
HAL Id: hal-03328395
https://hal.science/hal-03328395

Submitted on 30 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate and Robust Malware Analysis through
Similarity of External Calls Dependency Graphs

(ECDG)
Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine

To cite this version:
Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine. Accurate and Robust Malware
Analysis through Similarity of External Calls Dependency Graphs (ECDG). ARES 2021 - The 16th
International Conference on Availability, Reliability and Security, Aug 2021, Virtual, Austria. pp.1-12,
�10.1145/3465481.3470115�. �hal-03328395�

https://hal.science/hal-03328395
https://hal.archives-ouvertes.fr

Accurate and Robust Malware Analysis through Similarity of
External Calls Dependency Graphs (ECDG)
Cassius Puodzius

INRIA

Rennes, France

cassius.puodzius@inria.fr

Olivier Zendra

INRIA

Rennes, France

olivier.zendra@inria.fr

Annelie Heuser

IRISA

Rennes, France

annelie.heuser@irisa.fr

Lamine Noureddine

INRIA

Rennes, France

lamine.noureddine.inria.fr

ABSTRACT
Malware is a primary concern in cybersecurity, being one of the

attacker’s favorite cyberweapons. Over time, malware evolves not

only in complexity but also in diversity and quantity.Malware anal-
ysis automation is thus crucial. In this paper we present ECDGs,

a shorter call graph representation, and a new similarity function

that is accurate and robust. Toward this goal, we revisit some prin-

ciples of malware analysis research to define basic primitives and

an evaluation paradigm addressed for the setup of more reliable

experiments. Our benchmark shows that our similarity function

is very efficient in practice, achieving speedup rates of 3.30x and

354, 11x wrt. radiff2 for the standard and the cache-enhanced im-

plementations, respectively. Our evaluations generate clusters that

produce almost unerring results - homogeneity score of 0.983 for

the accuracy phase - and marginal information loss for a highly pol-

luted dataset - NMI score of 0.974 between initial and final clusters

of the robustness phase. Overall, ECDGs and our similarity function

enable autonomous frameworks for malware search and cluster-

ing that can assist human-based analysis or improve classification

models for malware analysis.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation.

KEYWORDS
binary code analysis, similarity, call graph, malware

ACM Reference Format:
Cassius Puodzius, Olivier Zendra, Annelie Heuser, and Lamine Noureddine.

2021. Accurate and Robust Malware Analysis through Similarity of External

Calls Dependency Graphs (ECDG). In The 16th International Conference
on Availability, Reliability and Security (ARES 2021), August 17–20, 2021,
Vienna, Austria. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3465481.3470115

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IWCC’21, August 17–20, 2021, All-Digital Conference
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00

https://doi.org/10.1145/3465481.3470115

1 INTRODUCTION
Malware (MW) attacks are among the most common ways to com-

promise IT systems, and are growing in complexity and quantity

over time. The number of known MW exceeded one billion in-

stances in 2019 and 1.21B in Apr. 2021 [1]. Each day, over 350K

new MW are discovered, a much larger number of programs be-

ing analyzed. Historically, MW analysis has heavily resorted to

manual creation of signatures for detection and classification. This

human-action-based method is very costly and time consuming,

thus unable to handle the exponential growth in number of unique

MW instances[15]. A solution is to widely automate MW analysis.

Overall, this work aims to improve the computational cost of

existing (and possibly future) MW search and MW clustering algo-

rithms. Nonetheless, creating new algorithms for these problems

is outside the scope of this work. Instead, we address the back-

bone question “How to compute similarity of unknown programs

with high accuracy while being friendly to search and clustering

algorithms for MW analysis?”, this way:

RQ1 How to get more precise structural representations of pro-

grams wrt. state-of-the-art (with no information loss)?

RQ2 How to exploit this structural representation to define a simi-

larity function that is friendly to binary code search/cluster-

ing schemes?

RQ3 Establishing ground truth for MW analysis is an undecidable

problem, so how to evaluate this similarity function?

We propose External Calls Dependency Graphs (ECDGs) as new
call graph representation, and a similarity function (σ ECDG

) that is

reliably accurate and robust1. We show that they lead to an effi-
cient computation of binary code similarity able to underpin the

construction of frameworks for MW search and clustering. In our

experiments, σ ECDG
provides highly descriptive cluster prototypes

that can help to scale up clustering, assist human-based analysis

and improve classification models for MW analysis. We devote spe-

cial attention to the evaluation methodology, an intricate issue that

directly influences research validity but is often overlooked. For

this, we propose the Accuracy and Robustness (AnR) paradigm as

guideline to create more reliable experiments.

As main contributions, we:

• revisit the foundations of MW analysis, defining basic (MW anal-

ysis) primitives, and proposing the Accuracy and Robustness

1
Robustness relates to the ability to resist to semantic transformation.

https://orcid.org/0000-0001-9254-8011
https://doi.org/10.1145/3465481.3470115
https://doi.org/10.1145/3465481.3470115
https://doi.org/10.1145/3465481.3470115

IWCC’21, August 17–20, 2021, All-Digital Conference Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine

(AnR) paradigm for more reliable evaluation methodologies; [ad-

dresses RQ3]
• propose ECDGs, as a more a compact call (dependency) graph

enablingmore efficient binary similarity computation. [addresses;

RQ1]
• propose a new similarity function for ECDGs that is efficient,

accurate and robust. [addresses RQ2]

Our implementation also provides practical contributions, namely

the study of symbolic execution to trace external calls, the evalua-

tion of gSpan as a practical algorithm for sub-graph isomorphism,

and the evaluation of cluster prototypes extraction to represent

MW families. Our whole evaluation is based on experiments with

MW samples collected in the wild from real-world dataset feeds.

This paper is organized as follows. Section 2 presents background.

Section 3 states foundations of MW analysis with principles guiding

our work. Section 4 proposes ECDGs and similarity function σ ECDG
.

Section 5 shows experimental validation. Section 6 discusses results.

Section 7 presents related works. Section 8 concludes.

2 BACKGROUND
This section sets the notations used in this work (2.1) and recalls

notions for binary analysis concepts (2.2), frequent subgraphmining

(2.3) and clustering (2.4).

2.1 Notations and Definitions
Let ∼ denote an equivalence relation on A and x ∈ A. The equiva-
lence class of x is the set of all elements of A that are related to x ,
i.e. [x]∼ = {y ∈ A|x ∼ y}.
Given a set S, its indexed familyIS consists of an index set defined

by a surjective function x : IS → S such that i → xi = x(i),∀i ∈
{1, · · · , |S |}.
A labeled graph is notated G(V ,E,LV ,LE ,φ), where V is a mul-

tiset of nodes (also notated as N(G)), E ⊆ V ×V is a set of edges,

LV and LE are sets of node and edge labels respectively, and φ is a

label function that defines the mapping V → VL and E → LE .
A directed graph is a graph where edges E are ordered pairs of

elements of V . A directed acyclic graph is a directed graph with

no directed cycle.

Given two graphsG1(V1,E1,LV1
,LE1 ,φ1) andG2(V2,E2,LV2

,LE2 ,φ2),
G1 is a subgraph of G2 if G1 satisfies: (i) V1 ⊆ V2, and ∀v ∈ V1,
φ1(v) = φ2(v), (ii) E1 ⊆ E2, and ∀(u,v) ∈ E1, φ1(u,v) = φ2(u,v).
This relationship is notated G1 ⊆ G2.

G is a connected graph if it contains a path for every pair of

vertices in it. G is disconnected (or disjoint) otherwise.
A subgraph ofG is a connected component iff there exists a path

between any pair of vertices in it.We notate the set of all connected
components of G as CC(G). The largest connected component
(in number of edges) is noted as CCmax (G).
Given the graphsG1 andG2,G

′
is a common subgraph ofG1 and

G2 iffG
′ ⊆ G1∧G

′ ⊆ G2. We note the largest common subgraph
(which can be disjoint) as G1 ∩G2.

More information on graphs can be found in [41].

2.2 Binary Analysis: Syntax, Semantics and
Structural Representations

The primary goal of binary analysis in the context of MW analysis is

to determinewhether an unknown file embodiesmalicious behavior.

