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Abstract

We consider a Piecewise Deterministic Markov Process given by random switching
between finitely many vector fields vanishing at 0. It has been shown recently that the
behaviour of this process is mainly determined by the signs of Lyapunov exponents. How-
ever, results have only been given when all these exponents have the same sign. In this
note, we consider the degenerate case where the process leaves invariant some face and
results are stated when the Lyapunov exponents are of opposite signs. Applications are
given to Lorenz vector fields with switching, and to SIRS model in random environment.
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1 Introduction

In this paper, we consider a Markov process obtained by random switching between finitely
many vector fields F i : Rd → Rd, sharing a common equilibrium point q. It has been shown in
[BS18] that the behaviour of the obtained system near q is determined by the sign of quantities
linked to classical Lyapunov exponents. These exponents depend on the Jacobian matrices
Ai = DF i(q) and the switching mechanism. There might be 1 to d distinct exponents. In
[BS18], results are only given in the case where all the Lyapunov exponents have the same
sign. Briefly put, it they are all negative, the system converges to q with positive probability
provided the initial condition is close to q; while when they are all positive, the process admits
an invariant probability measure that gives no mass to q. In the present paper we consider
the degenerate situation, where the process leaves invariant a face {0} × Rm ⊂ Rd containing
q so that the Jacobian matrices have the form

Ai =

(
Bi 0
Ci Di

)
.

We show that if both maximal Lyapunov exponents associated with Bi and Di are negative,
then the process converges to q; while if all the Lyapunov exponents associated to Bi are
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positive and those to Di are negative, the process admits an invariant probability measure
that gives no mass to {0} × Rm ⊂ Rd, and hence no mass to q. We also notice that in this
last case, the Lyapunov exponents associated to Ai take positive and negative values, so that
the results of [BS18] cannot be applied. The paper is organised as follows. In section 2, the
main results are stated. The proofs are postponed to section 4. In section 3, we give several
applications. In particular, our result enables us to close a gap in a discussion on random
switching between two Lorenz vector fields in [BH12]. We also recover and slightly extend the
results on SIRS models with Markov switching given in [LLC17].

2 Notations and results

Let d ≥ 1, E = {1, . . . , N} a finite set and for all i ∈ E, F i : Rd → Rd a C2 globally integrable
vector field. We denote by ϕi the flow induced by F i and we assume that there exists a closed
set M which is forward invariant for all the vector fields, that is

ϕit(M) ⊂M, ∀t ≥ 0.

For all x ∈ M , we are given an irreducible rate matrix (aij(x))i,j∈E , continuous in x. We
consider a Markov process (Zt)t≥0 = (Xt, It)t≥0 ∈M × E, where X evolves according to

dXt

dt
= F It(Xt), (1)

and I is a continuous time jump process taking values in E controlled by X :

P(It+s = j|Ft, It = i) = aij(Xt)s+ o(s) for j 6= i on {It = i},

where Ft = σ((Xs, Is) : s ≤ t}). It can be shown (see e.g [BLBMZ15]) that the infinitesimal
generator of Z is the operator L acting on functions g : M × E 7→ R, smooth in the first
variable, according to the formula

Lg(x, i) = 〈F i(x),∇gi(x)〉+
∑
j∈E

aij(x)(gj(x)− gi(x)), (2)

where gi(x) stands for g(x, i). The process Z belongs to the class of Piecewise Deterministic
Markov Processes (PDMP), as introduced by Davis in [Dav84].

Without loss of generality, we assume that q = 0. For n,m such that n + m = d, and
x ∈ Rd = Rn × Rm, we set x = (xn, xm). The notation 0k for k = n,m refers to the zero
vector of Rk. We also write F i(x) = (F in(x), F im(x)). Our standing assumption is :

Hypothesis 2.1

1. The origin lies in M and for all i ∈ E, F i(0) = 0.

2. For all xm ∈ Rm and all i ∈ E, F in(0n, xm) = 0.

3. The set M intersects the face {0n} × Rm : {0} (M ∩ ({0n} × Rm) (M
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4. The set M is compact and locally star shaped around the origin : there exists δ > 0 such
that

x ∈M and ‖x‖ ≤ δ ⇒ [0, x] ⊂M,

where [0, x] = {tx, t ∈ [0, 1]}.

The second assumption implies that the face {0n} × Rm is invariant under each ϕi : for all
t ≥ 0, ϕit(x) ∈ {0n}×Rm if and only if x ∈ {0n}×Rm. We setM+ = {(xn, xm) ∈M : xn 6= 0}
and M0 = M \M+. Both M0 and M+ are non empty, and M0 is invariant for all the flows ϕi.
For all i ∈ E, set Ai = DF i(0), the Jacobian matrix of F i at 0. The second assumption has
also the consequence that Ai is block lower triangular :

Ai =

(
Bi 0
Ci Di

)
, (3)

with Bi ∈Mn(R), Ci ∈Mm,n(R) and Di ∈Mm(R).

