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Abstract 
In this article we present the Database of Word-Level Statistics for Mandarin Chinese (DoWLS-
MAN). The database addresses the lack of agreement in phonological syllable segmentation 
specific to Mandarin by offering phonological features for each lexical item according to 16 
schematic representations of the syllable (8 with tone and 8 without tone). Those lexical statistics 
that differ per phonological word and nonword due to changes in syllable segmentation are of the 
variant category and include subtitle lexical frequency, phonological neighborhood density 
measures, homophone density, and network science measures. The invariant characteristics consist 
of each items' lexical tone, phonological transcription, and syllable structure among others. The 
goal of DoWLS-MAN is to provide researchers both the ability to choose stimuli that are derived 
from a segmentation schema that supports an existing model of Mandarin speech processing, and 
the ability to choose stimuli that allow for the testing of hypotheses on phonological segmentation 
according to multiple schemas. In an exploratory analysis we illustrate how multiple schematic 
representations of the phonological mental lexicon can aid in hypothesis generation, specifically 
in terms of phonological processing during reading Chinese orthography. Users of the database 
can search among over 92,000 words, over 1,600 out-of-vocabulary Chinese characters, and 4,300 
phonological nonwords according to either Chinese orthography, pinyin, or ascii phonetic script. 
Users can also generate a list of phonological words and nonwords according to user defined 
ranges and categories of lexical characteristics. DoWLS-MAN is available to the public for search 
or download at https://dowls.site. 
 
Keywords: lexical database, phonological neighborhood density, Mandarin Chinese, syllable 
segmentation, network phonology 
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1. Introduction 
When it comes to testing hypotheses about the nature of speech processing, researchers from 

multiple disciplines, such as psychology, linguistics, neuroscience, and education, rely on lexical 
databases for their selection of experimental stimuli. A defining feature of the existing databases 
(e.g., Baayen, Piepenbrock, & Gulikers, 1995; Balota et al., 2007; Davis & Perea, 2005; Duchon, 
Perea, Sebastián-Gallés, Martí, & Carreiras, 2013; Marian, Bartolotti, Chabal, & Shook, 2012; 
New, Pallier, Brysbaert, & Ferrand, 2004; Strand, 2013) is that they offer lexical statistics, for 
primarily European languages that are a priori built on but one segmentation schema. The ability 
to rely on a sole schema in languages such as English, Dutch, and French, has depended on 
evidence of spoken error production (Dell et al. 2000; Shattuck-Hufnagel 1979), on-the-fly 
resyllabification (Levelt 1989), priming paradigms (e.g., Alario, Perre, Castel, & Ziegler, 2007; 
Dufour & Peereman, 2003; Meyer & Schriefers, 1991; Schiller, 2000, 2004), and simulations with 
computational models (e.g., Levelt, Roelofs, & Meyer, 1999; McClelland & Elman, 1986; Norris, 
1994) where phonemes that consist of individual segments or near-segmental units, such as 
diphthongs, linearly construct syllables in metrical (Levelt 1989) or representational frames (Dell 
1986). A renewed interest in syllable segmentation over the last decade, particularly with speakers 
of Mandarin Chinese, has challenged the generalizability of segment-sized phonemes. In the 
current article, we review the building literature on Mandarin segmentation in speech perception 
and production and then introduce a lexical database for Mandarin that allows users to source 
lexical statistics built upon multiple segmentation schemas. Finally, we illustrate how the database 
can be used to generate hypotheses through an analysis of a megastudy of orthographic lexical 
decision reaction times. 

Mandarin has garnered multiple proposals as to its segmentation schema. In order to 
encompass them all, we begin with the maximal syllable, CGVX, in which C represents initial 
consonants, G pre-nuclear glides, V monophthongs, and X post-nuclear glides or final consonants. 
In line with previous research (Neergaard 2018; Neergaard and Huang 2019; Neergaard, Xu, and 
Huang 2016), we will rely on underscores between segmental units to denote phonological units. 
Note that the use of underscores is meant to distinguish a word-level annotation, such as VC for 
the vowel-consonant monosyllable 昂 ang2 /aŋ35/ (‘to lift’), from a lexicon-level segmentation 
schema. In Table 1 we illustrate the use of underscores with the disyllabic word, 小巷 xiao3xiang4 
/ɕiaʊ214ɕiaŋ51/ (‘alley’) and its monosyllabic constituents. The early work on Mandarin 
segmentation approached the topic through the use of theoretical arguments or language games 
(for a review and discussion, see Duanmu 2011). Researchers omitted tonal information so as to 
focus on the unitization of segments. Some proposals argued for complex rimes, including, 
C_G_VX /ɕ_i_aʊ_ɕ_i_aŋ/ (Cheng 1966), and C_GVX /ɕ_iaʊ_ɕ_iaŋ/ (Xu 1980). Others argued for 
complex onsets, CG_V_X  /ɕi_a_ʊ_ɕi_a_ŋ/ (Ao 1992; Duanmu 2007), or both complex onsets and 
complex rimes, CG_VX  /ɕi_aʊ_ɕi_aŋ/ (Bao 1990). Finally, others still proposed the unitization 
of vowel information into either diphthongs, C_G_V_C /ɕ_i_aʊ_ɕ_i_a_ŋ/ (Lin 1989; Wan 2006), 
or triphthongs, C_V_C /ɕ_iaʊ_ɕ_ia_ŋ/ (Sun, 2006). 
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Table 1. Segmentation schemas, presented in IPA, according to both nontonal and tonal examples of the 
words, xiao3 /ɕiaʊ214/, xiang4 /ɕiaŋ51/, and xiao3xiang4 /ɕiaʊ214ɕiaŋ51/  

        Nontonal       Tonal   
Schema xiao xiang xiaoxiang Schema xiao3 xiang4 xiao3xiang4 

C_V_C ɕ_iaʊ ɕ_ia_ŋ ɕ_iaʊ_ɕ_ia_ŋ C_V_C_T ɕ_iaʊ_214 ɕ_ia_ŋ_51 ɕ_iaʊ_214_ɕ_ia_ŋ_51 
C_G_V_C ɕ_i_aʊ ɕ_i_a_ŋ ɕ_i_aʊ_ɕ_i_a_ŋ C_G_V_C_T ɕ_i_aʊ_214 ɕ_i_a_ŋ_51 ɕ_i_aʊ_214_ɕ_i_a_ŋ_51 
C_G_V_X ɕ_i_a_ʊ ɕ_i_a_ŋ ɕ_i_a_ʊ_ɕ_i_a_ŋ C_G_V_X_T ɕ_i_a_ʊ_214 ɕ_i_a_ŋ_51 ɕ_i_a_ʊ_214_ɕ_i_a_ŋ_51 
C_G_VX ɕ_i_aʊ ɕ_i_aŋ ɕ_i_aʊ_ɕ_i_aŋ C_G_VX_T ɕ_i_aʊ_214 ɕ_i_aŋ_51 ɕ_i_aʊ_214_ɕ_i_aŋ_51 
C_GVX ɕ_iaʊ ɕ_iaŋ ɕ_iaʊ_ɕ_iaŋ C_GVX_T ɕ_iaʊ_214 ɕ_iaŋ_51 ɕ_iaʊ_214_ɕ_iaŋ_51 
CG_V_X ɕi_a_ʊ ɕi_a_ŋ ɕi_a_ʊ_ɕi_a_ŋ CG_V_X_T ɕi_a_ʊ_214 ɕi_a_ŋ_51 ɕi_a_ʊ_214_ɕi_a_ŋ_51 
CG_VX ɕi_aʊ ɕi_aŋ ɕi_aʊ_ɕi_aŋ CG_VX_T ɕi_aʊ_214 ɕi_aŋ_51 ɕi_aʊ_214_ɕi_aŋ_51 
CGVX ɕiaʊ ɕiaŋ ɕiaʊ_ɕiaŋ CGVX_T ɕiaʊ_214 ɕiaŋ_51 ɕiaʊ_214_ɕiaŋ_51 

 
More recently (for a review see Neergaard and Huang 2021), evidence from speech production 

paradigms have shown a bias towards the encoding of unsegmented syllables. Using a neighbor 
generation task, in which participants produced phonological neighbors to auditory stimuli, 
Mandarin speakers have shown that while they are able to manipulate segmental information at 
every segment location (Neergaard and Huang 2019), they are faster and more accurate in the 
manipulation of lexical tone by maintaining the same nontonal syllable (Neergaard and Huang 
2019; Wiener and Turnbull 2016). This bias towards the retrieval of nontonal syllables can be 
explained by evidence from a series of speech production priming studies (Chen and Chen 2013; 
Chen, Chen, and Dell 2002; Chen, Lin, and Ferrand 2003; O’Séaghdha, Chen, and Chen 2010; 
Verdonschot et al. 2013; You, Zhang, and Verdonschot 2012) that has led to a proposal wherein 
nontonal unsegmented syllables are the likely stored representations that are then combined with 
tone prior to articulation. This evidence suggests a lexicon structured according to nontonal 
unsegmented syllables, i.e., CGVX /ɕiaʊ_ɕiaŋ/, or its tonal counterpart, CGVX_T 
/ɕiaʊ_214_ɕiaŋ_51/.  

A hypothesis taking shape to account for why Mandarin speakers produce evidence of syllabic 
processing during speech can be understood in terms of literacy acquisition and Mandarin’s 
orthographic grain size. Mandarin speakers have at their disposal both Chinese characters and an 
alphabetic script, referred to as pinyin. Pinyin is used as both a pronunciation aid to young learners 
and as one of many keyboard input methods for writing Chinese characters. Meanwhile, with the 
exception of the phenomena known as erhua in which the character 儿 (er2) is added to another 
character yet pronounced as a single syllable (e.g., 哪儿 , na3 er2 = nar3, “where”), the 
orthographic grain size for Mandarin speakers is such that syllables map to Chinese characters. 
The influence of pinyin versus Chinese characters on speech production can be seen in a picture-
naming study that featured lists of items whose names either did or did not overlap in target units 
such as onsets, tones, and nontonal syllables. Children learning by pinyin (Grade 1) showed 
evidence of segmentation caused by onsets, while older children (Grade 4) who had transitioned 
to the learning of Chinese characters, were facilitated when homogenous lists overlapped in 
nontonal syllables, in line with their adult counterparts (Li & Wang, 2017).  