To this end, MW analysts extract and interpret different properties,

called features, related to the file syntax or semantics. Syntactical
features characterize file code representation, with properties like

strings, opcodes, header information, etc. Semantic features relate to
the file functionalities. Some representations lie between syntax and

semantics, being very tied to syntax, yet able to capture semantics.

This is the case for graph representations such as control flow graphs
and call graphs, which are globally called structure representations.

When binary diffing is performed for MW analysis, it is useful

to determine whether two binary codes originate from the same

source code. Two files are identical if they have the same syntax,

equivalent if they have the same semantics and similar if they have

similar syntax, structure or semantics [17].

Identical or nearly identical files have similar codes, so meaning-

fully comparing syntactical features generally results in few false

positives. Yara rules [2] are the de facto standard for syntactical

signature writing. However, robustness relates to the ability to resist
to semantic transformation [17], so syntactical features are consid-

ered less robust. MW often use obfuscation techniques to change

their code representation without changing their functionalities.

2.3 Frequent Subgraph Mining (FSM)
Given a graph dataset D = {G0,G1, . . . ,Gn }, its support SD (д)
is the number of graphs in D of which д is a subgraph. Frequent

subgraph mining (FSM) is finding all the subgraphs in a given graph

that appear more than a given number of times, i.e. finding any

subgraph д s.t. SD (д) ≥ τmin , where τmin is a minimum support

threshold.

An overview of common subgraph algorithms is given in [18],

where gSpan (a graph-based substructure pattern mining) [47] is

one of the most frequently cited FSM algorithms. gSpan builds a

new lexicographic order andmaps each graph to a unique minimum

depth-first search code which represents a canonical label. Based on

this order, gSpan adopts the depth-first search strategy to efficiently

mine frequent connected subgraphs. gSpan uses less memory than

algorithms based on embedding lists. Experiments show that gSpan

outperforms related works by an order of magnitude [19].

2.4 Clustering
Algorithms. Clustering is an unsupervised learning method: no

labels are provided to the algorithm. It is often used to find mean-

ingful structures, explanations of underlying processes, generative

features, and inherent groupings in a set of samples. Clustering

divides data points into groups, so that points from a same cluster

are similar, and dissimilar to other clusters points.

In our work we consider algorithms belonging to three main

clustering types and that can use custom similarity measures: In

Density-based clustering, clusters are areas of higher density com-

pared to the remaining data set, and clusters can have arbitrary

shapes. Data points in lower density areas are usually considered as

noise and border points. Ex.: DBSCAN and OPTICS.Hierarchical-
based clustering builds (bottom-up or top-down) a hierarchy of

Accurate and Robust Malware Analysis through Similarity of ECDGs IWCC’21, August 17–20, 2021, All-Digital Conference

clusters, with no prior information about the number of clusters.

In the Agglomerative algorithm each observation starts in its own

cluster, and pairs of clusters are merged as one moves up the hierar-

chy. Merges and splits are performed greedily. Hybrid HDBSCAN

extends DBSCAN, converting it into a hierarchical clustering algo-

rithm, then extracting a flat clustering based on clusters stability.

Metrics. Several metrics exist to quantify the quality of clusters.

Homogeneity score [32] describes the amount of different classes

within one cluster. A clustering achieves high homogeneity if all

clusters contain only data points which are members of a single

class. Completeness [32] describes the spread of one class over

clusters. A clustering satisfies completeness if all data points that

are members of a given class are elements of the same cluster. Sil-
houette coefficient [35] measures how similar an object is to its

own cluster (cohesion) compared to other clusters (separation).

Normalized Mutual Information (NMI) [43] measures the sta-

tistical information shared between two clusters, normalizing it in

[0, 1]. Additionally, we define theMean Similarity of a cluster: let

C be the set of points in a cluster and let d(Pi , Pj) be the distance

between Pi and Pj . The mean similarity is
1

2 |C |

∑
Pi ∈C

∑
Pj ∈C d(i, j)

where the factor
1

2
accounts for the double counting of pairwise

distances between two points.

3 MALWARE ANALYSIS: PRINCIPLES
In this section we discuss high-level principles related to MW anal-

ysis, used as guidelines in our work. First we present primitives for

MW analysis, then our Accuracy-and-Robustness paradigm.

3.1 Primitives
A plethora of frameworks have been proposed for MW analysis.

However, they are in general presented as full-fledged systems

designed to fulfill specific tasks related to MW analysis (e.g. MW

detection, MW clustering) without any standard regarding their

fundamental building blocks, which hinders re-use and impairs anal-

ysis and comparison of component conceived in different works.

We thus propose primitives recurrently found in MW analysis.

They can be seen as basic building blocks to design MW analysis

frameworks without dealing with implementation details. Let S
represent the set of elements, or samples (e.g. files, scripts, network
traffic...), on which MW analysis is performed. Let ∼ denote an

equivalence relation on S . A family F is defined as F = [s]∼, with
s ∈ S and we say that F is aMWfamily iff FDetection(s) = 1,∀s ∈ F .
MW analysis primitives are:

Detection: FDetection inputs s ∈ S . It outputs a boolean indicating

whether the input is malicious. Fdetection(s) → {0, 1}.

Code similarity: FSim inputs s1, s2 ∈ S . It outputs their similarity.

FSim(s1, s2) → [0, 1].

Search: FSearch inputs s ∈ S . It outputsMf ⊆ S , such that f (x) =
1 ⇐⇒ x ∈ Mf for a given matching function f : S →

{0, 1}. FSearch(s, f) → Mf ⊆ S .
Classification: FClassification inputs s ∈ S and a set of MW families

Fi . It outputs family Fi , s ∈ Fi (or � if such family does not

exist). Fclassification(s, {Fi }) → {Fi ,�}.
Clustering: FClustering inputs S . It outputs a set of families {Fi },⋃

Fi = S . Fclustering(S) → {Fi }.

Now we show that search and clustering schemes - a scheme is a

specific instance of a primitive - can be derived from code similarity.

Lemma 3.1. Any code similarity scheme can be extended to a
search scheme.

Proof. Given s, s1, s2 ∈ S and a code similarity scheme FSim, a

search scheme FSearch(s, fτ) can be defined with

fτ (s1, s2) =

{
1 if FSim(s1, s2) ≥ τ

0 if FSim(s1, s2) < τ
,

where τ is a pre-defined similarity threshold. □

Lemma 3.2. Any code similarity scheme can be extended to a
clustering scheme.

Proof. Given a code similarity scheme FSim, let IS denote the

indexed family of S .MSim = (mi j) is the similarity matrix, where
mi j = FSim(si , sj) , with si , sj ∈ IS ∧ i, j ∈ {1, · · · , |S |}. A dis-
tance matrix can also be defined as 1 −MSim. A clustering scheme

FClustering is obtained by using any of the numerous algorithms

working on similarity/distance matrix with predefined metrics. □

3.2 Accuracy-and-Robustness (AnR) Paradigm
Frameworks evaluation methodologies are key to MW analysis

research, but systematic discussions about this topic are often ne-

glected. Evaluations are based on measurements in experiments

performed on datasets; however, different datasets may bring differ-

ent levels of difficulty to different experiments. This issue becomes

prominentwhen the evaluationmethodology requires the definition

of (MW) families to provide labels for performance measurement.

Formal studies on computer viruses (MW) show that defining a

perfect detector is an undecidable problem [38], conflicting with the

ambition of the detection primitive (see section 3.1). The Template
Matching Problem, which decides whether a given piece of code

matches a template behavior, to build semantic-aware detectors [11],

is also undecidable [38]. Both results pinpoint that defining perfect

(MW) families is theoretically impossible.
Li et al. [25] address this issue inMWclustering, studyingwhether

performance results are biased towards high accuracy depending

on the methodology followed to select ground truth. They first

compare clustering results of prior work [7] against clustering

frameworks from another domain (plagiarism detection), replicat-

ing the same experiment on the same dataset, plus a new one using

all frameworks. As in [7], ground truth for the F-measure evaluation

is set by selecting only samples for which different antivirus tools

agree on labeling (antivirus consensus). All frameworks attained

good scores on the first dataset (F-measure from 0.943 to 0.960),

but performed poorly on the new one (F-measure from 0.609 to

0.630). The authors hypothesize this may come from the datasets

difficulties (i.e. easy-to-cluster vs difficult-to-cluster), leaving the

elaboration of a methodology to close this gap as open problem.