2.1 Notation

Throughout the paper we will adopt the following notation : 〈·, ·〉 denotes the Euclidean inner
product in Rk, for k = n,m, d; ‖ · ‖ the associated norm, and Sk−1 = {x ∈ Rk : ‖x‖ = 1} the
unit sphere. For a metric space (X , d), we will denote by B(X ) the set of Borel sets of X , and
by P(X ) the set of probability measures on B(X ). If (Zt)t≥0 is a Markov process on X and
ν ∈ P(X ), we set, as usual, PZν for the law of the process Z with initial distribution ν and EZν
for the associated expectation. If ν = δx for some x ∈ X , we write PZx for PZδx . We denote by
(PZt )t≥0 the semigroup of Z acting on bounded measurable function f : X → R as

PZt f(x) = EZx (f(Zt)) .

When there is no ambiguity on the process considered, we drop the exponent Z. An invariant
distribution for the process Z is a probability µ ∈ P(X ) such that µPt = µ for all t ≥ 0.
We let PZinv denote the set of all the invariant distributions of Z and for N ⊂ X , let PZinv(N)
denote the (possibly empty) set of invariant probabilities giving mass 1 to the set N . For
i = (i1, . . . , ik) ∈ Ek and u = (u1, . . . , uk) ∈ Rk+, we denote by Φi

u the composite flow :
Φi

u = ϕikuk ◦ . . .◦ϕ
i1
u1 . For x ∈M and t ≥ 0, we denote by γ+

t (x) (resp. γ+(x)) the set of points
that are reachable from x at time t (resp. at any nonnegative time) with a composite flow:

γ+
t (x) = {Φi

v(x), (i,v) ∈ Ek × Rk+, k ∈ N, v1 + . . .+ vk = t},

γ+(x) =
⋃
t≥0

γ+
t (x).

We will say that a point x∗ ∈M is accessible from B ⊂M if x∗ ∈ ∩x∈Bγ+(x).

2.2 Linear system and Lyapunov exponents

For a given set of matrices Â = (Âi)i∈E of size k × k, we consider the linear system (Y, J)
where Y evolves according to

dYt
dt

= ÂJtYt,
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and J is a continuous time Markov chain on E with transition rate matrix (aij(0))i,j∈E . By
irreducibility of (aij(0))i,j∈E , J admits a unique invariant probability measure on E denoted
by p.

Whenever the initial condition y0 is not zero, the angular part of Yt, Θt = Yt
‖Yt‖ is well

defined, and evolves according to

dΘt

dt
= ÂJtΘt − 〈AJtΘt,Θt〉Θt. (4)

This defines a differential equation on Sk−1 and the process (Θt, Jt)t≥0 is a PDMP on Sk−1×E.
When we need to emphasis the dependence on (Âi)i∈E , we denote by Θ(Â) the solution of
(4). For an invariant probability µ of (Θ(Â), J), we define the µ-average growth rate as

ΛÂ(µ) =

∫
〈Âiθ, θ〉µ(dθdi) =

∑
i∈E

∫
Sk−1

〈Âiθ, θ〉µi(dθ), (5)

where µi(·) is the measure on Sk−1 defined by

µi(·) = µ(· × {i}).

We let Λ(Â) be the set of all the ΛÂ(µ) for µ invariant probability of (Θ(Â), J). As in [BS18],
we define the extremal average growth rates as the numbers

Λ−
Â

= inf Λ(Â) and Λ+

Â
= sup Λ(Â). (6)

In [BS18], we show that Λ(Â) is composed of Lyapunov exponents in the sense of Oseledet’s
Multiplicative Ergodic Theorem (see e.g [Arn98, Theorem 3.4.1] and Section 4). In particular,
Λ(Â) is actually a finite set, and the supremum and the infimum in equation (6) are maximum
and minimum. We start with a lemma.

Lemma 2.2 Assume that all the Ai have the block triangular form (3).Then, with the above
notations, Λ(D) ⊂ Λ(A).

Proof Let λ ∈ Λ(D) and µ̂ be an invariant probability of (Θ(D), J) such that λ = ΛD(µ̂).
For Θ ∈ Sd−1, we write Θ = (Θn,Θm). We this notation, (4) becomes :

dΘn
t

dt = BJtΘn
t −

(
〈BJtΘn

t ,Θ
n
t 〉+ 〈CJtΘn

t +DJtΘm
t ,Θ

m
t 〉
)

Θn
t

dΘm
t

dt = CJtΘn
t +DJtΘm

t −
(
〈BJtΘn

t ,Θ
n
t 〉+ 〈CJtΘn

t +DJtΘm
t ,Θ

m
t 〉
)

Θm
t

(7)

