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The Competitive Effects of Vertical
Integration in Platform Markets*

Jérôme Pouyet� Thomas Trégouët�

Abstract

We analyze vertical integration in a setting where, first, platforms compete to
provide an operating system to manufacturers of devices and attract developers
of applications, and, second, there are indirect network effects between buyers of
devices and developers of applications. Vertical integration creates market power
over developers, and over non-integrated manufacturers but only under certain
circumstances. That market power enables to coordinate pricing decisions across
both sides of the market, which leads to a better internalization of network effects.
Vertical integration does not systematically lead to foreclosure and can benefit all
parties, even in the absence of efficiency gains. Its competitive impact depends on
the strength and the structure of indirect network effects.

Keywords: Vertical integration; platform markets; network effects; foreclo-
sure.

JEL Code: L40, L10, D43.

1. Introduction

Motivation. Software platform industries have recently witnessed many changes in the
nature of the relationship between software and hardware producers. Traditional suppliers
of operating systems have ventured into the hardware market and prominent hardware
manufacturers have developed their own operating systems. In the smartphone market,
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Lefrere, David Martimort, Patrick Rey and Nicolas Schutz. We are also thankful to participants to ICT
(Paris, 2015), IIOC (Philadelphia, 2016), EARIE (Lisbon, 2016), Tenth IDEI-TSE-IAST Conference on
The Economics of Intellectual Property, Software and the Internet (Toulouse, 2017), 2nd workshop on
the Economics of Platforms (Berlin, 2017) as well as to seminar participants at PSE, CREST, Univer-
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while Apple further intensified its hallmarked integration between hardware and software,
Google launched in 2016 the Pixel, its first device conceptualized and engineered in-
house. It also acquired a major handset manufacturer, HTC, in 2018 and recently started
designing mobile processors, the Google Tensors.1 Samsung and Huawei, subjugated to
Google for the use of its Android platform while delivering Google substantial money
through services installed on their phones, have started to equip some of their devices
with their own operating systems.2 In the online retail sector, Amazon sells devices
powered by FireOS, an operating system built on Android’s technology but stripped from
Google’s applications. Microsoft, once praised for its software-only model, has ventured
in the electronic devices market with the Surface brand. Other industries are witnessing
a similar momentum of integration along the value chain.3 These changes raise several
questions, and whether the usual competitive assessment of integration could readily be
applied to platform markets remains an on-going debate in the antitrust arena.4

In this article, we address the following question: what are the competitive effects
of vertical integration between platforms offering operating systems and device manufac-
turers? We show that indirect network effects, which are prevalent in digital markets,
substantially impact the competitive assessment of vertical integration. Although vertical
integration still creates some market power, as the common wisdom has it, the sources
of such market power are different than in one-sided markets. Perhaps more impor-
tantly, the exercise of such market power does not necessarily harm either consumers or
non-integrated competitors. For instance, when indirect network effects are sufficiently
strong and asymmetric (in a sense to be defined properly later on), vertical integration
can benefit all parties, even in the absence of efficiency gains. A recurrent intuition of
our analysis is that vertical integration enables to coordinate several pricing decisions and
such coordination sometimes allows a better internalization of indirect network effects.

The Model. Several platforms compete to license their operating systems to two man-
ufacturers of devices. Manufacturers equip their devices with an operating system, pay
some fee (whose precise nature is detailed later on) to the corresponding platforms, and
then compete to sell devices to buyers. Developers pay fees to platforms to publish their
applications on the operating systems. Therefore, a device gives its buyers access to
applications developed for the operating system it is equipped with. This interaction
between buyers of devices and developers of applications is the source of indirect network
effects in our analysis.

Our benchmark is the situation in which none of the platforms are integrated with a
manufacturer. There, competition between equally-efficient platforms leads to a Bertrand-
like outcome in which neither the developers nor the manufacturers pay anything to the

1Google initially maintained arm’s-length relationships with several smartphone producers to build
the Nexus range, even after the acquisition of Motorola in 2011. Whereas some experts argued that
Google’s primary objective was to strengthen its patent portfolio, many now retrospectively think that
this was also a test of the feasibility of a more integrated business model.

