.5 13.0 55.9 8.3 11.3 8.1 10.3 38.6
Lognormal 2 10.2 14.3 48.6 10.2 14.8 56.1 10.1 13.3 9.9 12.5 39.9

5 14.7 19.3 52.1 14.7 19.6 58.4 14.7 18.5 14.5 17.8 44.7

1 8.8 12.7 47.9 8.9 13.3 55.9 8.8 11.6 8.5 10.7 38.7
Weibull 2 12.4 16.0 49.0 12.4 16.5 56.4 12.3 15.1 12.1 14.4 40.6

5 19.5 23.7 54.1 19.5 23.9 59.6 19.5 23.1 19.4 22.6 47.5

Statistic Z2

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 8.5 11.3 30.4 8.5 11.6 34.4 8.5 10.6 8.3 10.1 25.7
Gamma 2 12.1 15.0 32.2 12.1 15.2 34.9 12.1 14.5 12.0 14.1 28.9

5 33.6 34.9 43.0 33.6 34.9 43.1 33.6 34.9 33.6 34.9 42.6

1 8.5 11.2 30.4 8.5 11.6 34.3 8.4 10.6 8.2 10.0 25.7
Lognormal 2 11.4 14.3 31.9 11.4 14.5 34.7 11.4 13.8 11.2 13.4 28.4

5 24.5 26.5 38.2 24.5 26.5 38.6 24.5 26.4 24.4 26.3 37.1

1 9.2 11.9 30.8 9.2 12.3 34.7 9.1 11.3 9.0 10.7 26.3
Weibull 2 16.7 19.1 34.9 16.7 19.3 37.3 16.6 18.8 16.6 18.5 32.1

5 47.6 48.4 53.7 47.6 48.4 53.6 47.6 48.4 47.6 48.4 53.6

Statistic Z3

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 8.5 11.4 38.6 8.5 11.8 44.7 8.4 10.6 8.2 9.9 31.7
Gamma 2 12.6 14.8 35.7 12.6 15.1 40.0 12.6 14.3 12.5 13.9 30.7

5 50.9 51.0 52.4 50.9 51.0 53.5 50.9 51.0 50.9 51.0 52.1

1 8.4 11.3 38.7 8.5 11.8 44.8 8.4 10.6 8.2 9.9 31.7
Lognormal 2 11.7 14.0 35.7 11.7 14.3 40.3 11.7 13.5 11.6 13.1 30.5

5 35.1 35.5 40.5 35.1 35.5 42.1 35.1 35.4 35.1 35.4 39.4

1 9.3 12.1 38.5 9.3 12.6 44.4 9.2 11.3 9.0 10.6 31.8
Weibull 2 19.0 20.3 38.3 19.0 20.6 42.4 19.0 19.9 18.9 19.7 33.7

5 73.3 73.3 73.5 73.3 73.3 73.9 73.3 73.3 73.3 73.3 73.5
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between fires in forests of the region “Provence - Alpes - Côte D’Azur” in the
south-east of France and their amplitudes (X measured as the burned surface
in ha = 10000m2). This data set reports a total of 92 significant fires from
2016/10 to 2017/9: the data set has been split into m = 47 fires occuring
during the “low season” from 2016/10 to mid 2017/6 (used as Phase 1 data)
and n = 45 fires occuring during the “high season” from mid 2017/6 to 2017/9
(used as Phase 2 data). The values of T and X are recorded in Table 5 (as
well as the values of the statistics Z1, Z2 and Z3) and they are also plotted
in Figure 3 where it is clear that the values of T during the “high season” are
smaller than those during the “low season” and the values of X during the
“high season” are larger than those during the “low season”.

The use of the Kendall’s and Spearman’s rank correlation tests on the whole
data set yields p-values larger than the significance level of 0.05 (0.2 for the
Kendall’s test and 0.19 for the Spearman’s test) validating the fact that the
random variables T and X are uncorrelated (a key assumption in this sec-
tion). Among the four distributions considered in Table 1, the use of the
Kolmogorov-Smirnov’s test shows that the best fit for both T and X is the
lognormal distribution with parameters (a0 = −1.2648, b0 = 1.0302) for T
and (a0 = −1.6697, b0 = 0.8624) for X.

The three TBEA charts, corresponding to the statistics Z ∈ {Z1, Z2, Z3} are
plotted in Figure 4 along with their upper control limits UCLZ1 = 6.0306,
UCLZ2

= 28.1209 and UCLZ3
= 19.3885 (assuming ATS0 = 730, i.e. 2 years).

As it can be seen, these charts detect several out-of-control situations during
the “high season” confirming that a decrease in the time between fires occured
as well as an increase in the amplitude of these fires.

3 TBEA charts for dependent Times and Amplitudes

3.1 Motivation

In the previous section, the time T between events and their amplitudes X
have been considered as independent random variables. But, in practice, this
is not always the case. For example, there are natural situations for which
the amplitudes tend to become larger when the times between events become
shorter (i.e. a negative correlation). Such kind of situations is likely to oc-
cur for example in the case of earthquakes for which, in a first phase, small
amplitude earthquakes may occur with a low frequency (large time between
events) and, suddenly, in a second phase, the occurence frequency of these
earthquakes may increase (shorter time between events) with a negatively
correlated increase in their amplitudes. The same kind of situations may also
arise in the case of forest fires occuring, in a first phase during the “humid
season”, with a low frequency and small amplitudes (surfaces burned) and
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Table 5. Phase 1 and 2 data sets corresponding to time (T in days) between fires,
amplitudes (X as the burned surface in ha) and the values of the statistics Z1, Z2

and Z3.