From this equation, one can see that the space {(θn, θm) ∈ Sd−1 : θn = 0} is invariant, and on
that space,(Θ(A), J) = (0,Θ(D), J). Now we extend µ̂ to a probability measure µ on Sd−1×E
such that µ({(θn, θm) ∈ Sd−1 : θn = 0} × E) = 1 and the marginal of µ on Sm−1 × E is
µ̂. Then, µ is an invariant probability for (Θ(A), J), and straightforward computation shows
that ΛA(µ) = ΛD(µ̂) = λ. Thus λ ∈ Λ(A). �
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Remark 2.3 The same proof shows that in case where the Ai are block diagonal, that is
Ci = 0, then Λ(B) ⊂ Λ(A). However, this is not true in general. Here is a counter example
in dimension d = 2. Let Ai, i = 0, 1 be two 2× 2 matrices defined by

Ai =

(
bi 0
ci di

)
,

and assume that bi < di for i = 0, 1 as well as c0(b1 − d1) 6= c1(b0 − d0). In particular,
Λ+
B =

∑
i pibi <

∑
i pidi = Λ−D. We show that in this case, the set of invariant probability

measures of (Θ(A), J) reduces to δ(0,1) ⊗ p and δ(0,−1) ⊗ p; hence Λ(A) = Λ(D) + Λ(B). Let
θi be the normalized eigenvector of Ai associated with bi. Since c0(b1 − d1) 6= c1(b0 − d0),
θ0 6= θ1. Now it is easily checked that the region between θ0 and θ1 is transient for Θ(A) and
that when the process leaves this region, Θt(A) converges to (0, 1) or (0,−1).

We prove in Section 4 that the result given in the preceding remark can be generalized as
follows :

Proposition 2.4 Assume that all the Ai have the block triangular form (3). If Λ+
B < Λ−D and

if {(θn, θm) ∈ Sd−1 : θn = 0} is accessible from Sd−1, then Λ(A) = Λ(D).

Using a result from Hennion [Hen84], we have the following proposition, whose proof is given
in Section 4.

Proposition 2.5 Assume that all the Ai have the block triangular form (3).Then, with the
above notations, Λ+

A = max(Λ+
B,Λ

+
D).

Example 2.6 We describe completely the two dimensional case. Let (Ai)i∈E be a family of
2× 2 upper triangular matrices :

Ai =

(
bi 0
ci di

)
.

One has Λ+
B = Λ−B =

∑
i pibi := ΛB and Λ+

D = Λ−D =
∑

i pidi := ΛD. We have the
following :

1. If ΛB > ΛD, then Λ+
A = ΛB and Λ−A = ΛD;

2. If ΛB = ΛD, then Λ+
A = Λ−A = ΛB = ΛD;

3. If for all i 6= j, ci(bj−dj) = cj(bi−di), then Λ+
A = max(ΛB,ΛD) and Λ−A = min(ΛB,ΛD);

4. If ΛB < ΛD and if there exist i 6= j such that ci(bj − dj) 6= cj(bi − di), then Λ+
A = Λ−A =

ΛD.

In case where ΛB > ΛD, then Λ+
A = ΛB by Proposition 2.5 and since by Lemma 2.2,

Λ(D) ⊂ Λ(A), one has Λ−A = ΛD.
If ΛB = ΛD, the set of Lyapunov exponents of (Ai)i∈E in the sense of ergodic theory reduces

to ΛB, hence the result (see proof of Proposition 2.4 in Section 4).
Now assume that for all i 6= j, ci(bj−dj) = cj(bi−di). If ΛB = ΛD, then the result follows

from point 2. If ΛB 6= ΛD, there exists i0 ∈ E such that bi0 6= di0. Set x∗ = (1,
ci0

bi0−di0
) We
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claim that x∗ is a common eigenvector for all the Ai. Indeed, let i ∈ E. If bi − di 6= 0, then
x = (1, ci

bi−di ) is an eigenvector of Ai associated with bi, and since ci(bi0 − di0) = ci0(bi − di),
x = x∗. If bi − di = 0, since bi0 − di0 6= 0 and ci(bi0 − di0) = ci0(bi − di), one has ci = 0, in
other words Ai = biI, hence x∗ is an eigenvector of Ai. We conclude that if we let θ∗ = x∗

‖x∗‖ ,

then µ = δθ∗ ⊗p ∈ P
(Θ(A),J)
inv and ΛA(µ) = ΛB. This combined with Lemma 2.2 proves point 3.

Finally assume that ΛB < ΛD. It implies that there exists i0 ∈ E such that bi0 < di0.
Thus, {(0, 1), (0 − 1)} is accessible from every point in Sd−1 \ {θ∗} where θ∗ is defined as
before. Now there exist j ∈ E such that θ∗ is not an eigenvector for Aj. In particular, we can
reach Sd−1 \ {θ∗} from θ∗ by following Aj. Hence {(0, 1), (0− 1)} is accessible from Sd−1 and
the result follows from Proposition 2.4.

2.3 Main Results

The first theorem is an immediate consequence of Proposition 2.5 and Theorem 3.1 in [BS18].