Towards this goal,wepropose theAccuracy-and-Robustness
(AnR) paradigm as guideline in the evaluation of MW anal-
ysis frameworks. It consists in conducting evaluation as a two-

phased experiment, in which one phase assesses the accuracy at-

tained by the framework, and the other its robustness.

IWCC’21, August 17–20, 2021, All-Digital Conference Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine

The accuracy phase assesses the framework on a dataset likely

to be easy to evaluate. The main goal is to verify whether the

framework is able to generate results that are similar to the ground

truth, which is assumed accurate by design. This means that the

dataset composition should follow more stringent methodologies
likely to provide less intrinsic disparity within samples, e.g.:

Outsource consensus: given a sample, this strategy establishes

ground truth (MW family) by running a MW analysis on

multiple anti-MW engines and selecting the label that comes

out as consensus (if any). This strategy benefits from plat-

forms like VirusTotal [3]. This approach weaknesses are

inconsistencies among analysis results and lack of univer-

sal standards to generate labels [37]. As pointed by Li et
al. [25], by enforcing consensus among results, the diversity

representation within the dataset is drastically reduced.

Very specific string matching (VSSM) works on strings
2
that

are strong indicators for a given sample and are used in very

specific syntactical signatures, incurring extremely low false

positive rates. This idea [34] is applied in YarGen [33].

Multiple stringent methodologies may be used to establish differ-

ent ground truths on a same dataset, enabling cross-validation for

further validation of the results. Furthermore, a balanced dataset

should be privileged to improve the result’s significance [25].

The robustness phase assesses the framework on a very diver-

sified dataset able to represent a real world scenario. For this, the
dataset should be built with looser methodologies, e.g.:

Manual labeling of the whole dataset, ideally following a unique

guideline to assign labels to samples.

Direct outsourcing that takes as ground truth the output of one

single anti-MW. Samples for which anti-MWs do not agree

are kept, unlike in the consensus case.

Public, acknowledged signatures (PAS) employed to detect tar-

geted MW families into the wild (ITW) are used. These rules

are often tuned to avoid false positives, while being fairly

general to maximize variant detection.

In the robustness phase it is essential to purposefully and gradu-

ally include noise3 in the dataset, to measure the impact on evalua-

tion metrics. This acts as a control group in the evaluation. There-

fore, unlike in the accuracy phase, our primarily concern is to

observe the inner differences of metric values as noise is inserted,

not to seek straightforward correspondence with the ground truth.

4 EXTERNAL CALLS DEPENDENCY GRAPH
(ECDG)

Here we introduce (4.1) External Calls Dependency Graphs (ECDGs)
and an associated similarity function (4.2). ECDGs are compact,

semantic-descriptive and robust structural representations (see sec-
tion 2.2) of binary codes. Associated to our efficient similarity

function, ECDGs can be used in practical search and clustering

frameworks (see lemmas 3.1 and 3.2).

2
Not only “text strings”, but generic sequence of bytes, much like in Yara rules.

3
Samples that do not correspond to any MW family.

4.1 ECDG Definition
A call graph is a direct graph whose nodes represent functions and

edges represent one or more invocations of these functions [36].

An ECDG is a call graph whose nodes are restricted to external
calls, meaning calls to external functions, i.e. system or library

calls [21, 22]
4
. ECDGs are modeled in form of a dependency graph

whose edges represent shared arguments between external calls.

The ECDG definition resembles those ofmalspec [10] and System-
call Dependency Graphs (ScD-Graphs) [29]. ECDGs may be consid-

ered as an instance of malspec in which the program main object

code defines the boundaries of the trusted computing base, instead
of the whole program as in the original work. For ScD-Graphs, the
main differences are our extended scope (library calls not being

overseen), and the use of labeled edges providing higher precision to

our similarity function. Formally an External Call Dependency
Graph (ECDG) is a directed acyclic graphG(V ,E,LV ,LE ,φ)whose
node labels LV are symbolic names of external functions, edges

labels LE are def-use dependencies [10] between these functions

and φ is the labeling function.

4.2 Similarity Function Definition
Our similarity function definition targets the largest common con-
nected components of the graphs as well as their common nodes. The
common connected components capture common sub-behaviors,

while the common nodes spot some degree of implementation

resemblance. Our similarity function thus combines a localized
behavioral view of the graphs, encompassed in the edges, with a

holistic behavioral view, encompassed in the nodes. Frameworks

based on features computed from plain call tracing are homologous

to node-only analysis of ECDGs [4, 9, 20]. Formally:

The similarity of two call graphs G1 and G2 is defined as:

σα (G1,G2) = α σnodes (G1,G2) + (1 − α) σedдes (G1,G2),

where α ∈ [0, 1] is the node-edge factor (nef).
Their node similarity σnodes is defined as:

σnodes (G1,G2) =
|N(G1) ∩N(G2)|

min(|N(G1)|, |N(G2)|)

Their edge similarity σedдes is defined as:

σedдes (G1,G2) =
|CCmax (G1 ∩G2)|

min(|CCmax (G1)|, |CCmax (G2)|)

Thus, σα combines localized and holistic views of the graph,

allowing efficient algorithms to independently compute σedдes and
σnodes . This would be impaired by greedier definitions that take

many common disjoint components into account. We use σ ECDG
to

denote the computation of our similarity function on ECDGs.

5 EVALUATION
This section evaluates ECDGs and σ ECDG

for accuracy and robustness
with a data-driven approach following our AnR Paradigm (sec-

tion 3.2). We thus measure and analyze different partitions of our

dataset, under the premise that each partition is a “corrupted” ver-

sion of a true partition but their combination converges to the truth.

Since we obtain these partitions through unsupervised learning

4
Unlike the references, we foresee the loading of new (external) functions at runtime.

Accurate and Robust Malware Analysis through Similarity of ECDGs IWCC’21, August 17–20, 2021, All-Digital Conference

(i.e. clustering) we hinge on external labels only for performance

measurements - also under the premise that these labels repre-

sent a corrupted version of the truth. Furthermore, to optimize the

computation of clusters, we choose algorithms that can work with

precomputed pairwise similarities/distances (computed as 1−σ ECDG
).

This incurs a huge initial cost (i.e. 𝒪(n2)) to compute all pairwise

distances in order to build the similarity/distance matrix. However,

since it can be reused by different algorithms and parameterizations,

it fits our goal of producing different partitions of our dataset.

In the remainder of this section we present the evaluation dataset

(5.1), the evaluation framework (5.2) and experiments (5.3).

5.1 Evaluation Dataset
We rely on syntactical signatures (Yara rules) for dataset composi-

tion, because they are typically very precise, with very low false

positive rates, and stable in terms of reproducibility across datasets.

To build our evaluation dataset, to avoid defective call traces (see

section 5.2.1) we only consider files whose ECDGs have at least 100

edges. Furthermore, this dataset is divided in three groups: Group
I contains 600 files matching with manually crafted Yara rules

following the VSSM rationale, equally balanced into four families

with no overlap between families. Group II contains 1,001 files

from 16 different families defined by public, real-world Yara rules

of public repositories (i.e. Yara-Rules, InQuest and McAfee ATR

Team), following the PAS rationale, where families are unbalanced

and may overlap. Group III contains 499 randomly chosen benign,

cleanware (CW) files, with no prior knowledge about them. Table 1

shows the number of samples per family and their correponding

class.