Phase 1 Phase 2

i T X Z1 Z2 Z3 i T X Z1 Z2 Z3

1 9 3.68 -1.37 0.16 0.88 1 1 1.00 -0.11 0.40 5.54
2 17 1.99 -2.96 0.05 0.47 2 2 3.70 -0.09 0.75 3.01
3 34 6.00 -5.78 0.07 0.60 3 2 3.17 -0.13 0.64 2.97
4 7 1.19 -1.19 0.07 0.87 4 3 18.40 0.81 2.47 3.18
5 3 135.80 9.45 18.23 11.82 5 3 1.00 -0.47 0.13 1.90
6 2 14.37 0.69 2.89 3.79 6 1 2.22 -0.02 0.89 5.63
7 14 8.10 -1.96 0.23 0.99 7 2 19.09 1.04 3.84 4.14
8 2 32.31 2.01 6.51 5.11 8 1 2.00 -0.04 0.81 5.62
9 6 3.07 -0.87 0.21 1.14 9 2 34.28 2.16 6.90 5.26
10 1 10.03 0.56 4.04 6.21 10 2 3.00 -0.14 0.60 2.95
11 1 7.93 0.40 3.19 6.05 11 1 6.63 0.31 2.67 5.96
12 1 1.50 -0.07 0.60 5.58 12 1 4.47 0.15 1.80 5.80
13 6 23.30 0.62 1.56 2.63 13 7 8.24 -0.67 0.47 1.39
14 3 3.73 -0.27 0.50 2.10 14 1 769.45 56.49 309.87 62.14
15 3 4.73 -0.20 0.63 2.17 15 1 4.37 0.14 1.76 5.79
16 2 3.19 -0.13 0.64 2.97 16 1 90.70 6.50 36.53 12.15
17 2 6.25 0.09 1.26 3.19 17 1 11.49 0.66 4.63 6.31
18 1 3.60 0.08 1.45 5.73 18 6 3590.78 263.36 241.01 265.37
19 1 6.12 0.27 2.46 5.92 19 1 1427.92 104.98 575.04 110.63
20 3 1.50 -0.44 0.20 1.93 20 1 255.96 18.67 103.08 24.32
21 4 1.33 -0.63 0.13 1.46 21 1 1.00 -0.11 0.40 5.54
22 12 1.42 -2.09 0.05 0.56 22 4 13.88 0.29 1.40 2.39
23 3 5.75 -0.13 0.77 2.25 23 1 138.28 10.00 55.69 15.65
24 3 3.47 -0.29 0.47 2.08 24 2 8.90 0.29 1.79 3.39
25 2 13.31 0.61 2.68 3.71 25 3 1.50 -0.44 0.20 1.93
26 1 26.31 1.75 10.60 7.41 26 4 34.63 1.82 3.49 3.92
27 1 18.54 1.18 7.47 6.83 27 1 82.56 5.90 33.25 11.55
28 2 66.17 4.51 13.32 7.61 28 1 2.00 -0.04 0.81 5.62
29 1 9.90 0.55 3.99 6.20 29 1 162.08 11.75 65.27 17.40
30 3 4.22 -0.24 0.57 2.13 30 4 3.26 -0.49 0.33 1.61
31 7 34.28 1.24 1.97 3.31 31 2 285.91 20.69 57.57 23.79
32 4 2.23 -0.57 0.22 1.53 32 1 2.00 -0.04 0.81 5.62
33 1 1.84 -0.05 0.74 5.60 33 3 11.57 0.30 1.55 2.67
34 1 2.88 0.03 1.16 5.68 34 9 34.70 0.91 1.55 3.16
35 1 21.46 1.40 8.64 7.05 35 1 431.00 31.56 173.57 37.21
36 1 4.46 0.15 1.80 5.80 36 1 10.89 0.62 4.39 6.27
37 1 58.27 4.11 23.47 9.76 37 4 1.00 -0.66 0.10 1.44
38 1 8.84 0.47 3.56 6.12 38 6 1.50 -0.99 0.10 1.02
39 13 1.03 -2.30 0.03 0.50 39 1 1.17 -0.10 0.47 5.55
40 7 16.57 -0.06 0.95 2.00 40 2 1.27 -0.27 0.26 2.83
41 14 4.96 -2.20 0.14 0.76 41 1 26.25 1.75 10.57 7.40
42 1 1.37 -0.08 0.55 5.57 42 3 11.66 0.31 1.57 2.68
43 3 23.39 1.17 3.14 3.55 43 1 3.03 0.04 1.22 5.69
44 20 1.70 -3.53 0.03 0.40 44 1 12.00 0.70 4.83 6.35
45 22 5.30 -3.63 0.10 0.64 45 1 1.00 -0.11 0.40 5.54
46 1 15.64 0.97 6.30 6.62
47 9 5.14 -1.27 0.23 0.99
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Fig. 3. Time (T in days) between fires and amplitudes (X as the burned surface in
ha) corresponding to the data set in Table 5

becoming more disastrous during the “dry season” with shorter time between
the occurrence of forest fires and larger amplitudes (see for instance the 2019
forest fires in Amazonia or Siberia or the 2020 forest fires in Australia and
USA). Positive correlation between T and X (i.e. the time between events
becomes shorter and the amplitude becomes smaller) is also possible as the
the forthcoming illustrative example in this section will depict it.

Until now, very few research papers have investigated TBEA control charts
by considering the potential dependence between the two variables T and X.
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Fig. 4. Statistics Z1, Z2 and Z3 corresponding to the data set in Table 5
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Cheng and Mukherjee (2014) were the first to investigate a T 2 TBEA control
chart by using a bivariate SAT (Smith-Adelfang-Tubbs) Gamma distribution
to model the joint probability of T and X. This work has been extended later
by Cheng et al. (2017) who developed a similar approach based on a MEWMA
(multivariate exponentially weighted moving average) procedure.

In this section, instead of specifying a particular bivariate joint distribution
for (T,X), like the SAT distribution for instance, we will assume that the
marginal distributions of T and X are both known (and they can be al-
most anything) and we will use the Copulas mechanism (popularized by Sklar
(1959)) in order to model the dependence between the time T and the am-
plitude X. The use of Copulas in the Statistical Process Monitoring field is
not so common. We can cite for instance Fatahi et al. (2011), Dokouhaki
and Noorossana (2013), Busababodhin and Amphanthong (2016) and Suk-
parungsee et al. (2018) who all proposed various types of control charts based
on Copulas.

3.2 Model

In this section, we assume that (X,T ) ∈ R2
+ and their joint continuous c.d.f.

is equal to

F(T,X)(t, x|θT ,θX , θ) = C(FT (t|θT ), FX(x|θX)|θ), (16)

where FT (t|θT ) and FX(x|θX), as defined in section 2.1, are the marginal c.d.f.
of T and X, respectively, C(u, v|θ) is a Copula containing all information on
the dependence structure between T and X, and θ is a dependence parameter
quantifying the dependence between the marginals. In addition, let

f(T,X)(t, x|θT ,θX , θ) = c(FT (t|θT ), FX(x|θX)|θ)fT (t|θT )fX(x|θX) (17)

be the joint p.d.f. of (X,T ) where fT (t|θT ) and fX(x|θX) are the marginal

p.d.f.’s of T and X, respectively, and c(u, v|θ) = ∂C(u,v|θ)
∂u∂v is the Copula den-

sity. As explained in section 2.1, in order to not favor one random variable
over the other one, the new random variables T ′ = T

µT0
and X ′ = X

µX0
are

introduced as the in-control standardized counterparts of T and X, where
µT0

and µX0
are the (known) in-control expectation of T and X, respectively.

It is easy to show that the joint c.d.f. F(T ′,X′)(t, x|θT ,θX , θ) and joint p.d.f.
f(T ′,X′)(t, x|θT ,θX , θ) of (X ′, T ′) ∈ R2

+ are equal to

F(T ′,X′)(t, x|θT ,θX , θ) =C(FT (tµT0
|θT ), FX(xµX0

|θX)|θ),
f(T ′,X′)(t, x|θT ,θX , θ) =µT0

µX0
c(FT (tµT0

|θT ), FX(xµX0
|θX)|θ)

fT (tµT0
|θT )fX(xµX0

|θX).