Theorem 2.7 Assume Λ+
B < 0 and Λ+

D < 0. Let 0 < α < −Λ+
A. Then there exists a neigh-

borhood U of 0 and η > 0 such that for all x ∈ U and i ∈ E

Px,i(lim sup
t→∞

1

t
log(‖Xt‖) ≤ −α) ≥ η.

If furthermore 0 is accessible from M, then for all x ∈M and i ∈ E

Px,i(lim sup
t→∞

1

t
log(‖Xt‖) ≤ Λ+

A) = 1.

The next theorem is the main result of this paper. It gives results when the Lyapunov
exponents are of opposite signs. We let

Πt =
1

t

∫ t

0
δZsds ∈ P(M × E)

denote the empirical occupation measure of the process Z. For every Borel set A ⊂M × E

Πt(A) =
1

t

∫ t

0
1l{Zs∈A}ds

is then the proportion of the time spent by Z in A up to time t. Recall thatM+ = {(xn, xm) ∈
M : xn 6= 0}, and for δ > 0, set M δ

0 = {(xn, xm) ∈M+ : ‖xn‖ < δ}.

Theorem 2.8 Assume Λ−B > 0 > Λ+
D and that 0 is accessible from M0 × E. Then :

(i) For all ε > 0 there exists δ > 0 such that for all x ∈M+, i ∈ E, Px,i almost surely,

lim sup
t→∞

Πt(M
δ
0 × E) ≤ ε.

In particular, for all x ∈M+, Px,i almost surely, every limit point (for the weak* topology)
of (Πt) belongs to Pinv(M+ × E).

6



(ii) There exist positive constants θ,K such that for all µ ∈ Pinv(M+ × E)∑
i∈E

∫
‖xn‖−θdµi(xn, xm) ≤ K.

(iii) Let ε > 0 and τ ε be the stopping time defined by

τ ε = inf{t ≥ 0 : ‖Xn
t ‖ ≥ ε}.

There exist ε > 0, b > 1 and c > 0 such that for all x ∈M+ and i ∈ E,

EZx,i(bτ
ε
) ≤ c(1 + ‖xn‖−θ).

Remark 2.9 Note that under the assumptions of the above theorem, Lemma 2.2 implies
Λ−A ≤ Λ−D < 0 while by Proposition 2.5, Λ+

A = Λ+
B > 0. Thus the results in [BS18] cannot be

applied.

As in [BS18], we give the following theorem ensuring uniqueness of the invariant probability
giving no mass to M0 ×E which is a consequence of results in [BLBMZ15] (see also [BH12]).
Set F0 = {F i}i∈E and Fk+1 = Fk ∪ {[F i, V ], V ∈ Fk} where [, ] is the Lie bracket operation.
We say that the weak bracket condition holds at x ∈M provided the vector space spanned by
the vectors {V (x) : V ∈ ∪k≥0Fk} has full rank. We let Leb denote the Lebesgue measure on
Rd.

Theorem 2.10 In addition to the assumptions of Theorem 2.8, suppose that there exists a
point y ∈M+ accessible from M+ at which the weak bracket condition holds. Then

(i) The set PZinv(M+ × E) reduces to a single element, denoted Π;

(ii) Π is absolutely continuous with respect to Leb⊗ (
∑

i∈E δi);

(iii) For all x ∈M+ and i ∈ E,
lim
t→∞

Πt = Π

PZx,i almost surely.

Set F0 = {F i − F j : i, j = 1, . . . N} and Fk+1 = Fk ∪ {[F i, V ] : V ∈ Fk}. We say that
the strong bracket condition holds at x ∈M provided the vector space spanned by the vectors
{V (x) : V ∈ ∪k≥0Fk} has full rank.

Theorem 2.11 In addition to the assumptions of Theorem 2.8, suppose that one of the two
following holds :

(i) The weak bracket condition is strengthened to the strong bracket condition; or

(ii) There exist α1, . . . , αN ∈ R with
∑
αi = 1 and a point e? ∈M+ accessible from M+ such

that
∑
αiF

i(e?) = 0.

Then there exist κ, θ > 0 such that for all x ∈M+ and i ∈ E,

‖Px,i(Zt ∈ ·)−Π‖TV = ‖δx,iPZt −Π‖TV ≤ const.(1 + ‖xn‖−θ)e−κt.
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3 Examples

In this section we give several examples of applications of our results.