Table 1 Evaluation dataset

family class source (“rare string” or [repository] yar file) #samples
Mira I “Mira.h” 150

Shohdi I “USR_Shohdi_Photo_USR” 150

Bogy I “BOGY’S GAME ENGINE” 150

TwarBot I “TwarBot” 150

spyeye II [Yara-rules] MALWMiscelanea.yar 162

Wabot II [Yara-rules] MALW_Wabot.yar 162

IceID_Bank_trojan II [Yara-rules] MALW_IcedID.yar 149

shylock II [Yara-rules] MALW_Miscelanea.yar 109

Bublik II [Yara-rules] MALW_Bublik.yar 88

sakula_v1_3 II [Yara-rules] RAT_Sakula.yar 80

Njrat II [Yara-rules] RAT_Njrat.yar 58

njrat1 II [Yara-rules] RAT_Njrat.yar 58

win_exe_njRAT II [Yara-rules] RAT_Njrat.yar 58

Cerberus II [Yara-rules] RAT_Cerberus.yar 50

Glasses II [Yara-rules] MALW_Glasses.yar 45

Mirage_APT II [Yara-rules] APT_Mirage.yar 41

ClamAV_Emotet_String_Aggregate II [InQuest] ClamAV_Emotet_String_Aggregrate.rule 36

Monero_Mining_Detection II [McAfee ATR Team] MINER_Monero.yar 27

Warp II [Yara-rules] MALW_Warp.yar 9

Cleanware III - 499

5.2 Evaluation Framework
Our MW analysis and clustering evaluation framework follows the

basic design of call graph analysis frameworks in literature [12, 24],

i.e. multiple stages inwhich 1) binary code is analyzed (code analyzer
stage), 2) call graphs are generated (graph generator stage) and 3)

call graphs are analyzed (call graphs analyzer stage).

5.2.1 Implementation. The code analyzer stage traces the calls
invoked by the main binary object

5
to any shared object or system

5
Memory segment corresponding to the program’s binary code, without considering

any shared object (i.e. dynamic loaded libraries)

call (i.e. external call). We do this with symbolic execution using

angr [40] version 7.8.8.1 with z3 version 4.5.1.0.post2. Instead of

setting breakpoints at the addresses of loaded functions, like plain

tracing implementations (e.g ltrace [8]), our symbolic tracer steps

through code, inspecting all active states whose execution addresses

are outside the main object. When these states are found, hinting

that the execution of some external procedure may be going on,

an attempt to resolve the call is performed. To do it, the current

address is looked up in angr internal mapping of addresses and

SimProcedures6, working as a generic hook to any external call.

To provide higher isolation for the analysis environment, we set

angr to perform pure symbolic execution (auto_load_libs option
false). Missing SimProcedures are replaced by stubs that only return

an unconstrained symbolic variable, allowing to virtually resolve

any runtime dependency. As a side effect these stub SimProcedures
may alter the real execution of the file. Additionally, notwithstand-

ing angr’s fine heuristics, unknown call conventions and unknown

function signatures can also incur defective symbolic execution.

Therefore, we extended angr with 24052 stub SimProcedures of
commonly used functions with their correct call conventions and

signature definitions, which proved to be a very effective tactics to

improve the quality of symbolic executions. Our symbolic execution

implementation is parameterized with the step timeout, maximal
number of active states, loop threshold, and the underlying z3 tactics.

The graph generator stage builds ECDGs from call traces gen-

erated in the previous stage. Each call trace contains all external

calls found during code analysis, with arguments and return value

(if any). Note that symbolic execution may traverse multiple ex-

ecution paths during analysis, so instead of generating a single

(linked) list of calls it may produce a set of call lists. This opens new

possibilities for the definition of call graphs, which may combine

calls found in different execution traces.

Our implementation takes parameters to un/set disjoint union,
merge calls and merge trace. When disjoint union is set, functions

comprised in different call traces are not merged, but their inter-

dependencies create edges between functions of all traces. When

merge calls is set, similar functions are grouped into a single node.

When merge trace is set, common call trace prefixes are combined

into a single subtrace, thus transforming a set of call traces into

a tree-like structure. All options can be combined, except disjoint
union and merge traces that are mutually exclusive.

The call graphs analyzer stage uses an optimized implemen-

tation of gSpan [47] in C to compute edge similarity and Python

code to compute the node similarity as well as global similarity.
Parametrization. Our evaluation framework comprises multiple

stages, with specific parameters. Due to page limits, we only sketch

the setup process and its implications.

Initially, the code analyzer and graph generator stages are op-
timized to maximize the quality of ECDGs. For this we analyze

the correlation of different parameters for both stages using the

Analysis of Variance (ANOVA)[42].
In this analysis we notice that merging calls, either directly or

through trace merging, can undesirably suppress dependency edges,

6
SimProcedures are symbolic summaries, implemented as Python functions, that mimic

library functions.

https://github.com/Yara-Rules/rules
https://github.com/InQuest/yara-rules
https://github.com/advanced-threat-research/Yara-Rules
https://github.com/advanced-threat-research/Yara-Rules

IWCC’21, August 17–20, 2021, All-Digital Conference Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine

Table 2 Benchmark evaluation

Stage Dataset group job time
MEAN (SD, MED)

% common
subgraph

Code analysis (CA)

Graph generation (CG)
I + II + III 640.32s (419s, 478s)

σ ECDG
I 10.27s (25s, 3ms) 54,84%

σ ECDG
II 8.67s (20,6s, 4ms) 57,45%

σ ECDG
II + III 7.21s (19.5s, 4ms) 51,60%

radiff2 Benchmark-DS 4181.35s (6580s, 2031s)

CA + GC + σ ECDG Benchmark-DS 1266.78s (570s, 1104s)

cached-(CA + GC) + σ ECDG Benchmark-DS 11.81s (24s, 2.5s)

which negatively impacts subsequent analysis. The maximal num-
ber of active states is positively correlated with ECDGs quality, but

should be limited to reduce the analysis memory footprint. The

consequences of loop detection is quite lurching and demands fur-

ther investigation. Z3 tactics optimization has mild positive impact

on ECDGs quality, while the step timeout only has minor effect.

Thus, for our experiments we chose: code analysis stage with 8GB

memory limit, 1h global timeout, 8s step timeout and up to 8 active

states; graph generation stage with trace merging, calls merging

disabled, disjoint union disabled.

5.2.2 Benchmark. To evaluate σ ECDG
time efficiency in a practical

scenario, we benchmark our approach against radiff2, an open-

source tool dedicated to binary comparison in radare2 suite [45].

For this, we tried to compute all pairwise similarities with the files

of group I. However since radiff2 can take an overwhelming time

for the computation of all pairwise similarities, we stopped the

process after three weeks, obtaining ∼ 175k pairwise similarities

(for each of radiff2 and σ ECDG
) that we named Benchmark-DS.

Our framework keeps a cache of the already computed ECDGs,

which greatly speeds up the whole process. To measure the storage

cost of this trade-off, we plotted the graph for file size vs. #edges
taking into account over 10K files - omitted here for the sake of

space. The scattered points have an almost linear profile and their

linear regression results in a slope of 44.81(±0.02) edges by Kb of

storage, where the biggest cache file takes 113Kb for 4806 edges.

Table 2 notates this optimization by cached-(CA + GC) + σ ECDG
.

Table 2 shows that σ ECDG
largely outperforms (in time) radiff2,

achieving a speedup gain of 3.30x and 354.11x for the standard and

cache-enhanced implementations wrt. radiff.
It also shows that individual jobs in the code analysis and graph

generation stage are much more expensive than the graph analysis
(i.e. σ ECDG

) jobs. However the latter largely dominates overall calcu-

lation time because it requires a quadratic number of computations

(to build the similarity/distance matrix), while the former ones are

linear. So our modular approach allowed devoting more effort to

the gSpan implementation, reducing memory footprint more than

100x, achieving 35x speedup with multi-threading and up to 6x

speedup with a single thread wrt. original implementation [47].

To compare the similarity results of σ ECDG
and radiff2, their values

were split into four categories: strong-dissimilarity (∈ [0, 0.25[),

weak-dissimilarity (∈ [0.25, 0.5[), weak-similarity (∈ [0.5, 0.75[) and

strong-similarity (∈ [0.75, 0.1]).

Figure 1 shows the contingency matrix of σ ECDG
/radiff2, where

each cell contains the percentage of pairs in Benchmark-DS whose
similarity felt into weak/strong similarity/dissimilarity (notated as

SIM/∼SIM) for σ ECDG
and radiff2. Ideally, supposing that σ ECDG

and

Figure 1: Contingency matrix of σ ECDG/radiff2

radiff2 were both flawless, all values would be placed in the matrix

main skew diagonal. However, we note that in general σ ECDG
is able

to find stronger similarities than radiff2 for the same pair of files.

In particular, σ ECDG
found strong similarities where radiff2 found

weak and strong dissimilarities for 12.04% and 4.94% of the file

pairs, respectively. A hypothesis to explain the differences in the

similarity values obtainedwithσ ECDG
and radiff2 is the fact thatσ ECDG

targets semantic similarity whereas radiff2 relies on comparisons

of the programs’ control-flow graph.

