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Abstract

Modern airports provide commercial services to passengers in addition to aero-
nautical services to airlines. We analyze how the airport’s market power impacts
the pricing of services when the airport also invests in the quality of its infrastruc-
ture. There is a need to regulate the airport and the optimal regulation can be
implemented with a price-cap and a subsidy scheme targeted to the investment.
The choice between a single-till and a dual-till approach does change neither the
optimal regulation nor its implementation. We also investigate the consequences
on the optimal regulation of the nature of the airport-airline relationship and of
the observability of investment.
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1. Introduction

Motivation. Until the 1980s, most airports were publicly-owned companies. Airport
privatization began with the privatization of seven airports in the UK, and notably three
in the London area (Heathrow, Gatwick, and Stansted). Since then, this trend has gained
traction all over the world.1 According to the Airports Council International, over 40% of
European Airports were partially or fully privatized in 2016 and those account for about
three-quarters of total passenger traffic in Europe. The motive for privatization has
generally been to improve operational efficiency and access to private sector financing.2

However, unregulated privately-owned airports operate on a relatively captive market
of both passengers and airlines and control “an essential facility” (runways, terminal
buildings, navigational services). They thus have substantial market power that must be
tamed in one way or another. Furthermore, non-aeronautical services such as commercial
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activities (retailing services, car parking, office rental) are now a major source of revenues
for airports.3 This further raises concerns about the risk of market power abuse.

Accordingly, various forms of regulations have been adopted. Price-cap regulation
has been widely used in Europe (UK, France, Spain, Germany, for instance) and consists
in setting a cap on the prices that airport charge for providing services.4 Some scholars
have pointed out that such price-cap regulation might not even be needed because the
presence of commercial activities provide airports with incentives to set relatively low
aeronautical prices;5 or that it distorts airports’ incentives to invest.6 Rate-of-return reg-
ulation is applied to foster investment in airports in Geneva, Zurich, Athens, Amsterdam
among others.7 It is however well-known that rate-of-return regulation leads to socially
inefficient over-investment.8 Last, whether commercial services ought to be included in
the regulation of airports is a question that remains hotly debated.9

Main results. In this paper, we develop a simple framework to investigate these ques-
tions. An airport runs two activities. It supplies aeronautical services that an airline
relies upon to provide transportation services to passengers. It also grants access to its
facility to businesses that sell commercial services to passengers while they are at the air-
port. The airline company sets the final price for transportation services to passengers.
To take into account the specific complementarity between demands of aeronautical and
commercial services, we make two assumptions. First, only passengers may buy commer-
cial services in the vicinity of the airport. Second, the decision whether to fly is solely
based on the passenger’s valuation for aeronautical services. The airport also invests in
its infrastructure, which boosts the demand for aeronautical services.

Our results are as follows. First, we characterize the optimal regulatory policy, as-
suming that investment is observable and hence contractible. Socially optimal prices for
aeronautical and commercial services obey a Ramsey-Boiteux pricing rule. In particu-
lar, both prices are above their corresponding social marginal cost to limit the use of
costly public funds that are needed to ensure the industry breaks even. The socially
optimal level of investment equates the marginal cost of investment and its marginal
benefit, where the latter accounts for the increase in both the industry profit and the
passengers’ surplus when investment increases. We then compare the socially optimal
outcome with the one that would obtain in an unregulated environment. As expected,
prices tend to be excessive in the absence of regulation. However, two findings are worth
mentioning. First, the unregulated airport may either over- or under-invest. This stems
from the fact that the unregulated airport cares about the impact of investment on the
marginal passenger whereas the regulator accounts for all infra-marginal passengers. Sec-
ond, there is no straightforward connection between the socially optimal price for the
airport’s aeronautical services and the corresponding private marginal cost. It can be
indeed socially optimal to price aeronautical services below the marginal cost since these
services generate a positive externality on commercial services (but not the other way
around).

3By now, they represent 40% of total airport revenues (ACI, 2017).
4Oum and Fu (2009) and Reynolds et al. (2018) discuss price-cap regulation for airports.
5See Beesley (1999) and Starkie (2001) for instance.
6See Czerny (2006) and Oum et al. (2004).
7See Reynolds et al. (2018).
8See Averch and Johnson (1962), and Tretheway (2001) and Kunz and Niemeier (2000) in the case

of airports.
9This is generally referred to as “single-till” versus “dual-till” question.
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When investment is not observable by the regulator, prices of both services have
to be further distorted in order to provide the airport with incentives to invest. We
then provide a numerical illustration that allows to compute welfare with and without
regulation. We find that as commercial services grow, the unregulated airport invests
excessively, reduces the price of aeronautical services but increases that of commercial
services. Overall, regulation brings larger welfare gains when commercial services become
a larger source of profits for the airport. However, that gain substantially shrinks when
investment is not observable by the regulator and prices have to be distorted for incentives
reasons.

Next, we focus on the implementation of the optimal regulation. We first show that a
price-cap regulation alone does not provide enough incentives to invest. We then propose
a scheme that fully implements the optimal regulation. It consists in a price-cap that
encompasses both services supplied by the airport and a subsidy scheme that provides the
airport with the optimal incentives to invest in the infrastructure. Indeed, when the firm
is regulated on the prices of its services, it tends to under-invest; providing the correct
incentives to invest requires then to subsidize the firm for its investment.

In passing, we touch upon the debate between the single-till and the dual-till ap-
proaches to airport regulation. In a dual-till regulation, the regulator decides that each
service has to cover a given share of the investment cost. By contrast, in a single-till
regulation all the airport’s revenues contribute to finance the investment. The key point
is that in a dual-till approach the regulator chooses the fraction of the investment cost
covered by each service, leading to two budget constraints rather then one. At the op-
timum of a dual-till regulation, it must be that the opportunity cost of allocating one
additional unit of investment is the same for both budget constraints. Hence, a dual-till
approach is actually equivalent to a single-till one.

We then analyze the situation in which the vertical relationship between the airport
and the airline company is plagued with some inefficiencies. More precisely, if the airport
has a sufficiently large set of pricing instruments when dealing with the airline company,
then everything happens as if they were integrated. The optimal regulation would then
be unchanged. If, however, the relationship between the airport and the airline company
creates some frictions (through a phenomenon of double marginalization in our context),
then the optimal regulation has to be adapted accordingly.

Literature review. Most of the recent literature on airport regulation takes into account
the interdependence between aeronautical and non-aeronautical services. Whether prices
of each activity should be regulated and whether revenues from non-aeronautical services
should cover a portion of airports’ costs has been studied in Beesley (1999) and Starkie
(2001). They conjecture that the interdependence of aeronautical and non-aeronautical
services suffices to temper airports’ abuse of market power and therefore advocate for
the abolition of price-cap regulation. However, several contributions (including Zhang
and Zhang 2003; Oum et al. 2004; Zhang et al. 2010; Yang and Zhang 2011) have shown
that the presence of commercial activities only partially mitigates the incentives to set
excessive prices of aeronautical services for unregulated airports. These studies build
on the same interdependence assumption, which was firstly introduced by Zhang and
Zhang (1997). Similarly to our approach, they assume that commercial activities do not
affect individuals’ decisions to fly and that their consumption is restricted to passengers.
However, in our approach, we provide a micro-foundation for the pattern of demands
and the complementarity between services. Czerny (2006), on the other hand, assumes
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that individuals take into account the consumption of commercial services when they
decide whether to fly.10 Under this assumption, he shows that price-cap regulation can
implement optimal prices only if both aeronautical and commercial services are regulated.
We broaden these analyses in various directions, most notably by taking into account the
endogenous incentives of the airport to invest and the corresponding regulatory response.

Concerning revenues generated from commercial services, both theoretical and empir-
ical works tend to favor the single-till regime at non-congested airports (Zhang and Zhang
1997; Czerny 2006; Yang and Zhang 2011; Czerny et al. 2016) whereas the dual-till regime
seems preferable at congested airports (Oum et al. 2004; Lu and Pagliari 2004; Yang and
Zhang 2011). We provide a different perspective, showing that these approaches are es-
sentially equivalent once the sharing of the investment financing is chosen endogenously
by the regulator.

Another recent strand of the literature, such as Ivaldi et al. (2015), Malavolti (2016)
and Malavolti and Marty (2017) investigates airport regulation by adopting a two-sided
market perspective. Finally, vertical relationships and arrangements between airports
and airlines have notably been investigated by Zhang et al. (2010), Fu et al. (2011) and
Yang et al. (2015).

Roadmap. Section 2 presents the model. Section 3 derives the optimal regulation and
compares it with the unregulated airport case. Section 4 examines how the optimal
regulation is modified when investments are non-verifiable. Section 5 uses a numerical
example to discuss the extent to which regulation improves welfare. Section 6 shows that
the optimal regulation can be implemented with a price-cap on both services augmented
with a subsidy-penalty scheme targeted to the airport’s investment. Section 7 investigates
the consequences of the vertical separation between the airport and the airline. All proofs
are in the Appendix.