The mapping of alphabetic letters to segmental information is likely responsible for 
restructuring brain areas related to phonological processing. For instance, in an auditory rhyme 
judgment task, wherein native speakers of English and Mandarin judged the similarity of 
orthographic/phonologically consistent (e.g., gate /geɪtʰ/, hate /heɪtʰ/; 详 xiang2 /ɕiaŋ35/,  洋 yang2 
/iaŋ35/) and inconsistent pairs (e.g., pint /pʰaɪntʰ/, mint /mɪntʰ/; 译 yi4 /i51/,  择 ze2 /ts𝜀35/), English 



 4 

speakers showed greater activation than Mandarin speakers in the brain area related to 
phonological processing, likely due to co-activation of phonological and orthographic information. 
(Brennan et al. 2013). These results, which suggest that the phonological mental lexicon undergoes 
a restructuring for first language (L1) speakers of languages that use alphabets, help to understand 
why Mandarin second language (L2) speakers of English would similarly show evidence of 
segmentation in speech production tasks (Neergaard, Luo, and Huang 2019; Verdonschot et al. 
2013). Neergaard, et al. (2019) found evidence to support the influence of orthography on 
phonology within a verbal fluency task in which participants produced as many phonological 
neighbors to a given Mandarin monosyllable as possible within 1 minute. Participants low in 
English proficiency tended to produce syllable neighbors (e.g., target: wai4; responses: ai4, ai3, 
ai1, etc.) while those with greater English proficiency exhibited greater segmentation (e.g., target: 
an3; responses: an2, dan3, gan3, etc.). They argued that similar to L1 English speakers, native-
Mandarin speakers undergo a restructuring of their phonological mental lexicons from a system 
that is biased towards a syllable grain size to a system sensitive to segmental units. Variation in 
L2 English proficiency might also explain why in neurological examinations of speech encoding 
researchers have found evidence of segmental processing (Qu, Damian, and Kazanina 2012; Yu, 
Mo, and Mo 2014), syllabic processing (Feng, Yue, & Zhang, 2019; Wang et al., 2017; Zhang & 
Damian, 2019);  and both segmental and syllabic processing (Cai, Yin, & Zhang, 2020; Yu, Mo, 
Li, & Mo, 2015). 

In contrast to the production literature, evidence from speech recognition suggests that the 
mental representations of phonological information are segmented and tonal. Studies 
implementing a picture-word matching paradigm utilizing ERP  (Malins et al. 2014; Malins and 
Joanisse 2012), eye-tracking (Malins and Joanisse 2010), and computational simulations (Shuai 
and Malins 2016), have supported the claim that segmental information is processed incrementally, 
while tone is likely processed separately but parallel in time. The experimental studies to support 
this proposal critically mismatched stimuli according to onsets, rimes, syllables and lexical tone, 
but did not with regularity contrast stimuli according to pre-nuclear glides (i.e., the G unit: /i, u, 
y/) or the post-nuclear glides or final consonants (i.e., the X unit: /ɪ, ʊ, n, ŋ/). Thus, while their 
proposal entails the tonal fully unsegmented schema, C_G_V_X_T /ɕ_i_a_ʊ_214_ɕ_i_a_ŋ_51/, it 
best supports a tonal schema with complex onsets and complex rimes, CG_VX_T 
/ɕi_aʊ_214_ɕi_aŋ_51/. That processing during speech recognition would be segmental follows the 
literature with nontonal languages (e.g., McClelland & Elman, 1986; Norris, 1994) and matches 
the reality of recognition being a time-dependent process of hearing phonological information 
from beginning to end. 

Meanwhile, speech recognition studies using the variable known as phonological 
neighborhood density (PND) have similarly supported a segmented and tonal schema. The PND 
metric entails the summing of phonological neighbors of a target word identified through the 
addition (cat /kʰætʰ/ à cats /kʰætʰs/), deletion (cat /kʰætʰ/ à at /ætʰ/), or substitution (cat /kʰætʰ/ 
à kit /kʰitʰ/) of a single phonological unit. In the case of Mandarin, where segmentation is a 
theoretical and methodological question, differences in segmentation lead to differences in PND 
values. As can be seen in Table 1, phonological units can include clusters and/or lexical tone, 
depending on the segmentation schema used. As such, neighbors from one schema might not 
overlap with those of another. For instance, while the tonal fully segmented schema (C_G_V_X_T) 
has 6 neighbors (qiu2, liu2, niu1, niu3, niu4, you2) for the monosyllabic word 牛 niu2 /nioʊ35/ 
(‘cow’), the tonal onset/complex-vowel segmented schema (C_V_C_T) has 5 additional neighbors 
(na2, ni2, nuo2, nu2, nao2) due to its collapsing of vowel information into a single unit. A number 



 5 

of exploratory studies have exploited the differences between schemas to narrow down the possible 
candidates to best represent the co-activation of words in the mental lexicon during specific tasks. 

An exploratory study that tested an extensive list of monosyllabic lexical items in an auditory 
lexical decision task showed in a model selection procedure that the model representing the tonal 
fully segmented schema (C_G_V_X_T) outperformed its nontonal counterpart (C_G_V_X) and 
the tonal and nontonal onset/rime segmented schema, i.e., C_GVX_T and C_GVX (Yao and 
Sharma 2017). With similar exploratory methods, both the C_V_C_T and C_G_V_X_T schemas 
were the top competitors based on evidence from auditory word repetition, also known as 
shadowing (Neergaard and Huang 2016). Both these results fell in line with previous research 
wherein English (e.g., Luce & Pisoni, 1998), and French (e.g., Ziegler et al., 2003) speakers 
showed slower reaction times to greater PND, suggesting that phonological words compete during 
lexical selection. A third study that unlike the prior exploratory studies controlled for stimuli 
chosen through the use of the C_G_V_X_T schema, found facilitation to greater PND (Neergaard, 
Britton, and Huang 2019). While the contradiction in directional effects calls for a need of further 
investigation, it also reiterates that exploratory and confirmatory methods can result in diverging 
evidence (Baayen et al. 2017). Meanwhile, the facilitative effect also suggests that Mandarin, like 
Spanish (Vitevitch and Rodríguez 2004; Vitevitch and Stamer 2006, 2009), and Russian 
(Arutiunian and Lopukhina 2020) differs from English and French due to the structural 
characteristics of their respective lexicons, or what has been called psychotypology (Vitevitch and 
Rodríguez 2004; Vitevitch and Stamer 2006). While research is still ongoing in terms of the 
psychotypology of lexical access, a benefit of the current database is that it provides a unified 
resource for researchers seeking to identify how the features of Mandarin influence lexical 
processing. 

One particularly unique contribution of the current database is that it provides resources for 
researchers seeking to understand the network-like structure of the lexicon. The last decade has 
shown a heightened interest in the combination of network science methods with psycholinguistic 
experimentation (Siew et al. 2019). In terms of the use of network science with phonology, 
researchers have used what has been referred to as phonological networks, in which words act as 
nodes that are connected to one another, i.e., the network’s edges, through the addition, deletion, 
or substitution of a single phonemic unit (Vitevitch 2008). According to this method of 
constructing a network, PND, i.e., the sum of a word’s phonological neighbors, is equivalent to 
the network measure known as degree. To expand beyond research on a word’s degree, researchers 
have utilized a word-level network measure, known as clustering coefficient (CC). CC measures 
the interconnectedness of a target word’s neighbors. For instance, among the 4 phonological 
neighbors (er4, er3, ger2, e2) of the monosyllabic word er2 (儿, 而, 鸸), only 1 pair (er4, er3) of 
the 6 possible pairs are phonological neighbors according to the C_G_V_X_T schema; gaining 
er2 a low CC value of 1÷ 6 = 0.167. In research with English speakers, CC has been used to show 
that the interconnectedness of phonological words affects the structure of the developing lexicon 
(Carlson, Sonderegger, and Bane 2014), as well as adult spoken word production (Chan and 
Vitevitch 2010) and recognition (Chan and Vitevitch 2009). With Mandarin speakers, CC has been 
shown to significantly slow participants’ production of phonological neighbors (Neergaard and 
Huang 2019), suggesting a cognitive cost during mental search for words with greater 
interconnectedness. Other word-level network measures included in the current database are 
components size, which is the number of nodes within the component a given word resides in 
(Siew and Vitevitch 2015; Stella 2018); closeness centrality (Castro, Pelczarski, and Vitevitch 
2017; Goldstein and Vitevitch 2017; Iyengar et al. 2012), which measures the average shortest 
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path length between a given node and all other nodes within its component; betweenness centrality 
(Stella, Beckage, and Brede 2017), which is the number of times a given node is a bridge between 
the shortest paths of two other nodes and finally; and an as yet studied measure in the literature of 
phonological networks: eigenvector centrality, which ranks a nodes influence in lieu of the density 
of its neighbors. 

Analyses of phonological networks that go beyond the word-level, referred to as the network’s 
topology, have been illustrative of the role that segmentation plays in speech processing. 
Topological features extracted from phonological networks have been used to analyze both 
participant-level verbal productions (Neergaard, Luo, et al. 2019), and whole-vocabularies 
(Arbesman, Strogatz, and Vitevitch 2010b, 2010a; Brown et al. 2018; Dautriche et al. 2017; 
Neergaard and Huang 2019; Shoemark et al. 2016; Siew 2013; Siew and Vitevitch 2019; Stella et 
al. 2018; Stella and Brede 2015; Turnbull and Peperkamp 2016; Vitevitch 2008). Neergaard and 
Huang (2019) constructed the sixteen Mandarin phonological networks seen in Table 1. They 
showed that changes in segmentation and or presence of lexical tone resulted in not only 
differences in lexical frequency and homophony for a given phonological word (i.e., collapsed 
homophonous words into one phonological form), but also whether or not words were 
phonological neighbors. They illustrated that both the number of phonological units within a 
segmentation schema, and the presence or absence of lexical tone, determined the networks’ 
topological features, such as the size of each network’s largest component, mean degree (i.e, mean 
of every word’s PND value), and mean CC (i.e., mean of every word’s CC value). This implies 
that the choice of one or another schema in the creation of a lexical database entails taking a 
theoretical stance. This is problematic for researchers that are agnostic as to the question of 
segmentation but still require lexical statistics for the selection of stimuli. 