2The attempt was not fully conclusive for Samsung, which recently stopped offering its in-house op-
erating system (except for smart TVs). By contrast, Huawei has continued to promote its own operating
system, Harmony, against Android, partly because of the U.S. embargo that prevents some Chinese
companies from using Google technologies since 2019.

3For instance, whereas Google is actively promoting its self-driving technology through its division
Waymo, traditional car manufacturers such as BMW have developed their own in-house technology.

4See, for instance, OECD (2018), Yun (2020) and the FTC Hearing #3 regarding ‘Competition and
Consumer Protection in the 21st Century’ (www.ftc.gov/news-events/events-calendar/2018/10/
ftc-hearing-3-competition-consumer-protection-21st-century).

www.ftc.gov/news-events/events-calendar/2018/10/ftc-hearing-3-competition-consumer-protection-21st-century
www.ftc.gov/news-events/events-calendar/2018/10/ftc-hearing-3-competition-consumer-protection-21st-century
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platforms. Competition prevents platforms from exerting any market power, either on
manufacturers or on developers.

Vertical Integration. We then consider vertical integration between a platform
and a manufacturer. Because it faces competition from equally-efficient platforms, the
vertically-integrated platform cannot exert any market power on the non-integrated man-
ufacturer; a result that is standard from the literature on strategic vertical integration
(see, e.g., Salop and Scheffman, 1983, Ordover et al., 1990 or Chen, 2001).5

Vertical integration creates, however, market power over developers because the inte-
grated platform has monopoly power over the access to the buyers of its device. This is a
new source of market power, which comes from the two-sided nature of our model. The
next step of our analysis consists in assessing how the integrated firm exercises such mar-
ket power. To do so, observe that the integrated platform has two pricing instruments:
the fee paid by developers to publish their applications on its operating system and the
price paid by buyers for its device. The integrated platform’s prices are guided by two
forces: a one-sided logic, according to which increasing prices (above their pre-merger
levels) allows to extract more profit from developers and from buyers; a two-sided logic,
according to which setting an asymmetric pricing structure allows to better internalize
network effects between buyers and developers. Which logic prevails overall depends
on the strength and the structure of indirect network effects. For instance, and in the
spirit of the literature on two-sided markets (Armstrong, 2006, Rochet and Tirole, 2006
and Caillaud and Jullien, 2003), when buyers value strongly applications, the integrated
platform finds it optimal to decrease the developer fee and increase the price for its device.

Next, we analyze the consequences of that market power.

Foreclosure. Because vertical integration does not create market power on the non-
integrated manufacturer, foreclosure cannot be the result of a ‘raise the rival’s cost’ effect.
Foreclosure may arise, or not, because the integrated firm has some market power over
developers, which ultimately impacts the non-integrated manufacturer’s profit. For in-
stance, when buyers value strongly applications, the integrated platform subsidizes devel-
opers and increases the price of its device, which boosts the non-integrated manufacturer’s
demand. As a result, the vertical merger benefits the non-integrated manufacturer. A
reverse conclusion obtains when developers value more the participation of buyers. Sum-
marizing, foreclosure of the non-integrated manufacturer is neither systematic nor the
result of a ‘raise the rival’s cost’ effect. It is, rather, the mere collateral damage of the in-
tegrated firm’s market power over developers that, sometimes, depending on the strength
and the structure of network effects, leads to an asymmetric pricing structure.

Welfare. Assuming a particular specification of our model, we fully characterize the im-
pact of vertical integration on buyer and developer surpluses. In a nutshell, when indirect
network effects are strong and sufficiently asymmetric, a situation that may characterize
more infant platform markets, large social gains can be generated by implementing an
asymmetric pricing structure that internalizes these effects. This is precisely what the
integrated platform does, and vertical integration benefits buyers and developers. Other-
wise, when network effects are balanced or weak, a situation that may characterize more

5We focus on the literature that determines under which circumstances vertical integration creates
some market power and leads to harmful foreclosure of non-integrated competitors. Another strand,
following Hart and Tirole (1990), shows that vertical integration may be used as a mean to restore the
upstream market power that was eroded by a lack of commitment; see Rey and Tirole (2007) and Riordan
(2008) for surveys.
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mature platform markets, the pricing structure chosen by the integrated platform aims
more to directly extract surpluses from buyers and developers through price increases.
In these cases, developers and buyers tend to be harmed by the vertical merger.