3.1 Lorenz Vector Fields

In [BH12], the authors consider a random switching between two Lorenz vector fields F i,
i = 0, 1 :

F i(x, y, z) =

 σi(y − x)
rix− y − xz
xy − biz

 , (8)

with σ0 = σ1 = 10, b0 = b1 = 8/3, r0 = 28, and r1 6= r0 close to 28. It is known since the
proof of Tucker [Tuc99] that F 0 admits a robust strange attractor Γ0. Thus for r1 close to r0,
F 1 shares this property. In [BH12], it has been shown that the compact set M = {(x, y, z) ∈
R3 : 2r0σ(x2 + y2) + 2σb(z0 − r0)2 ≤ 2σbr2

0} is forward invariant, and that Γ0 is accessible
from every point that does not lie on the z-axis. Moreover they proved that the strong bracket
condition holds at any point which is not on the z-axis. Then they argue that by compactness
of M , there exists an invariant probability, and that it has to be absolutely continuous with
respect to the Lebesgue measure due to the bracket condition. However, this argument is
not sufficient : there exists indeed an invariant probability measure on M , which is δ0 ⊗ p.
However, this measure is not absolutely continuous. We explain how our results apply to that
situation and fill in this gap in the proof of [BH12]. In particular, we prove the following result
:

Proposition 3.1 Let F i, i = 0, 1 be two Lorenz vector fields defined by (8) with σ0 = σ1 = 10,
b0 = b1 = 8/3, r0 = 28, and r1 6= r0 close to 28. Then the process Z admits a unique
invariant probability measure Π such that Π(M \ {x = y = 0}) = 1. Moreover, Π is absolutely
continuous with respect to the Lebesgue measure, and there exist κ, θ > 0 such that for all
x0 = (x, y, z) ∈M such that (x, y) 6= 0 and i ∈ E,

‖PZx,i(Zt ∈ ·)−Π‖TV ≤ const.(1 + ‖(x, y)‖−θ)e−κt.

Proof One can note that the z-axis is invariant, and that assumption 2.1 holds with
n = 2 and m = 1. Moreover, we have

Ai =

(
Bi 0
0 −bi

)
, (9)

where

Bi =

(
−σi σi
ri −1

)
.

Setting Di = (−bi), one has Λ+
D = −(p0b0 + p1b1) < 0. Furthermore, on the z - axis,

|zt| ≤ z0e
−bt, with b = min(b0, b1). Hence 0 is accessible from M0. Let us show that Λ−B > 0.

First, it is easily checked that B0 and B1 have no common eigenvectors. Therefore, [BS18,
Example 2.12] implies that Λ+

B = Λ−B. Next, the matrices Bi are Metzler, meaning that their

8



off diagonal entries are nonnegative. Therefore, the Kolotilina-type lower estimate for the top
Lyapunov exponent proved by Mierczyński [Mie15, Theorem 1.3] implies that

Λ−B ≥
1

2

∑
i

piTr(B
i) +

∑
i

pi

√
Bi

12B
i
21.

Here, Tr(Bi) = −11 for i = 0, 1, and
√
B0

12B
0
21 =

√
280 > 11/2. Since r1 is close to r0, we

also have that
√
B1

12B
1
21 > 11/2, hence Λ−B > 0. The result follows from Theorem 2.11 due to

the strong bracket condition proved in [BH12]. �

In Figure 1, we show a trajectory of Xt with initial condition (0, 0.05, 0.05) for the vector
fields F 0 and F 1 given by the above values of parameters and r1 = 35. The z-axis is drawn in
black.

Figure 1: Randomly switched Lorenz vector fields

3.2 Epidemiological SIRS models

In this section, we show how our result enables to recover and extend those found in [LLC17].
In this paper, the following SIRS model with random switching is studied :

F k(S, I,R) =

Λ− µS + λkR− βkSGk(I)
βkSGk(I)− (µ+ αk + δk)I

δkI − (µ+ λk)R

 , (10)

9



for k ∈ E = {1, . . . , N}, where Gk is a regular function such that Gk(0) = 0. The reader
is referred to [LLC17] for the epidemiological interpretation of the different constants. The
authors study the specific case where only β is allowed to depend on k and where the discrete
component (rt)t≥0 is an irreducible Markov chain on E, that is the rate matrix a does not
depend on the position. Here we assume that the positive constants λk, αk, δk and the functions
Gk may depends on k and that a could depend on the position. We still let Λ and µ be constant
: they are the intrinsic birth and death rates, and are not related on how the disease spread
among the population. Thus the point q = (Λ

µ , 0, 0) is a common equilibrium for the F k. Set
(Zt)t≥0 = (Xt, rt)t≥0, with Xt = (St, It, Rt). Write R3

+ = {x ∈ R3 : xi ≥ 0, i = 1, 2, 3} and
R3

++ = {x ∈ R3 : xi > 0, i = 1, 2, 3}. It is easily seen that R3
+ and R3

++ are positively invariant
for all the F k. Moreover, one can check that the compact set

M = {x ∈ R3
+ : x1 + x2 + x3 ≤ Λ/µ}

is also positively invariant for all the F k. Furthermore, there are two invariant sets : the
S-axis and the (S,R) - plane. We set M0 = {(S, I,R) ∈M : I = 0}. We make the following
assumptions, that are taken from [LLC17] :

Hypothesis 3.2

(i) For all k, Gk : R+ → R+ is C2, with Gk(0) = 0 and 0 < Gk(I) ≤ G′k(0)I for I > 0;

(ii) For all k, if βk Λ
µG
′
k(0)− (µ+αk + δk) > 0, then F k admits an equilibrium point x∗ ∈M+

which is accessible from M+.