To date, no lexical database allows for the selection of lexical characteristics from multiple 
segmentation schemas. Databases providing lexical statistics for Mandarin have offered a number 
of variables, however, the majority of which are designed for the study of orthographic processing 
in that they provide lexical frequencies of orthographic words from large-scale corpora (Chen, 
Huang, Chang, & Hsu, 1996; McEnery & Xiao, 2003; Sun, Huang, Sun, Li, & Xing, 1997; van 
Esch, 2012), subtitle frequencies for words without phonological transcriptions (Subtlex-CH: Cai 
& Brysbaert, 2010), multiple orthographic measures and reaction times derived from traditional 
Chinese characters (Chang et al. 2015), or reaction times for words used in orthographic lexical 
decision tasks (Sze, Liow, and Yap 2014; Tsang et al. 2018). Liu, Shu, and Li, (2007) provided 
variables related to speech processing for monosyllabic words, however, their inclusion of 
homophone density and phonological frequency were limited to values pertaining to unsegmented 
syllables plus lexical tone (i.e., CGVX_T). Recently, Sun, Hendrix, Ma, and Baayen (2018) made 
available a large selection of variables for the study of both orthographic and speech processing. 
The drawback of this database is that users of its phonological variables are forced to rely on values 
derived from the C_V_C_T segmentation schema wherein all vowel information is collapsed into 
a single unit. The use of but one schema is not problematic if researchers intend to use the 
C_V_C_T schema as their model of segmentation, as was done in Wiener and Turnbull, (2016) 
for the calculation of phonological neighbors. It is however problematic for researchers who 
depend on a model of Mandarin speech processing that entails greater segmentation, such as the 
use of the C_G_V_X_T schema in Myers and Tsay (2005), or a model of the Mandarin syllable 
that lacks lexical tone, such as the use of the C_V_C schema in Tsai (2007). 

In the current article we present a database that provides lexical statistics according to multiple 
segmentation schemas, allowing researchers to 1) choose stimuli that are derived from a 
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segmentation schema that supports an existing model of Mandarin speech processing, or 2) choose 
stimuli that allow for the testing of hypotheses on phonological segmentation according to the 
word-level statistics from multiple schemas. 

 
2. The Database 
2.1 The word list 

DoWLS-MAN was constructed through the use of the Subtlex-CH wordlist (Cai & Brysbaert, 
2010) and its raw corpora. Chinese characters from the wordlist were transcribed into pinyin 
(Mandarin romanization) using the CKIP Lexicon (Chinese Knowledge Information Processing 
Group 1995). From the wordlist, roughly 4,300 items were found to be polyphones, meaning that 
more than one pronunciation was ascribed to identical characters either within a multisyllabic word 
or for individual monosyllabic words. The majority of the words’ pronunciations and their 
corresponding frequencies were resolved through the help of the PoS assignments made available 
by Subtlex-CH. For instance, the pronunciation of le0, as a modal particle, and liao3, as a verb, 
allowed for automatic assignment from the raw Subtlex-CH subtitle corpus of the orthographic 
word,了. For more information on PoS annotation see below. The remaining 151 items that did 
not lend themselves toward PoS disambiguation, such as 分子, which is pronounced as either 
fen1zi3 (‘molecule’, ‘numerator’) or fen4zi3 (‘part’), were annotated by three native Mandarin 
speakers as given within sentential context from the raw corpus. Sixty-two token polyphonous 
items found no annotator agreement and were removed.  

The word list was further changed due to corrections made to the original Subtlex-CH word 
list. We identified 8,415 parsing errors, for instance, entries such as “东尼·本”, and “乔治·东尼”, 
which consisted of two or more entries. After parsing these entries, the DoWLS-MAN frequency 
list garnered new words and adjusted lexical frequencies for numerous existing words. Whereas 
the original Subtlex-CH word list contains 99,121 entries, DoWLS-MAN is built on an adapted 
word list and corresponding lexical frequencies for 92,915 orthographic words with corresponding 
pronunciations. 

In order to follow the conventions practiced in similar resources, proper names also needed to 
be removed. Instead of striking them from the database altogether, we reduced their frequency to 
1. This placed them below the threshold (elaborated on below) necessary to contribute to 
neighborhood calculations.  

Pinyin words were then transcribed to an ascii phonological transcription (sampa), according 
to the syllable inventory of Neergaard and Huang (2019). The Neergaard and Huang (2019) 
inventory, unlike the existing inventories available (Cheng, 1966; Duanmu, 2011; Lin, 2007; Zhao 
& Li, 2009), was constructed and validated through the use of two phonological association tasks 
in which native-Mandarin speaking participants were instructed to verbally produce monosyllabic 
minimal pairs to auditorily presented stimuli (e.g., stimulus: ba3; response: na3). The participants’ 
minimal pair responses were measured according to the edit distance rule wherein two syllables 
are neighbors if they differ by the addition, deletion or substitution of a single segment or tone. 
The Neergaard and Huang inventory was shown to outperform two existing inventories (Lin, 2007; 
Zhao & Li, 2009) in terms of aligning with the spoken minimal pair productions. 
2.2 Segmentation 

DoWLS-MAN offers lexical statistics derived from 16 segmentation schemas. As can be seen 
in Table 2, we employ the use of underscores between phonological units, and include both tonal 
and nontonal schemas denoted by the presence or absence of the T unit. The use of underscores is 
meant to mark a difference between a segmentation schema, in which all words within the lexicon 
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follow the same pattern of segmentation, and a word level annotation of phoneme categories 
(described below for the variable “SyStruct”). Note that while schema annotations use underscores 
to segment units, words transcribed in sampa use blank spaces. 

 
Table 2. Segmentation schemas, presented in sampa, according to both nontonal and tonal examples 
of the words, xiao3 /ɕiaʊ214/, xiang4 /ɕiaŋ51/, and xiao3xiang4 /ɕiaʊ214ɕiaŋ51/  

        Nontonal        Tonal   
Schema xiao xiang xiaoxiang  Schema xiao3 xiang3 xiao3xiang4 

C_V_C X iaU X ia N X iaU X ia N  C_V_C_T X iaU 3 X ia N 4 X iaU 3 X ia N 4 
C_G_V_C X i aU X i a N X i aU X i a N  C_G_V_C_T X i aU 3 X i a N 4 X i aU 3 X i a N 4 
C_G_V_X X i a U X i a N X i a U X i a N  C_G_V_X_T X i a U 3 X i a N 4 X i a U 3 X i a N 4 
C_G_VX X i aU X i aN X i aU X i aN  C_G_VX_T X i aU 3 X i aN 4 X i aU 3 X i aN 4 
C_GVX X iaU X iaN X iaU X iaN  C_GVX_T X iaU 3 X iaN 4 X iaU 3 X iaN 4 
CG_V_X Xi a U Xi a N Xi a U Xi a N  CG_V_X_T Xi a U 3 Xi a N 4 Xi a U 3 Xi a N 4 
CG_VX Xi aU Xi aN Xi aU Xi aN  CG_VX_T Xi aU 3 Xi aN 4 Xi aU 3 Xi aN 4 
CGVX XiaU XiaN XiaU XiaN  CGVX_T XiaU 3 XiaN 4 XiaU 3 XiaN 4 
 

It is important to note that not all of the annotation units across schemas are equivalent. For 
instance, the V of the C_V_C and C_V_C_T schemas, entails a complex cluster of all vowel 
segments, resulting in only three phonological units for xiao3: X iaU 3; and four for xiang4: X ia 
N 4. In contrast, the V of the C_G_V_C and C_G_V_C_T schemas, originally proposed for 
Taiwanese (Lin, 1989), results in four phonological units for xiao3: X i aU 3; and five for xiang4: 
X i a N 4. The remaining schemas use the X unit to describe both final consonants and the post-
nuclear glide. For these schemas, the V is always in reference to monophthong vowels.  
2.3 Threshold 

Neighborhood statistics, such as phonological neighborhood density (PND), neighborhood 
frequency (NF), and the recently applied network statistics such as clustering coefficient (CC), are 
calculated from what Vitevitch (2008) referred to as idealized lexicons. Researchers have taken 
different approaches to creating neighborhood values from such idealized lexicons. The 
Neighborhood Activation Model (NAM: Luce & Pisoni, 1998), which established a theory of 
spreading activation among phonological representations in long term memory, used PND values 
extracted from an electronic version of the 1967 Webster’s Seventh Collegiate Dictionary 
consisting of 19,340 words. This lexicon was then matched to frequency counts from the Kučera 
and Francis (1967) frequency list. Numerous studies have used this lexicon to study phenomena 
such as word learning (Goldstein and Vitevitch 2014; Storkel, Armbruster, and Hogan 2006), tip 
of the tongue states (Vitevitch and Sommers 2003) and picture naming (Vitevitch 2002), among 
numerous other tasks.  

Another approach to constructing an idealized lexicon entails the use of targeted media to 
represent specific subpopulations, such as the use of textbooks for learners (Lété, Sprenger-
Charolles, and Colé 2004; Vitevitch, Stamer, and Kieweg 2012) or child corpora for the study of 
children’s speech (Storkel and Hoover 2010). Perhaps the most common method of creating an 
idealized lexicon entails the use of existing frequency lists (e.g., Davis & Perea, 2005; Holliday, 
Turnbull, & Eychenne, 2017; Marian et al., 2012). Such databases have used word counts from as 
low as 7,000 phonological words (Strand 2013) to as high as 129,000 orthographic words (New et 
al. 2004).  

Researchers have either not discussed a reason for choosing a specific word count, or have 
argued for the validity of their chosen word counts based on measures of receptive vocabulary size, 
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or the distributional properties of neighborhood values. When discussing the validity of the 
Webster’s dictionary as an idealized lexicon, Vitevitch (2008) argued that the near 20,000 
orthographic words were close to the 17,000-lemma receptive vocabulary size estimate of Goulden, 
Nation, and Read (1990). Vocabulary size has not been used however to motivate most databases, 
perhaps because estimates range wildly, from as little as 9,800 English lemmas (Treffers-Daller 
and Milton 2013) to an average of 56,400 lemmas for older English speakers (Brysbaert et al. 
2016). In contrast, in a PND database representing five European languages, Marian et al. (2012) 
used lexical frequency to trim five wordlists as a means of making their frequency distributions 
comparable. This led to variation in word counts between 27,751 words for English, and 45,027 
words for German. Their reasoning for keeping the word counts within a lower range, a contention 
shared by Davis (2005), was to exclude very low frequency words that would not be regularly 
perceived or produced in everyday language use, therefore avoiding the inflation of neighborhood 
values with words that do not likely contribute to lexical selection. 