The closed form formulas for the c.d.f. and p.d.f. of the statistics Z1, Z2 and
Z3 defined in section 2.2 are provided in Rahali et al. (2021). The definition
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of the upper control limit UCLZ of the TBEA charts with dependent times
T and amplitudes X is similar to the one in equation (12) and it just requires
the addition of the dependence parameter θ, i.e. UCLZ = F−1Z (1− α|θZ0

, θ).
The formulas for computing ATS1 and SDTS1 are the same as in equations
(14) and (15), respectively.

3.3 Comparative studies

In order to compare the three TBEA charts for dependent times T and am-
plitudes X based on statistic Z ∈ {Z1, Z2, Z3}, the same distributions listed
in Table 1 have been chosen and the same 99 possible scenarios defined in Ta-
ble 2 have been investigated. The Archimedean bivariate Copulas of Gumbel
(1960), Clayton (1978) and Frank (1979) have been chosen in this section to
model the dependence between T and X. The Gumbel’s (also called Gumbel-
Hougaard’s) and Clayton’s Copulas are two asymmetric Copulas exhibiting
a larger dependence in the positive tail than in the negative one (for the
Gumbel’s Copula) and in the negative tail than in the positive one (for the
Clayton’s Copulas). The Frank’s Copula is a symmetric one that can be used
to model dependence structures with either positive or negative correlation.
Other Archimedean bivariate Copulas could have also been investigated, like
for instance the Ali et al. (1978) and Joe (1993) Copulas but, for simplicity
and also due to their popularity, we only confined our investigations to the
Gumbel’s, Clayton’s and Frank’s Copulas. Details concerning the definition of
each of these Copulas C(u, v|θ), the domain of definition for θ and the relation-
ship between the Kendall’s rank correlation coefficient τ and the dependence
parameter θ are provided in Table 6. In order to facilitate the use of these
Copulas, Table 7 simply provides pre-computed values of θ for several selected
values of the Kendall’s rank correlation coefficient τ ∈ {0, 0.1, 0.2, . . . , 0.9}.

When it is not possible to model a negative dependence with the Copulas
defined above, it is possible to use 90 or 270 degrees rotated versions C90 or
C270 of these Copulas using the following transformations (see Brechmann
and Schepsmeier (2013))

C90(u1, u2) = u2 − C(1− u1, u2),

C270(u1, u2) = u1 − C(u1, 1− u2).

Similarly to Table 3 (for independent times T and amplitudes X) and as-
suming ATS0 = 370.4, the upper control limits UCLZ of the three TBEA
charts with dependent times T and amplitudes X are reported in Tables 3–5
of Rahali et al. (2021) for the 99 scenarios defined in Table 2 and for the 3
Copulas defined above. From Tables 3–5 in Rahali et al. (2021), the following
conclusions can be drawn
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Table 6. Details concerning Gumbel’s, Clayton’s and Frank’s Copulas

Name C(u, v|θ) Domain for θ τ and θ

Gumbel exp
(
−
(
(− ln(u))θ + (− ln(v))θ

) 1
θ

)
[1,∞) τ = 1− 1

θ
⇔ θ = 1

1−τ

Clayton max(0, u−θ + v−θ − 1)−
1
θ [−1,∞)\{0} τ = θ

θ+2
⇔ θ = 2τ

1−τ

Frank − 1
θ

ln
(

1 + (e−θu−1)(e−θv−1)

e−θ−1

)
R\{0} τ = 1 + 4(D1(θ)−1)

θ

Note: D1(θ) is the Debye function of the first kind defined as D1(θ) = 1
θ

∫ θ
0

t
et−1

dt.

Table 7. Pre-computed values of θ for several selected values of τ ∈
{0, 0.1, 0.2, . . . , 0.9}

θ
τ Frank Clayton Gumbel

0.0 0.00 0.00 1.00
0.1 0.91 0.22 1.11
0.2 1.86 0.50 1.25
0.3 2.92 0.86 1.43
0.4 4.16 1.33 1.67
0.5 5.74 2.00 2.00
0.6 7.93 3.00 2.50
0.7 11.41 4.67 3.33
0.8 18.19 8.00 5.00
0.9 38.28 18.00 10.00

• For a fixed statistic Z ∈ {Z1, Z2, Z3}, scenario in Table 2 and type of
Copula, the larger τ , the smaller the control limit UCLZ .

• For a fixed scenario in Table 2, value of τ and type of Copula, the upper
control limits of the statistic Z ∈ {Z1, Z2, Z3} always satisfy UCLZ1 <
UCLZ2

< UCLZ3
.

• For a fixed scenario in Table 2, value of τ and statistic Z ∈ {Z1, Z2, Z3},
the values of UCLZ are more or less the same no matter the type of Copula
considered.

As in Section 2.5 for independent times T and amplitudes X, EATS1 values
(for shifts in both T and X) have been reported in Tables 7–9 of Rahali et al.
(2021) in the case of dependent times T and amplitudes X. These Tables only
consider the Frank’s Copula and τ ∈ {0.2, 0.5, 0.8}. These results clearly show
that, irrespective of the level of dependence, when a shift in both T and X is
likeky to occur, the best option is to use the statistics Z1 or, eventually, Z2,
but not the statistic Z3 which is never considered as an efficient one. These
conclusions are similar to the ones obtained in Section 2.5 and they remain
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identical for other Copulas like the Clayton’s or Gumbel’s ones. More details
concerning these aspects can be found in Rahali et al. (2021).

3.4 Illustrative example

The following illustrative example has been detailed for the first time in Rahali
et al. (2021) and it is related to a company that has recorded for one of its
bottleneck machine, during about 6 years (from 08/01/2012 to 27/12/2018)
all the breakdown dates (Di in days) as well as the estimated corresponding
incurred costs (Xi, in euros) which include all the repair and restart costs
(spare parts, manpower) and the cost of manufacturing disruption, see Table 8.
This data set of 44 dates is divided into two parts

• 30 breakdowns recorded during 5 years (2012 to 2016) and used in this
example as a Phase 1 data set.

• 14 breakdowns recorded during 2 years (2017 to 2018) and used in this
example as a Phase 2 data set.