2. The model

An airport provides aeronautical services to an airline company that provides trans-
portation services to passengers.

There is a continuum of individuals with valuation ṽ for transportation services, where
ṽ is drawn from a cumulative distribution F (·, e) on [0, v], with a strictly positive density
f(·, e). Note that both the cumulative distribution and the density of ṽ depend upon the
amount of investment e of the airport, as we will detail below. Hereafter, an individual
who decides to buy transportation services from the airline company will be referred to
as “a passenger.”

We assume that only passengers can consume commercial services. Therefore, once
a passenger is in the airport, we suppose that the passenger has a valuation ṽ0 for com-
mercial services, where ṽ0 is drawn from a cumulative distribution G(·) on [0, v0], with a
strictly positive density g(·). Put differently, we consider that revenues from commercial
activities are conditional upon revenues from aeronautical services. Indeed, passengers
may want to consume commercial services once they entered the airport. It seems,

10As a result, a positive surplus generated by the consumption of commercial service can compensate
for a negative surplus on aeronautical services. Although it may be true for some passengers (business)
or when several airports are available for the same aeronautical services, we believe that our assumption
better reflects the consumer decision to fly.
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however, rather unlikely that a consumer not interested in transportation services has a
demand for the airport’s commercial activities. Commercial activities are complementary
to aeronautical services, but the reverse is not true.

Demands for aeronautical and commercial services. Let p and p0 denote unit prices of
aeronautical and commercial services, respectively. The airport sets p0 whereas the airline
sets p. Following our assumption of unidirectional complementarity between aeronautical
and commercial services, the utility of a consumer can be expressed as:

max{ṽ − p, 0}+ 1{ṽ−p≥0}max{ṽ0 − p0, 0}.

The indicator function 1{ṽ−p≥0} captures the unidirectional complementarity between
aeronautical services and commercial activities. This formulation has two implications.
First, only passengers (i.e., consumers with ṽ− p ≥ 0) can benefit from the consumption
of commercial services. Second, when choosing whether to fly or not, consumers only take
into account the surplus they can derive from consumption of aeronautical services.11

The demand for aeronautical services may be expressed as follows:

D(p, e) = Pr{ṽ ≥ p|e} = 1− F (p, e).

The price elasticity of this demand is denoted by:

ε(p, e) = −
p∂D

∂p
(p, e)

D(p, e)
=

pf(p, e)

1− F (p, e)
.

Although we do not explicitly model competition between airline companies, this feature
could be captured through the elasticity of demand. For a given price p and level of
investment e, the more competitive the airline industry is, the more elastic demand is.12

Demand for commercial activities depends upon both the price of aeronautical services
p and the price of commercial activities p0. For a given p0, a passenger buys commercial
services with probability 1 − G(p0). Demand for commercial activities is obtained by
taking the unidirectional complementarity for all customers:

D0(p, p0, e) =

∫
v∈[0,v]

1{ṽ−p≥0}(1−G(p0))f(v, e)dv = D(p, e)(1−G(p0)).

The elasticity of this demand with respect to the price of commercial services p0 can be

11By way of comparison, the indirect utility of a consumer in Czerny (2006) can be written as
1{ṽ−p+ṽ0−p0≥0}(ṽ − p + max{ṽ0 − p0, 0}) in our model. Therefore, it is such that consumers can en-
joy commercial services only if they decide to fly. But it also implies that consumers can decide to fly
even if they get a negative surplus from aeronautical services as long as it is compensated by a positive
surplus from consumption of commercial services.

12Competition can be captured by changing the specification of the cumulative distribution function F .
Indeed, assume that each consumer has an outside option for aeronautical services whose net valuation
is a random variable w̃ drawn from a cumulative distribution H(·), with density h(·). The probability
that the consumer is willing to pay p for aeronautical services, or equivalently, the residual demand, is

as follows: D̃(p, e) = Pr{ṽ − p ≥ w̃} =
∫ v

0
H(v − p)f(v, e)dv. Therefore, the elasticity of demand can be

expressed as: ε̃(p, e) = −pD̃′(p,e)

D̃(p,e)
=

p
∫ v
0

h(v−p)f(v,e)dv

1−
∫ v
0

H(v−p)f(v,e)dv
.
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expressed as a function of p0 only:

ζ(p0) = −
p0

∂D0

∂p0
(p, p0, e)

D0(p, p0, e)
=

p0g(p0)

1−G(p0)
.

To ensure the quasi-concavity of the various optimization problems and the mono-
tonicity of the equilibrium prices analyzed later on, we assume that distributions F (·)
and G(·) satisfy the usual Monotone Hazard Rate Property: ∂

∂v
(1−F (v,e)

f(v,e)
) ≤ 0 ∀v ∈ [0, v]

and d
dv0

(1−G(v0)
g(v0)

) ≤ 0 ∀v0 ∈ [0, v0]. These assumptions guarantee that the elasticities for
aeronautical services and commercial activities are both increasing in the price of the
service concerned.

Investment in airport infrastructure. The airport can invest an amount e ≥ 0 to enhance
the quality of its infrastructure or to relieve congestion. We assume that investing in
airport infrastructure directly leads to an increase in consumer demand for aeronautical
services. More specifically, we assume that F (·, ê) first-order stochastically dominates
F (·, e) for any ê > e (i.e., F (v, ê) ≤ F (v, e) for any v ∈ [0, v] and ê > e). This corresponds
to the intuition that higher investment levels make higher valuations for aeronautical
services more likely. Hence, D(p, ê) ≥ D(p, e) for ê > e.

Commercial activities also benefit from the investment undertaken by the airport.
That benefit is indirect, though, and is channeled through the increase in the number
of passengers: D0(p, p0, ê) = (1 − G(p0))D(p, ê) ≥ D0(p, p0, e) = (1 − G(p0))D(p, e) for
ê > e.

Last, we assume that the investment increases the demand for aeronautical services,
but at a decreasing rate: ∂F

∂e
(v, e) ≤ 0 and ∂2F

∂e2
(v, e) ≥ 0, ∀v ∈ [0, v].

Costs. We assume that aeronautical and commercial services are produced at positive
constant marginal costs c and c0, respectively. Hence, the cost structure exhibits neither
economies of scope nor economies of scale. However, we can still interpret the investment
e as a fixed cost for setting up airport infrastructure. For future reference, let cpr(p0) =
c − (p0 − c0)(1 − G(p0)) denote the total private marginal cost of aeronautical services.
This cost takes into account the marginal cost of aeronautical services minus the profits
generated by commercial activities.

3. Benchmarks

The present section is organized as follows. First, we present the outcome in the
absence of regulation. Then, we derive the optimal regulatory policy for prices of aero-
nautical and commercial services and examine how our results might shed some light on
the debate about airport regulation. Finally, we investigate the optimal investment rule.

3.1. The Unregulated and Integrated Airport-Airline Company

Let us first consider the simple case in which the airport and the airline company are
integrated and can freely choose both the prices of aeronautical and commercial services
and the investment in the infrastructure.

The profit of the integrated firm writes as follows:

(3.1) ΠI(p, p0, e) = (1− F (p, e)) (p− c+ (p0 − c0)(1−G(p0)))− e.
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This expression contains the airline’s profit, (1−F (p, e))(p−c), and the airport’s profit net
of investment costs, (1−F (p, e))(p0−c0)(1−G(p0))−e. In the absence of regulation, the
integrated firm chooses (p, p0, e) to maximize ΠI(p, p0, e). The solution to this problem
is as follows.

Proposition 1. The unregulated and integrated airport-airline company sets prices:

pm − cpr(p
m
0 )

pm
=

1

ε(pm, em)
,(3.2)

pm0 − c0
pm

=
1

ζ(pm0 )
,(3.3)

and investment decisions solve:

−∂F

∂e
(pm, em)(pm − cpr(p

m
0 )) = 1.(3.4)

Equation (3.2) shows that the price of aeronautical services depends on the private
marginal cost of production cpr(p0). As cpr(p0) < c, it follows that pm is lower than if
no commercial services were carried out at the airport. Intuitively, the integrated firm
is willing to decrease the price of aeronautical services since this boosts the demand for
commercial services. Equation (3.3) illustrates that the integrated firm sets the standard
monopoly price for commercial services since the demand for aeronautical services plays
no role in that. Last, Equation (3.4) simply states that the marginal cost of the investment
must be equal to its marginal benefit.

3.2. Socially Optimal Regulation

Let us now consider the optimal regulation of prices of aeronautical and commercial
services and investment, still assuming that the airport and the airline are vertically
integrated. Additionally, we allow the regulator to provide public subsidies T to the
integrated structure.

Consumer surplus is given by the sum of the surplus generated by aeronautical services
and the surplus generated by commercial services, taking into account the unidirectional
complementarity between both activities. Formally, we obtain:

CS(p, p0, e) =

∫
v≥p

(v − p)f(v, e)dv + (1− F (p, e))

∫
v0≥p0

(v0 − p0)g(v0)dv0.