While vocabulary size has been of interest for researchers studying Mandarin-speaking 
children (Hao et al. 2008, 2015), and Mandarin speakers’ L2 English vocabulary (e.g., Wang & 
Treffers-Daller, 2017; Zhao & Ji, 2018), we have been unable to find any similar estimates of 
vocabulary size for Mandarin speaking adults. The first version of the current database, published 
as a conference paper (Neergaard & Huang, 2016), set a threshold at 17,000 phonological words 
based on the estimate of Goulden et al. (1990). This was later revised in the analysis of network 
characteristics of the same Subtlex-CH wordlist to a threshold of 30,000 (Neergaard and Huang 
2019) so as to increase density amongst tonal segmented schemas, particularly for disyllables.  

As with previous iterations of the current database we sought to provide a threshold from which 
to derive phonological neighborhood and network values. Unique to the current database is the use 
of a data-driven approach to identify an optimal threshold. In section 2.5.1 we performed a model 
selection procedure consisting of 48 models (16 schemas * 3 thresholds) that ranked mean 
marginal r2 values per three candidate thresholds of 20k, 30k, and 40k. We identified that while 
no threshold was significantly better in performance, the 30k threshold had the highest performing 
model.  

This number of 30,000 words places our threshold above the size of the original NAM (Luce 
and Pisoni 1998) word list, and as such, the idealized lexicon of Vitevitch (2008). Its size is closer 
to the Dutch and English lexicons of the CLEARPOND database (Marian et al. 2012). Importantly, 
our use of a word count threshold makes DoWLS-MAN novel among databases that report 
neighborhood, and network statistics. While neighborhood statistics for below-threshold words 
(i.e., > 30,001) were calculated one at a time in regards to the above-threshold words (i.e., 1-
30,000), network statistics were only calculated for above-threshold words. This method resulted 
in the ability to report neighborhood statistics for all words while simultaneously excluding below-
threshold words from contributing to the inflation of neighborhood values with low-frequency 
words.  
2.4 Categories 

Due to the presentation of lexical statistics according to 16 segmentations schemas, DoWLS-
MAN has both variables that are invariant, and variant. In Table 3 we present the 31 variables 
offered by the database, divided into nine themes. As can be seen in Table 3, variant characteristics 
(marked with an asterisk) are those that represent differences due to segmentation, such as 
segmented sampa (Pho), or log10 lexical frequency (FreqDL). Invariant characteristics are those 
that describe the items’ form, such as pronunciation according to the international phonetic 
alphabet (IPA_T or IPA_NoT), or the number of syllables within a lexical item (SyLen). 
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In the database, variant characteristics are labelled according to the format: Variable.SCHEMA. 
For example, according to the tonal fully segmented schema (C_G_V_X_T), phonological 
neighborhood density (PND) is labelled as PND.C_G_V_X_T, while according to the nontonal 
complex vowel segmented schema (C_V_C), homophone density (HD) is labelled HD.C_V_C.  
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Table 3. Summary of variables by column name and content/description 
 Column name  Contents/Description  
Lexicality 
 Lexicality  Item types: words, added, tonegap, syllablegap, systemicgap 
Pronunciation 
 Key_T, Key_NoT  Sampa transcription with (T) or without (NoT) lexical tone (0-4) 
 PY_T, PY_NoT  Pinyin transcription with (T) or without (NoT) lexical tone (0-4) 
 IPA_T, IPA_NoT  IPA transcription with (T) or without (NoT) lexical tone (0-4) 
 Pho*  Segmented sampa 
Length    
 SegLen  Number of segmental units within an item 
 SyLen  Number of syllables within an item 
 PyLen  Number of letters (pinyin) within an item 
 PhoLen*  Number of phonological units within an item 
Syllable 
 Initial  Word initial segment 
 Tone  Lexical tone (0-4) 
 SyStruct  Word-level syllable structure 
Part of speech (POS) 
 Dom_POS  The most frequent POS assignment 
 Freq_Dom_POS  Token frequency of Dom_POS 
 Percent_Dom_POS  Percent (0-1) that Dom_POS is the dominant POS 
 Other_POSes  POS (token frequency) for all POS assignments 
Homophony 
 Homophones*  Orthographic words that share pronunciation 
 HD*  Homophone density 
Lexical frequency 
 FreqDowls  Adjusted lexical frequencies from the Subtlex-CH wordlist 
 FreqDL  Log10 transformation of FreqDowls 
 FreqDowls*  FreqDowls collapsed across all phonological words 
 FreqDL*  Log10 transformation of FreqDowls* 
Phonological neighborhood measures 
 Neighbors*  Phonological neighbors of target word (in sampa) 
 PND*  Phonological neighborhood density: total number of Neighbors 
 Sub_PND*  Number of Neighbors calculated through substitution 
 Add_PND*  Number of Neighbors calculated through addition 
 Del_PND*  Number of Neighbors calculated through deletion 
 NF*  Neighborhood frequency: mean lexical frequency of Neighbors 
Network science measures 
 CS*  Component Size 
 CC*  Local clustering coefficient 
 Close*  Closeness centrality 
 Btw*  Betweenness centrality 
 Eigen*  Eigenvector centrality 
“*” = Variant categories 
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2.4.1 Lexicality 
DoWLS-MAN allows for the search of lexical items belonging to five types: “words”, “added”, 

“tonegap”, “syllablegap”, and “systemicgap”. The database adopted the method used in Neergaard 
& Huang (2019) to define which items belonged to each group. First, granting items as belonging 
to the “words” status involved using www.zdic.net to verify whether items other than those within 
the Subtlex-CH orthographic word list corresponded to an existing orthographic word. Zdic.net is 
an online resource including definitions and pronunciations for 75,983 characters and has been 
used in the disambiguation of out-of-vocabulary words (Li, 2011; Li, Zong, & Su, 2015; Ma, Kit, 
& Gerdemann, 2012; Zhang, Niehues, & Waibel, 2016). The database expanded on the wordlist 
through the inclusion of 5,973 lexical items that we classified as either added (1,669 
orthographic/226 phonological items), tone gap nonwords (740 phonological items), syllable gap 
nonwords (609 phonological items), or systemic gap nonwords (2,955 phonological items).  

Added items are those that correspond to Chinese characters but were not considered 
monosyllabic words in the Subtlex-CH wordlist. We first identified added items by looking within 
the wordlist for syllables that were only featured within multisyllabic words. They included items 
such as 火 huo3 /xuo214/, which occurs in multisyllabic words such as 柴火 chai2huo3 “fire wood”, 
and 烽火 feng1huo3 “fire beacon”. Next, the syllable inventory of Neergaard and Huang (2019) 
was used to identify missing syllables. These syllables were then verified as to their 
correspondence to one or more Chinese characters through the use of Zdic.net. This process 
identified syllables such as an2 (儑, 啽, 玵, 雸). The featured items were added to aid researchers 
needing lexical characteristics for monosyllabic items, while also providing a basis of all extant 
monosyllables in Mandarin.  

DoWLS-MAN offers three classes of phonological nonwords. Each class of nonword was 
constructed based on the phonotactics of the syllable inventory of Neergaard and Huang (2019). 
Tone gap nonwords are lexical items that correspond to an existing syllable in the Mandarin 
syllable inventory combined with one of the five lexical tones (tones 0-4) that do not correspond 
to an existing Chinese character. For instance, the nontonal syllable, mei, can be ascribed to tone 
2: mei2 (ex: 没); tone 3: mei3 (ex: 美); and tone 4: mei4 (ex: 妹); but not to tone 0: mei0; or tone 
1: mei1. Syllable gap nonwords are those items that contained biphone combinations that exist in 
the syllable inventory. For instance, the nontonal syllable gap nonword, fao, was constructed based 
on existing instances of /fa/ and /aʊ/. Tonal versions of fao were then made through the addition 
of lexical tones 0-4. Systemic gap nonwords are those items built from biphone combinations that 
do not exist in the syllable inventory, and include syllables such as /fyn/ and /xon/.  

Note that the current list of nonwords should be used with knowledge of the local 
dialect/topolect of the population being studied. For instance, we included items that did not match 
our listed resources despite the known use of certain items within some Mandarin spoken dialects, 
such as gin2 /kin35/ (琴), which is in use by speakers of Taiwan and likely understood by many 
mainland Mandarin speakers. 

Because added, syllablegap, systemicgap, and tonegap categories were not in the Subtlex-CH 
wordlist, they were given a frequency of zero. The lexical statistics featured for the item types 
were calculated in the same way as below-threshold items, i.e., one at a time in regards to the top 
30,000 most frequent phonological words. 
2.4.2 Pronunciation 

The database provides four forms of pronunciation transcription, three of which are invariant 
and one variant. The database was constructed on the sampa (ascii version of IPA) transcriptions 
of each item. Based on the key role that sampa played in organizing the database, it is labeled as 
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Key in both its tonal (Key_T) and nontonal (Key_NoT) versions. Note that neither Key_T or 
Key_NoT feature spaces to note segmentation, resulting in the transcription of xiao3xiang4 
/ɕiaʊ214ɕiaŋ51/ according to Key_T as XiaU3XiaN4, and Key_NoT as XiaUXiaN. Next, each 
lexical item is accompanied by its corresponding transcription in IPA, with either the inclusion 
(IPA_T) or exclusion (IPA_NoT) of tonal information. The final invariant pronunciation 
transcription is that of pinyin, (i.e. Romanized Mandarin pronunciation) in both its tonal (PY_T) 
and nontonal (PY_NoT) versions.  

Our final transcription varies according to the schema in which it belongs. Sampa 
transcriptions for each schema, such as those in Table 2, can be found as Pho.SCHEMA. for 
example, if a user desires the transcriptions of xiao3xiang4 according to both the tonal and 
nontonal versions of the fully segmented schema they would need to refer to Pho.C_G_V_X_T  
(X i a U 3 X i a N 4) for the tonal version, and Pho.C_G_V_X (X i a U X i a N) for the nontonal 
version. Note that, as illustrated in Table 2, the Pho.SCHEMA column is segmented according to 
blank spaces between units rather than through the use of underscores. 