Importantly, there is no obvious correlation between buyer/developer harm and fore-
closure of the non-integrated manufacturer. For instance, when network effects are much
stronger on the developers side than on the buyers side of the market, buyers and devel-
opers may benefit from the merger; internalization of indirect network effects by the inte-
grated platform may require to increase the developer fee, which hurts the non-integrated
manufacturer.

Efficiency Gains. Next, we consider that vertical integration creates synergies. In
a traditional one-sided framework, synergies have two facets. They are pro-competitive
because they are passed through partly to buyers in the form of a lower price for the
integrated platform’s device. They are anti-competitive because they create some market
power that allows the integrated firm to command some payment from the non-integrated
manufacturer, thereby softening competition on the buyers’ market through a ‘raise the
rival’s cost’ effect.

The analysis becomes more complex in our two-sided framework. Although a more
efficient integrated platform is able to command a higher fee from the non-integrated
manufacturer, it is not always willing to do so. This holds because, again, the integrated
platform uses its pricing instruments to extract surplus (from buyers, developers and the
non-integrated manufacturer) but also to internalize network effects across both sides of
the market. Such internalization requires, sometimes, to lower the fee paid by the non-
integrated manufacturer below its pre-merger level. To illustrate, when network effects
are stronger on the developers’ side than on the buyers’ side, subsidizing buyers can be
done by setting a low price for the integrated platform’s device and charging a low fee to
the non-integrated manufacturer. Whether the fees charged by the integrated platform
increase or decrease following the vertical merger depends, again, on the structure and
the strength of indirect network effects.

We then study whether vertical integration leads to foreclosure and harms buyers or
developers. Overall, and in line with the situation without efficiency gains, vertical inte-
gration tends again to be beneficial (respectively, detrimental) to welfare when indirect
network effects are strong and asymmetric (respectively balanced or weak).

Coordination Motives and Porting Costs. Finally, we discuss the impact of
vertical integration when platform users gain if manufacturers adopt the same operating
system (perhaps because of direct network effects between users), or when developers
have a cost to port their applications on different platforms. In these situations, there are
motives of coordination between manufacturers. Much as in the case of efficiency gains,
coordination motives create market power over the non-integrated manufacturer, because
vertical integration somewhat forces the coordination of manufacturers on the integrated
firm’s operating system. However, such market power is not necessarily detrimental to
welfare; this depends on the strength and the structure of network effects.

Related literature. From the literature on two-sided markets, we borrow the general
insight that indirect network effects are key to understanding platform pricing and com-
petition (Caillaud and Jullien, 2003; Armstrong, 2006; Rochet and Tirole, 2006; Weyl,
2010; Jullien et al., 2021). That literature has considered the effect of exclusive deal-
ing between a platform and content providers (that is, developers in our model): Evans
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(2013) discusses the antitrust of such vertical relations in platform industries; Doganoglu
and Wright (2010) and Hagiu and Lee (2011) provide a rationale for why platforms sign
exclusive contracts with content providers; Church and Gandal (2000) describe the in-
centives of a manufacturer that is integrated with a developer to make its applications
compatible with the hardware of a rival manufacturer; Hagiu and Spulber (2013) show
that investment in first-party content (that is, vertical integration with one side of the
market) depends on whether a platform faces a ‘chicken-and-egg’ coordination problem;
in the video game industry, Lee (2013) finds that exclusivity tends to be pro-competitive,
in that it benefits an entrant platform more than an incumbent platform. While we
share with these papers the focus on the competitive impact of vertical restraints in two-
sided markets, our work also differs, for we are interested in the interactions between
platforms/operating systems and manufacturers when devices are an essential link to
connect buyers and developers.