We can now define social welfare as the sum of consumer surplus (CS) and the profit
of the integrated structure (ΠI + T ), net of the social cost of public subsidies borne by
the consumers-taxpayers:

W (p, p0, e, T ) = CS(p, p0, e)− (1 + λ)T +ΠI(p, p0, e) + T,

where the parameter λ > 0 stands for the cost of public funds.13 The problem faced by
the regulator is to set prices (p, p0), the investment level e and the subsidy T to maximize
welfare W subject to the constraint that the integrated firm breaks even (ΠI + T ≥ 0).
The solution is given in the next proposition.

13In developed countries, this cost is estimated at about 0.3. See Oum et al. (1992).
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Proposition 2. The socially optimal prices of aeronautical and commercial services
(prb, prb0 ) and investment level erb are given by:

prb − cs(p
rb
0 )

prb
=

λ

1 + λ

1

ε(prb, erb)
,(3.5)

prb0 − c0
prb0

=
λ

1 + λ

1

ζ(prb0 )
,(3.6)

−∂F

∂e
(prb, erb)

(
prb − cs(p

rb
0 )
)
− 1

1 + λ

∫
v≥prb

∂F

∂e
(v, erb)dv = 1,(3.7)

where cs(p0) = cpr(p0) − s0(p0)
1+λ

< c is the social marginal cost of aeronautical services,

with s0(p0) =
∫
v0≥p0

(v0 − p0)g(v0)dv0.

The social marginal cost of aeronautical services cs(p0) must take into account not only
the profit but also the consumer surplus generated by commercial activities, weighted by
the social cost of public funds.14 Hence, the social marginal cost of aeronautical services
is lower than c, the marginal cost of production, but also lower than cpr(p0), the total
marginal cost of these services for the integrated firm.

In light of the above results, we are able to revisit some common wisdom on the debate
about airport regulation.

First, the prices of both services must be greater than their associated social marginal
cost. For aeronautical services, pricing at marginal cost would ignore the additional
profits and surplus that could be derived from an increase in passengers also consuming
commercial services. However, it is not optimal to price aeronautical and commercial
services exactly at their social marginal cost as the cost of public funds is positive.

Second, the price of aeronautical services does not necessarily cover the marginal cost

of production. Formally, Equation (3.5) rewrites as prb − cpr(p0) =
λ

1+λ
prb

ε(prb,erb)
− s0(p0)

1+λ
.

This shows that the margin on aeronautical services may be either positive or negative.
Intuitively, the socially optimal price of these services trades off an increase in the profit
of the integrated structure motivated by the budget constraint and a decrease in the
consumer surplus generated by aeronautical services and commercial activities. When
the demand for aeronautical services is very elastic or when the surplus generated by
commercial activities is large, it may be that prb−cpr(p0) < 0. In that case, the integrated
firm’s profit is negative absent any subsidies. This suggests that, even with a positive
cost of public funds, the regulator may want to price aeronautical services below marginal
cost and subsidize the integrated firm so as it breaks even. Notably, when commercial
services generate a high consumer surplus, the regulator is more likely to set the price of
aeronautical services below the marginal cost of production and must, therefore, provide
a higher subsidy to ensure that the integrated firm breaks even.

Third, from Proposition 2, the price-cost margins prb−cs
prb

and
prb0 −c0
prb0

depend upon the

inverse of the elasticity of aeronautical services and commercial activities, respectively.
Therefore, more competition in the airline industry increases the elasticity of demand
for aeronautical services and decreases the price-cost margin of the airline. However, the
price-cost margin of commercial activities is not affected by this change in competition

14The weighting coefficient 1/(1 + λ) simply expresses the fact that providing more profit to the
integrated firm reduces the need to use costly public funds to ensure budget-balance.
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in the airline industry. Again, this stems directly from the unidirectional externality
between aeronautical services and commercial activities. Once the consumer is in the
airport, the airport enjoys monopoly power on commercial services, regardless of the
intensity of competition between airlines.

Let us now turn on to the optimal investment level characterized by Equation (3.7). A
marginal increase in the level of investment e directly leads to an increase in the demand
for aeronautical services. Note that the first term in the left-hand side of Equation (3.7)
can be decomposed as:

−∂F

∂e
(prb, erb)

(
prb − c

)
− ∂F

∂e
(prb, erb)

(
c− cs(p

rb
0 )
)
.

When e increases, −∂F
∂e
(prb, erb)(prb − c) represents the increase of the airline’s profit

on the last unit sold whose sign is a priori ambiguous. The term −∂F
∂e
(prb, erb)(c −

cs(p
rb
0 )) captures the positive benefit of an increase in e on the consumer surplus generated

from commercial activities. Finally, 1
1+λ

∫
v≥prb

∂F
∂e
(v, erb)dv represents the positive impact

on the surplus of supra-marginal consumers, that is, consumers who would still buy
aeronautical services even if their price were to increase slightly. When the airport invests,
the mass of these supra-marginal consumers increases.

Before going further, let us note that if the regulator cannot use public subsidies to
ensure that the firm breaks even, then the optimal regulation is still given by Equations
(3.5), (3.6) and (3.7) in which the shadow cost of public funds λ is replaced by the
Lagrange multiplier associated to the break-even constraint ΠI ≥ 0. Hence, our previous
discussion continues to apply in that case.

4. Non-verifiable investments

So far, we have assumed that the level of investment e was verifiable and hence
contractible. However, the level of investment may not always be fully contractible. This
can come from intangible investment opportunities or difficulties in measuring investment
returns. In this section, we investigate how prices and investment are affected by the non-
verifiability of investments.

The main change is that the airport now chooses e to maximize its profits. This implies
that the regulator faces an additional constraint, namely the moral hazard incentive
constraint associated to investment:

e = argmax
ẽ

(1− F (p, ẽ))
(
p− cpr(p0)

)
− ẽ.

In other words, the set of feasible levels of investment is restricted to the set of e that max-
imize the airport’s profit for each value of p and p0. The first-order condition associated
to this problem writes as:

(4.1) − ∂F

∂e
(p, e)

(
p− cpr(p0))

)
= 1.

Contrary to the optimal investment rule defined by Equation (3.7) for the case of
an observable investment, the airport only perceives the private cost when choosing the
investment. This private cost ignores the social benefits on consumer surplus generated by
both increased aeronautical services and commercial activities when investment increases.
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Let µ be the Lagrange multiplier associated with the incentive constraint (4.1). When
prices are set at their Ramsey-Boiteux levels, if the following holds:

(4.2) − ∂F

∂e
(prb, erb)

(
prb − c+ (prb0 − crb0 )(1−G(prb0 ))

)
> 1,

then Ramsey-Boiteux prices as defined by Proposition 2 do not provide enough incentives
to invest in the infrastructure. Put differently, Condition (4.2) ensures that µ > 0 at the
optimum of the regulator.

The optimal regulatory policy can be easily characterized following the analysis un-
dertaken in Section 3.

Proposition 3. Suppose that the level of investment is non-verifiable and that µ > 0
(i.e., Equation (4.2) holds). The social optimum obtained by regulating both prices of
aeronautical services and commercial activities has the following properties:

- The price of aeronautical services is given by:

(4.3)
pnv − cs(p

nv
0 )

pnv
=

λ

1 + λ

1

ε(pnv, env)

(
1− µ

λ

((
∂F
∂e

)2 − ∂2F
∂e∂v

(1− F )∂F
∂e

)
(pnv, env)

)
.

The sign of
(
∂F
∂e

)2 − ∂2F
∂e∂v

is a priori ambiguous, so that the investment can move
either upward or downward with respect to the Ramsey-Boiteux level.

- The price of commercial services moves upward with respect to the Ramsey-Boiteux
price:

(4.4)
pnv0 − c0

pnv0
=

λ

1 + λ

1

ζ(pnv0 )

− µ

1 + λ

∂F
∂e
(pnv, env)

1− F (pnv, env)

( 1

ζ(pnv0 )
− pnv0 − c0

pnv0

)
>

λ

1 + λ

1

ζ(pnv0 )
.

- The optimal investment moves downward with respect to the Ramsey-Boiteux level:

(4.5) − ∂F

∂e
(pnv, env) (pnv − cs(p

nv
0 ))− 1

1 + λ

∫ v

prb

∂F

∂e
(v, erb)dv

= 1− µ

1 + λ

∂2F
∂e2

(pnv, env)
∂F
∂e
(pnv, env)

> 1.