For assistance on identifying the matches between sampa, IPA and pinyin we have included a 
chart at https://dowls.site, where this database is freely available. This chart can be accessed on 
the home page by selecting the tab labeled ‘Pronunciation Chart’. 
2.4.3 Length 

The combinatorial nature of linguistic units, such as segments, phonemes, syllables, and 
orthographic units entails the need to measure multiple levels of word lengths. DoWLS_MAN 
offers three invariant length measures. The first of which, segment length (SegLen), has been used 
in the literature to investigate the syllable’s internal phonological structure (Wu and Kenstowicz 
2015). Meanwhile, syllable length (SyLen) has played a role in the study of Mandarin, particularly 
as to whether differential processing costs exist between monosyllabic and disyllabic words (Ma, 
Wang, & Li, 2016). Finally, we offer Pinyin length (PyLen). Pinyin is an orthographically 
transparent alphabetic representation of Mandarin phonology, meaning that there is a high 
correspondence between pinyin letters and phonological segments. For a recent review of 
orthographic transparency see Borleffs, Maassen, Lyytinen, and Zwarts (2019). PyLen, while not 
explicitly investigated in the literature, was included due to the role that pinyin awareness has 
taken in the study of second language acquisition (Ding et al. 2018; Qi et al. 2015), and due to the 
contention that the reliance on pinyin as an input writing method, and educational aid to young 
learners has a negative influence on Chinese character reading proficiency (Li et al., 2017; Tan, 
Xu, Chang, & Siok, 2013; Zhou, Kwok, Su, Luo, & Tan, 2020).  

In the database, SegLen refers to the number of segments (excluding tone) within each lexical 
item, regardless of segmentation. For instance, regardless of the segmentation schema, 
xiao3xiang4 contains 8 segments: XiaUXiaN. DoWLS-MAN consists of 33 possible segments 
(listed below in 2.4.4), while the average phonological word is 7 segments in length (M: 7.05; SD: 
2.38).  

SyLen counts the number of syllables within an item based on its pronunciation. Using our 
disyllabic example, xiao3xiang4, we find SyLen = 2. However, not all Mandarin words have a 
one-to-one character-to-syllable correspondence. An example of this distinction can be found with 
words that utilize the erhua feature, in which syllable final rhoticization is denoted by the addition 
of the character 儿,  e.g., 船儿 chuanr2 /tʂʰuaɹ35/ “boat”. Distributional features of SyLen include, 
438 nontonal monosyllables (40 of which are erhua monosyllables), 1,207 tonal monosyllables (47 
of which are erhua), while tonal disyllables (41,788) and nontonal disyllables (30,893) account for 
50.2% and 43.9% of syllable lengths respectively.  
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Finally, PyLen is the number of letters, excluding tone numbers, used to construct its pinyin 
spelling. Using our example word, xiao3xiang4, we see that PyLen = 9 due to it consisting of 9 
letters. Due to the high transparency between pinyin and Mandarin phonology, the average number 
of letters per word (M: 7.70; SD: 2.62) is very similar to that of segments per word (M: 7.05; SD: 
2.38). 

The final length measure is of the variant category. Phoneme length (PhoLen.SCHEMA) 
counts the number of phonological units within an item based on the units within Pho.SCHEMA. 
The disyllabic example, xiao3xiang4, has a different number of phonological units depending on 
whether the schema is tonal or nontonal, and the extent to which segments are clustered. For 
instance, according to the tonal fully segmented schema (C_G_V_X_T), xiao3xiang4 (sampa: X i 
a U 3 X i a N 4) has 10 units, yet with the removal of lexical tone, as seen in the nontonal fully 
segmented schema (C_G_V_X), xiao3xiang4 (sampa: X i a U X i a N) has 8 units. If we then 
examine the same word according to the complex onset/rime schemas (CG_VX_T and CG_VX) 
xiao3xiang4 has just 6 units when tonal (sampa: Xi aU 3 Xi aN 4), and 4 units when nontonal 
(sampa: Xi aU Xi aN). 
2.4.4 Syllable 

The study of Mandarin’s syllable constituents is an active area in research dedicated to 
behavioral (Sereno and Lee 2015; Wiener and Turnbull 2016), neuropsychological (Wang et al., 
2017; Yu et al., 2015), clinical (Peng et al. 2017), developmental (Yeh et al. 2015), and second-
language learning, (Li, Wang, & Davis, 2015). DoWLS-MAN makes available for this community 
three invariant categories. Initial, and Tone, respectively present the items’ initial segment in 
sampa pronunciation, and lexical tone according to tones 0-4. Under the feature titled, SyStruct, 
we implement a word-level annotation, in which C refers to consonants at initial position, /f, k, kʰ, 
l, m, n, p, pʰ, ɹ, s, t, tʰ, ʂ, ɕ, tɕ, tɕʰ, tsʰ, tʂʰ, ts, tʂ, x/; G signifies medial glides, /i, u, y/, either at initial 
position or following an initial consonant; V denotes both monophthongs, /a, e, ɛ, ə, i, ɨ, u, y/ and 
the post-nuclear glides /ʊ, ɪ/; R indicates the final rhotic consonant /ɹ/; and N the final nasal 
consonants, /n, ŋ/. For instance, our example word 小巷 xiao3xiang4 /ɕiaʊ214ɕiaŋ51/ is annotated 
in SyStruct as CGVV CGVN, while the entry, 一丁点儿 yi1 ding1 dianr3 /i55tiŋ55tiɛɹ214/ (“a tiny 
bit”), is annotated in SyStruct as: V CVN CGVR. 
2.4.5 Part of speech 

Parts of speech, particularly nouns and verbs (Li, Jin, & Tan, 2004; Xia, Wang, & Peng, 2016), 
lead to differential processing. DoWLS-MAN presents four invariant POS characteristics adopted 
from the Subtlex-CH wordlist: Dom_POS refers to the dominant POS assignment for a given 
phonological word; Freq_Dom_POS entails the lexical frequency of usage noted in Dom_POS; 
Percent_Dom_POS is the percent to which that usage is dominant; and Other_POSes lists the non-
dominant POS assignments associated with the same phonological word and their respective 
lexical frequencies. 
2.4.6 Homophony 

Mandarin is a highly homophonous language. It has been reported that whereas 3.2% of 
English consists of homonyms, 11.6% of Mandarin is homophonous (Wen 1980). An example of 
high homophony is the monosyllable yi4 /i51/, which has been reported to have 48 homophone 
neighbors (Wang, Li, Ning, & Zhang, 2012). Homophones have a cost on processing in Mandarin. 
Phonological words with a high rate of associated homophones, i.e., words high in homophone 
density, have been shown to lead to lexical competition in spoken word recognition, as seen by 
slower reaction times, and lower accuracy (Chen et al. 2016; Wang et al. 2012). 
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DoWLS-MAN includes two variant categories based on Mandarin homophony: Homophones 
(Homophones.SCHEMA) and homophone density (HD.SCHEMA). The Homophones category is 
a list of orthographic words associated to the same phonological word under the threshold of the 
top 30,000 most frequent phonological words. HD entails the number of items in the Homophones 
column, such that a value of 1 implies that a given item has no homophone neighbors. Values for 
HD and Homophones do not vary across tonal schemas and only rarely do across nontonal schemas. 
For instance, the highest HD item, yi4 /i51/, has 37 homophone neighbors across all tonal schemas, 
and 71 across the nontonal schemas. The reason for this lies in the fact that lexical tone, belonging 
to each syllable, creates a barrier between syllables. In cases where nontonal schemas differ in HD, 
it is due to the collapsing of two syllables. For instance, when tone is removed, so is the barrier 
between a monosyllable and disyllables sharing the same segments. For instance, the tonal 
monosyllable, liang4 /liaŋ51/, is tied to five Chinese characters (亮, 晾, 谅, 辆, 量), yet its 
nontonal counterpart is tied to an additional 6 monosyllabic words (凉, 梁, 粮, 良, 两, 俩) 
and three disyllabic words (李昂, 里昂, 利昂) due to the collapsing of li and ang into liang 
/liaŋ/. 
2.4.7 Lexical frequency 

Lexical frequency is known to affect almost all aspects of lexical processing. We chose to use 
Subtlex-CH due to it being constructed on subtitle frequency, a genre of frequency shown to better 
predict lexical processing than counts generated from written sources such as books (Brysbaert 
and New 2009; Cai and Brysbaert 2010; Keuleers, Brysbaert, and New 2010; Mandera et al. 2015; 
New et al. 2004), possibly due to its inclusion of words associated with greater emotional content 
(Baayen, Milin, and Ramscar 2016).  

As described in section 2.1, the Subtlex-CH word list was altered in the making of DoWLS-
MAN. After accounting for the reallocation of lexical entries and lexical frequencies due to parsing 
errors, and the disambiguation of pronunciation for polyphonous words, the original 99,121 entries 
from the Subtlex-CH word list was reduced to 92,915 words for the DoWLS-MAN word list. Upon 
merging the two lists we found 90,607 words in common that showed a lower correlation than 
would be expected: 0.838. The gap between the two word lists is due to the presence of 
polyphonous words. Upon removing words with multiple pronunciations, accounting for 402 
unique orthographic words and 876 words enriched with specific pronunciations, we found a 
correlation of 0.999 between the remaining portions of the two word lists. As a result, the two 
word lists are identical for 89,818 words. 

With the DoWLS-MAN word list, we offer two invariant categories and two variant categories. 
The first invariant category, FreqDowls, consists of the raw lexical frequency counts adapted from 
Subtlex-CH. For convenience sake, we also provide this variable in its log10 transformation: 
FreqDL. The first of the variant categories, FreqDowls.SCHEMA, consists of the raw FreqDowls 
reallocated per schema based on the collapsing of homophonous words into single word forms, 
i.e., phonological words. As with homophone density (HD) above, FreqDowls.SCHEMA does not 
vary across tonal schemas but does vary across nontonal schemas due to the collapsing of 
multisyllabic words into monosyllabic words. The second variant category is again a log10 
transformation: FreqDL.SCHEMA. 

 
2.4.8 Phonological neighborhood measures 

Phonological neighborhood measures have long been shown to influence lexical processing. 
While research on the effects of phonological neighbors has primarily taken place with English 
and Spanish speakers (For a review, see Vitevitch & Luce, 2016), a recent focus has looked to 
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Mandarin (Neergaard, Britton, et al. 2019; Neergaard and Huang 2019; Neergaard, Luo, et al. 2019; 
Wiener and Turnbull 2016).  