The times Ti and amplitude Xi, i = 1, . . . , 44 in Table 8 have also been plotted
in Figure 5 with ◦ (for Phase 1) and • (for Phase 2), respectively. From the
scatterplot shown in Figure 5, it can be noted that when the time Ti between
consecutive breakdowns is smaller (larger), the corresponding cost Xi seems
to be also smaller (larger), indicating a potential slight positive correlation
between T and X. Investigations (during the period 2012 to 2016) about this
phenomena have clarified why such a positive correlation between T and X
may occur in this situation. After the occurrence of a breakdown, if the next
one occurs after a short period of time, it is often due to the same problem
occurring to the process: consequently, the time to looking for the breakdown
causes is reduced. The spare parts costs are also reduced as they have already
been purchased for the previous breakdown. On the contrary, when the next
breakdown occurs after a long period of time, the causes are usually different
from the previous breakdown and need more time to be revealed; new spare
parts need to be purchased, thus increasing the cost. In order to evaluate if a
positive correlation significantly exists between T and X, the Kendall’s and
Spearman’s rank correlation coefficients have been estimated to τ̂ = 0.4657
and ρ̂ = 0.6129 as well as their correponding p-values 0.00035 and 0.00032,
respectively, thus confirming a positive correlation between T and X. In this
example, a Frank’s Copula has been chosen to model the dependence between
T and X. As explained in Rahali et al. (2021), if τ̂ = 0.4657 then an estima-

tion of the dependence parameter is θ̂ = 5.14.

Concerning the marginal distributions of T and X, the best fit using the
Kolmogorov-Smirnov’s test is to choose a Gamma distribution for the time T
with parameters (a0 = 11.6488, b0 = 5.0562) and the Weibull distribution for
the cost X with parameters (a0 = 4.8472, b0 = 5396.4958).
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Fig. 5. Phase 1 (◦) and 2 (•) data corresponding to the time (T in days) between
breakdowns and amplitudes (X in euros) corresponding to the data set in Table 8.
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Table 8. Phase 1 and 2 data sets corresponding to the time (Ti in days) between
two consecutive breakdowns, amplitudes (Xi cost in euros) and the values of the
statistics Z1, Z2 and Z3.

Phase 1 Phase 2
Date i Ti Xi Z1,i Z2,i Z3,i Date i Ti Xi Z1,i Z2,i Z3,i

10/03/12 1 62 4890 -0.064 0.939 1.939 11/01/17 1 63 5080 -0.043 0.960 1.962
28/05/12 2 79 6180 -0.092 0.932 1.995 21/03/17 2 69 5350 -0.090 0.923 1.935
25/07/12 3 58 3730 -0.231 0.766 1.770 07/05/17 3 47 3770 -0.036 0.955 2.015
27/08/12 4 33 2930 0.032 1.057 2.377 15/07/17 4 69 4590 -0.243 0.792 1.782
20/11/12 5 85 7600 0.093 1.065 2.230 14/10/17 5 91 5940 -0.344 0.777 1.848
20/02/13 6 92 5580 -0.434 0.722 1.768 18/12/17 6 65 5420 -0.008 0.993 2.002
30/04/13 7 69 4570 -0.247 0.789 1.778 26/02/18 7 70 4580 -0.262 0.779 1.767
06/07/13 8 67 5230 -0.080 0.930 1.937 21/04/18 8 54 5430 0.181 1.197 2.189
18/08/13 9 43 4470 0.174 1.238 2.274 14/05/18 9 23 5740 0.770 2.972 3.721
28/09/13 10 41 3420 -0.005 0.993 2.128 27/06/18 10 44 6110 0.488 1.654 2.574
22/11/13 11 55 3460 -0.234 0.749 1.770 22/08/18 11 56 7340 0.533 1.561 2.536
08/02/14 12 78 5360 -0.241 0.818 1.839 29/10/18 12 68 8160 0.495 1.429 2.516
05/04/14 13 56 4470 -0.047 0.951 1.956 24/11/18 13 26 4800 0.529 2.199 3.236
28/05/14 14 53 4470 0.004 1.004 2.015 27/12/18 14 33 6570 0.768 2.371 3.113
08/07/14 15 41 3320 -0.025 0.964 2.108
27/09/14 16 81 4910 -0.382 0.722 1.720
29/10/14 17 32 5010 0.470 1.864 2.854
07/01/15 18 70 6630 0.152 1.128 2.182
30/03/15 19 82 5710 -0.238 0.829 1.873
20/05/15 20 51 5130 0.171 1.198 2.192
16/07/15 21 57 5330 0.110 1.114 2.111
01/09/15 22 47 5010 0.215 1.269 2.266
22/10/15 23 51 3660 -0.126 0.855 1.895
15/11/15 24 24 3340 0.268 1.657 3.129
12/01/16 25 58 3600 -0.257 0.739 1.743
14/03/16 26 62 5560 0.072 1.068 2.074
28/04/16 27 45 5760 0.401 1.524 2.473
25/06/16 28 58 6440 0.317 1.322 2.318
16/08/16 29 52 6310 0.393 1.445 2.408
09/11/16 30 85 6300 -0.169 0.883 1.967

Assuming an in-control ATS value, ATS0 = 9125 days (i.e. 25 years), the upper
control limits of the three TBEA charts based on statistics Z1, Z2 and Z3 are
found to be UCLZ1

= 0.57, UCLZ2
= 2.06 and UCLZ3

= 3.18, respectively, see
Rahali et al. (2021) for more details. The three TBEA charts, corresponding
to the statistics Z1, Z2 and Z3, are plotted in Figure 6 along with their upper
control limits. As it can be seen, the Phase 1 part of these charts seems
to confirm the fact that from 2012 to 2016, the time between consecutive
breakdowns and their corresponding costs were in stable state. But, from



22 Philippe Castagliola, Giovanni Celano, Dorra Rahali, and Shu Wu

2017, things seems to have changed as several out-of-control situations (see
values in bold in Table 8) have been detected by all the TBEA charts due
to more frequent breakdowns and an increasing maintenance cost (also due
to an aging machine). Every time an out-of-control situation is detected, the
production has been stopped, the root causes of the breakdown have been
searched for, analyzed and repaired. Then, the machine has been restarted.

4 A distribution-free TBEA chart

4.1 Motivation

The TBEA control charts developed in the previous sections are parametric
ones, i.e. they assume that the distributions of the Times X and their Am-
plitudes X are perfectly known. However, as it is mentioned in Qiu (2014),
in many practical situations, the distributions of these random variables are
unknown (or their parameters cannot be reliably estimated by means of a
Phase 1 retrospective study) making the implementation of traditional para-
metric control charts to be an incorrect approach. For instance, the para-
metric distributions that have been investigated in Sections 2 and 3, are the
Gamma, Lognormal, Normal and Weibull, but are these distributions really
appropriate in these cases? To overcome this problem, distribution-free con-
trol charts have been proposed and investigated in the literature. Among the
most recent ones, we can cite for instance Celano et al. (2016), Abid et al.
(2016, 2017a,b, 2018), Castagliola et al. (2019) and Chakraborti and Graham
(2019b). Most of these approaches use nonparametric statistics like the Sign
or the Wilcoxon signed-rank statistics. Practical guidelines for the implemen-
tation of such distribution-free control charts can be found in Chakraborti
and Graham (2019a).

