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Abstract: Age-related macular degeneration (ARMD), a major cause of sight impairment for elderly
people, is still not well understood despite intensive research. Measuring the size of the lesions in the
fundus is the main biomarker of the severity of the disease and as such is widely used in clinical trials
yet only relies on manual segmentation. Artificial intelligence, in particular automatic image analysis
based on neural networks, has a major role to play in better understanding the disease, by analyzing
the intrinsic optical properties of dry ARMD lesions from patient images. In this paper, we propose a
comparison of automatic segmentation methods (classical computer vision method, machine learning
method and deep learning method) in an unsupervised context applied on cSLO IR images. Among
the methods compared, we propose an adaptation of a fully convolutional network, called W-net, as
an efficient method for the segmentation of ARMD lesions. Unlike supervised segmentation methods,
our algorithm does not require annotated data which are very difficult to obtain in this application.
Our method was tested on a dataset of 328 images and has shown to reach higher quality results than
other compared unsupervised methods with a F1 score of 0.87, while having a more stable model,
even though in some specific cases, texture/edges-based methods can produce relevant results.

Keywords: dry ARMD; unsupervised learning; automatic segmentation; clustering; W-net

1. Introduction

Age-related macular degeneration (ARMD) is a degenerative disease that affects the
retina, and a leading cause of visual loss.

In this paper, we focus on the dry form of this pathology which currently does not
have any treatments. It is characterized by a progressive loss of pigment epithelium which
engenders a lesion located in the macula, growing slowly and impeding more and more
the patient central vision. The lesions, called geographic atrophy (GA), can be observed in
eye fundus images. Figure 1 shows examples of confocal Scanning Laser Ophtalmoscopy
(cSLO) images acquired in infrared (IR), a commonly used imaging technique for ARMD
patients, where the GA appears as brighter areas.

Despite intensive biological research, the factors involved in progression are poorly
known. Therefore, clinical studies are needed to characterize the disease and its evolution.
This can be done from eye fundus images, which are routinely acquired during the medical
follow-up of patients. However, there are at present no efficient algorithms to automatically
process large databases of images, even though it is very costly to process them manually:
first, the manual delineation of the lesions is a very difficult and time-consuming task,
given the complex structure of the GA. Secondly, the reliability of manual delineations is
also an issue as even experts tends to disagree on their segmentations [1]. To solve this
problem, in this work, we propose the first fully unsupervised application of automatic
segmentation of GA using W-net [2] on cSLO IR acquired images (Section 2) and to assess
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how well it performs compared with other state of the art unsupervised methods. Our
contribution is therefore three-fold:

• First, we propose a successful adaptation of the original developed by Xia et al. [2].
We modified the architecture to adapt it to our images and their specifics. In ad-
dition, furthermore, we fully trained our network and did not use any pre-trained
model.

• Second, we propose the first realistic unsupervised approach to the very difficult
problem of ARMD lesion segmentation. Indeed, this problem is already difficult for
humans, and has very little labelled data (hence why we cannot use supervised neural
networks), thus making it quite a challenging problem for unsupervised algorithms.
In this regard, we achieve very decent performance considering the nature of the
problem and the challenges it presents.

• Third, we propose a fair and extensive comparison with other unsupervised methods
(neural networks and others) used in other fields that we have also adapted to tackle
the same problem.

Figure 1. Five pairs of images: (a) advanced case with blur, low contrast and very indented GA boundary; (b) less advanced
case with lesions at the center and around the optic disk; (c) a new lesion appears in the second image (green arrow); (d) GA
with complex structure and texture; (e) example of progression of a GA during 6 years. A third GA appeared (green arrow).
Arrows point to the GA (red) and to the optic disk (blue).

The remainder of this paper is organized as follows: Our method is presented in
Section 4.1 and the compared methods in Section 4.2, after the description of our dataset
(Section 2) and the related works (Section 3). The experimental results are shown in
Section 5. In addition, finally, conclusions and insights as to our future works are discussed
in Section 6.

2. Materials

We work on cSLO images acquired in IR. This modality is more robust and less
invasive than fundus autofluorescence (FAF), and it has higher resolution and higher
contrast between normal and diseased areas than color imaging, an older technology. Our
database is composed of 18 series of images (328 images in total), showing the progression
of the GA over several years for 13 patients (ARMD can affect both eyes). The time interval
between two exams is about 6 months. All these images has been obtained from the Clinical
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Imaging Center of the Quinze-Vingts Hospital and all patients gave their informed consent
for the use of images for clinical studies.