The current database provides six variant categories. The first variant category, 
Neighbors.SCHEMA, entails all phonological neighbors of a given word presented in sampa 
transcription. For instance, in Figure 1D, the example word niang2 /niaŋ35/ 娘 ‘effeminate’, has 
seven neighbors that in sampa are: XiaN2 (xiang2), liaN2 (liang2), QiaN2 (qiang2), naN2 (nang2), 
niN2 (ning2), iaN2 (yang2), and niaN4 (niang4).  

 
 

 

Figure 1. Word-level phonological networks for the monosyllabic word niang2 /niaŋ35/ 娘 
‘effeminate’, according to A) the nontonal unsegmented schema (CGVX), B) the tonal 
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unsegmented schema (CGVX_T), C) the nontonal fully segmented schema (C_G_V_X), and D) 
the tonal fully segmented schema (C_G_V_X_T). Note that the number of visual neighbors was 
truncated in B) for display purposes. 
 

The next variant category is PND.SCHEMA, which includes the number of neighbors 
presented in Neighbors.SCHEMA. As illustrated with Figure 1D, representing the tonal fully 
segmented schema (C_G_V_X_T), niang2 has a PND count of seven. Neergaard and Huang (2019) 
illustrated that syllable segmentation and the existence of lexical tone has an effect on which words 
are considered neighbors and as such, how high a PND count will likely be per word. The more 
units within a segmented schema, the less likely a word will have many neighbors. C_G_V_X_T, 
shown in Figure 1D, has lower PND than its nontonal counterpart (C_G_V_X) in Figure 1C. One 
reason for the increase in neighbors for nontonal segmented schemas when compared to their tonal 
counterparts is that monosyllables, like the example nontonal monosyllable niang, pick up 
nontonal disyllabic neighbors due to the absence of lexical tone, like nayang /naiaŋ/ 哪样 ‘which’. 
This tendency holds across all segmented schemas, a fact that can be seen by taking a mean of 
PND (𝑃𝑁𝐷%%%%%%) per each schema. Figure 2 shows how tonal schemas have lower 𝑃𝑁𝐷%%%%%% than nontonal 
schemas, and that those schemas with more units (e.g., 5-unit schemas: C_G_V_X_T & 
C_G_V_C_T) have lower 𝑃𝑁𝐷%%%%%% than those consisting of fewer units (e.g., 3-unit schemas: C_V_C, 
C_GVX_T, CG_VX_T & CG_V_X). This pattern is the same for both monosyllables (Figure 2A) 
and disyllables (Figure 2B). Note, we labelled the two unsegmented schemas (CGVX and 
CGVX_T) to illustrate their unique behavior. 

 

 

Figure 2. The number of units within each segmentation schema (Schema units), plotted against 
mean phonological neighborhood density (𝑃𝑁𝐷%%%%%%) for monosyllables A) and disyllables B) 

 
While the average density of words varies due to the number of units within segmented 

schemas, a somewhat different story occurs for unsegmented schemas. From the nontonal 
unsegmented schema (CGVX), shown in Figure 1A, we can see that niang is the only monosyllable 
within a neighborhood of nontonal disyllabic words. The fact that Mandarin is predominantly a 
disyllabic language explains why the average monosyllable has roughly 100 disyllabic neighbors, 
as shown in Figure 2A. While monosyllables in the CGVX schema are restricted to disyllabic 
neighbors, disyllables can pull from all available monosyllables, disyllables, and trisyllables. This 
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explains why, as illustrated in Figure 2B, when compared to all other schemas, only CGVX shows 
an increase in density from monosyllabic to disyllabic words. For the tonal unsegmented schema 
(CGVX_T), shown in Figure 1B, a given monosyllable has neighbors that are only other above-
threshold monosyllables with the same lexical tone, resulting in an average of 279 neighbors, as 
illustrated in Figure 2A. When we look at disyllables, in Figure 2B, we see that average density 
decreases for CGVX_T. This is because, in contrast to the CGVX schema, all other schemas, 
including CGVX_T, follow the same pattern noted in European languages: words with more units 
(i.e., longer words) find fewer neighbors in the lexicon than those with fewer units (i.e., shorter 
words) (Frauenfelder, Baayen, and Hellwig 1993). 

The next variables we introduce pertain to the number of neighbors produced through either of 
the three phonological edit distance calculations: the addition (Add_PND), deletion (Del_PND), 
or substitution (Sub_PND) of a segment or tone. Neergaard and Huang (2019), in their 
examination of monosyllabic spoken phonological associates found that participants used 
substitution to a greater extent than either addition or deletion. This pattern reflects the nature of 
segmented schemas. Mean Sub_PND (Figure 3C: 𝑆𝑢𝑏_𝑃𝑁𝐷%%%%%%%%%%%% ) has higher values across the 
segmented schemas than both mean Add_PND (Figure 3A:  𝐴𝑑𝑑_𝑃𝑁𝐷%%%%%%%%%%%%%) and mean Del_PND 
(Figure 3B: 𝐷𝑒𝑙_𝑃𝑁𝐷%%%%%%%%%%%%). The unsegmented schemas (CGVX and CGVX_T) again show different 
characteristics. Because unsegmented monosyllables are not comprised of smaller phonological 
units, they cannot be broken down further. As such, they are the only schemas among 
monosyllables to have zero deletion neighbors. For neighbors that are identified through the 
addition of a unit, CGVX has the highest count among the schemas because for that schema 
monosyllables reside in a network of disyllables. In contrast, CGVX_T has zero addition neighbors 
because the edit distance metric only allows one phonological unit to differ between words to be 
considered a neighbor; however, in this schema all words have at least two units. Because of this 
one-unit difference rule, CGVX_T has a very high  𝑆𝑢𝑏_𝑃𝑁𝐷%%%%%%%%%%%%, such that every monosyllable is a 
neighbor with all other monosyllables of the same tone. Unlike all other schemas among 
monosyllables, CGVX has zero substitution neighbors.  

 

 
Figure 3. The number of units within each segmentation schema (Schema units), plotted against 
the means among monosyllables of the three phonological edit distance types: A) addition 
(𝐴𝑑𝑑_𝑃𝑁𝐷%%%%%%%%%%%%%), B) deletion (𝐷𝑒𝑙_𝑃𝑁𝐷%%%%%%%%%%%%), and C) substitution (𝑆𝑢𝑏_𝑃𝑁𝐷%%%%%%%%%%%%) 
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The zero count of substitution neighbors for the CGVX schema reveals a modeling decision 
that altered the traditional edit distance metric. In its normal application the edit distance metric 
will result in fundamental units being neighbors with other fundamental units, i.e., those that 
cannot be broken down into smaller units. In the CGVX schema, monosyllables are fundamental 
units. That meant that all monosyllables above the 30k threshold were neighbors with all other 
monosyllables above the 30k threshold. According to the traditional measure, niang would be a 
neighbor with other monosyllables that share no common attributes like si /sɨ/, wo /uo/, bei /peɪ/, 
etc. This matching of all monosyllables to all monosyllables accordingly inflated the PND counts 
by roughly 300 words for each monosyllable. Because the edit distance metric is at the root of all 
neighborhood and network variables, that meant that all values would be similarly inflated for 
monosyllables of the CGVX schema. While this issue was most notable with the CGVX schema, 
it was also an issue with all nontonal schemas. Thus, to be consistent across all nontonal schemas 
we disallowed fundamental units from being neighbors of each other. While this decision removed 
all substitution neighbors for monosyllables of the CGVX schema, it only slightly affected 
monosyllables of the other nontonal schemas that had fewer fundamental units. 

The final phonological neighborhood measure, neighborhood frequency (NF.SCHEMA), 
involves the mean frequency of all phonological neighbors per a given lexical item. To explain 
why nontonal schemas have on average higher 𝑁𝐹%%%% than tonal schemas, as illustrated in Figures 4, 
we must consider the difference between tonal and nontonal phonological words. Phonological 
words are made by collapsing all orthographically homophonic words into a single word form. 
The lexical frequency of tonal phonological words is thus the sum of each orthographic entry 
corresponding to the same pronunciation. The lexical frequency however for nontonal 
phonological words is the sum of all the frequencies of orthographic words that share the same 
pronunciation without considering tone. For instance, the highly homophonic word, yi4, with 10 
homophones, has a lexical frequency of 206,140. Its nontonal counterpart, yi, with 71 homophones, 
has a lexical frequency of 233,934, which is an increase of roughly 28,000 occurrences. 𝑁𝐹%%%% is thus 
higher for nontonal schemas because it is a mean of higher baseline frequencies.  

 

 

Figure 4. The number of units within each segmentation schema (Schema units), plotted against 
mean neighborhood frequency (𝑁𝐹%%%%) for monosyllables A) and disyllables B) 
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The one schema that does not behave as the others is CGVX. For monosyllables in the CGVX 
schema, as shown in Figure 4A, CGVX is low in 𝑁𝐹%%%% because monosyllables in this schema have 
only disyllabic neighbors. Disyllables on average have lower lexical frequency than monosyllables. 
Inverse to monosyllables, disyllables in the CGVX schema have the highest 𝑁𝐹%%%%. The reason being 
that disyllables in this schema feature high-frequency monosyllabic neighbors. 
2.4.9 Network science measures 

Researchers have recently begun to employ network science measures to the study of 
phonological processing. Thus far in the literature, phonological networks have been built upon 
the premise of similarity, wherein phonological words are nodes, and the links between words (i.e., 
the network’s edges) are based on the relational parameter used to define phonological neighbors 
(i.e., the addition, deletion or substitution of a single phonological unit) (Vitevitch 2008). As such, 
the word-level value of PND is the same as the commonly used network measure known as degree 
(i.e., the number of edges per node). Topological features extracted from phonological networks 
have been used to analyze both participant-level verbal productions (Neergaard, Luo, et al. 2019), 
and whole-vocabularies (Arbesman et al. 2010b, 2010a; Brown et al. 2018; Dautriche et al. 2017; 
Neergaard and Huang 2019; Shoemark et al. 2016; Siew 2013; Siew and Vitevitch 2019; Stella et 
al. 2018; Stella and Brede 2015; Turnbull and Peperkamp 2016; Vitevitch 2008). Meanwhile, 
word-level network values extracted from whole-vocabularies, have given insight into 
phonological processes through several network measures. 