Several papers have recently analyzed how a dominant platform may foreclose a fringe
upstream producers when those producers can reach the downstream market either using
the platform’s marketplace or through alternative channels. Considering different mod-
els of the downstream product market (horizontal or vertical differentiation, endogenous
entry/variety or fixed number of sellers), Hagiu et al. (2022), Etro (2021) and Anderson
and Bedre-Defolie (2023) study various modes of organization for the platform, the plat-
form’s incentives to steer consumers away from the competitors’ product and favor its
own products, and the possible regulatory responses. Madsen and Vellodi (2023) exam-
ine how platforms may use information about downstream demand to decide whether or
not to launch their own version of the same product. Kang and Muir (2022) allow for a
rich contracting space to model the relationship between the dominant platform and the
privately-informed upstream producers. We share with these papers the broad concern
about platform-driven foreclosure of downstream competitors. In our model, however,
several platforms compete to provide an essential input to manufacturers and manufac-
turers have market power downstream. Moreover, indirect network effects enabled by
platforms are central to our analysis (as in Anderson and Bedre-Defolie, 2023).

Our framework is much closer to those belonging to the so-called strategic approach
of vertical integration initiated by Ordover et al. (1990).6 A message conveyed by that
literature is that vertical integration can lead to input foreclosure and be detrimental
to consumer surplus. Analyses that feature trade-offs between the pro- and the anti-
competitive effects of vertical integration include the following: Ordover et al. (1990) and
Reiffen (1992), in which integration generates an extra commitment power; Chen (2001),
in which manufacturers have switching costs; Choi and Yi (2000), in which upstream
suppliers can choose the specification of their inputs; Chen and Riordan (2007), in which
exclusive dealing can be used in combination with integration; Nocke and White (2007)
and Normann (2009), in which upstream suppliers tacitly collude; Hombert et al. (2019),
in which there are more manufacturers than upstream suppliers; and Hunold and Stahl
(2016), in which integration can be either controlling or passive.7 None of these papers
address multi-sided markets with indirect network effects, and our analysis provides sev-

6Riordan (2008) considers a dominant firm facing a fringe of competitors and shows that vertical in-
tegration is always anticompetitive. Loertscher and Reisinger (2014) extend Riordan (2008)’s framework
to allow for the exercise of market power upstream by several firms and show that vertical integration
can be procompetitive.

7For empirical analyses, see, e.g., Lafontaine and Slade (2007) and Crawford et al. (2018) and the
references therein.
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eral new insights. For instance, when indirect network effects are sufficiently strong and
asymmetric, vertical integration does not systematically lead to foreclosure and may ben-
efit both consumers and non-integrated manufacturers, even in the absence of efficiency
gains. By contrast, when network effects are sufficiently balanced or weak, our findings
echo those of this literature.

Organization of the Paper. Section 2 considers a situation with only one platform
and only one manufacturer. That simpler situation proves to be useful to understand the
impact of vertical integration when several platforms compete to supply several manu-
facturers competing on a product market, as studied in Section 3. Section 4 analyzes
the impact of vertical integration with efficiency gains. Section 5 discusses the role of
coordination motives and porting costs. Section 6 concludes. All proofs are relegated to
an Appendix.

2. Monopoly Platform and Monopoly Manufacturer

We begin with a simplified version of our model, with only one platform I and one
manufacturer of devices M . Buyers of devices and developers of applications may in-
teract. These interactions require: buyers to purchase devices from the manufacturer;
developers to decide how much applications to develop for the platform; the manufacturer
to set the price for its device; the platform to set the licensing condition imposed on the
manufacturer and the fee charged to developers to publish applications on its operating
system.

Model. The contractual relationship between a manufacturer and a platform typically
specifies which party owns user-generated data and, accordingly, who can monetize these
data through targeted advertising for instance. Let r be the per-user benefit generated
by a buyer of M ’s device equipped with I’s operating system. The platform decides how
this benefit is shared with the manufacturer: β ∈ [0, 1] (resp., 1 − β) denotes the share
of r kept by the manufacturer (resp., the platform).8

Platform I also charges a fee to application developers.9 Denote by a the fee charged
by I to allow a developer to make its application available on its operating system. That
fee can be either positive or negative.