All images are in gray-levels (1 channel). Black borders are present because of the
spatial registration process. Moreover, the images present illumination artifacts, blur and a
non-uniform illumination. We preprocess jointly the images of every series as follows: we
crop the images to suppress the black borders and resize them to 256 × 256 pixels; then we
apply a joint correction of the overall illumination [3] so that any two processed images
have comparable gray-levels. This algorithm does not completely compensate for uneven
illumination, but the remaining defect is the same in all processed images, helping the
ophthalmologists in the visual comparison of any two exams. From the segmentation point
of view, the algorithm homogenizes the luminosity and the contrast of the images applied
to the W-net and thus reduces the radiometric variability.

The major challenge of the segmentation task is to adapt to the large and complex
variability of GA structures and to cope with all kinds of image defects. Figure 1 illustrates
the difficulty: variability in size, shape, texture, number of GA areas, with new lesions that
may appear at any time or merge; low contrast, blur, high ambiguity in the actual position
of the border even for the most contrasted images. Please note that 18 series of images
may not be enough to fully represent the real variability of GAs, and can lead to a lack of
generality for deep learning-based methods.

In order to evaluate our algorithm, we asked ophthalmologists to delineate the GA
areas. However, even with expert skills, the produced annotations may not be 100% reliable.
Thus, the resulting pixel-wise annotations are only used to calculate classic segmentation
quality measures (see Section 5.1).

3. Related Work

A lot of research has been done to propose segmentation algorithms of the GA. Stan-
dard algorithms have been applied, such as region growing [4,5] or active contour [6],
region oriented variational methods with level set implementation [7,8], texture analy-
sis [9] and watershed segmentation [10,11]. Most of the proposed methods are based on
supervised machine learning approaches, with statistical models [12], random forests [13],
random forests combined with Support Vector Machine [14] or k-nearest neighbor classi-
fiers [15]. However, even in a supervised context, it is intricate to obtain a fully automatic
algorithm reaching the required level of performance and some authors add human inter-
action to guide their algorithm [16,17]

Using deep learning, a reference model achieving impressive results for supervised
segmentation is the U-net [18], and it has been implemented in many medical image
segmentation problems (e.g., [19,20]). The U-net takes advantage of residual connections
combined with a contracting and an expansive part. The authors of [21] proposed a
supervised algorithm to follow-up the GA progression, using U-nets to first segment
vessels and the optic disc, reducing the region of interest for the GA detection and then
tracking it using intensity ratio between neighbor pixels. Other supervised deep learning-
based methods were applied on ARMD as in [22] where they exploit transfer learning with
deep neural networks to detect ARMD.

Last but not least, a segmentation task has been investigated in a scene parsing context.
The authors of [23,24] exploit spatial pyramid pooling architecture in order to perform
semantic segmentation between multiples objects present in a scene. However, as the U-Net,
both PSP-Net and APSP-Net are deep supervised methods and their training requires a large
amount of annotated data, which is not suitable for our application, as mentioned previously.

Thus, unsupervised methods can solve both the problem of data availability and the
issue of the reliability of experts’ annotations. Unsupervised automatic segmentation is
mainly handled in two steps: extracting features and then applying a clustering algorithm.
The authors of [25] applied fuzzy CMeans clustering, which reached good performance for
high-contrast FAF images, but performed less well for other modalities.
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Using deep learning, the authors of [26] applied a joint auto-encoder (initially applied
on satellite images [27]) on the same dataset we are using in this paper (see Section 2),
in order to perform automatic change detection in an unsupervised context learning.
The algorithm outperformed the state-of-the-art; however, as this model aims to detect
changes, it is not comparable with automatic segmentation algorithm.

Kanezaki [28] combined clustering algorithm and CNN for a fully unsupervised model
using a superpixel refinement method and achieving promising results for unsupervised
automatic semantic segmentation. For a given image, the CNN first oversegments it (high
number of cluster initially), then at each iteration, tries to reduce the number of cluster by
merging them according to the result of the clustering algorithm.

Table 1 summarizes the pros and cons for the related works. As we want to exploit the
dataset provided by the Clinical Imaging Center of the Quinze-Vingts Hospital (Section 2),
which represent a non-invasive modality acquisition adapted to the patient follow-up,
other modality use (which can engender better results due to a better quality of imaging)
will be considered as a drawback. Supervised training is also considered a weakness
because of the annotations reliability.

Table 1. Comparative summary of related works.