When the investment level is non-verifiable, the airport lacks incentives to invest at
the Ramsey-Boiteux price levels because, for these prices, the airport’s margin is too low
and investing to create demand is not interesting enough. Therefore, in order to increase
the airport’s incentives to invest, the regulator sets a higher price on commercial services
so that the airport’s margin increases when investment increases. A similar logic applies
to aeronautical services, but with a twist: increasing the price of aeronautical services
increases the airport’s margin and thus reinforces the incentives to invest; however, this
also changes the composition of demand (as embodied by the term ∂2F

∂e∂v
in Equation (4.3))
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and may decrease incentives to invest if investment changes the demand in an unfavorable
way.15

5. Unregulated Monopoly vs Ramsey-Boiteux optimum:
Discussion

In our model, welfare is always higher when the airport is regulated than when it is
left unregulated. In practice, though, regulation entails some costs and may be justified
only when prices are deemed sufficiently excessive or the investment is insufficient. That
the unregulated airport charges excessive prices with respect to the social optimum is
immediate and results from the sheer monopoly market power of the airport. It is,
however, less clear that the unregulated airport always under-invests with respect to the
social optimum. Inspecting the two first-order conditions (3.4) and (3.7) shows that,
a priori, the unregulated airport may either over- or under-invest with respect to what
would be socially desirable. The reason is that the unregulated airport cares about
the impact of investment on the marginal passenger; by contrast, the social planner is
interested in the impact of investment on the infra-marginal passengers.

To illustrate, consider the following first illustration. First, we consider the case of no
shadow cost of public funds: λ = 0. Second, distributions for the services are given by
F (v, e) = v exp−αe(1−v) and G(v0) = v0/v0. The valuation for aeronautical services v is
thus distributed on [0, 1] and parameter α relates to the impact of the airport’s investment
on the demand for aeronautical services. Intuitively, as α increases, investment generates
more high-valuations passengers. The valuation for commercial services is distributed
according to the uniform distribution on [0, v0]. In the sequel, v0 is interpreted as the
relative importance of commercial services relative to aeronautical services.

Let us start by comparing the prices of the services. It comes immediately that
prb0 = c0 < pm0 and prb = c− s0(c0) = c− (v0 − c0)

2/(2v0) < pm. Since the shadow cost of
public funds is nil, the regulator prices commercial services at marginal cost. Since aero-
nautical services create a positive externality on commercial services, the regulator prices
aeronautical services below their marginal cost; that price may even become negative as
commercial services bring higher surplus to passengers.

As commercial services become more important (that is, as v0 increases), the unreg-
ulated airport reduces the price of aeronautical services. However, that price decrease
is sufficient neither in level nor in structure with respect to the Ramsey optimum. Put
differently, although the development of commercial services provides the airport with the
incentives to lower the price of aeronautical services, there remains a scope for regulation
because such price reduction is insufficient. Moreover, as v0 increases, the unregulated
airport increases the price of commercial services. Summarizing, the development of com-
mercial services changes the exercise of market power by airports but regulation is still
required to curb the unregulated airport’s market power.

The next figures compute the prices of aeronautical and commercial services as func-
tions of the development of commercial services.16

15When ∂2F
∂e∂v ≤ 0, increasing e implies that the demand for aeronautical services becomes steeper.

This effect has to be sufficiently strong to lead to a lower price of aeronautical services.
16The values of parameters we use are: λ = 0, α = 15, c = .1, c0 = .1. Simulations are performed

using Mathematica. Files are available on the authors’ webpages.
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Figure 1: Price of aeronautical services in the Ramsey-Boiteux benchmark (prb), the
unregulated monopoly case (pm), and when investment is non-verifiable (pnv), as functions
of the importance of commercial services (v0).
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Figure 2: Price of commercial services in the Ramsey-Boiteux benchmark (prb0 ), the
unregulated monopoly case (pm0 ), and when investment is non-verifiable (pnv0 ), as functions
of the importance of commercial services (v0).

Next, consider the investment level. The next figure presents a numerical simulation
of the investment level in the regulated and the unregulated cases. The unregulated air-
port does not systematically under-invest with respect to the socially optimal outcome.
It turns out that when commercial services are sufficiently important, the unregulated
airport over-invests with respect to what would be socially desirable. Intuitively, the
unregulated airport tends to over-invest when it has the possibility to exert a high mar-
ket power on the commercial and aeronautical services. Over-investment and excessive
market power go hand-in-hand.
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Figure 3: Investment level in the Ramsey-Boiteux benchmark (erb), the unregulated
monopoly case (em), and when investment is non-verifiable (env), as functions of the
importance of commercial services (v0).

Another question we want to address is how much welfare is lost by not regulating
the airport. In the next figure, we compute welfare in the Ramsey-Boiteux and the
unregulated benchmarks, and express the percentage of Ramsey-Boiteux welfare that is
reached if the airport is left unregulated. The simulation suggests that as commercial
services become more important, the need for regulation is reinforced. Even though the
unregulated airport lowers the price of aeronautical services, it also exercises a substantial
market power on commercial services and tend to over-invest when commercial services
become more important relative to aeronautical services.
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0.1
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0.5 W rb −Wm

Wm

W nv −Wm
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Figure 4: Welfare gain associated to regulation when investment is verifiable and when
it is not, as functions of the importance of commercial services (v0).

Last, let us briefly consider how the non-verifiability of the investment impacts the
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comparison between regulation and no regulation. As expected, non-verifiability leads
to a lower investment and higher prices with respect to the Ramsey-Boiteux benchmark.
Perhaps more strikingly is the fact that the welfare gain associated to regulation becomes
much smaller. This shows that the informational cost of regulation may severely impact
the efficiency of regulation.

6. Implementation

We now turn to the question of implementing the optimal regulation. We investigate
the traditional use of price-cap regulation and show that it fails to provide incentives for
implementing the optimal level of investment. We then show that an additional policy
must supplement the price-cap regulation. We also discuss the dual-till versus single-till
approaches.

6.1. Failures of Price-cap Regulations

In a price-cap regulation, the airport is free to choose any combinations of prices and
level of investment (p, p0, e) as long as the following condition is satisfied:

w p+ w0 p0 ≤ p,(6.1)

where the coefficients (w,w0) and the cap p are chosen by the regulator. Hence, the
integrated firm faces the following optimization problem:

max
(p,p0,e)

(1− F (p, e)) (p− c+ (p0 − c0)(1−G(p0)))− e

s.t. (6.1).

Observe that the price-cap does not constrain the investment level. Hence, the choice
of investment is still guided by the same condition as in the unregulated case, namely
Equation (3.4). Therefore, even if the regulation with a price-cap may lead the firm to
choose a correct structure of prices, that regulation certainly fails to simultaneously bring
the investment to its socially optimal level.17 Intuitively, a price-cap regulation alone is
not constraining-enough when the integrated firm undertakes non-price decision.

6.2. Price-Cap Augmented with a Subsidy Scheme

To implement the optimal regulation of investment, we propose the following policy:

- a price-cap (w,w0, p) on aeronautical and commercial services;

- a subsidy scheme for the investment, according to which the firm receives s per unit
of investment.

With such regulation, the integrated firm’s profit writes as follows:

(1− F (p, e)) (p− c+ (p0 − c0)(1−G(p0)))− e+ s e.

17Observe that a price-cap regulation alone certainly departs from the Ramsey-Boiteux prices, for
prices of commercial and aeronautical services impact the firm’s incentives to invest.
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The integrated firm determines the prices of both services (p, p0) and the investment level
e so as to maximize its profit while satisfying the price-cap constraint:

w p+ w0 p0 ≤ p.

Next proposition shows that with an adequate choice of the weights (w,w0) and the
cap p as well as the unit subsidy s, the regulator can indeed implement the socially
optimal regulation.

Proposition 4. The socially optimal regulation can be implemented by combining a price-
cap regulation and a subsidy-penalty scheme on investment.

The price-cap is given by:

w∗ = 1− F (prb, erb) + s0(p
rb
0 )f(p

rb, erb),

w∗
0 =

(
1− F (prb, erb)

)(
1−G(prb0 )

)
,

p∗ = w∗prb + w∗
0p

rb
0 .

The unit subsidy is given by:

s∗ = −∂F

∂e
(prb, erb)

s0(p
rb
0 )

1 + λ
− 1

1 + λ

∫ v

prb

∂F

∂e
(v, erb)dv > 0.

Intuitively, the regulator has now enough instruments to implement the socially opti-
mal regulatory policy. Indeed, given an investment level, a price-cap allows to implement
the corresponding Ramsey-Boiteux prices. Given some prices for aeronautical and com-
mercial services, a subsidy scheme provides the integrated firm with the socially optimal
incentives to invest in the infrastructure.

This intuition is made formal in the Appendix. Here, we simply note that the so-
regulated integrated firm chooses an investment level such that:

−∂F

∂e
(p, e) (p− c+ (p0 − c0)(1−G(p0)))− s = 1.

Hence, when the unit subsidy is s = s∗, and when prices are at the corresponding Ramsey-
Boiteux levels, the integrated firm chooses the socially optimal level of investment. There
is a need to subsidize the firm because, when it is regulated via a cap on the prices of its
services, the firm tends to under-invest with respect to the social optimum. Hence, any
price-cap regulation must go along with a subsidy scheme on invested capital. Omitting
one dimension of this policy affects prices and investment and leads to a sub-optimal
outcome.