When manufacturer M adopts platform I’s operating system, I’s profit can be ex-
pressed as follows

ΠI = (1− β) r QB + aQS,

8As a broader illustration, in the recent Google and Alphabet v Commission case, the European
Commission found that Google has infringed Article 102 TFEU by entering into several agreements with
Original Equipment Manufacturers and Mobile Network Operators (Commission Decision C(2018) 4761
final of 18 July 2018, available at https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:
52019XC1128(02)). Of particular relevance were: (i) the mobile application distribution agreements,
which required OEMs and MNOs wishing to pre-install Google Play on their devices to also pre-install
other Google applications; (ii) the portfolio-based revenue sharing agreements, according to which Google
provided payments to OEMs and MNOs in return for having the Google Search application exclusively
pre-installed on a given portfolio of smart mobile devices.

9Software platforms often charge developers on participation (Google charges developers $25 for each
application published on the Play Store) or on transaction each time an application is sold on the
platform (both Apple and Google charge a roughly 30% royalty on each transaction on their respective
applications stores).

https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:52019XC1128(02)
https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:52019XC1128(02)
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where QB is the number of buyers of device and QS is the number of applications available
on platform I’s operating system.

Manufacturer M produces at a constant marginal cost normalized without loss of
generality to 0. The number of buyers of devices depends on the price charged to buyers,
denoted by p, and on the number of applications running on the devices, denoted by nS.
Hence, it may be written as QB(p, nS), with ∂QB/∂p < 0 and ∂QB/∂nS > 0.10 M ’s
profit when it chooses I’s operating system is thus given by11

πM = (p+ β r)QB.

Last, to compute the buyer surplus, we consider that there exists a representative
buyer with utility function UB(qB, nS) such that QB is solution of maxqB≥0 UB(qB, nS)−
pqB. Let VB(p, nS) denote the corresponding indirect utility.

We assume that there is a representative developer which bears a strictly increasing
convex cost CS(qS) to develop qS applications (with CS(0) = C ′

S(0) = 0). Once applica-
tions are developed, the developer can make these applications available on I’s operating
system at no further cost.12 Let nB be the number of buyers using a device running
platform I’s operating system. When the developer creates qS applications, its profit is
given by

(uS nB − a)qS − CS(qS).

In words, qS applications published on platform I with a number of users nB yields
a gross benefit US(qS, nB) = uS nB qS − CS(qS) for developers. Parameter uS relates
to the strength of indirect network effects from the developer side of the market. Let
QS(nB, a) = argmaxqS≥0 US(qS, nB)−aqS and VS(nB, a) be the corresponding developer’s
(net) profit.

We can restrict the analysis to cases where platform I sets a developer fee a such that
a ≤ uSnB, for otherwise there would be no applications developed and I would be strictly
better off setting a = 0 as soon as nB > 0. Therefore, QS(nB, a) = (C ′

S)
−1(uS nB − a).

Last, the timing is as follows. In stage 1, platform I sets the share of the per-user
benefit left to manufacturer M for the use of its operating system and the fee charged
to developers. In stage 2, manufacturer M chooses the operating system for its devices
and the price of its devices. Last, in stage 3, buyers decide whether to buy a device, and,
simultaneously, developers decide how many applications to develop. All decisions are
public and we look for the subgame-perfect equilibrium of the game. Figure 1 summarizes
the structure of the simplified model. Proofs for the results stated in this section are
gathered in Appendix A.1.

Running Example. We sometimes use the following specification of the model, in
particular to compute the welfare impact of vertical integration.

- Buyers. Demand for the device is given by QB(p, nS) = v − p + uBnS, where
uB relates to the strength of indirect network effects from the buyer side, and
UB(qB, nS) = (v + uBnS)qB − 1

2
q2B.

10QB(·) is often called the ‘quasi-demand function’ of buyers. The number of applications available
on the device can thus be viewed as an endogenous quality attribute.

11The sharing parameter β acts thus like a negative perceived marginal cost for the manufacturer.
12This assumption will be relaxed in Section 5 where we show that porting costs create a specific

source of market power.
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Figure 1: The model with a monopoly platform and a monopoly manufacturer.

- Developers. The development cost is CS(qS) =
1
2
q2S. Hence, QS(nB, a) = uSnB − a.