Method Pros Cons

Region oriented [4,5] High performance on ARMD,
semi-supervised (seeds) FAF/OCT images

Conventionnal methods

Active contour [5,6] High performance on retinal cases Segment optic discs

Statistical [12] High performance on retinal cases Segment blood vessels and optic
discs

Random Forest [13] High performance on ARMD Color fundus images, supervised

Random Forest +
SVM [14] High performance on ARMD Screening and grading task,

supervised

Fuzzy C-means [25] Unsupervised, high performance
on ARMD High contrast FAF images

K-NN [15] High performance on ARMD FAF images, supervised

Watershed [10,11] Semi supervised (seeds) OCT images

U-net [18,21] High performance on ARMD Supervised, training on GPU

Deep learning methods

Transfert learning on
ARMD [22] High performance Supervised, color fundus images

Scene parsing [23,24] High performance
Supervised, requires multiple
objects in a scene, training on

GPU

Change detection [26] Unsupervised, applied on the same
dataset Change detection task

CNN + Superpixel
refinement [28] Unsupervised, no training Produce a variable number of

cluster in the segmentation

W-net [2] Unsupervised, robust Training on GPU

Our W-net Unsupervised, fast inference use,
robust, high performance on ARMD Training on GPU

Human interaction [16,17] High performance on ARMD Require human interaction Other methods

In this paper, we focus on unsupervised algorithms to segment the GA in IR cSLO eye
fundus images with dry-ARMD. We propose to adapt the W-net [2] as well as three other
unsupervised methods and compare them in an experimental study.
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4. Methods
4.1. Our Method: W-Nets Adapted to ARMD Lesions Segmentation

The W-net model is a fully convolutional autoencoder for which both encoder and
decoder are U-net networks [18]. While U-nets are supervised neural networks commonly
used for image segmentation, W-nets are the unsupervised equivalent. Unlike U-Nets,
W-nets are trained using two loss functions. The first one is the usual reconstruction
error used to train classic autoencoder, the second one is the soft-N-cut loss [2], a smooth
version of the N-cut loss [29]. Minimizing the soft N-cut loss has the effect of enhancing
the segmentation quality by maximizing the dissimilarity between the different clusters.
The dissimilarity calculated is a function of the intensity pixel and the spatial position of
the pixels.

During each training step, we have two successive optimization steps after each
forward. First the full W-net is updated by back-propagating the self-reconstruction error
(MSE = 1

n ∑n
k=1(Yk − Ŷk)

2, where n is the number of pixel in the image), then only the
encoding part is updated based on the soft N-cut loss :

Jso f t−Ncut(V, K) = K−
K

∑
k=1

∑u∈V,v∈V w(u, v)p(u = Ak)p(v = Ak)

∑u∈Ak ,t∈V w(u, t)p(u = Ak)

with p(u = Ak) the probability for the pixel u to belong to the class k, and w a function
which compute a weight for each couple of pixel, based on their position in the image and
their intensity [29].

The architecture of our W-net is presented in Figure 2. Hence, the entire training of
the W-net is unsupervised: the MSE loss is computed with the W-net output and the image
input, while the soft-N-cut loss is computed with the probability map produced by the
encoder (after the softmax layer in Figure 2) and the weights (which only need the image
input to be computed). Compared with the original one, an average-pooling layer has been
added before the computation of the soft N-cut loss. This loss is based on graph calculation,
and thus, is memory-consuming when using large size images and not applicable on
256 × 256 sized images. Hence, the value of the soft N-cut loss is approximated by the
value of the loss applied on the 128 × 128 (average) pooled input.

Figure 2. Our W-net architecture for ARMD lesions segmentation.

Once it has been trained on a set of unlabeled images, our network can be used on
any ARMD cSLO images acquired in IR that have a similar resolution: For each pixel,
the network will provide the probability of belonging to each class. Then applying a
simple argmax will produce a segmentation. In our case, the purpose is to obtain two
classes corresponding to the GA and the retina background. Thus, when the W-net is set
with K = 2, one segmentation class will represent the GA and the other one the retina
background. However, when the W-net is set with K > 2, we have to map the extra classes
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to the GA class or the background class. Finally, once trained, our W-net will always
produce the same semantic classes for every image it processes, thus requiring a manual
mapping only once.

4.2. Compared Methods

In this subsection, we present the three other compared algorithm: Gabor filters with
KMeans [30], an active contour based model [5] and a model that combine CNN and
clustering [28].

4.2.1. Gabor + KMeans

This algorithm is divided in three steps: creation of a set of Gabor filters, feature
extraction using previous filters, pixels classification with KMeans on those features.

For a given frequency u0, Gabor function in spatial domain is a Gaussian modulated
with a sinusoïd:

h(x, y) =
1

2πσxσy
exp{−1

2
[
x2

σ2
x
+

y2

σ2
y
]}.cos(2πu0x)

with σx and σy variances in direction x and y.
To capture features in multiple direction, we can add a rotation θ to the filter. Thus,

we chose a set of directions, which define the set of Gabor filters. Each filter output pass
through a non-linear function (sigmoïd function). The texture features are completed with
spatial information (pixel position).