6.3. Single-Till vs. Dual-Till Regulation

Any form of regulation requires non-negativity of the airport’s revenues. As revenues
from commercial activities are now significant for modern airports, whether these revenues
should be included into the price-cap formula has been a hotly debated question. This
question is commonly referred to as the single-till versus the dual-till approach. Under
a single-till approach, commercial revenues are included into the airport’s total revenues
to compute the price-cap formula. Under a dual-till approach, they are not. Single-till
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and dual-till approaches have been discussed in the literature and the conclusions differ
from one paper to another. For instance, Beesley (1999) is one of the first to attack the
single-till approach but he also recognizes the difficulties to adopt a dual-till approach
in practice. By contrast, Starkie (2001) supports the dual-till approach, arguing that it
could alleviate distortions on aeronautical prices and on investment incentives induced
by the single-till approach.18

We now address this question within our framework, assuming no lump-sum transfers
from the regulator.19 We find that both approaches are actually equivalent and the
distinction between them is thus irrelevant.

Observe that we have implicitly assumed so far a single-till regime for the price-
cap regulation. Let us now assume a dual-till regime wherein revenues generated by
commercial activities must cover a fraction α (α ∈ [0, 1]) of the investment (e). This
leads to a first budget constraint on commercial activities:

(6.2) (1− F (p, e))(1−G(p0))(p0 − c0)− αe ≥ 0.

Likewise, revenues generated by aeronautical services must cover the remaining invest-
ment cost (1− α)e, which leads to a second budget constraint:

(6.3) (1− F (p, e))(p− c)− (1− α)e ≥ 0.

The problem of the regulator is then to maximize social welfare subject to the two budget
constraints (6.2) and (6.3).20 In the dual-till approach, the regulator is able to choose
how to allocate the investment cost on each budget constraint. We obtain the following
result.

Proposition 5. The optimal regulation of aeronautical services, commercial activities
and investment under a dual-till approach is identical to the one obtained in Proposi-
tion 2.21

Intuitively, the allocation of the investment cost will depend upon which constraint is
“more likely” to bind, i.e., the constraint that is the hardest to satisfy. At the optimum,
the allocation of the investment cost must be such that the opportunity cost of allocating
one additional unit of investment is the same for the two budget constraints. But when
both constraints have the same opportunity cost (i.e., the same value for the associated
Lagrange multiplier), then (6.2) and (6.3) are equivalent to the integrated firm’s break-
even constraint. Intuitively, the optimal regulation does not depend upon the choice of
a single-till regime or a dual-till regime.

It is however possible that there exists no interior value of α that allows to equalize the
shadow cost of the two budget constraints in a dual-till regime. This arises for instance

18Oum et al. (2004) are in line with Starkie (2001), while Lu and Pagliari (2004) and Czerny (2006)
argue that the single-till approach dominates the dual-till one. See Czerny (2006) for a more detailed
discussion.

19If the regulator could use transfers, then it is immediate to show that dual-till and single-till would
always be equivalent, whatever the sharing of the financing of the investment cost.

20Constraints (6.2) and (6.3) ensure that the integrated firm earns a nonnegative profit.
21As explained in Section 3, with no transfers, the Ramsey-Boiteux outcome is similar to the one

detailed in Proposition 2, except that the exogenous shadow cost of public funds is replaced by the
endogenous Lagrange multiplier associated to the industry’s break even constraint.
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when the margin on one of the services is so low that all the burden of investment financing
has to be put on the other more profitable service. In that case, a dual-till regime leads
to additional distortions and is dominated by a single till regime.

7. Vertical separation

We now relax the assumption that the airport and the airline are vertically integrated.
This airport-airline relationship is now run by a contract between the two entities. The
airport provides aeronautical services to the airline (landing rights, aircraft parking areas,
airport taxiways, passenger facilities) and the airline is responsible for setting prices
charged to consumers for transportation services. Investment decisions, however, are still
carried out by the airport. We assume that the aeronautical services supplied by the
airport and those supplied by the airline company are one-to-one complements.

We investigate how the optimal regulation is modified for two types of contracts
between the airport and the airline. In both cases, the airport offers a unit price for
aeronautical services. But the airport may or may not be able to also use a fixed fee
for the services supplied to the airline company. For simplicity, we also assume that
the airport has all the bargaining power in the relationship, i.e., the airport makes a
take-it-or-leave-it offer to the airline company.22

7.1. Fixed Access Charge

First, we consider that the airport can set both a fixed access charge A and a unit price
w for aeronautical services. When the airline sets p, demand for aeronautical services is
1−F (p, e) so that it has to buy the same quantity of aeronautical services to the airport
at unit price w. Formally, the airline solves:

max
p

(p− w − c)(1− F (p, e))− A.

Notice that the price p set by the airline depends upon the level of investment e chosen
by the airport. The first-order condition of this problem writes as follows:

(7.1) p = w + c+
1− F (p, e)

f(p, e)
.

Under our assumptions on distribution F , there is a one-to-one correspondence between
the airport’s unit price w and the airline company’s price for aeronautical services p. It
follows that choosing the level of investment e and the unit price w uniquely determines
the price to passengers p set by the airline for aeronautical services. Let P (w, e) denote
the solution to the airline’s first-order condition (7.1).

Once the unit price w has been set, the airport must decide the level of the fixed
access charge A. As the airport has all the bargaining power, the fixed access charge is

22The assumption that the airport has all the bargaining power can be justified in environments where
airlines are engaged in fierce competition to access to the airport facilities. Moreover, airlines may have
limited access to close substitutes, although this idea may not hold for low-cost carriers. Major airports
may also have significant market power over dominant carriers due to the non-substitutability and to
the cost of moving away from major hubs. See Gillen et al. (1988) and Oum and Fu (2009) for detailed
discussions.
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chosen so as to extract all the profit of the airline, that is:

(7.2) A = (P (w, e)− w − c)(1− F (P (w, e), e)) =
(1− F (P (w, e), e))2

f(P (w, e), e)
.

From Equation (7.2), and assuming that the airport can receive a lump-sum subsidy T
from the regulator, the airport’s profit writes as:(

1− F (P (w, e), e)
)(
P (w, e)− c+ (p0 − c0)(1−G(p0))

)
− e+ T.

This profit is equivalent to the integrated structure’s profits ΠI(P (w, e), p0, e) + T (see
Equation (3.1)). The only difference is that p is replaced by P (w, e), the price chosen by
the airline for a given unit price w and a level of investment e.

As in Section 3, assume that the regulator can choose the level of investment e and
the price of commercial activities p0. It is not anymore possible to directly choose the
final price of aeronautical service p, but if we assume that the regulator can choose the
unit price w charged by the airport, then the following holds.

Proposition 6. Assume the airport and the airline company are separated. Assume the
airport can charge the airline both a fixed charge A and a unit price w for the its aero-
nautical services. Then, optimal regulation leads to the same outcome as in Proposition
2.

Therefore, the optimal regulation is unchanged when contracts between the airport
and the airline allow for both a unit price and a fixed access charge. As in the two-part
tariff literature, a contract of the type (A,w) allows the airport to extract all the profit of
the airline withA and w is set to maximize the profit of the replicated integrated structure.
As we will see below, the fixed access charge is crucial for the result of Proposition 6.

7.2. No Fixed Access Charge

Assume now that the airport cannot use a fixed access charge A. In that case, the unit
price w plays two roles: (i) it collects profit on the airline for each unit of aeronautical
services provided and (ii) it determines the final price p and therefore how many units
are eventually sold. Unfortunately, this distorts the prices of both services as well as the
investment level.

The objective of the airline is the same as in the case with a fixed access charge and
P (w, e) is still set according to Equation (7.1). The airport, however, cannot extract the
profit of the airline through a fixed charge and must at least break even, that is:

(7.3)
(
1− F (P (w, e), e)

)(
w + (p0 − c0)(1−G(p0))

)
− e+ T ≥ 0.

Due to the absence of fixed access charge, the only available tools to satisfy the previous
break-even condition are the unit price w and the level of investment e. We then obtain
the following result.

Proposition 7. Assume the airport and the airline company are separated. Assume
the airport can only charge the airline a unit price w for the its aeronautical services.
Then, the optimal regulation of aeronautical services and commercial activities leads to
the following prices (po, po0) and level of investment eo:
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- The price of aeronautical services moves upward with respect to the Ramsey-Boiteux
price:

(7.4)
po − cs(p

o
0)

po
=

λ

1 + λ

1

ε(po, eo)

(
1 +

1
∂P
∂w

(wo, eo)

)
>

λ

1 + λ

1

ε(po, eo)
,

- The price of commercial services coincides with the Ramsey-Boiteux price:

(7.5)
po0 − c0

po0
=

λ

1 + λ

1

ζ(po0)
> 0.

- The optimal level of investment eo moves downward with respect to the Ramsey-
Boiteux level:

(7.6) −
(
∂P

∂e
(wo, eo)f(po, eo) +

∂F

∂e
(po, eo)

)(
po − cs(p

o
0)−

λ

1 + λ

1− F (po, eo)

f(po, eo)

)
− 1

1 + λ

∫ v

po

∂F

∂e
(v, eo)dv = 1

The airport cannot extract the airline company’s profit through a fixed access charge.
The airport must therefore use the unit price w as an instrument to satisfy the break-
even condition (7.3). The unit price is distorted upward and the price of aeronautical
services P (w, e) set by the airline increases above its previous level. This effect is the
standard double marginalization problem. In the absence of a fixed access charge, the
vertical relationship between the airport and the airline raises the cost payed by the
airline to access the airport facilities. The airline passes through this increase to the
price of aeronautical services to consumers.