Buyers’ and Developers’ Participation Decisions. At the last stage of the game,
given a price of device p and a fee a paid by developers, the number of buyers of devices
and the number of applications developed must be consistent with each other and solve

(2.1)

{
nB = QB(p, nS),
nS = QS(nB, a).

The solution of (2.1) is unique and interior provided that indirect network effects are
not too strong.13 That solution defines the buyers’ demand for the device, denoted by
DB(p, a), and the number of applications developed (also called the developers’ demand),
denoted by DS(p, a). The following intuitive properties hold: both demands are decreas-
ing in the price of the device and in the developer fee (∂DS/∂p < 0 and ∂DS/∂a < 0 for
the developers’ demand; ∂DB/∂p < 0 and ∂DB/∂a < 0 for the buyers’ demand).

Social Optimum. Let Π(p, a) = (p+ r)DB(p, a) + aDS(p, a) denote the industry profit
and W (p, a) = VB(p,DS(p, a)) + VS(a,DB(p, a)) + Π(p, a) denote welfare. Prices (p∗, a∗)
that maximize welfare are given by14

p∗ + r = −∂US

∂nB

< 0,

a∗ = −∂UB

∂nS

< 0.

(2.2)

13The condition is that ∂QB

∂nS

∂QS

∂nB
< 1 in the relevant range of (p, a).

14Throughout the paper, we will omit some arguments in order to ease the exposition.
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Because of indirect network effects, welfare-maximizing prices are below the correspond-
ing marginal costs. Decreasing the developer fee (resp. the price of devices) boosts the
number of applications (resp. the number of buyers), which increases in turn the de-
veloper’s gain from interacting with buyers (resp. the buyers’ benefit from having more
applications).

Ramsey Pricing. Socially optimal prices defined by (2.2) lead the industry to a loss
since both the margin on buyers and that on developers are negative. Ramsey prices
(pR, aR) maximize welfare while ensuring that the industry makes a non-negative profit.
Denoting by λ the Lagrange multiplier associated to the break-even constraint Π(p, a) ≥
0, Ramsey prices satisfy

pR + r +
1

1 + λ

∂US

∂nB

=
λ

1 + λ

(
1

ηB
− ∂QS

∂nB

1

ηS

)
,

aR +
1

1 + λ

∂UB

∂nS

=
λ

1 + λ

(
1

ηS
− ∂QB

∂nS

1

ηB

)
,

(2.3)

where ηB = − 1
nB

∂QB

∂p
and ηS = − 1

nS

∂QS

∂a
. At the Ramsey optimum, the externality created

by one side of the market on the other side (∂Ui/∂nj) is now weighted by the shadow
cost of the budget constraint (1+λ). The industry makes no profit and one side is taxed
and faces a positive margin, whereas the other side is subsidized and enjoys a negative
margin; which case occurs depends on the relative strength of indirect network effects.

Proposition 1. Ramsey prices (pR, aR) that maximize welfare subject to the industry
break-even constraint are such that buyers of devices are taxed (pR+r ≥ 0) and developers
of applications are subsidized (aR ≤ 0) if and only if

(2.4)
1

ηB

(
∂UB

∂nS

+
∂US

∂nB

∂QB

∂nS

)
≥ 1

ηS

(
∂US

∂nB

+
∂UB

∂nS

∂QS

∂nB

)
.

In the running example, (2.4) amounts to uB ≥ u3
S.

There are three terms in the right-hand side of (2.4). The first term (1/ηS) is the
inverse of the semi-elasticity of the developers’ demand. The second term ( ∂US

∂nB
) measures

the extent to which developers benefit directly from an increase in the participation of
buyers. The third term (∂UB

∂nS

∂QS

∂nB
) measures how much buyers benefit from an increase in

their own participation through a feedback effect: an increase in the number of buyers
boosts the number of applications, which ultimately benefits buyers. Therefore, Condition
(2.4) shows that developers are subsidized (and buyers are thus taxed) when they are the
‘high-elasticity group of users,’ that is, when their demand is more price elastic and when
they benefit less from the participation of buyers and more from their own participation.