Finally, a KMeans clustering algorithm is applied on all the features, classifying each
pixel and thus given us a pixel-wise segmentation.

4.2.2. Active Contour Model without Edges

Chan and Vese combined in [5] active contour methods, and Mumford-Shah functional
and level set methods. Parametric active contour methods are based on a curve evolving
technique: a parametrized curve C : [0, 1] −→ R2 evolve and is stopped using an edge
detector, which usually rely on the gradient |∇I| for a given image I. Such a method
can then only detect objects with high gradient on their edges. Thus, the authors of [5]
proposed a region oriented approach based on Mumford-Shah energy functional.

Let C be the evolving curve, I a given image, c1 and c2 the average value of I respec-
tively inside C and outside C (case example with one object to detect from the background).
The fitting energy function is defined as:

F1(C) + F2(C) =
∫

inside(C)
|I(x, y)− c1|2dxdy +

∫
outside(C)

|I(x, y)− c2|2dxdy

Thus, the solution of infC{F1(C) + F2(C)} gives the boundary of the object we want
to detect.

This algorithm is suitable for the GA segmentation as it can handle changes in topology
with respect to the initialization, thanks to the level-set resolution method, as well as low
contrast along the edges.

4.2.3. CNN + Superpixel Refinement

Kanezaki investigate the use of CNN for unsupervised segmentation. The algorithm
is based on three assumptions:

• “Pixels of similar features are desired to be assigned the same label”
• “Spatially continuous pixels are desired to be assigned the same label”
• “The number of unique cluster labels is desired to be large”

For a given pixel vn of an RGB image (three channels) I = {vn ∈ R3}N
n=1 that we want

to segment into q classes, we first extract p-dimensional features xn with p filters of size
3× 3. Applying a linear classifier fc with weights Wc ∈ Rp×q and bias bc ∈ Rq gives us a
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response map for each pixel: {yn = Wcxn + bc}N
n=1. Finally the cluster cn for each pixel is

obtained by selecting the dimension with the greatest value. Thus, the output model is
consistent with the features similarity constraint.

To satisfy the spatial continuity constraint, K fine superpixels {Sk}K
k=1 are extracted

and all the pixels of a given superpixel is forced to have the same cluster (which will be
the most frequent cluster in the superpixel). Slic algorithm (KMeans-based segmentation
algorithm) is used to compute the superpixels. Hence, the K classes obtained with Slic
algorithm applied on the image I will correspond to the K superpixels.

The method in [28] aim to segment natural images (experiments on Berkeley Segmen-
tation Dataset and Benchmark BSDS500) therefore, we do not have any prior knowledge
of the number of unique clusters present in a given image. In this context, the algorithm
must be able to output a variable number of clusters. Kanezaki’s strategy is to constraint
the number q′ of output clusters with a maximum number of cluster q. One has 1 ≤ q′ ≤ q
and to avoid the naive solution q′ = 1, he introduced the last constraint: q is preferred to
be large. This is done by adding a whitening process, which transforms the response map
yn into yn′ where each axis has zero mean and unit variance.

Two steps are applied alternatively to train the network:

• forward process: prediction of clusters cn with the network and refined cluster c′n with
the superpixel refinement process

• backward process: backpropagation of the signal error (cross-entropy loss) between
the network response y

′
n and the refined cluster c′n

The training process of this model is different from the W-net one. One has to initialize
and train the model for each individual image at contrary to the W-net which has to be
trained only once. Indeed, the training process corresponds to the refinement of the model
on a given image and can not be used to infer an other image.

5. Results
5.1. Experimental Setting

In our experiments, we use 18 series of 5 to 52 images (328 images). Due to the
relatively small number of series and their variable size, we could not use k-folds validation.
However, we used 8 different random combinations of 12 series to train the model and
6 for the tests. Our W-net is compared with Gabor Filters for texture extraction [30] and
KMeans algorithm for the segmentation, the CNN model with superpixel refinement [28]
and finally an active contour model [5].

As the lesions can only grow bigger, we also try to see if adding the segmentation from
the previous image improves the results or not: we merge the segmentation provided by
our W-net for the current Image It with the segmentation of the same W-net for the previous
image It−1. This modification is supposed to reduce the risk of undersegmentation.

Our network is set with a kernel size of 3, and each U-net produces 1024 features after
the contracting part. Our model is trained on 250 epochs, using two Adam optimizers.
The number of classes is set to 3 in the experiments: using two classes, the latent repre-
sentation is too restrictive. Using three classes, the network learns extra classes for the
background (healthy regions and blood vessels) or the ARMD lesions.