The optimal regulation rule for the investment also differs from the integrated struc-
ture case. Intuitively, reducing the investment level allows to lower the price charged by
the airline company and somewhat alleviates the double marginalization issue illustrated
above. Moreover, under vertical separation without access charge, the airline’s profits do
not contribute to the balancing of the budget of the airport; hence, they have a smaller
social value, which also calls for reducing the airport’s investment level.

Last, the price of commercial activities p0 is unchanged and stays at the Ramsey-
Boiteux price level (po0 = prbr ).

Overall, that the airport cannot use a fixed charge in its relationship with the airline
company leads to socially costly distortions. Airports should thus be allowed to use a
sufficiently rich set of pricing instruments in their contractual relationships with airlines.

8. Concluding remarks

Modern airports are often privately-owned entities in charge of several activities. Be-
sides their core business, aeronautical services provided to airline companies, airports also
offer commercial services to passengers. The magnitude of revenues generated by com-
mercial services and the captivity of passengers once they are at the airport has raised the
question of extending the regulation to these activities in addition to that of aeronautical
services.
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The optimal regulation encompasses the prices of aeronautical and commercial ser-
vices as well as investment decisions. Optimal prices follow a Ramsey-Boiteux pricing
rule and, therefore, can be implemented with a price-cap that applies on both services.
However, that price-cap must be augmented with a specific regulation that controls the
airport’s incentives to under-invest. This is the role of the subsidy-penalty scheme, which
prevents any under- or over-investment in the infrastructure. We also show that the op-
timal regulation is unchanged in a dual-till regime in which the regulator can choose the
fraction of investments that must be covered by the different sources of revenues. Last,
we investigate the role of two frictions: a friction in the vertical relationship between the
airport and the airline, which leads to a double marginalization phenomenon; an informa-
tional friction in the relationship between the regulator and the airport, when the former
does not perfectly observe the investment undertaken by the latter.

Our analysis could be extended in various directions. Although competition between
airlines could be modeled in reduced form as a change in the elasticity of the demand
for transport services,23 it would be interesting to consider imperfect competition with
strategic interactions between airline companies. Additional distortions may then emerge
in the optimal regulation. In a similar vein, not all airports have a monopoly market
power. Whether competition between airports is a substitute for regulation remains an
open question, especially in contexts where airports are multi-product firms. All these
extensions are left for future research.

References

ACI (2017): “ACI Economics Report,” https://store.aci.aero/product/airport-
economics-report-2017.

Averch, H. and L. L. Johnson (1962): “Behavior of the Firm Under Regulatory
Constraint,” The American Economic Review, 52, 1052–1069.

Beesley, M. E. (1999): “Airport Regulation,” in Regulating Utilities: a New Era?, ed.
by M. E. Beesley, Institute of Economic Affairs, London, 81–105.

Czerny, A. I. (2006): “Price-cap Regulation of Airports: Single-till Versus Dual-till,”
Journal of Regulatory Economics, 30, 85–97.

Czerny, A. I., Z. Shi, and A. Zhang (2016): “Can Market Power be Controlled by
Regulation of Core Prices Alone? An Empirical Analysis of Airport Demand and Car
Rental Price,” Transportation Research Part A: Policy and Practice, 91, 260 – 272.

Fu, X., W. Homsombat, and T. H. Oum (2011): “Airport-Airline Vertical Rela-
tionships, their Effects and Regulatory Policy Implications,” Journal of Air Transport
Management, 17, 347–353.

Gillen, D. W., T. H. Oum, and M. W. Tretheway (1988): “Airport Pricing
Policies: an Application to Canadian Airports,” Journal of the Transportation Research
Forum, 29, 28–34.

Hooper, P. (2002): “Privatization of Airports in Asia,” Journal of Air Transport Man-
agement, 8, 289–300.

23See the discussion in footnote 12.



How to Regulate Airports? 21

Iossa, E. and D. Martimort (2011): “The Theory of Incentives Applied to the Trans-
port Sector,” in A Handbook of Transport Economics, ed. by A. de Palma, R. Lindsey,
E. Quinet, and R. Vickerman, Edward Elgar Publishing, Chapters, chap. 29.

Ivaldi, M., S. Sokullu, and T. Toru (2015): “Airport Prices in a Two-sided Market
Setting: Major US airports,” TSE Working Paper, n 15-587.

Kunz, M. and H. Niemeier (2000): “Regulating Airports: Some Lessons from the UK
and Germany,” in 4th Air Transport Research Group Conference, Amsterdam.

Lu, C.-C. and R. I. Pagliari (2004): “Evaluating the Potential Impact of Alterna-
tive Airport Pricing Approaches on Social Welfare,” Transportation Research Part E:
Logistics and Transportation Review, 40, 1–17.

Malavolti, E. (2016): “Single Till or Dual Till at Airports: a Two-Sided Market
Analysis,” Transportation Research Procedia, 14, 3696–3703.

Malavolti, E. and F. Marty (2017): “State Aids Granted by Regional Airports: a
Two-Sided Market Analysis,” Transportation Research Procedia, 25, 30–40.

Oum, T. H., N. Adler, and C. Yu (2006): “Privatization, Corporatization, Own-
ership Forms and their Effects on the Performance of the World’s Major Airports,”
Journal of Air Transport Management, 12, 109–121.

Oum, T. H. and X. Fu (2009): “Impacts of Airports on Airline Competition,” in
Competitive Interaction between Airports, Airlines and High-Speed Rail, Forum Inter-
national des Transports, 31–65.

Oum, T. H., W. G. Waters, and J.-S. Yong (1992): “Concepts of Price Elasticities
of Transport Demand and Recent Empirical Estimates: an Interpretative Survey,”
Journal of Transport Economics and Policy, 26, 139–154.

Oum, T. H., A. Zhang, and Y. Zhang (2004): “Alternative Forms of Economic Reg-
ulation and their Efficiency Implications for Airports,” Journal of Transport Economics
and Policy (JTEP), 38, 217–246.

Reynolds, P., K. Sean, B. Veronese, and N. von Hinten Reed (2018): “Ef-
fective Regulation of Airport Market Power,” A report for Airlines for Europe and
IATA. https://www.iata.org/contentassets/4eae6e82b7b948b58370eb6413bd8d88/ceg-
airport-charges-report.pdf.

Starkie, D. (2001): “Reforming UK Airport Regulation,” Journal of Transport Eco-
nomics and Policy (JTEP), 35, 119–135.

Tretheway, M. (2001): “Airport Ownership, Management and Price Regulation,”
Report to the Canadian Transportation Act Review Committee, Ottawa.

Yang, H. and A. Zhang (2011): “Price-cap Regulation of Congested Airports,” Jour-
nal of Regulatory Economics, 39, 293–312.

Yang, H., A. Zhang, and X. Fu (2015): “Determinants of Airport–Airline Verti-
cal Arrangements: Analytical Results and Empirical Evidence,” Journal of Transport
Economics and Policy (JTEP), 49, 438–453.



22 D. Martimort, G. Pommey and J. Pouyet

Zhang, A., X. Fu, and H. G. Yang (2010): “Revenue Sharing with Multiple Airlines
and Airports,” Transportation Research Part B: Methodological, 44, 944–959.

Zhang, A. and Y. Zhang (1997): “Concession Revenue and Optimal Airport Pricing,”
Transportation Research Part E: Logistics and Transportation Review, 33, 287–296.

——— (2003): “Airport Charges and Capacity Expansion: Effects of Concessions and
Privatization,” Journal of Urban Economics, 53, 54–75.

Appendix

Proof of Proposition 1. The unregulated airport chooses prices and the investment
level to maximize its profit. Formally, the airport solves:

max
(p,p0,e)

ΠI(p, p0, e) = (1− F (p, e)) (p− c+ (p0 − c0)(1−G(p0)))− e.

First-order conditions of this problem write as:

−f(p, e)
(
p− c+ (p0 − c0)(1−G(p0))

)
+ 1− F (p, e) = 0,

(1− F (p, e))
(
1−G(p0)− (p0 − c0)g(p0)

)
= 0,

−∂F

∂e
(p, e)

(
p− c+ (p0 − c0)(1−G(p0))

)
− 1 = 0.

Rearranging each equation and using cpr(p0) = c − (p0 − c0)(1 − G(p0)) in the first and
third equations, we obtain:

p− cpr(p0) =
1− F (p, e)

f(p, e)
,

p0 − c0 =
1−G(p0)

g(p0)
,

−∂F

∂e
(p, e)

(
p− cpr(p0)

)
= 1.