DoWLS-MAN offers five variant categories of word-level network measures calculated using 
the R package ‘igraph’ (Csárdi and Nepusz 2006). The first of the network measures we will 
present is clustering coefficient (CC.SCHEMA). It is a measure, ranging between 0 and 1, that 
reflects the interconnectedness of a word’s neighbors (Carlson et al. 2014; Chan and Vitevitch 
2009, 2010; Goldstein and Vitevitch 2014). As can be seen in Figure 5, CC can be measured 
independently of PND. The two example monosyllables, taken from the C_G_V_X_T schema, 
show that word-level networks of an equal number of phonological neighbors can vary in CC. CC 
is calculated by dividing the number of attested triangles connected to a given node by the number 
of possible triangles. Thus, while quan4 has a possible 28 neighbors, only 6 are actual neighbors, 
(e.g., quan1~quan2, quan1~quan3, quan2~quan3, juan4~xuan4, juan4~yuan4, xuan4~yuan4), 
resulting in: 6 ÷ 28 = 0.214. 

 
Figure 5. Example word-level networks from the C_G_V_X_T schema. While quan4 /tɕʰyɛn41/ 
(劝, “to advise/urge”) and zui3 /tsueɪ214/ (嘴, “mouth”) have an equal number of phonological 
neighbors (PND = 8), they vary in clustering coefficient (quan4: CC = 0.214; zui3: CC = 0.750) 
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Similar to the neighborhood measures, CC varies due to segmentation, albeit not to the same 

extent. In Figure 6 we see mean CC (𝐶𝐶%%%% ) plotted against the number of units within each 
segmentation schema. When considering monosyllables, illustrated in Figure 6A, there appears to 
be no defining trend. CGVX_T stands out from the rest due to the relationship between 
monosyllables of that network. As illustrated above in Figure 1B, above-threshold monosyllables 
in that schema are neighbors with all other above-threshold monosyllables that share the same tone. 
𝐶𝐶%%%% among disyllables, however, reveals a higher average for nontonal unsegmented schemas. This 
illustrates that when lexical tone is stripped from the lexicon not only do phonological neighbors 
increase (e.g., Figure 2), but so does the interconnectedness between them. 
 
 

 

Figure 6. The number of units within each segmentation schema (Schema units), plotted against 
mean clustering coefficient (𝐶𝐶%%%%) for monosyllables A) and disyllables B) 
 

CC is unique among the network variables because it was calculated for every word in the 
database, rather than for just the above-threshold items. For below-threshold words and nonwords, 
CC values were calculated one at a time in regards to above-threshold items. This was done 
because CC is calculable with just the information pertaining to immediate neighbors and does not 
need information about its relation to nodes at a greater distance or within a given component.  

The remaining network variables were calculated from only above-threshold words. This was 
done out of necessity because of the static nature of graphic networks.  

The next network category is CS.SCHEMA, which entails the component sizes to which each 
node belongs within its network (Castro et al. 2017; Siew and Vitevitch 2015; Stella 2018). A 
component is a subgraph wherein at least two words share an edge. A node that does not share an 
edge with another node is called a hermit and can be identified as having a CS.SCHEMA value of 
1. As we have previously shown in Figure 2 with 𝑃𝑁𝐷%%%%%%, the relative density of words is affected 
by segmentation and lexical tone. Due to the varying densities of the phonological networks, a 
component will emerge that is proportionally larger than all other components; what is commonly 
referred to the network’s giant component. In Figure 7 we illustrate how for tonal segmented 
networks, their giant components are smaller than the giant components of nontonal segmented 
networks. Meanwhile, the unsegmented network belonging to CGVX_T, with its increased density 
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relative to tonal segmented schemas, has a giant component comparable to the nontonal segmented 
networks. Finally, the CGVX schema, which showed the highest 𝑃𝑁𝐷%%%%%% among disyllables, has a 
giant component that outranks all other networks. 

 

 

Figure 7. The number of units within each segmentation schema (Schema units), plotted against 
the size of each network’s giant component 

 
DoWLS-MAN provides three centrality measures. The first of which,  betweenness centrality 

(Btw.SCHEMA), reports the number of times a given word is a bridge between the shortest paths 
of two other words within the same component (Stella et al. 2017). As we can see in Figure 8A, 
greater density between words penalizes the score attributed to a given word. This is noted by the 
fact that the lowest mean Btw values are attributed to the giant components of networks built from 
nontonal schemas and the two unsegmented schemas. This implies that within a phonological 
network greater sparsity increases a word’s betweenness because it increases the likelihood that 
communication between distant words would pass through a given word.  

 

 

Figure 8. The number of units within each segmentation schema (Schema units), plotted against 
the mean values of A) Betweenness centrality (Btw), B) Closeness centrality (Close), and C) 
Eigenvector centrality (Eigen). 

1

2

3

4

5

10000 15000 20000 25000
Giant component size

Sc
he

m
a 

un
its

Tonal

Nontonal

1

2

3

4

5

0.0000 0.0005 0.0010 0.0015 0.0020
Mean Btw of giant component

Sc
he

m
a 

un
its

Tonal

Nontonal

A)

1

2

3

4

5

0.1 0.2 0.3
Mean Close of giant component

Sc
he

m
a 

un
its

Tonal

Nontonal

B)

1

2

3

4

5

0.00 0.02 0.04 0.06 0.08
Mean Eigen of giant component

Sc
he

m
a 

un
its

Tonal

Nontonal

C)



 23 

Closeness centrality (Close.SCEMA) measures the average shortest path length between a 
given node and all other nodes within its component (Castro et al. 2017; Goldstein and Vitevitch 
2017; Iyengar et al. 2012). As can be seen in Figure 8B, mean Close mirrors the pattern seen with 
𝑃𝑁𝐷%%%%%% and giant component sizes, such that tonal segmented schemas reveal lower values than 
nontonal segmented schemas, who are themselves lower in values than the dense unsegmented 
schemas. 

Eigenvector centrality (Eigen.SCHEMA) measures a word’s influence within its component, 
in lieu of the density of its neighbors. For example, a dense word with 40 neighbors that are each 
sparsely connected to only a few neighbors would have a lower eigenvector centrality than a dense 
word with 40 neighbors that are each densely connected to other words. Assessing mean Eigen in 
Figure 8C in terms of segmentation, it would appear that it is the only measure not to be affected 
by the density of words brought on by the presence or lack of lexical tone and/or clustering of 
segmental units. Given that Eigen is the only measure presented in the database that has yet to be 
explored in the phonological network literature, the current exploration of its distributional features 
is promising for the identification of an underlying influence on the structure of the lexicon that is 
distinct from segmentation. 
2.5 Reaction time analyses 
2.5.1 Threshold model selection 

To test whether we can empirically identify an optimal threshold we constructed three versions 
of the database with thresholds set at 20k, 30k, and 40k words. To contrast the three thresholds we 
chose the MELD megastudy (Tsang et al., 2018), which consists of orthographic lexical decisions 
for 12,560 Mandarin Chinese words. While it would be optimal to use a megastudy created from 
a speech processing task, MELD is the only megastudy that offers reaction times from such a broad 
sample of words. Meanwhile, a precedent has been set for investigations into phonological 
neighborhood activation during orthographic processing tasks, namely with English speakers 
(Grainger et al. 2005; Siew and Vitevitch 2019; Yates 2005). Unique to the current analysis is that 
in contrast to English, which implements an alphabet meant to linearly model the phonology of 
the language, the Mandarin speakers that took part in the MELD megastudy judged the lexicality 
of Chinese characters, which have exceedingly low transparency between character construction 
and pronunciation. For instance, Zhou (2003) reported that only 3% of existing characters from 
the 1971 Xinhua Dictionary could be used to reliably predict segment and tonal information.  

While the primary goal of the following analysis is to identify an optimal threshold, one side 
effect is that it will also reveal which phonological segmentation schema best represents the MELD 
participants’ orthographic lexical decisions. Neergaard and Huang (2019) proposed that this type 
of exploratory method might identify the mental targets activated during the task due to the task’s 
cognitive demands, a hypothesis which lends itself towards certain predictions based on the nature 
of Chinese characters.  

The orthographic lexical decision task entails judging the lexicality of written words, and has 
been shown for English speakers to be sensitive to readers’ inner speech (Abramson and Goldinger 
1997). Among readers of Chinese however, there has long been a debate supported by evidence of 
1) phonological processing occurring before that of semantics (e.g., Guo, Peng, and Liu 2005; 
Perfetti and Zhang 1995; Spinks et al. 2000; Tan and Perfetti 1999; Xu et al. 1999), 2) semantics 
before phonological processing (e.g., Liu et al. 2011; Zhang, Zhang, and Kong 2009), and finally, 
3) arguments purporting limited to no phonological influences on reading (e.g., Chen and Shu 
2001; Wong, Wu, and Chen 2014; Zhou and Marslen-Wilson 1999, 2000). A limitation to these 
studies is that phonological activation is always represented by stimuli that are homophonous. This 
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means that only characters that share a pronunciation have been examined to support this debate. 
That we are aware of, nowhere in the literature of reading in Chinese have phonological neighbors 
been investigated. However, there are studies that have examined the orthographic equivalent. 

The edit distance metric of addition, deletion or substitution has been used with Chinese 
characters to create two version of orthographic neighborhood density (OND). These versions 
differ based on what is considered the smallest unit within the orthographic word or character. In 
one OND version the smallest unit is the whole character; for example, 果 guo3 within 水果 

shui3guo3, 如果 ru2guo3, 果园, guo3yuan2, etc. (Huang et al., 2006; Li et al., 2015; Tsai et al., 
2006; Wu et al., 2013). The other OND method relies on the phonetic radical within complex 
characters  (Bi et al., 2006; Li et al., 2017; Li et al., 2010, 2011; Wang & Zhang, 2011; Wu & 
Chen, 2003; Yang & Wu, 2014). It produces neighborhoods of characters that are regular in 
pronunciation, for example, 羊 yang2 within 洋 yang2, 樣 yang4, 氧 yang3, etc.; and those that 
are irregular in pronunciation, such as 月 yue4 within 育 yu4, 朋 peng2, and 胡 hu2, etc. 