Industry Profit Maximizing Prices. Suppose now that platform I and manufac-
turer M are vertically integrated and maximize their joint profit Π(p, a). In an interior
optimum, the integrated monopoly prices (pI , aI) satisfy

pI + r =
1

ηB
− ∂QS

∂nB

1

ηS
,

aI =
1

ηS
− ∂QB

∂nS

1

ηB
,

(2.5)
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Monopoly prices defined by (2.5) differ from Ramsey prices given in (2.3) in two ways.
Since the integrated monopoly only cares about its profit and not about welfare, the mar-
gins allocated on both sides of the market are excessive; a standard market power effect.
Second, the integrated platform internalizes the effect on the higher interaction benefits
of the marginal users on the other side, and not the inframarginal ones; a distortion in the
spirit of Spence (1975). Tan and Wright (2021) provide a general framework to compare
socially optimal prices with monopoly ones in multi-sided platforms, and show that the
comparison is a priori ambiguous. Taking advantage of our more structured setting, we
observe that the integrated monopoly may still be willing to subsidize one side of the
market when this sufficiently boosts revenues earned from the other side.

Proposition 2. Monopoly prices (pI , aI) that maximize industry profit are such that:

- Buyers of devices are taxed and developers of applications are subsidized (pI +r ≥ 0
and aI ≤ 0) iff ηB ≤ ηS

∂QB

∂nS
;

- Buyers of devices are subsidized and developers of applications are taxed ( pI+r ≤ 0
and aI ≥ 0) iff ηS ≤ ηB

∂QS

∂nB
;

- Both sides of the marked are taxed otherwise.

In the running example, aI ≥ 0 iff uB ≤ uS and pI + r ≥ 0 iff uS(uB + uS) ≤ 2.

Vertically-Separated Monopolies. Suppose platform I and manufacturer M are
now separated. At stage 2, M chooses the price of devices p so as to maximize its profit
(p+βr)DB(p, a). Assuming an interior optimum, the optimal price for the manufacturer
P (β, a) is characterized by DB(P (β, a), a) + (P (β, a) + βr)∂DB

∂p
(P (β, a), a) = 0.

At stage 1, I chooses the share of per-user benefit β and the developer fee a so as to
maximize its own profit, (1−β)rDB(p, a)+aDS(p, a), anticipating the price of devices cho-
sen at stage 2 byM . That problem may be written as follows: max(β∈[0,1],a) Π(P (β, a), a)−
φ(P (β, a), a), where Π(p, a) is the industry profit and φ(p, a) = −(DB)

2(p, a)(∂DB

∂p
(p, a))−1

is the manufacturer’s profit. Denote by pS and aS the device price and the developer fee
that emerge under separation.

With respect to integration, the separation outcome involves a first type of ineffi-
ciency in the form of a double marginalization. In the case of successive monopolies with
a single-product downstream firm, it is well-known that eliminating double marginaliza-
tion through vertical integration leads to a lower price and improves consumer surplus
(Spengler, 1950). However, with a downstream monopoly producing several substitutable
products, the elimination of one double marginalization has a priori ambiguous conse-
quences on prices, and thus on consumer surplus, as shown by Salinger (1991). Indeed,
when it becomes more efficient on one of its products, the firm has incentives to boost
the sales of that product by increasing the price of the other substitutable good.15 In
our framework, devices and applications are (imperfect) complements rather than sub-
stitutes, but a similar ambiguity emerges and there is no hope to obtain a general result
on the impact of vertical integration on prices or surpluses.

15This was originally discussed by Edgeworth (1925) in the context of excise taxes on a subset of the
goods sold by a multiproduct firm. Luco and Marshall (2020) measure the causal effects of vertical
integration on prices caused by vertical mergers in the carbonated-beverage industry. They find that
vertical integration caused a decrease in the prices of products with eliminated double margins, but a
price increase on average.
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Second, pricing decisions are not fully internalized under separation. The manu-
facturer does not internalize the impact of the price of devices on the participation of
application developers, and the platform does not fully internalize the impact of the de-
veloper fee on the demand for devices. In particular, the platform now uses its prices also
to limit the manufacturer’s rent φ(p, a).