In this Section, we present an upper-sided distribution-free EWMA control
chart for monitoring TBEA data. Moreover, as evaluating the Run Length
properties of any EWMA scheme based on discrete data is a challenging prob-
lem, we will also introduce a specific method called “continuousify” which
allows to obtain much better and replicable results.

4.2 Model

In this Section, we assume that FT (t|θT ) and FX(x|θX) are the unknown con-
tinuous c.d.f. of Ti and Xi, i = 1, 2, . . ., where θT and θX are known quantiles,
respectively. As for the previous sections, when the process is in-control, we
have θT = θT0 , θX = θX0 and, when the process is out-of-control, we have
θT = θT1

, θX = θX1
. Without loss of generality, we will consider that θT and

θX are the median values of Ti and Xi, respectively. Of course, if necessary,
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Fig. 6. Statistics Z1, Z2 and Z3 corresponding to the data set in Table 8.
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other quantiles can also be considered.

Let pT = P(Ti > θT0
|θT ) = 1 − FT (θT0

|θT ) and pX = P(Xi > θX0
|θX) =

1 − FX(θX0 |θX), i = 1, 2, . . ., be the probabilities that Ti and Xi are
larger than θT0 and θX0 assuming that the actual median values are θT
and θX , respectively. Let us also define qT = 1 − pT and qX = 1 − pX .
If the process is in-control, we have pT = pT0

= 1 − FT (θT0
|θT0

) = 0.5,
pX = pX0

= 1 − FX(θX0
|θX0

) = 0.5 and, when the process is out-of-control,
we have pT = pT1 = 1− FT (θT0 |θT1), pX = pX1 = 1− FX(θX0 |θX1).

The upper-sided distribution-free EWMA TBEA control chart that will be
introduced in this section is based on the following sign statistics STi and
SXi, for i = 1, 2, . . . as

STi = sign(Ti − θT0
),

SXi = sign(Xi − θX0
),

where sign(x) = −1 if x < 0 and sign(x) = +1 if x > 0. The case x = 0
will not be considered here (even if it can happen in practice) because the
random variables Ti and Xi are assumed to be continuous ones. In order to
simultaneously monitor (Ti, Xi), i = 1, 2, . . ., we suggest to define the statistic
Si, for i = 1, 2, . . . as

Si =
SXi − STi

2
.

Since STi ∈ {−1,+1} and SXi ∈ {−1,+1} we have Si ∈ {−1, 0,+1} and,
more precisely, we have:

• Si = −1 when Ti increases (STi = +1) and, at the same time, Xi decreases
(SXi = −1). In this case, the process seems to be in an acceptable situation.

• Si = +1 when Ti decreases (STi = −1) and, at the same time, Xi increases
(SXi = +1). In this case, the process seems to be in an unacceptable
situation.

• Si = 0 when both Ti and Xi increase or when both Ti and Xi decrease.
In this case, the process seems to be in an intermediate situation.

It can be easily proven that the p.m.f. (probability mass function) fSi(s|pT , pX) =
P(Si = s|pT , pX) and the c.d.f. FSi(s|pT , pX) = P(Si ≤ s|pT , pX) of Si are
equal to

fSi(s|pT , pX) =


pT qX if s = −1
pT pX + qT qX if s = 0
qT pX if s = +1
0 if s 6∈ {−1, 0, 1}

,

and

FSi(s|pT , pX) =


0 if s ∈ (−∞,−1)
pT qX if s ∈ [−1, 0)
pT + qT qX if s ∈ [0, 1)
1 if s ∈ [1,+∞)

.
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If we define an EWMA TBEA type control chart directly monitoring the
statistic Si, it is known (see Wu et al. (2021) for details) that, due to the
strong discrete nature of this statistic, an accurate computation using Markov
chain or integral equation methods, for instance, of the corresponding Run
Length properties (ARL, SDRL, ...) is impossible. Consequently, it is actu-
ally possible to define an EWMA TBEA type control chart based on Si but
it is unfortunately impossible to correctly evaluate its properties and, there-
fore, it is impossible to design it in a reliable way. In order to overcome this
problem and before any implementation of an EWMA scheme, Wu et al.
(2021) suggested to define an extra parameter σ ∈ [0.1, 0.2] and to trans-
form the discrete random variable Si into a new continuous one, denoted as
S∗i defined as a mixture of 3 normal random variables Yi,−1 ∼ Nor(−1, σ),
Yi,0 ∼ Nor(0, σ) and Yi,+1 ∼ Nor(+1, σ), with weights w−1 = pT qX ,
w0 = pT pX + qT qX and w+1 = qT pX (corresponding to the probabilities
fSi(s|pT , pX), s ∈ {−1, 0,+1}), respectively, i.e.

S∗i =

Yi,−1 if Si = −1,
Yi,0 if Si = 0,
Yi,+1 if Si = +1.

This strategy has been called continuousify by Wu et al. (2021). It is easy to
prove that the c.d.f. FS∗i (s|pT , pX) = P(S∗i ≤ s|pT , pX) of S∗i is equal to

FS∗i (s|pT , pX) =pT qXFNor(s| − 1, σ)

+ (pT pX + qT qX)FNor(s|0, σ) + qT pXFNor(s|+ 1, σ),
(18)

and its expectation E(S∗i ) and variance V(S∗i ) are equal to

E(S∗i ) = pX − pT ,
V(S∗i ) = σ2 + pT qT + pXqX .

When the process is in-control, we have pT0
= qT0

= 0.5, pX0
= qX0

= 0.5 and
the expectation and variance of S∗i simplify to E(S∗i ) = 0 and V(S∗i ) = σ2+0.5.
As the main goal is to detect an increase in Si (in order to avoid, for instance,
more damages or injuries/costs) rather than a decrease, the following upper-
sided EWMA TBEA control chart based on the statistic Z∗i is proposed

Z∗i = max(0, λS∗i + (1− λ)Z∗i−1), (19)

with the following upper asymptotic control limit UCL defined as

UCL = E(S∗i )︸ ︷︷ ︸
=0

+K

√
λ

2− λ ×
√

V(S∗i )︸ ︷︷ ︸
=
√
σ2+0.5

= K

√
λ(σ2 + 0.5)

2− λ , (20)

where λ ∈ [0, 1] and K > 0 are the control chart parameters to be fixed
and the initial value Z∗0 = 0. The zero-state ARL and SDRL of the proposed
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distribution-free upper-sided EWMA TBEA control chart can be obtained
using the standard approach of Brook and Evans (1972) which assumes that
the behavior of this control chart can be well represented by a discrete-time
Markov chain with m+2 states, where states i = 0, 1, . . . ,m are transient and
state m + 1 is an absorbing one. The transition probability matrix P of this
discrete-time Markov chain is

P =

Q r

0ᵀ 1

 =


Q0,0 Q0,1 · · · Q0,m r0
Q1,0 Q1,1 · · · Q1,m r1

...
...

...
...