Based on these two OND methods of calculating neighbors, we can estimate which 
phonological schemas would be closest in content. The character-level OND calculation is similar 
to the unsegmented schemas that identify neighbors either without lexical tone (CGVX) or with 
lexical tone (CGVX_T). They differ from the character-level OND measure because in the 
calculation of phonological neighborhoods, all homophones are collapsed into a single 
phonological word. Aside from homophony, the character-level OND measure is closest to the 
CGVX schema because they are both calculated without considering lexical tone. Turning to the 
phonetic-radical OND calculation, we see an emphasis on the regularity of vowel and rime 
information, while eschewing tonal information. As such, it is most similar to the nontonal 
onset/complex-rime schema (C_GVX). However, given that less than 48% of complex characters 
have the same pronunciation as their phonetic radicals (Zhou, 1978), and that consistency between 
the phonetic radical and how readers process words is known to effect reading in Chinese (Hsu et 
al. 2009; Lee et al. 2005, 2009), this method of calculating OND might be a likely candidate 
amongst words with a consistent ortho/phono mapping, but a less likely candidate over a large 
number of words that vary in consistency. Accordingly, we assumed that the character-level grain 
size, reflected in either the CGVX or CGVX_T schemas, would be the optimal schematic 
representation of phonological processing during orthographic lexical decision. 
2.5.2 Methods and discussion 

We first filtered the MELD word list by excluding duplicate entries and polyphones (e.g., "分
子": fen1zi3, fen4zi3). Next, words were excluded if they had error rates of 25% or greater. In order 
to reduce skewed PND values among the tonal segmented schemas, which have high instances of 
words without neighbors (i.e., PND = 0), we excluded all trisyllables and quadrisyllables. To 
further improve the PND distributions among tonal segmented schemas, we used PND values from 
the sparsest schema (C_G_V_X_T) to exclude stimuli based on segment length (SegLen), and 
high z-scored standard deviations of RTs (zRTSD) from the MELD study. This improved the PND 
distribution not only for the C_G_V_X_T schema but across all tonal segmented schemas. 
Similarly, under the premise that SegLen would affect reading latencies we sought to improve its 
distribution by excluding words from SegLen values that were drastically higher than others. This 
was again achieved by excluding disyllables with high zRTSD scores in order to achieve a flatter 
distribution. Finally, we excluded reaction times that were 2.5 standard deviations above or below 
the mean. Post exclusion, our stimuli consisted of 2,224 words.  

Multiple regression models, each containing four predictor variables, were used per each 
segmentation schema, per each threshold level, resulting in 48 models. Each model contained one 
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invariant category and four variant categories. In order to select variables that would not lead to 
high instances of colinearity within the residuals of the 48 models, combinations of variables were 
tested and evaluated. The final variables placed in each of the 48 models were SegLen, log10 
lexical frequency (FreqDL.SCHEMA), phonological neighborhood density (PND.SCHEMA), 
homophone density (HD.SCHEMA), and clustering coefficient (CC.SCHEMA). The three 
centrality measures (Betweeness, Closeness, and Eigenvector), and neighborhood frequency were 
not placed into the models due to high colinearity. Component size was not used because it had 
very low variation within multiple schemas, making its inclusion statistically untenable. 

An ANOVA analysis revealed a lack of significance between the three thresholds (F = 0.064; 
p = 0.938). Mean r2 values showed a lower mean for the 40k threshold (mean r2 = 0.302), yet no 
difference between those of 20k (mean r2 = 0.308) and 30k (mean r2 = 0.308). However, as can be 
seen in Table 4, the tonal unsegmented schema (CGVX_T) was the top performing model per each 
threshold, reaching a top marginal r2 of 0.392 for the 30k threshold.  

 
Table 4. R2 values per each database threshold 

Schema 20k 30k 40k 
CGVX_T 0.387 0.392 0.389 
GC_V_X_T 0.364 0.364 0.357 
CG_VX_T 0.364 0.364 0.357 
C_GVX_T 0.360 0.360 0.353 
C_V_C_T 0.354 0.353 0.345 
C_G_V_X_T 0.355 0.353 0.346 
C_G_V_C_T 0.353 0.350 0.344 
C_G_VX_T 0.349 0.347 0.339 
CGVX 0.260 0.291 0.266 
CG_VX 0.277 0.273 0.267 
CG_V_X 0.268 0.265 0.262 
C_G_VX 0.252 0.248 0.245 
C_GVX 0.250 0.245 0.243 
C_G_V_X 0.246 0.242 0.239 
C_V_C 0.245 0.241 0.241 
C_G_V_C 0.246 0.241 0.238 

 
As we predicted, an unsegmented schema was represented in the top-performing model. As 

shown in Table 4, among the 30k schemas, CGVX_T outranked all other tonal schemas, and 
CGVX outranked all other nontonal schemas. This evidence suggests that participants activated 
networks of syllable-sized mental representations induced by the grain size of Chinese characters. 
As to what within the model supported the unsegmented schemas, we can start by making 
inferences from Table 4, and from inspection of the top performing model. As evident in Table 4, 
all tonal schemas outranked nontonal schemas. This implies that lexical tone influenced 
orthographic lexical decisions. In Table 5 we see that the largest portion of available variance, with 
a partial r2 value of 0.179, belonged to the facilitative effect of FreqDL.CGVX_T. In this tonal 
frequency measure, we see a combination of phonology and orthography. Similarly, HD.CGVX_T 
involves a combination of phonological and orthographic activation of mental representations. 
Fitting with the literature, tonal homophones led to slower RTs.  
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Table 5. Model estimates for the top 30k model 
 Estimate SE t value p value r2 

(Intercept) 6.96E-04 2.03E-06 343.50 < 0.001  
SegLen -6.78E-06 2.01E-06 -3.37 < 0.001 0.005 
FreqDL.CGVX_T -3.62E-05 1.65E-06 -21.97 < 0.001 0.179 
PND.CGVX_T 4.60E-05 3.01E-06 15.28 < 0.001 0.095 
HD.CGVX_T 3.60E-06 4.69E-07 7.68 < 0.001 0.026 
CC.CGVX_T -3.47E-07 2.33E-06 -0.15 0.881 < 0.001 

 
Interestingly, we see contradictory effects between the two phonological variables SegLen and 

PND.CGVX_T. While words greater in SegLen facilitated lexicality judgments, words with 
greater numbers of phonological neighbors were inhibitory to reaction times. In interpreting these 
results it’s important to note that the participants of the MELD study were tasked with judging the 
lexicality of orthography. If the participants were instead judging auditorily presented stimuli, we 
would expect SegLen to be inhibitory to recognition based on the simple fact that longer auditory 
stimuli of equivalent segmental duration take longer to recognize. In the judgment of orthographic 
lexicality, however, it is likely that SegLen played an opposing role to the influence of PND, i.e., 
the lexical competition caused by co-activated phonological neighbors. For instance, longer words 
tend to be less confusable in part because they have fewer neighbors and as such are more 
distinctive. Thus, the lack of phonological competitors that comes with the increase in segmental 
units likely led to greater ease in the decision-making process for longer words.  

While this conclusion does conveniently fit the evidence, it should be taken with caution. One 
particular concern that the current exploratory analysis cannot address is that of timing. For 
instance, do the inhibitory effects of PND and HD take place during the verification of lexicality 
with words in long-term memory, or are they a result of initial recognition and as such a byproduct 
of inner-speech? Future research can build on the current exploratory analysis to resolve when the 
lexical competition actually occurs and further elaborate on the role that segmentation and 
phonological similarity plays in reading Chinese. 
 
3. Conclusion 
In this article we presented the Database of Word-Level Statistics for Mandarin Chinese (DoWLS-
MAN). Motivated by the lack of consensus on how syllables are segmented during speech 
processing, DoWLS-MAN is the first lexical database to offer researchers the ability to source 
lexical statistics from multiple segmentation schemas (8 with tone and 8 without tone). This 
flexibility allows researchers the ability to either build stimuli sets that support existing models of 
Mandarin segmentation, or to test multiple hypotheses of segmentation according to the items’ 
lexical statistics. Due to the presentation of values that differ due to syllable segmentation, 
DoWLS-MAN provides lexical information of both invariant and variant categories. Among the 
invariant categories are lexical characteristics such as each item’s initial segment, lexical tone, 
syllable structure, dominant PoS, and syllable, segment and pinyin lengths. Those values of the 
variant category include subtitle lexical frequency, density measures, such as, phonological 
neighborhood density, phonological neighborhood frequency, and homophone density, and finally 
network science measures including clustering coefficient, and measures of centrality 
(betweenness, closeness, eigenvector). Variant and invariant categories are available for five 
classes of lexical items, including 92,915 words sourced from SUBTLEX-CH (Cai & Brysbaert, 
2010), 1,669 “added” monosyllabic items that correspond to Chinese characters that were not 
featured in the wordlist, and 4,304 nonword items that belong to the tone gap (740), syllable gap 
(609) or systemic gap (2,955) categories.  
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One particular concern that we paid attention to in the construction of DoWLS-MAN was the 
word list. We began by adapting the Subtlex-CH word list. We identified and disambiguated 
pronunciations for 4,300 polyphonous words, and reallocated words and lexical frequencies for 
8,415 parsing errors. Next we considered the use of a threshold, i.e., a means to restrict 
phonological neighborhood values to a subset of the word list while simultaneously being able to 
offer lexical statistics for the full word list. We performed a model selection procedure wherein 
three versions of the database were created that differed in their respective thresholds (20k, 30k, 
and 40k). Our analysis of orthographic lexical decisions from the MELD mega-study (Tsang et al. 
2018) revealed that the top performing model belonged to a threshold of 30,000 words.  

Meanwhile, our analysis also contributed to the literature on the role of phonology during the 
reading of Chinese characters. We found that a facilitative tonal lexical frequency effect from the 
tonal unsegmented schema (CGVX_T) was the primary influence on lexical decisions. The 
secondary influence on lexical decisions came from an inhibitory effect of phonological 
neighborhood density. The fact that the highest performing model was the CGVX_T schema 
suggests that participants activated networks of syllable-sized mental representations induced by 
the grain size of Chinese characters. The exploratory analysis opens up directions for further 
research into phonological neighborhood effects during reading in Chinese. 

Users of the database can obtain lexical characteristics for user-defined lists of items, or 
generate a list of phonological words and nonwords according to user-defined ranges and 
categories of lexical characteristics. DoWLS-MAN is freely available for search or download at 
https://dowls.site. 
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