5.2.3 NEF Selection. We do an exploratory analysis to select a

value for parameter nef, as required by the setup of σ ECDG
(sec-

tion 4.2). Since group I contains files corresponding to the most

trustworthy ground truth in the dataset, we use this group for the

analysis with homogeneity score as our main metric of interest.

In this exploration, we build various similarity/distance matri-

ces containing all pairwise computations of σ ECDG
with different

nef values. For each matrix we compute clustering using different

algorithms: Agglomerative, DBSCAN, HDBSCAN and OPTICS. For

algorithms requiring input parameters (i.e. DBSCAN and Agglom-

erative), we performed a hyper-parameter tuning, which adds up

to four more clustering instances in each nef iteration.

Figure 2 shows the nef exploration for HDBSCAN with homo-

geneity score as target metric - other curves are omitted here for the

sake of space. Overall, the profile of all metric curves for OPTICS

and HDBSCAN are fairly similar, whereas HBSCAN and Agglom-

erative have significantly different performances depending on the

metric chosen as target. In all cases, the best scores are achieved

with homogeneity or silhouette as target metric, while the worst are

obtained with the completeness score. When tuned by silhouette

score, both HDBSCAN and Agglomerative clustering displayed a

decay in completeness score for nef ≥ 0.5.

As outcome of the whole exploratory analysis, we selected the

value 0.25 for nef, because it provides positive results for all metrics,

in particular homogeneity score. It also takes both nodes and edges

components of σ ECDG
into account, thus balancing both localized

and holistic structures of the graphs.

We present and discuss only the clustering results of HDBSCAN

in the following experiments, since the exploratory analysis shows

very stable and good results for homogeneity and completeness.

Accurate and Robust Malware Analysis through Similarity of ECDGs IWCC’21, August 17–20, 2021, All-Digital Conference

Figure 2: nef exploration for HDBSCAN

Table 3 Clusterings for nef = 0.25

DBSCAN HDBSCAN OPTICS Aggl.
#clusters 6 7 7 13

#noise 5 4 2 3

silhouette 0.969 0.955 0.956 0.978

similarity 0.946 0.954 0.949 0.991

homogeneity 0.995 0.983 0.978 0.995

completeness 0.846 0.796 0.796 0.828

5.3 Accuracy-and-Robustness (AnR) Analysis
Our experiments aim to evaluate σ ECDG

accuracy, robustness and

practical efficiency, all prerequisites to enable functional application

like MW search and MW clustering.

5.3.1 Accuracy phase. We evaluate σ ECDG
accuracy, on group I files

only. This phase results directly derive from the nef selection ex-

ploratory analysis. Here we detail the corresponding experiment,

i.e. clustering of group I files with HDBSCAN and nef = 0.25.

Table 4 Accuracy phase clusters

Cluster #samples Similarity Yara Rule #samples (per rule)
0 127 0.979 Shohdi 127

1 132 0.96

Shohdi 2

TWarBot 130

2 132 0.998 Mira 132

3 18 1.000 Mira 18

4 6 0.998 Shohdi 6

5 150 0.994 Bogy 150

6 10 0.701 Shohdi 10

7 21 1.0

Shohdi 1

TWarBot 20

Clustering results for this phase (see also table 3, column HDB-

SCAN) are shown in Table 4, and illustrated in Figure 3 heatmap.

They contain 8 clusters and 4 singletons, with 0.955 silhouette,

0.954 mean similarity, 0.983 homogeneity and 0.796 completeness,

the latter two computed with Yara rules created for group I files.
The clusters are very well discriminated. Only 3 samples are

found in mixed clusters according to ground truth: two Shohdi

Figure 3: Heatmap of clusters in the accuracy phase

samples in cluster #1 and one in cluster #7, both composed predom-

inantely of TWarBot samples. All other clusters are pure and cluster

#5 is complete, including all 150 Bogy samples.

5.3.2 Robustness phase. We evaluate σ ECDG
robustness, starting

from real world samples (group II files), and assessing how clustering

degrades as noise (group III files) is gradually inserted. Table 5 shows
the clusterings (HDBSCAN with nef = 0.25) of the initial state

(group II files) and of the final state (group II and group III files).
The initial clustering results in 20 clusters with 54 singletons

(figure 5), with scores of 0.789 silhouette, 0.974 mean similarity,

0.746 homogeneity and 0.712 completeness, the latter two computed

with public Yara rules as ground truth.

This experiment creates a majority (11 of 20) of pure clusters,

especially for smaller clusters, which suggests that our σ ECDG
can

discriminate MW families at variant level. For instance, spyeye
produces 7 pure clusters and one almost pure (25 of 27 samples).

In addition, some bigger clusters are completely or almost pure.

Cluster #3 is pure, with 158 Wabot samples and cluster #8 includes

58 Njrat samples from a total of 59.

Cluster #1 (187 samples) has the greatest number of different

families (6), dominated by Bublik (88 samples) and sakula_v1_3
(80 samples). Furthermore, 13 samples are detected by both Yara

rules, which suggests some commonality between both families.

Similarly, cluster #17 includes all 109 shylock samples along with 26

IceID_Bank_trojan, two samples being detected by both Yara rules.

Our clustering also exposes lower quality Yara rules like Cla-
mAV_Emotet_String_Aggregrate that perform poorly. Investigation

reveals it was heuristically generated, as “a pruned aggregate of

all Emotet related strings extracted from ClamAV on 2019-07-03”.

Yet, out of 36 samples detected by this rule, 9 sit together in pure

cluster #0 and 13 others appear scattered in 5 other clusters. This

result reinforces our claim that σ ECDG
is accurate.

To evaluate the robustness of our behavioral clustering,we grad-
ually introduce CW samples of group III to act as noise in the

dataset and we measure the disturbance. Figure 5 shows the initial

clustering, before inserting CW samples in the dataset, and figure 6

shows the final clustering, after inserting the CW samples. Figure 4

shows the impact of group III files on clustering metrics.

IWCC’21, August 17–20, 2021, All-Digital Conference Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine

Figure 4: Noise evaluation in the robustness phase [HDBSCAN (nef =0.25)]

Figure 5: Initial clusterings: group II files

Homogeneity slightly increases after inserting 50% benign files

(1/3 of the whole final dataset). Silhouette is the most affected met-

ric, being impacted by new, rather small, spurious clusters. The final

clustering achieved scores of 0.464 silhouette, 0.950 mean similarity,

0.738 homogeneity and 0.607 completeness. The NMI measured

between the initial and final clusterings was 0.974, meaning that

the information loss due to insertion of noise was only marginal.

Table 5 displays the clusters after complete insertion of group III
files in the final clustering. As expected, most CWs are not included

in any cluster, increasing the number of singletons (noise) from 30

in the initial clustering to 340 in the final one. Most original clusters

remain unaffected (grey rows in table 5), only 4 being altered by

inclusion of a few CWs (red rows). A few clusters end up with less or

replaced files, which increases the clusters mean average similarity

(green rows). Ten new clusters appear (yellow rows), four of them

comprising only CWs, the others including a few MW samples but

with relatively low average similarity.

This confirms σ ECDG
is robust wrt. highly polluted datasets.

5.4 Prototype Analysis
A cluster prototype is defined as a data object that is representa-
tive of the other objects in the cluster [44]. Here, for a given the

cluster, we define the cluster prototype Pτ (C) as the greatest com-

mon connected subgraph with minimum support threshold τ (see

section. 2.3) for the entire set of graphs in this cluster. We explore

Figure 6: Final clusterings: group II + group III files

Figure 7: Prototype exploration for the robustness phase

cluster prototypes by incrementing τ from 0.05 to 1.0 with 0.05 steps,

trying to compute prototypes for all clusters at each iteration. We

repeat this with the clusterings of the accuracy phase and the initial
clustering of the robustness phase.

For the accuracy phase clustering, all support values below 1

successfully produce prototypes for all clusters. Only one cluster

fails to provide a prototype for support value equal 1. For the initial

clustering of the robustness phase, when nef ≤ 0.5 all clusters

successfully produce prototypes, i.e. at least one common subgraph

can be found in half of samples for each individual cluster. For

greater nef values, the rate of prototypes decreases almost linearly.