Qm,0 Qm,1 · · · Qm,m rm
0 0 · · · 0 1

 ,

where Q is the (m + 1,m + 1) matrix of transient probabilities, where
0 = (0, 0, . . . , 0)ᵀ and where the (m + 1, 1) vector r satisfies r = 1 − Q1
(i.e. row probabilities must sum to 1) with 1 = (1, 1, . . . , 1)ᵀ. The transient
states i = 1, . . . ,m are obtained by dividing the interval [0,UCL] into m
subintervals of width 2∆, where ∆ = UCL

2m . By definition, the midpoint of the
i−th subinterval (representing state i) is equal to Hi = (2i− 1)∆. The tran-
sient state i = 0 corresponds to the “restart state” feature of our chart and
it is represented by the value H0 = 0. Concerning the proposed upper-sided
EWMA TBEA control chart, it can be easily shown that the generic element
Qi,j , i = 0, 1, . . . ,m, of the matrix Q is equal to

• if j = 0,

Qi,0 = FS∗i

(
− (1− λ)Hi

λ

∣∣∣∣ pT , pX) , (21)

• if j = 1, 2, . . . ,m,

Qi,j = FS∗i

(
Hj +∆− (1− λ)Hi

λ

∣∣∣∣ pT , pX
)
−FS∗i

(
Hj −∆− (1− λ)Hi

λ

∣∣∣∣ pT , pX
)

(22)

Let q = (q0, q1, . . . , qm)ᵀ be the (m+1, 1) vector of initial probabilities associ-
ated with the m+1 transient states. In our case, we assume q = (1, 0, . . . , 0)ᵀ,
i.e. the initial state corresponds to the “restart state”. When the number m
of subintervals is sufficiently large (say m = 300), this finite approach pro-
vides an effective method that allows the ARL and SDRL to be accurately
evaluated using the following classical formulas

ARL = qᵀ(I−Q)−11, (23)

SDRL =
√

2qᵀ(I−Q)−2Q1 + ARL(1−ARL). (24)

In order to illustrate the “power” of the continuousify technique on the upper-
sided EWMA TBEA control chart (in the case K = 3 and λ = 0.2), Table 9
presents some ARL values obtained without (left side) and with (right side)
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this technique, corresponding to 3 combinations for (pX , pT ), a number of
subintervals m ∈ {100, 120, . . . , 400} and σ = 0.125. When the continuousify
technique is not used, the random variable S∗i in (19) is replaced by Si or,
equivalently, the parameter σ is set to 0. For comparison purpose, the last
row of Table 9 also provides the ARL values obtained by simulations. As it
can be seen, if the continuousify technique is not used (left side), the ARL
values obtained using the Markov chain method can have a large variability
without any clear monotonic convergence when m increases. It turns out that
with these unstable ARL values, it can be really difficult to design and opti-
mize the upper-sided EWMA TBEA control chart. On the other side, if the
continuousify technique is used (right side), the ARL values obtained using
the Markov chain method are clearly very stable, even for small values of m,
but (and this is the price to pay for this stability) they are a bit larger than
those obtained by simulations (compare 26.08, 12.23, 27.88 vs. 24.71, 11.66,
26.46). This property is due to the extra term σ > 0 in (20).

Table 9. ARL for the distribution-free EWMA TBEA chart computed with and
without the continuousify technique.

without continuousify with continuousify (σ = 0.125)
pT = 0.3 pT = 0.2 pT = 0.1 pT = 0.3 pT = 0.2 pT = 0.1

m pX = 0.8 pX = 0.9 pX = 0.6 pX = 0.8 pX = 0.9 pX = 0.6

100 32.96 12.18 40.16 26.08 12.23 27.87
120 18.57 10.89 18.55 26.08 12.23 27.87
140 28.88 11.91 31.56 26.08 12.23 27.87
160 20.31 11.08 20.81 26.08 12.23 27.87
180 28.36 11.82 31.36 26.08 12.23 27.87
200 24.47 11.55 26.42 26.08 12.23 27.87
220 17.97 10.05 18.39 26.08 12.23 27.87
240 27.98 11.88 31.36 26.08 12.23 27.87
260 57.68 16.41 77.81 26.08 12.23 27.87
280 21.17 11.41 21.75 26.08 12.23 27.87
300 26.75 11.75 29.94 26.08 12.23 27.88
320 21.69 11.43 22.43 26.08 12.23 27.88
340 26.07 11.93 27.39 26.08 12.23 27.88
360 16.68 10.43 16.5 26.08 12.23 27.88
380 29.2 13.09 29.83 26.08 12.23 27.88
400 20.33 11.02 20.7 26.08 12.23 27.88

Simu 24.71 11.66 26.46 26.09 12.23 27.87
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4.3 Comparative studies

Since the continuousify technique is demonstrated to provide reliable ARL val-
ues, it is therefore possible to compute the optimal chart parameters (λ∗,K∗)
for the upper-sided EWMA TBEA control chart minimizing the out-of-control
ARL(λ∗,K∗, σ, pT , pX) for pT 6= 0.5 and pX 6= 0.5 under the constraint
ARL(λ∗,K∗, σ, 0.5, 0.5) = ARL0, where ARL0 is a predefined value for the
in-control ARL. These optimal values are listed in Table 10 with the corre-
sponding out-of-control (ARL,SDRL) values for pT ∈ {0.1, 0.2, . . . , 0.4} (only
considering a decrease in T ), pX ∈ {0.5, 0.6, . . . , 0.9} (only considering an
increase in X), for four possible choices for σ ∈ {0.1, 0.125, 0.15, 0.2} and as-
suming ARL0 = 370.4. These values of (λ∗,K∗) can be freely be used by
practitioners who need to optimally detect a specific shift in the times and/or
in the amplitudes.

A comparison between the upper-sided EWMA TBEA control chart intro-
duced in this Section and the three parametric TBEA control charts presented
in Subsection 2.1 has been investigated in Wu et al. (2021) using the EARL1

(instead of the EATS1) for the following two scenarios

• Scenario #1: a Normal distribution for X with in-control mean µX0
= 10

and standard-deviation σX0 = 1 and a gamma distribution for T with in-
control mean µT0 = 10 and standard-deviation σT0 = 2, i.e.X ∼ Nor(10, 1)
and T ∼ Gam(25, 0.4).

• Scenario #2: a Normal distribution for X with in-control mean µX0
= 10

and standard-deviation σX0
= 2 and a Weibull distribution for T with in-

control mean µT0
= 10 and standard-deviation σT0

= 1, i.e.X ∼ Nor(10, 2)
and T ∼Wei(12.1534, 10.4304).

Based on the results in Tables 3 and 4 in Wu et al. (2021), the conclusion
is that no matter the scenario (#1 or #2) or the statistic considered Z ∈
{Z1, Z2, Z3}, the out-of-control EARL1 values obtained for the distribution-
free upper-sided EWMA TBEA control chart are always smaller than the ones
obtained for the parametric Shewhart control charts introduced in Subsection
2.1, thus showing the advantage of using the proposed distribution-free control
chart in situations where the distributions for T and X are unknown.