For convenience, we reorder the coordinates as (I,R, S) and set q = (0, 0, Λ
µ ). Writing

Ak = DF k(q), one has

Ak =

βk Λ
µG
′
k(0)− (µ+ αk + δk) 0 0

δ −(µ+ λk) 0

−βk Λ
µG
′
k(0) λk −µ

 .

If we denote by Dk the matrix

Dk =

(
−(µ+ λk) 0

λk −µ

)
,

then by Proposition 2.5, Λ+
D = max(Λ1,Λ2), with

Λ1 = −
∑
k

pk(µ+ λk) < 0

and

Λ2 = −
∑
k

pkµ = −µ < 0.

Hence Λ+
D = −µ < 0, and by Theorem 2.7, on M0, the process converges to q. Now if

Bk = (βk
Λ
µG
′(0)− (µ+ αk + δk)), then Λ−B = Λ+

B =
∑

k pk(βk
Λ
µG
′
k(0)− (µ+ αk + δk)). As in

[LLC17], we set

R0 =

∑
k pkβk

Λ
µG
′(0)∑

k pk(µ+ αk + δk)
.
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Note that R0 < 1 (respectively R0 > 1) if and only if Λ−B < 0 (resp. Λ−B > 0). In particu-
lar, Theorems 2.7 and 2.8 imply the following statement, that recovers and slightly extends
Theorems 4, 8 and 9 in [LLC17].

Theorem 3.3 With the above notation, the following hold.

(i) Assume that R0 < 1. Then, for all z0 = (s0, i0, r0, k0) ∈M × E, one has

Pz0(lim sup
t→∞

1

t
log(‖(St, It, Rt)− (

Λ

µ
, 0, 0)‖) ≤ Λ+

A) = 1,

where Λ+
A = max(Λ+

B,−µ).

(ii) Assume that R0 > 1. Then the process Z admits an invariant probability measure Π such
that Π(M \M1

0 × E) = 1.

(iii) Assume in addition to R0 > 1 that the weak bracket condition holds at an accessible point.
Then Π is unique and there exist κ, θ > 0 such that for all x = (s, i, r) ∈M+ and k ∈ E,

‖Px,k(Zt ∈ ·)−Π‖TV ≤ const.(1 + ‖i‖−θ)e−κt.

In addition, for all x ∈M+ and k ∈ E,

lim
t→∞

Πt = Π

Px,k almost surely.

Proof If R0 < 1, then Λ+
B < 0 and thus there exists k0 ∈ E such that βk0

Λ
µG
′
k0

(0)− (µ+
αk0 + δk0) < 0. We show that this implies that q is accessible from M+. Let x0 ∈ M+ and
denote by xt = (st, it, rt) the solution of

dxt
dt

= F k0(xt)

with initial condition x0. Now by assumption 3.2 and the fact that st ≤ Λ
µ ,

dit
dt
≤
(
βk0

Λ

µ
G′k0(0)− (µ+ αk0 + δk0)

)
it.

Since βk0
Λ
µG
′
k0

(0)− (µ+αk0 +δk0) < 0, it converges to 0 exponentially fast. It is easy to check
that on M0, (st, rt) converges to (Λ

µ , 0), thus xt converges to q. Hence q is accessible, and (i)
follows from Theorem 2.7. Point (ii) is an immediate consequence of Theorem 2.8. Now if
R0 > 1, there exists k0 ∈ E such that βk0

Λ
µG
′
k0

(0)− (µ+ αk0 + δk0) > 0. By assumption 3.2,
this implies that F k0 admits an accessible equilibrium x∗ ∈ M+. Point (iii) follows then by
Theorems 2.10 and 2.11. �
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4 Proofs

4.1 Proof of Theorem 2.8

The idea of the proof is similar to that used in [BS18], and also relies on results of [Ben18]. In
[BS18], we rewrite the process in spheric coordinates on R+ × Sd−1. Here the idea is to only
write the spheric coordinates for the part of Xt living in Rn. That is, we consider the map
Ψ : Rn \ {0n}×Rm×E → R∗+×Sn−1×Rm×E defined by Ψ(xn, xm, i) = (‖xn‖, xn

‖xn‖ , xm, i).
We set X+ = Ψ(M+ × E). When (x, i) ∈ M+ × E, the process Z̃t = Ψ(Zt) = (ρt,Θt, X

m
t , It)

is well defined and satisfies

dρt
dt = 〈Θt, F̃

It
n (ρt,Θt, X

m
t )〉ρt

dΘt
dt = F̃ Itn (ρt,Θt, X

m
t )− 〈Θt, F̃

It
n (ρt,Θt, X

m
t )〉Θt

dXm
t

dt = F̃ Itm (ρt,Θt, X
m
t )

P(It+s = j|Ft) = aij(ρtΘt, X
m
t )s+ o(s) for i 6= j on {It = i}

(11)

where for all (ρ, θ, xm) ∈ R∗+ × Sn−1 × Rm, F̃ im(ρ, θ, xm) = F im(ρθ, xm) and

F̃ in(ρ, θ, xm) =
F in(ρθ, xm)

ρ
.