This means the clusters generally have a core of nearly half of their

samples that are more similar, while the other less similar half gets

gradually incorporated. Figure 7 shows the percentage of clusters

that successfully produce prototypes as function of the support.

This behavior is convenient to unveil hidden similarities be-

tween MW families and variants, which is impossible with the

all-or-nothing approach of syntactical signatures. Figure 8 shows

an example of cluster prototype obtained for cluster#2.

6 DISCUSSION
This work proposes an efficient structural representation of pro-

grams that is reliably accurate and precise. We first tackled general

research issues, namely MW primitives and MW analysis evalua-

tion (see section 3). After showing that code similarity schemes can

Accurate and Robust Malware Analysis through Similarity of ECDGs IWCC’21, August 17–20, 2021, All-Digital Conference

Figure 8: Prototype of cluster #2 (τmin = 1), robustness phase

be extended to address search and clustering, we focused on analyz-

ing ECDGs and σ ECDG
in terms of properties desired to implement

practical frameworks.

ECDGs are obtained from dependencies between external calls,

therefore they are beyond the reach of any purely syntactic ob-

fuscation (e.g. instruction replacement, opaque predicates, etc.),

although syntax obfuscation can still be effective in thwarting the

underlying analysis for the call tracing (e.g. our symbolic execu-

tion). Some obfuscation techniques, such as packing, can also insert

new code (e.g. unpacking stub) with new external calls; however

as long as this code does not interfere with the original one, their

new calls will ensue as disjoint components added to the original

ECDG, without breaking our method. To be effective against ECDG

itself, the obfuscation needs to actually replace external calls or

alter their argument dependencies; this procedure is much more

complex than syntactic obfuscation and is not observed in the wild.

Furthermore, although unfit for large datasets, our evaluation

clustering is able to assess the efficiency, accuracy and robustness of

σ ECDG
. This construction can be practical with clustering strategies

like those proposed by [22] and [48], keeping the same properties

verified here.

Table 2 shows σ ECDG
calculation throughout the whole dataset

has median time in the order of milliseconds, and that inclusion of

noise results in lower average time to compute similarity. Indeed,

gSpan typically finishes very quickly when two (or more) input

graphs do not have any common subgraph. Assuming that samples

of a same family represent just a small part of an entire dataset, this

behavior is suitable to address the search problem, which makes

σ ECDG
a good practical alternative for this problem.

Our prototype analysis (section 5.4) shows many cluster proto-

types are naturally produced, even when bigger support values are

used. This is a positive consequence of using subgraph isomorphism
as basis of σ ECDG

, which opens the possibility for optimization strate-

gies like scalable clustering [31]. Furthermore, the cluster prototypes

obtained are very descriptive (see figure 8), which allows assisting

human analysis or training models for specific MW families.

Limitations. Our call extraction module extends Angr with 24052

new stub SimProcedures of commonly used functions, highly im-

proving code coverage, hence ECDGs quality. However, our exper-

iments have limits related to state explosion in symbolic execu-

tions [6]: the main reason for job termination (96%) during code
analysis was memory exhaustion. Additionally, the limitations of

symbolic execution to handle packed binaries are well known. To

address this, we tested Angr’s option to enable self-modifying code

support
7
, but with no noticeable gain. Although several samples

of the evaluation dataset are being flagged by packing detection

tools, packed samples often resulted in the extraction of few calls

of the unpacking routines (e.g. LoadLibraryA and GetProcAddress).
Therefore, due to the 100 edges threshold (see section 5.1) and the

use of syntactical signatures - that are likely to fail with packed

samples - this case was not specifically evaluated in our work.

A possible mitigation for both issues is a smarter combination

of concrete and symbolic execution (i.e. concolic execution) instead
of pure symbolic execution, to bypass the unpacking routine of

(simple) packers and to perform expensive analyses (i.e. CPU and

memory intensive) only in a few parts of the code. To further im-

prove the quality of call dependencies for edges in ECDGs, instead

of plain comparison of (symbolic) values, future work also includes

implementing a taint analysis, where arguments and returns of

functions are more finely tracked.

The computation of our similarity/distance matrix for the evalu-

ation clearly does not scale for very big datasets. So our evaluation
dataset for this paper is restricted in size, but this does not affect

our method itself nor its practical usability. Indeed, it is only used

to evaluate the accuracy and robustness of σ ECDG
, as well as to pro-

duce benchmarks that assess its efficiency in practice. Overall, the

problem of clustering scalability (i.e. a scheme that requires asymp-

totically less pairwise computations) is out of the scope of this work

and an ongoing research topic. Nonetheless, such clustering can of

course benefit from more efficient as well as accurate and robust

pairwise similarity computations.

7 RELATEDWORK
Our focus is on the representation of programs through call graphs
(ECDGs), benefiting from their structural similarities (see section 2.2)
to introduce our new similarity function σ ECDG

. For this reason, our

work places itself closer to researches that study the similarity of

binary codes based on structural similarities, especially when they

involve some form of call graph.

The concept of call graphs dates back as early as 1979 [36], and

as of 2004 [13] a plethora of studies targeting structural similari-

ties for MW analysis have been made. Initially the focus was on

the quality of disassemblers, graph formats (i.e. creating labels or

grouping nodes) and graph matching algorithms, as feature extrac-

tion was done statically [23, 24, 39, 46]. Several similarity functions
have been proposed and served as basis for code diffing tools, like

BinDiff [49] and radiff2 - used in this work as benchmark. The

main drawback of these approaches is that they operate on hefty

graph representations, that though detailed are very expensive to

handle in practice - especially considering that graph matching

7
Parameter that enables the emulation of code from the current state instead of the

original memory, notwithstanding memory protections.

IWCC’21, August 17–20, 2021, All-Digital Conference Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine

problems fall into the NP class. Furthermore, pure static analysis is

more susceptible to syntactical mutations, which can impact the

result of the whole similarity analysis.

As of 2007 [5], researches related to dependency graphs emerge

as dynamic analysis gains traction on MW analysis domain. There

too, different graph formats and graph similarity functions, based

on various graph matching algorithms, have been proposed [10,

12, 16, 28, 30]. In this case, the main drawback is that the tracing

of calls (and OS resources) is done through filters placed as kernel

modules/drivers, which is unable to distinguish traces of interest, i.e.

those generated by the program’s main object, from spurious traces

generated by shared modules (i.e. library code). This mixture in the

traces muddles the subsequent analysis and, once again, produce

bigger graph representations that are expensive to process.

As for Symbolic execution for MW analysis, it was introduced in

2008 with BinHunt [14], using symbolic formulas to represent basic

blocks and theorem provers to verify whether they are equivalent or
embody semantic differences. Most works using symbolic execution

still follow this approach (e.g. iBinHunt [26]). BinSim [27], which

uses symbolic execution to trace call arguments in order to verify

whether system calls in two programs are aligned (i.e. conditionally

equivalent), is the scheme closest to ours.

Unlike the above categories of approaches, our work leverages

the fine control of symbolic execution over the whole execution

state (i.e. registers and memory), thereby focusing the analysis

solely on the code main object. This allows us to concentrate the

information present in a large series of calls into a much smaller

subset, thus providing smaller graphs that enable more efficient

analysis without any loss of information.

8 CONCLUSION
We defined ECDG, a new call graph to optimize the representa-

tion of argument dependencies between calls, that allows more

concise structural representation with no information loss. It has

a major positive impact on performance, because graph matching

algorithms, which are very expensive, can deal with much smaller

graphs. We proposed a new similarity function σ ECDG
that is efficient

- achieving a speedup gain of 3.30x and 354.11x for the standard

and cache-enhanced implementations wrt. radiff. - as well as reli-
ably accurate and precise. To support this, we built an evaluation

framework to cluster samples with σ ECDG
and we evaluated it under

the AnR paradigm.