Dividing the first two equations by p and p0, respectively, gives Equations (3.2) and (3.3).
The last equation already corresponds to Equation (3.4). ■

Proof of Proposition 2. The regulator aims to maximize the social welfare subject
to the nonnegativity of the integrated structure profit. This problem formally writes as:

max
(p,p0,e,T )

W (p, p0, e, T ) = CS(p, p0, e)− (1 + λ)T +ΠI(p, p0, e) + T

s.t. ΠI(p, p0, e) + T ≥ 0.

Notice that the public subsidy T enters the problem linearly and negatively affects the
regulator’s objective function. The regulator therefore chooses T as low as possible until
the nonnegativity constraint binds, i.e., T = −ΠI(p, p0, e). The problem now rewrites as:

max
(p,p0,e)

CS(p, p0, e) + (1 + λ)ΠI(p, p0, e).



How to Regulate Airports? 23

First-order conditions with respect to p and p0 write:

−(1− F (p, e))− f(p, e)s0(p0) + (1 + λ)(−f(p, e)(p− cpr(p0)) + 1− F (p, e)) = 0,

−(1− F (p, e))(1−G(p0)) + (1 + λ)(1− F (p, e))(1−G(p0)− g(p0)(p0 − c0)) = 0,

where recall that s0(p0) =
∫
v0≥p0

(v0 − p0)dG(v0) and cpr(p0) = c − (p0 − c0)(1 − G(p0)).

Rearranging and using the definition of the social marginal cost, cs(p0) = cpr(p0)− s0(p0)
1+λ

,
we obtain:

p− cs(p0) =
λ

1 + λ

1− F (p, e)

f(p, e)
,

p0 − c0 =
λ

1 + λ

1−G(p0)

g(p0)
.

Dividing the first equation by p and the second one by p0 yields Equations (3.5) and
(3.6), respectively.

Consider now the optimal choice of investment. The first-order condition of the reg-
ulator’s problem with respect to e writes as:∫ v

p

(v − p)
∂f

∂e
(v, e)dv − ∂F

∂e
(v, e)s0(p0) + (1 + λ)

(
− ∂F

∂e
(v, e)(p− cpr(p0))− 1

)
= 0.

Integrating by part the first term of this equation yields:∫ v

p

(v − p)
∂f

∂e
(v, e)dv =

[
(v − p)

∂F

∂e
(v, e)

]v
p
−
∫ v

p

∂F

∂e
(v, e)dv.

Notice that for F (v, e) to be a well-defined cumulative distribution function with bounded
support on [0, v], we must have that ∂F

∂e
(v, e) = 0 since F (v, e) = 1 for all e. Hence, we

obtain: ∫ v

p

(v − p)
∂f

∂e
(v, e)dv = −

∫ v

p

∂F

∂e
(v, e)dv.

Plugging this result in the first-order condition with respect to e, dividing both sides by
(1 + λ), and rearranging yields:

−∂F

∂e
(v, e)

(
p− cpr(p0) +

1

1 + λ
s0(p0)

)
− 1

1 + λ

∫ v

p

∂F

∂e
(v, e)dv = 1.

Finally, using the definition of the social marginal cost, cs(p0) = cpr(p0)− s0(p0)
1+λ

, we obtain
Equation (3.7). ■

Proof of Proposition 3. The regulator’s problem writes as follows:

max
(p,p0,e,T )

W (p, p0, e, T ) = CS(p, p0, e)− (1 + λ)T +ΠI(p, p0, e) + T

s.t. ΠI(p, p0, e) + T ≥ 0

− ∂F

∂e
(p, e)

(
p− c+ (p0 − c0)(1−G(p0))

)
= 1,
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where the second constraint is Equation (4.1), the airport’s incentive constraint. The
first constraint is binding, i.e., T = −ΠI(p, p0, e) and the problem rewrites as follows:

max
(p,p0,e)

W (p, p0, e, T ) = CS(p, p0, e) + (1 + λ)ΠI(p, p0, e)

s.t. − ∂F

∂e
(p, e)

(
p− c+ (p0 − c0)(1−G(p0))

)
= 1.

Let µ ≥ 0 denote the Kuhn-Tucker multiplier associated with the incentive constraint.
The first-order condition with respect to p writes as follows:

−(1 + λ)f(p, e)(p− cs(p0)) + λ(1− F (p, e))

+ µ
(
− ∂F

∂e
(p, e)− ∂2F

∂e∂p
(p, e)(p− cpr(p0))

)
= 0.

Using the incentive constraint, we have p − cpr(p0) = −1/∂F
∂e
(p, e). Plugging this last

equality into the above first-order condition, rearranging and dividing both sides by p
gives Equation (4.3).

The first-order condition with respect to p0 is given by:

−(1 + λ)g(p0)(p0 − c0)(1− F (p, e)) + λ(1− F (p, e))(1−G(p0))

+ µ
(
− ∂F

∂e
(p, e)(1−G(p0)− g(p0)(p0 − c0))

)
= 0.

Solving the above equation for p0 − c0 and diving both sides by p0 immediately gives
Equation (4.4).

Finally, the first-order condition with respect to e writes as follows:

−
∫ v

p

∂F

∂e
(v, e)dv − (1 + λ)

∂F

∂e
(p, e)(p− cs(p0)) + µ

(
− ∂2F

∂e2
(p, e)(p− cpr(p0))

)
= 1 + λ,

where the first term is obtained by integration by parts as in the proof of Proposition
2. Using once again the incentive constraint, we have that p − cpr(p0) = −1/∂F

∂e
(p, e).

Plugging this expression into the first-order condition with respect to e and rearranging
gives Equation (4.5). ■

Proof of Proposition 4. Suppose that the regulator chooses w∗, w∗
0, p

∗, e∗ and s∗ as
specified in Proposition 4. Then, the airport chooses p, p0 and e to solve:

max
(p,p0,e)

ΠI(p, p0, e) = (1− F (p, e)) (p− c+ (p0 − c0)(1−G(p0)))− e+ s∗(e∗ − e)

s.t. w∗p+ w∗
0p0 ≤ p∗.

Let µ ≥ 0 denote the Kuhn-Tucker multiplier associated with the price-cap constraint.
First-order conditions with respect to p, p0 and e write as follows:

−f(p, e)(p− c+ (p0 − c0)(1−G(p0))) + 1− F (p, e)− µw∗ = 0,

(1− F (p, e))(1−G(p0)− (p0 − c0)g(p0))− µw∗
0 = 0,

−∂F

∂e
(p, e) (p− c+ (p0 − c0)(1−G(p0)))− 1− s∗ = 0.
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Using cpr(p0) = c− (p0 − c0)(1−G(p0)) and rearranging, those equations rewrite as:

p− cpr(p0)

p
=

1

ε(p, e)
− µw∗

pf(p, e)
,(8.1)

p0 − c0
p0

=
1

ζ(p0)
− µw∗

0

(1− F (p, e))g(p0)p0
,(8.2)

−∂F

∂e
(p, e)(p− cpr(p0))− s∗ = 1.(8.3)

We now prove that (prb, prb0 , e
rb) as defined in Proposition 2 is a solution to the maximiza-

tion problem of the airport, that is, it satisfies Equations (8.1), (8.2) and (8.3) together
with the price-cap constraint.

Therefore, assume that (p, p0, e) = (prb, prb0 , e
rb). First, it is immediate that the price-

cap constraint is satisfied and is binding as by definition p∗ = w∗prb + w∗
0p

rb
0 . Second,

evaluating (8.2) at (prb, prb0 , e
rb) yields:

prb0 − c0
prb0

=
1

ζ(prb0 )
− µw∗

0

(1− F (prb, erb))g(prb0 )p
rb
0

=
λ

1 + λ

1

ζ(prb0 )
,

where the second equality directly stems from the Ramsey-Boiteux price of commercial
activities defined in Equation (3.6). Solving this Equation for µ and using w∗

0 =
(
1 −

F (prb, erb)
)(
1−G(prb0 )

)
gives:

µ =
1

1 + λ

1

ζ(prb0 )

(1− F (prb, erb))g(prb0 )p
rb
0

w∗
0

=
1

1 + λ

1−G(prb0 )

g(prb0 )p
rb
0

(1− F (prb, erb))g(prb0 )p
rb
0

(1− F (prb, erb)(1−G(prb0 ))

=
1

1 + λ
.

The Kuhn-Tucker multiplier µ = 1/(1 + λ) > 0 is well-defined and strictly positive, i.e.,
the constraint must indeed be binding. Replacing µ and w∗ by their value in Equation
(8.1) evaluated at (prb, prb0 , e

rb) yields:

prb − cpr(p
rb
0 )

prb
=

1

ε(prb, erb)
− 1

1 + λ

1− F (prb, erb) + s0(p
rb
0 )f(p

rb, erb)

prbf(prb, erb)
,

or, equivalently:

prb −
(
cpr(p

rb
0 )− s0(prb0 )

1+λ

)
prb

=
λ

1 + λ

1

ε(prb, erb)
.