Since F in is C2 and F in(0, xm) = 0, the map F̃ in extends to a C1 map on R+ × Sn−1 × Rm by
setting

F̃ in(0, θ, xm) = Bi(xm)θ,

where Bi(xm) ∈ Mn(R) is such that DF in(0, xm) = (Bi(xm), 0). Note that in particular,
Bi(0m) = Bi. Thanks to this definition, we can extend (11) to

X := X+ = X+ ∪ X0

where X0 = {0} × Sn−1 × Rm × E. This induces a PDMP (still denoted Z̃) on X , whose
infinitesimal generator L̃ acts on functions f : X → R smooth in (ρ, θ, xm) according to

L̃f(ρ, θ, xm, i) =
∂f i

∂ρ
(ρ, θ, xm)〈θ, F̃ in(ρ, θ, xm)〉ρ+ 〈∇θf i(ρ, θ, xm), G̃i(ρ, θ, xm)〉

+ 〈∇xmf i(ρ, θ, xm), F̃ im(ρ, θ, xm)〉

+
∑
j∈E

aij(ρθ, xm)(f j(ρ, θ, xm)− f i(ρ, θ, xm)),

(12)

where G̃i(ρ, θ, xm) = F̃ in(ρ, θ, xm)− 〈θ, F̃ in(ρ, θ, xm)〉θ.
The set X0 is invariant, and we identify it with Sn−1 × Rm × E. On this set, the process

(Θ, Xm, I) satisfies

12





dΘt
dt = BIt(Xm

t )Θt − 〈Θt, B
It(Xm

t )Θt〉Θt

dXm
t

dt = F Itm (0, Xm
t )

P(It+s = j|Ft) = aij(0, X
m
t )s+ o(s) for i 6= j on {It = i}

(13)

Lemma 4.1 For all (θ, xm, i) ∈ X0, one has

Pθ,xm,i(lim sup
t→∞

1

t
log(‖Xm

t ‖) ≤ Λ+
D) = 1.

Proof On X0, the process (Xm, I) evolves independently from Θ. It is a PDMP with
vector fields F̂ i : Rm → Rm and transition rate matrix (âij) defined for all x ∈ Rm respectively
by F̂ i(x) = F im(0n, x) and âij(x) = aij(0n, x). The origin 0m is a common zero for all the F̂ i,
and DF̂ i(0m) = Di. In particular, the maximal Lyapunov exponent for (Xm, I) is Λ+

D and
the result follows from [BS18, Theorem 3.1] due to the fact that Λ+

D < 0 and 0 is accessible
from M0. �

Note that on {0} × Sn−1 × {0m} × E, (Θ, I) is equal to the PDMP (Θ(B), J) defined in
section 2.2. Therefore, we have :

Lemma 4.2 Let µ be an invariant probability of Z̃ on X0. Then µ(dθ,dx,di) = δ0(dx) ⊗
µ̂(dθ,di) where µ̂ is an invariant probability of (Θ(B), J).

Proof Let (Qt)t≥0 be the semigroup of (Θ, Xm, I) on X0. Let f : Rm → R be a continuous
bounded function and define f̂ : X0 → R by f̂(θ, x, i) = f(x). By invariance of µ, µQtf̂ = µf̂
for all t ≥ 0. Now, µf̂ = µ̃f where µ̃ is the marginal of µ on Rm and by Lemma 4.1 and
dominated converge, µQtf̂ → f(0) when t → ∞. Thus µ̃ = δ0. Since the marginal law is a
Dirac mass, this implies that µ is a product measure : µ = δ0 ⊗ µ̂, where µ̂ is the marginal of
µ on Sn−1 × E. The result follows from the remark preceding this lemma. �

Define H : X → R by H(ρ, θ, xm, i) = −〈θ, F̃ in(ρ, θ, xm)〉. The following lemma is immedi-
ate from Lemma 4.2 and the definition of H.

Lemma 4.3 Let µ be an invariant probability on X0. Then with the notation of Lemma (4.2),
µH = −ΛB(µ̂).