The accuracy phase produced almost unerring results, with homo-

geneity score of 0.983, which shows that our evaluation framework

manages to autonomously describe MW families as accurately as a

set of strict handcrafted Yara rules. The robustness phase verified
that the clustering was robust to noise insertion, having almost no

impact on homogeneity and mean similarity, and only mild effect

on completeness and silhouette scores due to creation of many

singletons (see figure 4). Indeed, the the NMI score between the

initial and final (highly polluted) clusterings of this phase was 0.974,

indicating that the information loss due to noise insertion was only

marginal. In addition, our evaluation framework produced a high

rate of descriptive cluster prototypes that represent behaviors and

can be used to scale up clustering, assist manual analysis or enhance

classification models for MW detection.

As main contributions (i) we revisited the foundations of MW

analysis research, defining basicMWanalysis primitives, and propos-

ing the AnR paradigm for reliable evaluation methodologies; (ii)

we proposed ECDGs, a compact call dependency graph enabling

more efficient binary similarity computation; and (iii) we proposed

a new similarity function for ECDGs that is efficient, accurate and

robust. Contributions also come from our concrete implementa-

tion, namely the study of symbolic execution to trace external calls,

the evaluation of gSpan as a practical algorithm for sub-graph iso-

morphism, and the evaluation of cluster prototypes extraction to

represent MW families. Ultimately, our experiments show σ ECDG
can

reliably work as cornerstone of multiple types of frameworks, from

those who autonomously produce descriptions of MW families as

accurately as manually created syntactical signatures to those who

target MW search and MW clustering.

ACKNOWLEDGMENTS
The authors want to thank Cisco for providing the samples for

the MW and CW datasets and also for the stimulating discussions;

Nicolas Rougier and Veronica Valeros for the remarkable insights,

specially related to the composition of evaluation datasets using

cleanware, which set the basis for the AnR paradigm.

REFERENCES
[1] [n. d.]. AV Test - malware statistics. https://www.av-test.org/en/statistics/

malware/.

[2] [n. d.]. Yara - VirusTotal. https://virustotal.github.io/yara/.

[3] 2012. VirusTotal. https://www.virustotal.com.

[4] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and

Giorgio Giacinto. 2016. Novel feature extraction, selection and fusion for effective

malware family classification. In Proceedings of the sixth ACM conference on data
and application security and privacy. 183–194.

[5] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Jahanian,

and Jose Nazario. 2007. Automated classification and analysis of internet malware.

In International Workshop on Recent Advances in Intrusion Detection. Springer,
178–197.

[6] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and

Irene Finocchi. 2018. A survey of symbolic execution techniques. ACMComputing
Surveys (CSUR) 51, 3 (2018), 1–39.

[7] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,

and Engin Kirda. 2009. Scalable, behavior-based malware clustering.. In NDSS,
Vol. 9. Citeseer, 8–11.

[8] Rodrigo Rubira Branco. 2007. Ltrace internals. In Proceedings of the Linux Sym-
posium, Vol. 1. Ottawa, ON, Canada, June, 41–52.

[9] Julia Yu-Chin Cheng, Tzung-Shian Tsai, and Chu-Sing Yang. 2013. An information

retrieval approach for malware classification based on Windows API calls. In

2013 International conference on machine learning and cybernetics, Vol. 4. IEEE,
1678–1683.

[10] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. 2007. Mining

Specifications of Malicious Behavior. In Proceedings of the 6th Joint Meeting of
the ESEC and the ACM SIGSOFT SFE (ESEC-FSE ’07). Association for Computing

Machinery, New York, NY, USA, 5–14.

[11] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E.

Bryant. 2005. Semantics-Aware Malware Detection. In Proceedings of the 2005
IEEE Symposium on Security and Privacy (SP ’05). IEEE Computer Society, USA,

32–46.

[12] Ammar Elhadi, Mohd Maarof, Bazara Barry, and Hentabli Hamza. 2014. Enhanc-

ing the Detection of Metamorphic Malware using Call Graphs. Computers &
Security 46 (10 2014), 62–78.

[13] Halvar Flake. 2004. Structural Comparison of Executable Objects. In In Proceedings
of the IEEE Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA. 161–173.

[14] Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically

Finding Semantic Differences in Binary Programs. In Proceedings of the 10th ICICS
(ICICS ’08). Springer-Verlag, Berlin, Heidelberg, 238–255.

[15] Kent Griffin, Scott Schneider, Xin Hu, and Tzi-cker Chiueh. 2009. Automatic

Generation of String Signatures for Malware Detection. In Recent Advances
in Intrusion Detection, Engin Kirda, Somesh Jha, and Davide Balzarotti (Eds.).

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://virustotal.github.io/yara/
https://www.virustotal.com

Accurate and Robust Malware Analysis through Similarity of ECDGs IWCC’21, August 17–20, 2021, All-Digital Conference

Springer Berlin Heidelberg, Berlin, Heidelberg, 101–120.

[16] Ibai Gurrutxaga, Olatz Arbelaitz, Jesús M. Pérez, Javier Muguerza, José Ignacio

Martín, and Iñigo Perona. 2008. Evaluation of Malware clustering based on

its dynamic behaviour. In Proceedings of the Seventh Australasian Data Mining
Conference (AusDM 2008) (CRPIT), John F. Roddick, Jiuyong Li, Peter Christen,

and Paul J. Kennedy (Eds.), Vol. 87. Australian Computer Society, 163–170.

[17] Irfan Ul Haq and Juan Caballero. 2019. A Survey of Binary Code Similarity. CoRR
abs/1909.11424 (2019). arXiv:1909.11424 http://arxiv.org/abs/1909.11424

[18] Chuntao Jiang, Frans Coenen, and Michele Zito. 2004. A Survey of Frequent

Subgraph Mining Algorithms.

[19] Chuntao Jiang, Frans Coenen, and Michele Zito. 2010. Finding Frequent Sub-

graphs in Longitudinal Social Network Data Using a Weighted Graph Mining

Approach. In Advanced Data Mining and Applications - 6th International Con-
ference, ADMA 2010 (Lecture Notes in Computer Science), Vol. 6440. Springer,
405–416.

[20] Youngjoon Ki, Eunjin Kim, and Huy Kang Kim. 2015. A novel approach to detect

malware based on API call sequence analysis. International Journal of Distributed
Sensor Networks 11, 6 (2015), 659101.

[21] Joris Kinable and Orestis Kostakis. 2011. Malware classification based on call

graph clustering. Journal in computer virology 7, 4 (2011), 233–245.

[22] Orestis Kostakis. 2014. Classy: Fast Clustering Streams of Call-Graphs. Data
Mining and Knowledge Discovery 28, 5–6 (Sept. 2014), 1554–1585.

[23] Christopher Kruegel, Engin Kirda, DarrenMutz,WilliamRobertson, andGiovanni

Vigna. 2006. Polymorphic Worm Detection Using Structural Information of

Executables. In Recent Advances in Intrusion Detection. Springer Berlin Heidelberg,
207–226.

[24] Jusuk Lee, Kyoochang Jeong, and Heejo Lee. 2010. Detecting Metamorphic

Malwares Using Code Graphs. In Proceedings of the 2010 ACM Symposium on
Applied Computing (SAC ’10). Association for Computing Machinery, New York,

NY, USA, 1970–1977.

[25] Peng Li, Limin Liu, Debin Gao, and Michael K. Reiter. 2010. On Challenges in

EvaluatingMalware Clustering. In RAID 2010, Ottawa, Ontario, Canada, September
15-17, 2010. Proceedings (Lecture Notes in Computer Science), Vol. 6307. Springer,
238–255.

[26] Jiang Ming, Meng Pan, and Debin Gao. 2013. iBinHunt: Binary Hunting with

Inter-procedural Control Flow. In Proc. of the 15th Int’l Conf. on Information
Security and Cryptology. 92–109.

[27] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-

based Semantic Binary Diffing via System Call Sliced Segment Equivalence

Checking. In 26th USENIX Security Symposium (USENIX Security 17). 253–270.
[28] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. 2015. Amal: High-fidelity,

behavior-based automated malware analysis and classification. computers &
security 52 (2015), 251–266.

[29] Stavros D. Nikolopoulos and Iosif Polenakis. 2017. A graph-based model for mal-

ware detection and classification using system-call groups. Journal of Computer
Virology and Hacking Techniques 13, 1 (Feb 2017), 29–46.

[30] Younghee Park, D.s Reeves, and Mark Stamp. 2013. Deriving common malware

behavior through graph clustering. Computers & Security 39 (11 2013), 419–430.