4.4 Illustrative example

We consider here the same illustrative example as the one already presented
in Section 2.6 concerning the days Ti between fires in forests of the french
region “Provence - Alpes - Côte D’Azur” and their amplitudes Xi (burned
surface in ha = 10000m2). In order to compute the control limit UCL of
the distribution-free upper-sided EWMA TBEA chart, the following values
have been fixed: pT = 0.3, pX = 0.7, σ = 0.125 and ARL0 = 370.4. The
corresponding optimal values for λ and K are found to be λ∗ = 0.07 and
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Table 10. Optimal values for (λ∗,K∗) with the corresponding out-of-control val-
ues of (ARL, SDRL) for pT ∈ {0.1, 0.2, . . . , 0.4}, pX ∈ {0.5, 0.6, . . . , 0.9} and
σ ∈ {0.1, 0.125, 0.15, 0.2}

σ = 0.1

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.773) (0.025,2.174)
(105.66,74.04) (50.77,32.32)

0.3 (0.025,2.174) (0.045,2.387) (0.070,2.515)
(51.54,32.55) (30.55,18.04) (20.50,11.38)

0.2 (0.040,2.348) (0.070,2.515) (0.100,2.591) (0.145,2.639)
(31.30,17.51) (20.74,11.40) (14.85,7.67) (11.19,5.55)

0.1 (0.060,2.474) (0.090,2.571) (0.135,2.634) (0.180,2.645) (0.240,2.627)
(21.40,10.76) (15.16,7.37) (11.32,5.40) (8.76,3.84) (6.99,2.74)

σ = 0.125

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.774) (0.025,2.174)
(106.19,74.55) (51.11,32.63)

0.3 (0.025,2.174) (0.045,2.387) (0.070,2.515)
(51.88,32.87) (30.79,18.25) (20.68,11.53)

0.2 (0.040,2.348) (0.065,2.496) (0.100,2.592) (0.140,2.638)
(31.53,17.72) (20.91,11.27) (14.99,7.80) (11.32,5.57)

0.1 (0.060,2.474) (0.090,2.572) (0.135,2.634) (0.175,2.648) (0.225,2.639)
(21.57,10.92) (15.30,7.50) (11.44,5.49) (8.88,3.89) (7.10,2.75)

σ = 0.15

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.775) (0.025,2.175)
(106.83,75.16) (51.53,33.01)

0.3 (0.025,2.175) (0.045,2.387) (0.070,2.515)
(52.30,33.26) (31.08,18.51) (20.90,11.71)

0.2 (0.040,2.348) (0.065,2.496) (0.095,2.584) (0.135,2.636)
(31.82,17.97) (21.13,11.45) (15.17,7.81) (11.47,5.61)

0.1 (0.055,2.449) (0.090,2.573) (0.130,2.632) (0.170,2.651) (0.215,2.646)
(21.79,10.76) (15.47,7.64) (11.59,5.53) (9.02,3.96) (7.23,2.80)

σ = 0.2

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.777) (0.025,2.176)
(108.43,76.68) (52.57,33.96)

0.3 (0.020,2.085) (0.045,2.387) (0.065,2.496)
(53.33,32.51) (31.81,19.15) (21.44,11.90)

0.2 (0.040,2.348) (0.065,2.496) (0.090,2.574) (0.125,2.630)
(32.53,18.61) (21.66,11.92) (15.60,8.01) (11.84,5.74)

0.1 (0.055,2.449) (0.085,2.562) (0.120,2.624) (0.155,2.652) (0.195,2.658)
(22.31,11.21) (15.89,7.83) (11.95,5.64) (9.34,4.06) (7.53,2.91)
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K∗ = 2.515 (see results in Table 10) and the upper control limit UCL is equal
to

UCL = 2.515×
√

0.07× (0.1252 + 0.5)

2− 0.07
= 0.344.

The in-control median values for T and X have been estimated from the
Phase 1 data set and they are equal to θT0

= 3 days and θX0
= 5.3 ha.

These values are used to compute the values STi, SXi, Si and S∗i in Table 11.
As it can be noticed, some dates are such that Ti − θT0

= 0. Of course,
this situation is not supposed to happen as the times Ti are supposed to
be continuous random variables but, due to the measurement scale (days),
this situation actually happens. When this situation occurs, a possible simple
strategy consists in assigning STi = 0 (instead of −1 or +1). For this reason, in
Table 11, some values of Si = s = ±0.5 and the corresponding values for S∗i are
obtained by randomly generating a Nor(s, σ) random variable, as it is already
the case for values s ∈ {−1, 0,+1}. For instance, in Table 11, when Di = 70
we have Si = 0.5 and the corresponding value for S∗i has been randomly
generated from a Nor(0.5, 0.125) distribution (S∗i = 0.552). The values Z∗i
have been computed using eqn.(19), for both Phase 1 and 2 data sets, recorded
in Table 11 and plotted in Figure 7 along with the distribution-free EWMA
TBEA upper control limit UCL = 0.344. If the distribution-free upper-sided
EWMA TBEA chart does not detect any out-of-control situations during the
Phase 1 (validating the in-control state of this phase), it nevertheless detects
several out-of-control situations during the period mid-June 2017 – end of
September 2017, (see also the bold values in Table 11), confirming that a
decrease in the time between fires occurred with a concurrent increase in the
amplitude of these fires. This conclusion is consistent with the one obtained in
Section 2.6 in which a parametric approach assuming a lognormal distribution
for both Ti and Xi was used.

5 Conclusions

The three contributive Sections of this Chapter have clearly demonstrated
that efficient solutions do exist when the aim is to simultaneously monitor the
time interval T of an event E as well as its amplitude X. These solutions can
be either parametric, for independent or dependent situations, and they can
also be distribution-free if there is no a priori knowledge about the distribu-
tions associated with T and X.

In our opinion, future researches on the monitoring of TBEA data can be
undertaken toward several directions:

• In the proposed parametric approaches, the estimation of the parameters
(for the distributions or the Copulas) is not taken into account at all in
the design and evaluation of the TBEA control charts. The impact of the
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Table 11. Phase 1 and 2 values of Di, Ti, Xi, STi, SXi, Si, S
∗
i and Z∗

i for the forest
fires example.