Hyperparameters for Gabor filters methods, Chan and Vese’s method, and Kanezaki’s
method have been tuned manually by referring to the visual output. Therefore, the fixed
parameters are not the optimal ones, but a compromise to obtain the best average output.

The evaluation is based on the pixels’ classification using true positive (TP), false
positive (FP), and false negative (FN) to build dice metrics such as the F1-Score:

F1 = 2× precision× recall
precision + recall

=
TP

TP + 0.5(FP + FN)

with
precision =

TP
TP + FP
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and
recall =

TP
TP + FN

KMeans algorithm output directly the classification an not the probability to belong to
each class. However, those probabilities are needed to compute the ROC curve. Hence we
use fuzzy CMeans instead (which provides, with an argmax, the same output as Kmeans)

All the experiments have been done using a GEFORCE RTX 3090 GPU with 24Gb of
RAM, Python 3.8.5, Pytorch 1.7.1 and Cuda 11.1.

5.2. Experimental Results

As explained before, our W-net is set to three classes. With this configuration, we
manually map the classes to the lesion or the background. Figure 3 shows an example of
different classes obtained with our 3-class W-net: the class of interest corresponding to the
GA is in green. The two other classes belong to the retina background. Please note that this
mapping is arbitrary and may not be optimal in specific cases.

The results are shown in Tables 2 and 3.

Figure 3. Example of three classes W-net output. From left to right: original image, ground truth,
3-class W-net output.

Table 2. Average W-net dice scores on the training set.

Method F1 Precision Recall

W-net 0.83 ± 0.09 0.87 ± 0.08 0.81 ± 0.13

W-net + Segt−1 0.82 ± 0.07 0.82 ± 0.10 0.82 ± 0.11

Table 2 shows the average dice score (F1), precision and recall on the training set
(W-net is the only model that need to be trained), while Table 3 focuses on the test set and
features the comparison with the other algorithms introduced in Section 5.1. As one can
see, W-net is the most relevant method. It has the best F1 score and achieves higher quality
results with a better precision and recall. Moreover, our W-net has a smaller standard
deviation for the F1 score and the precision, resulting in a more stable model.

The bottom line (W-net + Segt−1) in both tables corresponds to the fusion of a given
segmentation with the previous one (see Section 5.1). However, we can see that this
modification does not lead to any significant increase in the result quality: while the Recall
is indeed better (less under-segmentation), the F1 score is not significantly different from
the one of our method on individual images. This can be explained by an accumulation
of over-segmented areas propagating through the series, which is confirmed by a worst
Precision that we observe.

In any case, we can see that except for the recall—which can be explained by cases
of under-segmentation—our W-net approaches outperform the Gabor filter and KMeans
approach, Active contour method, and CNN model with superpixel refinement.
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Table 3. Average dice scores on the test set.

Method F1 Precision Recall

Active contour (Chan & Vese [5]) 0.73 ± 0.07 0.64 ± 0.13 0.86 ± 0.05

CNN + Superpixel Refinement
(Kanezaki [28]) 0.65 ± 0.07 0.54 ± 0.10 0.85 ± 0.06

Gabor + KMeans [30] 0.77 ± 0.08 0.80 ± 0.12 0.75 ± 0.08

Our W-net 0.87 ± 0.07 0.90 ± 0.07 0.85 ± 0.11

W-net + Segt−1 0.85 ± 0.06 0.84 ± 0.07 0.87 ± 0.09

Our W-net superiority is also shown in Figure 4, where we can clearly see that the
W-net is nearer to the perfect model compared to the Gabor filter with Fuzzy CMeans
method. Please note that we compared the ROC curve for the two most relevant algorithm
according to the results in Tables 2 and 3.

Figure 4. Receiver Operating Characteristic curve of Gabor filter + fuzzy CMeans and W-net.

Table 4 shows detailed score on 6 series and we can see an example taken from each
series in Figures 5–10.

Figure 5. Patient id 117: (a) original image, (b) ground truth, (c) Gabor method segmentation, (d) W-
net segmentation, (e) CNN + superpixel refinement segmentation, (f) active contour segmentation.
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Table 4. Detailed dice scores on specific series.

Patient Id Method F1 Precision Recall Nb. of Images Fig.