[31] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. 2011. Auto-

matic analysis of malware behavior using machine learning. Journal of Computer
Security 19, 4 (2011), 639–668.

[32] Andrew Rosenberg and Julia Hirschberg. 2007. V-measure: A conditional entropy-

based external cluster evaluation measure. In Proceedings of the 2007 joint con-
ference on empirical methods in natural language processing and computational
natural language learning (EMNLP-CoNLL). 410–420.

[33] Florian Roth. 2013. HyarGen. https://github.com/Neo23x0/yarGen

[34] Florian Roth. 2015. How to Write Simple but Sound Yara Rules. https://www.

nextron-systems.com/2015/02/16/write-simple-sound-yara-rules/

[35] Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65.
[36] Barbara G. Ryder. 1979. Constructing the Call Graph of a Program. IEEE Trans.

Softw. Eng. 5, 3 (May 1979), 216–226.

[37] Aleieldin Salem, Sebastian Banescu, and Alexander Pretschner. 2020. Maat:

Automatically Analyzing VirusTotal for Accurate Labeling and Effective Malware

Detection. arXiv preprint arXiv:2007.00510 (2020).
[38] A. A. Selçuk, F. Orhan, and B. Batur. 2017. Undecidable problems in malware

analysis. In 2017 12th International Conference for Internet Technology and Secured
Transactions (ICITST). 494–497.

[39] Shanhu Shang, Ning Zheng, Jian Xu, Ming Xu, and Haiping Zhang. 2010. Detect-

ing malware variants via function-call graph similarity. 113 – 120.

[40] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In IEEE Symposium on Security and Privacy.
[41] Steven Skiena. 1990. Implementing discrete mathematics - combinatorics and graph

theory with Mathematica. Addison-Wesley. I–VIII pages.

[42] Lars Sthle and Svante Wold. 1989. Analysis of variance (ANOVA). Chemometrics
and Intelligent Laboratory Systems 6, 4 (1989), 259–272.

[43] Alexander Strehl and Joydeep Ghosh. 2003. Cluster Ensembles — a Knowledge

Reuse Framework for Combining Multiple Partitions. 3 (2003), 583–617. https:

//doi.org/10.1162/153244303321897735

[44] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2016. Introduction to data
mining. Pearson Education India.

[45] Radare Team. 2020. Radare2 github repository. https://github.com/radareorg/

radare2

[46] Lingfei Wu, Ming Xu, Jian Xu, Ning Zheng, and Haiping Zhang. 2013. A novel

malware variants detection method based On function-call graph. 1–5.

[47] Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-Based Substructure Pattern

Mining.. In Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM 2002). IEEE Computer Society, Maebashi City, Japan, 721–724.

[48] Y. Zhang, C. Rong, Q. Huang, Y. Wu, Z. Yang, and J. Jiang. 2017. Based on Multi-

features and Clustering Ensemble Method for Automatic Malware Categorization.

In 2017 IEEE Trustcom/BigDataSE/ICESS. 73–82.
[49] zynamics. [n. d.]. BinDiff. https://www.zynamics.com/bindiff.html.

https://arxiv.org/abs/1909.11424
http://arxiv.org/abs/1909.11424
https://github.com/Neo23x0/yarGen
https://www.nextron-systems.com/2015/02/16/write-simple-sound-yara-rules/
https://www.nextron-systems.com/2015/02/16/write-simple-sound-yara-rules/
https://doi.org/10.1162/153244303321897735
https://doi.org/10.1162/153244303321897735
https://github.com/radareorg/radare2
https://github.com/radareorg/radare2
https://www.zynamics.com/bindiff.html

IWCC’21, August 17–20, 2021, All-Digital Conference Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine

Table 5 Robustness phase clusters: initial (group II) and final (group II + group III)
Cluster index Initial Final
Initial Final #samples Similarity Yara rule #samples (per rule) #samples Similarity Yara rule #samples (per rule)

0 0 9 0.978 ClamAV_Emotet_String_Aggregate 9 9 0.978 ClamAV_Emotet_String_Aggregate 9

spyeye 2 spyeye 2

4 1 10 0.951

Glasses 8

10 0.951

Glasses 8

3 2 158 0.987 Wabot 158 158 0.987 Wabot 158

ClamAV_Emotet_String_Aggregate 1

spyeye 2- 3 5 0.98

Warp 2

12 4 7 1.000 spyeye 7 7 1.000 spyeye 7

13 5 19 0.993 spyeye 19 19 0.993 spyeye 19

14 6 18 0.998 spyeye 18 18 0.998 spyeye 18

9 7 23 0.995 spyeye 23 23 0.995 spyeye 23

spyeye 11 spyeye 11

6 8 11 0.819 14 0.605

cleanware 3

10 9 15 0.993 spyeye 15 15 0.993 spyeye 15

11 10 6 1.000 spyeye 6 6 1.000 spyeye 6

ClamAV_Emotet_String_Aggregate 1 ClamAV_Emotet_String_Aggregate 1

Njrat 58 Njrat 58

njrat1 58 njrat1 58

8 11 59 0.992

win_exe_njRAT 58

59 0.992

win_exe_njRAT 58

2 12 10 0.995 IceID_Bank_trojan 10 10 0.995 IceID_Bank_trojan 10

Glasses 1

IceID_Bank_trojan 2- 13 24 0.997

cleanware 21

Warp 1 Warp 1

Wabot 4 Wabot 4

Glasses 1 cleanware 10

IceID_Bank_trojan 26 IceID_Bank_trojan 23

sakula_v1_3 80 sakula_v1_3 80

1 14 187 0.997

Bublik 88

193 0.998

Bublik 88

ClamAV_Emotet_String_Aggregate 5 ClamAV_Emotet_String_Aggregate 5

Glasses 32 Glasses 32

Mirage_APT 41 Mirage_APT 41

Cerberus 49 Cerberus 49

7 15 128 0.994

spyeye 1

127 0.998

- 16 5 0.934 cleanware 5

- 17 24 0.998 cleanware 24

- 18 34 0.990 cleanware 34

ClamAV_Emotet_String_Aggregate 5 ClamAV_Emotet_String_Aggregate 1

Glasses 2 Glasses 2

spyeye 12 spyeye 12

5 19 19 0.877 55 0.516

cleanware 40

ClamAV_Emotet_String_Aggregate 1 ClamAV_Emotet_String_Aggregate 1

Monero_Mining_Detection 6 Monero_Mining_Detection 719 20 7 0.983 16 0.988

cleanware 8

18 21 5 1.000 Monero_Mining_Detection 5 6 0.998 Monero_Mining_Detection 6

Warp 2

- 22 10 0.959

cleanware 8

ClamAV_Emotet_String_Aggregate 3

- 23 8 0.985

cleanware 5

IceID_Bank_trojan 1

- 24 12 0.867

cleanware 11

IceID_Bank_trojan 1

- 25 10 0.927

cleanware 9

IceID_Bank_trojan 26 IceID_Bank_trojan 26

17 26 133 0.995

shylock 109

133 0.995

shylock 109

spyeye 1 spyeye 1

Monero_Mining_Detection 11 Monero_Mining_Detection 11

IceID_Bank_trojan 84 IceID_Bank_trojan 83

15 27 96 0.935 108

0.939

cleanware 13

Glasses 1 Glasses 1

spyeye 25 spyeye 2516 28 27 0.995

ClamAV_Emotet_String_Aggregate 1

29 0.997

cleanware 3

- 29 13 0.954 cleanware 13

noise 54 340

	Abstract
	1 Introduction
	2 Background
	2.1 Notations and Definitions
	2.2 Binary Analysis: Syntax, Semantics and Structural Representations
	2.3 Frequent Subgraph Mining (FSM)
	2.4 Clustering

	3 Malware Analysis: Principles
	3.1 Primitives
	3.2 Accuracy-and-Robustness (AnR) Paradigm

	4 External Calls Dependency Graph (ECDG)
	4.1 ECDG Definition
	4.2 Similarity Function Definition

	5 Evaluation
	5.1 Evaluation Dataset
	5.2 Evaluation Framework
	5.3 Accuracy-and-Robustness (AnR) Analysis
	5.4 Prototype Analysis

	6 Discussion
	7 Related work
	8 Conclusion
	Acknowledgments
	References