Using the definition of the social marginal cost, cs(p
rb
0 ) = cpr(p

rb
0 ) − s0(prb0 )

1+λ
, the above

equation directly corresponds to Equation (3.5).
Finally, evaluating Equation (8.3) at (prb, prb0 , e

rb) and replacing s∗ by its value gives:

−∂F

∂e
(prb, erb)(prb − cpr(p

rb
0 ))−

∂F

∂e
(prb, erb)

s0(p0)

1 + λ
− 1

1 + λ

∫ v

prb

∂F

∂e
(v, erb)dv = 1,
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which is equivalent to:

−∂F

∂e
(prb, erb)(prb − cs(p

rb
0 ))−

1

1 + λ

∫ v

prb

∂F

∂e
(v, erb)dv = 1.

This last equation exactly corresponds to Equation (8.3).
Hence, the vector (prb, prb0 , e

rb) satisfies the first-order conditions of the airport prob-
lem – Equations (8.1), (8.2) and (8.3) – as well as the price-cap constraint. We can
conclude that the choice of w∗, w∗

0, p
∗, e∗ and s∗ as specified in Proposition 4 successfully

implements the optimal regulation scheme (prb, prb0 , e
rb). ■

Proof of Proposition 5. The regulator maximizes the sum of consumer surplus and
and the profit of the integrated structure subject to the nonnegativity constraints on
revenues generated by aeronautical and commercial services, respectively. The regula-
tor must now choose how to allocate total investment costs between the two sources of
revenue. Formally, the regulator solves:

max
(p,p0,e,α)

CS(p, p0, e) + ΠI(p, p0, e)

s.t. (1− F (p, e))(1−G(p0))(p0 − c0)− αe ≥ 0

(1− F (p, e))(p− c)− (1− α)e ≥ 0.

Let λ1 and λ2 denote the Lagrange multipliers associated to the first and the second
constraints respectively. Optimizing with respect to α leads to λ1 = λ2 ≡ λ.

The regulator’s problem can thus be rewritten as:

max
(p,p0,e)

CS(p, p0, e) + (1 + λ)ΠI(p, p0, e).

This last optimization problem exactly corresponds to the regulator’s problem to derive
the socially optimal regulation in Proposition 2 (with no transfers). The solution is
therefore the same as in Proposition 2.

The previous reasoning requires that there exists α∗ ∈ [0, 1] such that both constraints
are binding simultaneously at the Ramsey-Boiteux outcome, or

(1− F (prb, erb))
(
(1−G(prb0 )(p

rb
0 − c0)− (prb − c))

)
= erb(2α∗ − 1).

When this is not the case, all the burden of the financing of the investment is put on
either the aeronautical service (α∗ = 0) or on the commercial service (α∗ = 1). The
outcome in a dual-till regime does no longer coincide with the Ramsey-Boiteux outcome
and a dual-till regime is dominated by a single-till one. ■

Proof of Proposition 6. The regulator’s problem still consists in maximizing the sum
of consumer surplus and the profit of the airport subject to nonnegativity of the latter.
However, the profit of the airport is now given by:

ΠA(P (w, e), p0, e, T ) =
(
1− F (P (w, e), e)

)(
P (w, e)− c+ (p0 − c0)(1−G(p0))

)
− e+ T,

where P (w, e) is chosen by the airline according to Equation (7.1).
Therefore, the regulator cannot directly determine the price of aeronautical services
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P (w, e) and instead solves:

max
(w,p0,e,T )

W (P (w, e), p0, e, T ) = CS(P (w, e), p0, e)− (1 + λ)T +ΠA(P (w, e), p0, e) + T

s.t. ΠA(P (w, e), p0, e) + T ≥ 0.

It is immediate that the constraint is binding, i.e., T = −ΠA(P (w, e), p0, e) such that the
regulator’s problem rewrites as:

max
(w,p0,e)

CS(P (w, e), p0, e) + (1 + λ)ΠA(P (w, e), p0, e)

From Proposition 2, we know that a solution to this problem is P (·) = prb, p0 = prb0 and
e = erb. To prove our result, we must show that when the regulator sets p0 = prb0 and e =
erb there exists a wrb such that the airline chooses the aeronautical price P (wrb, erb) = prb

at its socially optimal value.
To this end, suppose that the regulator sets the price of commercial services and the

investment level at their Ramsey-Boiteux value, that is, p0 = prb0 , e = erb. Now assume
that the regulator also chooses the unit price as follows:

wrb = cs(p
rb
0 )− c− 1

1 + λ

1− F (prb, erb)

f(prb, erb)
.

As the airline chooses the price of aeronautical services according to Equation (7.1), it
must solve:

P (wrb, erb) = wrb + c+
1− F (P (wrb, erb), e)

f(P (wrb, erb), e)

=
(
cs(p

rb
0 )− c− 1

1 + λ

1− F (prb, erb)

f(prb, erb)

)
+ c+

1− F (P (wrb, erb), erb)

f(P (wrb, erb), erb)
.

Rearranging gives:

P (wrb, erb)− cs(p
rb
0 )

P (wrb, erb)
=

1− F (P (wrb, erb), erb)

P (wrb, erb)f(P (wrb, erb), erb)
− 1

1 + λ

1− F (prb, erb)

P (wrb, erb)f(prb, erb)
.

Finally, notice that if the airline indeed chooses P (wrb, erb) = prb then the above equation
rewrites as:

prb − cs(p
rb
0 )

prb
=

1− F (prb, erb)

prbf(prb, erb)
− 1

1 + λ

1− F (prb, erb)

prbf(prb, erb)

=
λ

1 + λ

1

ε(prb, erb)
,

which is exactly Equation (3.5) that determines the socially optimal price of aeronautical
services. We can therefore conclude that choosing P (wrb, erb) = prb is a solution to
the airline maximization problem. Under our assumptions on F (·), this solution is also
unique. ■
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Proof of Proposition 7. In the absence of a fixed access charge, the airport’s profits
is given by:

Π̃A(w,P (w, e), p0, e) =
(
1− F (P (w, e), e)

)(
w + (p0 − c0)(1−G(p0))

)
− e,

which corresponds to Equation (7.3) without the subsidy. The regulator’s problem writes
as follows:

max
(w,p0,e,T )

CS(P (w, e), p0, e)− (1 + λ)T +ΠI(P (w, e), p0, e) + T

s.t. Π̃A(w,P (w, e), p0, e) + T ≥ 0,

where ΠI(P (w, e), p0, e) is the sum of profits of the airport and the airline when the
airline chooses the price of aeronautical services P (w, e) as defined by Equation (7.3).
The constraint ensures that the airport makes nonnegative profits.

At the optimum, the constraint must be binding, that is, T = −Π̃A(w,P (w, e), p0, e).
The problem therefore rewrites as follows:

max
(w,p0,e)

CS(P (w, e), p0, e) + ΠI(P (w, e), p0, e) + λΠ̃A(w,P (w, e), p0, e)

After some simplifications, the first-order condition with respect to w writes as follows:

−∂P

∂w
(w, e)f(P (w, e), e)

(
P (w, e)− cpr(p0) + s0(p0)

)
+ λ
(
− ∂P

∂w
(w, e)f(P (w, e), e)[w + (p0 − c0)(1−G(p0))] + 1− F (P (w, e), e)

)
= 0.

Using Equation (7.1) and rearranging gives Equation (7.4). Taking the first-order condi-
tion with respect to p0 and simplifying gives:

−(1−G(p0)) + (1 + λ)(1−G(p0)− (p0 − c0)g(p0)) = 0.

Solving this equation for p0 − c0 and dividing by p0 on both sides immediately yields
(7.5). Finally, the first-order condition with respect to e writes as follows:

−∂P

∂e
(w, e)

∫ v

P (w,e)

f(v, e)dv +

∫ v

P (w,e)

(v − P (w, e))
∂f

∂e
(v, e)dv

−
(
∂P

∂e
(w, e)f(P (w, e), e) +

∂F

∂e
(P (w, e), e)

)(
s0(p0) + P (w, e)− cpr(p0)

+ λ(w + (p0 − c0)(1−G(p0)))
)
+ (1− F (P (w, e), e))

∂P

∂e
(w, e) = 1 + λ.

Integrating by parts the second term gives:∫ v

P (w,e)

(v − P (w, e))
∂f

∂e
(v, e)dv =

[
(v − P (w, e))

∂F

∂e
(v, e)

]v
P (w,e)

−
∫ v

P (w,e)

∂F

∂e
(v, e)dv

= −
∫ v

P (w,e)

∂F

∂e
(v, e)dv,

where the second equality stems from ∂F
∂e
(v, e) = 0 (see the proof of Proposition 2). Using
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this last equality, Equation (7.1), and simplifying, the first-order condition with respect
to e rewrites as follows:

−
∫ v

P (w,e)

∂F

∂e
(v, e)dv

−
(
∂P

∂e
(w, e)f(P, e) +

∂F

∂e
(P, e)

)(
(1 + λ)(P − cs(p0))− λ

1− F (P, e)

f(P, e)

)
= 1 + λ,

where we use P = P (w, e) to lighten the notation. Rearranging immediately yields
Equation (7.6).

Last, we immediately obtain that ∂P
∂e

> 0 under the assumption that the airline’s
profit is concave in its price p. ■
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