005

Active Contour 0.787 0.779 0.795

9 Figure 6
CNN + Superpixel refinement 0.690 0.623 0.787

Gabor + KMeans 0.791 0.760 0.828
Our W-net 0.785 0.806 0.765

W-net + Segt−1 0.799 0.805 0.792

010

Active Contour 0.644 0.504 0.892

6 Figure 8
CNN + Superpixel refinement 0.589 0.440 0.909

Gabor + KMeans 0.809 0.907 0.731
Our W-net 0.922 0.921 0.922

W-net + Segt−1 0.919 0.910 0.927

016

Active Contour 0.849 0.869 0.828

31 Figure 7
CNN + Superpixel refinement 0.790 0.752 0.840

Gabor + KMeans 0.678 0.596 0.786
Our W-net 0.676 0.880 0.924

W-net + Segt−1 0.706 0.817 0.622

020

Active Contour 0.654 0.516 0.901

50 Figure 9
CNN + Superpixel refinement 0.622 0.489 0.898

Gabor + KMeans 0.744 0.903 0.640
Our W-net 0.946 0.977 0.920

W-net + Segt−1 0.864 0.808 0.929

109

Active Contour 0.774 0.755 0.796

16 Figure 10
CNN + Superpixel refinement 0.717 0.695 0.767

Gabor + KMeans 0.700 0.685 0.718
Our W-net 0.782 0.936 0.672

W-net + Segt−1 0.799 0.903 0.717

117

Active Contour 0.658 0.512 0.920

6 Figure 5
CNN + Superpixel refinement 0.609 0.469 0.892

Gabor + KMeans 0.933 0.966 0.902
Our W-net 0.987 0.995 0.979

W-net + Segt−1 0.988 0.993 0.982

Figure 6. Patient id 005: (a) original image, (b) ground truth, (c) Gabor method segmentation, (d) W-
net segmentation, (e) CNN + superpixel refinement segmentation, (f) active contour segmentation.
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Figure 7. Patient id 016: (a) original image, (b) ground truth, (c) Gabor method segmentation,
(d) W-net clusters, (e) CNN + superpixel refinement segmentation, (f) active contour segmentation.

Figure 8. Patient id 010: (a) original image, (b) ground truth, (c) Gabor method segmentation, (d) W-
net segmentation, (e) CNN + superpixel refinement segmentation, (f) active contour segmentation.

Figures 5 and 9 show examples from average cases (in terms of complexity of the
lesion’s structures), where W-net outperforms other methods with a mean F1 score on
the series of 0.98 for the first series, and 0.946 for the second one. This also highlights the
capacity of W-net to correlate the different classes based on intensity values, while the other
methods attempt (and fails) to do so based on textures rather than intensity.
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Figure 9. Patient id 020: (a) original image, (b) ground truth, (c) Gabor method segmentation, (d) W-
net segmentation, (e) CNN + superpixel refinement segmentation, (f) active contour segmentation.

Figure 10. Patient id 109: (a) original image, (b) ground truth, (c) Gabor method segmentation,
(d) W-net clusters, (e) CNN + superpixel refinement segmentation, (f) active contour segmentation.

As said in the introduction, a lesion with blurred outlines will be difficult to segment.
This is illustrated in Figure 6 where the Gabor filter algorithm fails to segment the GA,
while the W-net does better but with some undersegmentation. In this case, CNN with
super-pixel refinement method and the active contour methods output a better result;
however, the first one gives more classes than expected due to the algorithm’s setting [28].

Finally, Figures 7 and 10 show two cases where the lesion has different levels of
contrast. These are good examples of cases in which it is useful to have three classes (which
are represented in yellow/green/purple for example d): as one can see, most of the lesion
class is contained within the green class, which is one of the two retina background classes,
while the yellow class is the GA class (according to our mapping). In those cases and
without the manual cluster/class mapping, both Gabor method and our W-net would fail
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to identify the GA. The W-net reliance on intensity creates this undersegmentation risk:
a low-intensity region is more likely to belong to the background retina class. However,
because of the extra class, in the case of our method, the segmentation can still easily be
manually fixed. In this case, Kanezaki’s method and Chan and Vese’s method provide a
better quality results. Nevertheless, it highlights the limits of unsupervised methods where
user intervention is sometimes inevitable.

We can also mention that W-net outperfoms other compared algorithm on a long serie
(Patient Id 020, fourth line of Table 4, Figure 9) which contain 50 images. This serie is an
example of ARMD progression: as we can see in Figure 1e, the ARMD lesions progress
from two tiny GA to three consequent GA in 6 years. Images from the beginning of the
serie thus contain small GA which enhances risk of oversegmentation. This can also be
seen in Figure 8 where despite a higher quality result provided by our W-net, it did not
detect a small GA and oversegmented the top right region of the image.