Phase 1 Phase 2
Di Ti Xi STi SXi Si S∗

i Z∗
i Di Ti Xi STi SXi Si S∗

i Z∗
i

9 9 3.68 1 -1 -1.0 -0.917 0.000 258 1 1.00 -1 -1 0.0 -0.078 0.000
26 17 1.99 1 -1 -1.0 -0.802 0.000 260 2 3.70 -1 -1 0.0 0.119 0.008
60 34 6.00 1 1 0.0 -0.081 0.000 262 2 3.17 -1 -1 0.0 -0.063 0.003
67 7 1.19 1 -1 -1.0 -0.901 0.000 265 3 18.40 0 1 0.5 0.333 0.026
70 3 135.80 0 1 0.5 0.552 0.039 268 3 1.00 0 -1 -0.5 -0.145 0.014
72 2 14.37 -1 1 1.0 1.113 0.114 269 1 2.22 -1 -1 0.0 0.208 0.028
86 14 8.10 1 1 0.0 -0.104 0.099 271 2 19.09 -1 1 1.0 1.001 0.096
88 2 32.31 -1 1 1.0 0.892 0.154 272 1 2.00 -1 -1 0.0 0.027 0.091
94 6 3.07 1 -1 -1.0 -1.056 0.069 274 2 34.28 -1 1 1.0 1.086 0.161
95 1 10.03 -1 1 1.0 0.867 0.125 276 2 3.00 -1 -1 0.0 0.070 0.154
96 1 7.93 -1 1 1.0 1.033 0.189 277 1 6.63 -1 1 1.0 0.955 0.210
97 1 1.50 -1 -1 0.0 0.409 0.204 278 1 4.47 -1 -1 0.0 -0.097 0.189
103 6 23.30 1 1 0.0 -0.116 0.182 285 7 8.24 1 1 0.0 0.160 0.187
106 3 3.73 0 -1 -0.5 -0.708 0.120 286 1 769.45 -1 1 1.0 1.024 0.246
109 3 4.73 0 -1 -0.5 -0.677 0.064 287 1 4.37 -1 -1 0.0 -0.144 0.218
111 2 3.19 -1 -1 0.0 0.179 0.072 288 1 90.70 -1 1 1.0 0.961 0.270
113 2 6.25 -1 1 1.0 1.032 0.139 289 1 11.49 -1 1 1.0 1.044 0.324
114 1 3.60 -1 -1 0.0 -0.155 0.118 295 6 3590.78 1 1 0.0 0.033 0.304
115 1 6.12 -1 1 1.0 1.112 0.188 296 1 1427.92 -1 1 1.0 0.949 0.349
118 3 1.50 0 -1 -0.5 -0.740 0.123 297 1 255.96 -1 1 1.0 1.054 0.399
122 4 1.33 1 -1 -1.0 -1.009 0.044 298 1 1.00 -1 -1 0.0 -0.051 0.367
134 12 1.42 1 -1 -1.0 -1.037 0.000 302 4 13.88 1 1 0.0 -0.074 0.336
137 3 5.75 0 1 0.5 0.629 0.044 303 1 138.28 -1 1 1.0 1.117 0.391
140 3 3.47 0 -1 -0.5 -0.507 0.005 305 2 8.90 -1 1 1.0 1.153 0.444
142 2 13.31 -1 1 1.0 1.217 0.090 308 3 1.50 0 -1 -0.5 -0.342 0.389
143 1 26.31 -1 1 1.0 1.041 0.157 312 4 34.63 1 1 0.0 -0.217 0.347
144 1 18.54 -1 1 1.0 0.923 0.210 313 1 82.56 -1 1 1.0 0.811 0.379
146 2 66.17 -1 1 1.0 1.124 0.274 314 1 2.00 -1 -1 0.0 -0.019 0.351
147 1 9.90 -1 1 1.0 0.916 0.319 315 1 162.08 -1 1 1.0 1.071 0.402
150 3 4.22 0 -1 -0.5 -0.534 0.260 319 4 3.26 1 -1 -1.0 -1.056 0.300
157 7 34.28 1 1 0.0 -0.110 0.234 321 2 285.91 -1 1 1.0 0.729 0.330
161 4 2.23 1 -1 -1.0 -1.102 0.140 322 1 2.00 -1 -1 0.0 -0.283 0.287
162 1 1.84 -1 -1 0.0 0.152 0.141 325 3 11.57 0 1 0.5 0.347 0.291
163 1 2.88 -1 -1 0.0 -0.018 0.130 334 9 34.70 1 1 0.0 0.068 0.275
164 1 21.46 -1 1 1.0 1.087 0.197 335 1 431.00 -1 1 1.0 1.150 0.337
165 1 4.46 -1 -1 0.0 -0.001 0.183 336 1 10.89 -1 1 1.0 1.003 0.383
166 1 58.27 -1 1 1.0 1.034 0.243 340 4 1.00 1 -1 -1.0 -1.004 0.286
167 1 8.84 -1 1 1.0 0.863 0.286 346 6 1.50 1 -1 -1.0 -0.921 0.202
180 13 1.03 1 -1 -1.0 -0.905 0.203 347 1 1.17 -1 -1 0.0 0.100 0.195
187 7 16.57 1 1 0.0 0.156 0.199 349 2 1.27 -1 -1 0.0 0.129 0.190
201 14 4.96 1 -1 -1.0 -1.084 0.110 350 1 26.25 -1 1 1.0 1.098 0.254
202 1 1.37 -1 -1 0.0 -0.087 0.096 353 3 11.66 0 1 0.5 0.332 0.259
205 3 23.39 0 1 0.5 0.498 0.124 354 1 3.03 -1 -1 0.0 0.127 0.250
225 20 1.70 1 -1 -1.0 -1.032 0.043 355 1 12.00 -1 1 1.0 1.130 0.311
247 22 5.30 1 0 -0.5 -0.727 0.000 356 1 1.00 -1 -1 0.0 -0.206 0.275
248 1 15.64 -1 1 1.0 1.161 0.081
257 9 5.14 1 -1 -1.0 -0.921 0.011
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Fig. 7. Distribution-free EWMA TBEA chart with statistic Z∗
i corresponding to

the data set in Table 11

parameter estimation is known to strongly influence the efficiency of any
control chart and, therefore, researches on this topic should be done.

• Measures like times or amplitudes are obviously subject to measurement
errors. These kinds of error are also known to negatively impact the ef-
ficiency of any control chart. Reasearches investigating the impact of the
measurement errors on T and/or X should also be undertaken in order to
evaluate how much they actually impact the performance of parametric
TBEA control charts.

• Instead of considering X as univariate random variable, it could be consid-
ered in some cases as a p-variate random vector X = (X1, . . . , Xp) where
each Xk is the amplitude of a specific characteristic and the goal would be
to simultaneously monitor (T,X). For instance, in the forest fires exam-
ple, the amplitude could be considered as a bivariate vector X = (X1, X2)
where X1 would be the burned surface and X2 would be the cost related
to the fires.

• Often, historical data availability in monitoring of adverse events is lim-
ited to a few records. Thus, knowledge about the frequency distribution
of these events is too restricted to fit a reliable statistical model. With
these scenarios, there is room for approaching the monitoring problem
with distribution-free approaches, which, therefore, deserve a lot of atten-
tion by researchers.
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