Now we proceed to the proof of Theorem 2.8. Letting V : X+ → R+ be a smooth function
coinciding with − log(ρ) for all (ρ, θ, xm, i) ∈ X such that ρ ≤ 1, the end of the proof is
verbatim the same as in [BS18, Section 5] by noting that L̃V = H (in a weak sense, see [BS18]
or [Ben18] for details). �

4.2 Proof of Proposition 2.4

The proof is really similar to the one of Theorem 2.8, so we do not give all the details. Recall
from proof of Lemma 2.2 that we rewrite (4) as
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
dΘn

t
dt = BJtΘn

t −
(
〈BJtΘn

t ,Θ
n
t 〉+ 〈CJtΘn

t +DJtΘm
t ,Θ

m
t 〉
)

Θn
t

dΘm
t

dt = CJtΘn
t +DJtΘm

t −
(
〈BJtΘn

t ,Θ
n
t 〉+ 〈CJtΘn

t +DJtΘm
t ,Θ

m
t 〉
)

Θm
t

As in the proof of Theorem 2.8, we write Θn = ρΘ̂ with ρ = ‖Θn‖ and Θ̂ = Θn

ρ ∈ S
n−1. As

before, the set {ρ = 0} is invariant, and one can check that on this state, Θ̂ and Θm evolves
independently as : 

dΘ̂t
dt = BJtΘ̂− 〈BJtΘ̂, Θ̂〉Θ̂

dΘm
t

dt = DJtΘm
t − 〈DJtΘm

t ,Θ
m
t 〉Θm

t

(14)

That is (Θ̂, J) = (Θ(B), J) and (Θm, J) = (Θ(D), J). Furthermore, setting V̂ (ρ, θ̂, θm, i) =
− log(ρ), one has

L̂V̂ (ρ, θ̂, θm, i) = −〈Biθ̂, θ̂〉+
(
ρ2〈Biθ̂, θ̂〉+ ρ〈Ciθ̂, θm〉+ 〈Diθm, θm〉

)
:= Ĥ(ρ, θ̂, θm, i).

Here L̂ stands for the generator of Ẑ := (ρ, Θ̂,Θm, J). Now if µ is an invariant probability of Ẑ
on {ρ = 0}; then there µ̂ ∈ P(Θ(B),J)

inv and µ̃ ∈ P(Θ(D),J)
inv such that µĤ = −ΛB(µ̂) + ΛD(µ̃). In

particular, if Λ+
B < Λ−D, then for all µ ∈ P Ẑinv with µ({ρ = 0}) = 1, one has µĤ > 0. Moreover,

since we assumed that {(θn, θm) ∈ Sd−1 : θn = 0} is accessible from S for (Θ(A), J), the set
{ρ = 0} is accessible for Ẑ. This concludes the proof by the same arguments as in [BS18].

Remark 4.4 The same proof shows that if Λ−B > Λ+
D, (Θ(A), J) admits at least one invariant

probability measure giving no mass to {(θn, θm) ∈ Sd−1 : θn = 0}. An interesting question
would be to know if it is possible to recover the Lyapunov exponents associated to B with this
invariant probability measure, like in dimension 2 (see Example 2.6.)

4.3 Proof of Proposition 2.5

For this proof, we use a result from Hennion [Hen84] which is given for Lyapunov exponents
of random dynamical systems. Recall from [BS18] that if Ω = D(R+, E), the set of cadlag
functions with values in E, then (Ω,F , (Θ)t≥0,PJp ) is an ergodic dynamical system. Here, F
is the Borel sigma field of Ω and Θt : Ω → Ω is the t-time shift defined for all ω ∈ Ω by
Θt(ωs) = ωt+s.For a set of matrices (Âi)i∈E and for ω ∈ Ω and y ∈ Rd, let

t 7→ ϕ(t, ω)y

denote the solution to the linear differential equation

ẏ = Âωty

with initial condition ϕ(0, ω)y = y.
Then, (ϕ, (Θ)t≥0) is a linear random dynamical system over the ergodic dynamical system

(Ω,F , (Θ)t≥0,PJp ). Furthermore, the conditions of the Multiplicative Ergodic Theorem are
satisfied (see [CM15] for details) :

14



Theorem 4.5 (Multiplicative Ergodic Theorem)
There exist 1 ≤ d̃ ≤ d, numbers

λd̃ < . . . < λ1,

called the Lyapunov exponents of (ϕ,Θ) , a Borel set Ω̃ ⊂ Ω with PJp (Ω̃) = 1, and for each
ω ∈ Ω̃ distinct vector spaces

{0} = Vd̃+1(ω) ⊂ Vd̃(ω) ⊂ . . . ⊂ Vi(ω) . . . ⊂ V1(ω) = Rd

(measurable in ω) such that

lim
t→∞

1

t
log ‖ϕ(t, ω)y‖ = λi (15)

for all y ∈ Vi(ω) \ Vi+1(ω).

We let S(Â) denoted the set of Lyapunov exponents given by the above theorem and λ1(Â) =
maxS(Â). By [BS18, Proposition 2.5], Λ(Â) ⊂ S(Â) and Λ+

Â
= λ1(Â). Now [Hen84, Propo-

sition 1] implies that S(A) = S(B) ∪ S(D) and thus λ1(A) = max(λ1(B), λ1(D)). Hence the
result. �

Remark 4.6 Proposition 1 in [Hen84] is given for a discrete-time random dynamical system.
However, its proof adapts verbatim to the continuous-time case by using the continuous-time
version of the Multiplicative Ergodic Theorem [Arn98, Theorem 3.4.1 (C)]. One could also
have used [GMO08, Theorem 1.1].
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