From these experiments, we can see that in most cases, our modified W-net produces
a better quality segmentation than the other algorithms and has the advantage to be more
stable. Furthermore, from cases such as Figure 6, we can see that because of its reliance on
textures only, the Gabor filter based approach sometimes entirely fails to capture the GA
and appears to detect only peripheral areas of textural transition. However, our proposed
W-net -despite some mismatches between the clusters and the classes- manages to have a
group of clusters that match the GA class. The CNN with superpixel refinement method
provides relevant outputs but need a post-processing step to enhance the segmentation
quality. In fact, the results are not smooth enough, and we have no guarantee to obtain two
final clusters: the number of clusters in the outuput can vary from an image to another
(even for two successive images from a given serie). This is due to the third criterion of
Kanezaki’s system: the segmentation context is different from ours, we aim to segment a
fixed number of classes. Last but not least, active contour methods can produce a better
quality result in some specific cases as they can totally fail in an average case. That highlight
the lack of generality of those methods compared to the high variability of both texture
and structure of the GA regions.

6. Conclusions and Future Works

The automatic segmentation of dry-ARMD lesion is a difficult problem with significant
implications for patients afflicted by this disease, as it may allow for a better monitoring
of the lesions progression. Despite the complexity of the task, we proposed a promising
adaptation of W-nets to this problem. Our algorithm is fully unsupervised, which makes it
possible to achieve good quality results without any need for labeled data that are difficult
to come by, as even expert ophthalmologists often disagree on the proper segmentation of
the lesions for difficult cases.

Our proposed algorithm was tested on 328 images from 18 patients, and has proven
to be very effective. However, we identified a weakness, which is the W-net’s tendency to
undersegment the lesions. This can be explained by the intensity distribution in the images:
a single-channel input model can only exploit pixel intensity and spatial information. Thus,
high intensity regions will generally correspond to be a part of a lesion, while low intensity
regions generally correspond to be a part of the background. However, there is a high
variability in the contrast in the images and some cases can show a GA with an intensity
barely lighter than the background, hence the interest of having three classes. Furthermore,
the most difficult case for this task is when the lesion has a blurred outline (e.g., Figure
1(a.1)). Automatic unsupervised segmentation algorithms tend to fail in this specific case
in two different ways: if the blurry lesion is too small, the result will be over-segmented.
If the blurry lesion is too large, the result will be under-segmented.

On the other side, the three other algorithms have a lack of generality because of the
restrictive settings. To better exploit their advantage, a proper fine tuning in each specific
case should be needed, leading to a supervised process that requires medical expertise.
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Because of the reliability of the ground truths and the cost to produce them, the unsu-
pervised context is the most appropriate to face this issue

In our future work, we plan on improving our segmentation capabilities by combining
our proposed algorithm with generative adversarial networks [31] that have been shown to
produce higher quality outputs and to outperform traditional convolutional autoencoders.
Thus, a first improvement of the W-net is an adversial training, which could improve the
reconstruction quality and therefore the segmentation map quality.

Finally, deep learning performance depends a lot on the dataset training, thus en-
rich the dataset with more series and with data augmentation can enhance robustness
and performance.
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12. Köse, C.; İkibaş, C. Statistical Techniques for Detection of Optic Disc and Macula and Parameters Measurement in Retinal Fundus
Images. J. Med. Biol. Eng. 2011, 31, 395–404. [CrossRef]

13. Feeny, A.K.; Tadarati, M.; Freund, D.E.; Bressler, N.M.; Burlina, P. Automated segmentation of geographic atrophy of the retinal
epithelium via random forests in AREDS color fundus images. Comput. Biol. Med. 2015, 65, 124–136. [CrossRef] [PubMed]

14. Phan, T.V.; Seoud, L.; Chakor, H.; Cheriet, F. Automatic Screening and Grading of Age-Related Macular Degeneration from
Texture Analysis of Fundus Images. J. Ophthalmol. 2016, 2016, 5893601. [CrossRef] [PubMed]

15. Hu, Z.; Medioni, G.; Hernandez, M.; Sadda, S. Automated segmentation of geographic atrophy in fundus autofluorescence
images using supervised pixel classification. J. Med. Imaging 2014, 2, 014501. [CrossRef] [PubMed]

16. Lee, N.; Smith, R.T.; Laine, A.F. Interactive segmentation for geographic atrophy in retinal fundus images. Conf. Rec. Conf. Signals
Syst. Comput. 2008, 2008, 655–658. [CrossRef]

17. Deckert, A.; Schmitz-Valckenberg, S.; Jorzik, J.; Bindewald, A.; Holz, F.; Mansmann, U. Automated analysis of digital fundus
autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser
ophthalmoscopy (cSLO). BMC Ophthalmol. 2005, 5, 8. [CrossRef] [PubMed]

18. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015—18th International Conference, Munich,
Germany, 5–9 October 2015; pp. 234–241.

19. Milletari, F.; Navab, N.; Ahmadi, S. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.
In Proceedings of the Fourth International Conference on 3D Vision, 3DV 2016, Stanford, CA, USA, 25–28 October 2016; IEEE
Computer Society: Washington, DC, USA, 2016; pp. 565–571. [CrossRef]

20. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016—19th
International Conference, Athens, Greece, 17–21 October 2016; pp. 424–432.

21. Hussain, M.A.; Govindaiah, A.; Souied, E.; Smith, R.T.; Bhuiyan, A. Automated tracking and change detection for Age-related
Macular Degeneration Progression using retinal fundus imaging. In Proceedings of the 2018 Joint 7th International Conference
on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition
(icIVPR), Kitakyushu, Japan, 25–29 June 2018; pp. 394–398. [CrossRef]

22. Burlina, P.; Freund, D.E.; Joshi, N.; Wolfson, Y.; Bressler, N.M. Detection of age-related macular degeneration via deep learning. In
Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April
2016; pp. 184–188. [CrossRef]

23. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [CrossRef]

24. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018.

25. Ramsey, D.J.; Sunness, J.S.; Malviya, P.; Applegate, C.; Hager, G.D.; Handa, J.T. Automated image alignment and segmentation to
follow progression of geographic atrophy in age-related macular degeneration. Retina 2014, 34, 1296–1307. [CrossRef] [PubMed]

26. Dupont, G.; Kalinicheva, E.; Sublime, J.; Rossant, F.; Pâques, M. Analyzing Age-Related Macular Degeneration Progression
in Patients with Geographic Atrophy Using Joint Autoencoders for Unsupervised Change Detection. J. Imaging 2020, 6, 57.
[CrossRef]

27. Kalinicheva, E.; Sublime, J.; Trocan, M. Change Detection in Satellite Images using Reconstruction Errors of Joint Autoencoders.
In Artificial Neural Networks and Machine Learning—ICANN 2019: Image Processing; Springer: Munich, Germany, 2019; pp. 637–648.
[CrossRef]

28. Kanezaki, A. Unsupervised Image Segmentation by Backpropagation. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018.

29. Tang, M.; Djelouah, A.; Perazzi, F.; Boykov, Y.; Schroers, C. Normalized Cut Loss for Weakly-Supervised CNN Segmentation.
In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
18–22 June 2018. [CrossRef]

http://dx.doi.org/10.1167/iovs.13-12552
http://www.ncbi.nlm.nih.gov/pubmed/24265015
http://dx.doi.org/10.1007/s10916-008-9210-4
http://www.ncbi.nlm.nih.gov/pubmed/20192050
http://dx.doi.org/10.1109/TPAMI.2009.71
http://www.ncbi.nlm.nih.gov/pubmed/20299715
http://dx.doi.org/10.1016/j.patrec.2017.12.019
http://dx.doi.org/10.5405/jmbe.724
http://dx.doi.org/10.1016/j.compbiomed.2015.06.018
http://www.ncbi.nlm.nih.gov/pubmed/26318113
http://dx.doi.org/10.1155/2016/5893601
http://www.ncbi.nlm.nih.gov/pubmed/27190636
http://dx.doi.org/10.1117/1.JMI.2.1.014501
http://www.ncbi.nlm.nih.gov/pubmed/26158084
http://dx.doi.org/10.1109/ACSSC.2008.5074488
http://dx.doi.org/10.1186/1471-2415-5-8
http://www.ncbi.nlm.nih.gov/pubmed/15813972
http://dx.doi.org/10.1109/3DV.2016.79
http://dx.doi.org/10.1109/ICIEV.2018.8641078
http://dx.doi.org/10.1109/ISBI.2016.7493240
http://dx.doi.org/10.1109/CVPR.2017.660
http://dx.doi.org/10.1097/IAE.0000000000000069
http://www.ncbi.nlm.nih.gov/pubmed/24398699
http://dx.doi.org/10.3390/jimaging6070057
http://dx.doi.org/10.1007/978-3-030-30508-6_50
http://dx.doi.org/10.1109/CVPR.2018.00195


J. Imaging 2021, 7, 143 16 of 16

30. Jain, A.; Farrokhnia, F. Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognit. 1990, 24, 14–19. [CrossRef]
31. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative adversarial

networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

http://dx.doi.org/10.1109/ICSMC.1990.142050
http://dx.doi.org/10.1145/3422622

	Introduction
	Materials
	Related Work
	Methods
	Our Method: W-Nets Adapted to ARMD Lesions Segmentation
	Compared Methods
	Gabor + KMeans 
	Active Contour Model without Edges 
	CNN + Superpixel Refinement 


	Results
	Experimental Setting
	Experimental Results

	Conclusions and Future Works
	References