Third, the sharing parameter β is a crude instrument to control the price of devices
p set by the manufacturer.16 This limits the ability of the platform to operate cross-
subsidies between buyers of devices and developers of applications.

In the running example, we can fully compare the outcomes under separation and
under integration. As can be observed from Figure 2, the developer fee a as well as
the margin on devices p+ r are always positive under separation; no cross-subsidization
ever occurs since the downstream manufacturer always chooses a price such that its
margin p + βr remains positive . By contrast, the integrated firm is able and willing to
implement some cross-subsidization between buyers of devices and application developers,
most notably when indirect network effects are strong and asymmetric (that is, either
uB ≫ uS or uS ≫ uB); in those cases with sufficiently strong and skewed network effects,
the price structure under integration somehow looks like the one under Ramsey pricing.

uB

0

uS

uB
=u

3
S

pS+r>0>pI+r

pI+r>pS+r>0

pS+r>pI+r>0

(a) Margin on buyers p+ r.

uB

0

uS

uB
=u

3
S

aI>aS>0

aS>0>aI

(b) Margin on developers a.

Figure 2: Comparison of margins under Integration and under Separation with a
monopoly platform and a monopoly manufacturer in the running example (with r =
v = 1). Note: the grey area corresponds to non admissible values of the parameters
(uB + uS < 2).

We now turn on to the welfare impact of vertical integration. A simple revealed
preferences argument shows that integration always leads to a higher industry profit
than separation. From the perspective of the surpluses of buyers and developers, the
comparison is a priori ambiguous. Nevertheless, using brute force computations we can
show the following result.

16The constraints β ≥ 0 and β ≤ 1 may be binding at the optimum under separation. See Appendix
A.1 for the detailed analysis in the case of the running example.
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Proposition 3. Consider the running example with v = r = 1. Buyers of devices and
developers of applications always benefit from vertical integration between the platform
and the manufacturer. Hence, welfare increases following vertical integration.

3. Vertical Integration with Competing Platforms and
Competing Manufacturers

We now analyze vertical integration but in the presence of competition both between
platforms and between manufacturers.

3.1. Competition between Platforms, Competition between Manufacturers

Platforms. There are N + 1 (with N ≥ 2) symmetric platforms, denoted by I, E1, ...,
EN . Let P denote the set of platforms. We sometimes refer to platforms E1, ..., En as
the fringe of platforms. There are two manufacturers, denoted by M1 and M2. In the
following, platform I will be the one contemplating a merger with manufacturer M1.

Let βk
i ∈ [0, 1] (respectively, 1 − βk

i ) be the share of r kept by manufacturer Mk (re-
spectively, platform i) if it equips its devices with platform i’s operating system. Denote
by ai the fee charged by platform i to allow a developer to publish applications on its
operating system. The profit of a platform i can thus be expressed as follows

Πi =
∑
k=1,2

1{Mk adopts i}(1− βk
i )rQ

k
B + aiqi,

where (i) 1{Mk adopts i} is the indicator function equal to 1 when Mk chooses platform i’s
operating system and 0 otherwise, (ii) Qk

B is the number of buyers of device k, and (iii)
qi is the number of applications available on platform i’s operating system.

Manufacturers and Buyers of Devices. Manufacturers are symmetric and pro-
duce at a zero marginal cost. The number of buyers of Mk’s device depends on the prices
charged by manufacturers to buyers, denoted by pk and pℓ, with k ̸= ℓ ∈ {1, 2}, and on
the number of applications running on the devices, denoted by nk

S and nℓ
S. Hence, it may

be written as Qk
B(pk, pℓ, n

k
S, n

ℓ
S). Assume that these so-called ‘quasi-demand functions’

are symmetric: Qk
B(pk, pℓ, n

k
S, n

ℓ
S) = Qℓ

B(pℓ, pk, n
ℓ
S, n

k
S). The profit of Mk when it chooses

platform i’s operating system can thus be written as follows

πk = (pk + βk
i r)Q

k
B.

From the buyer side, assume that given some numbers of applications running on the
manufacturers’ devices (n1

S, n
2
S): devices are demand substitutes for buyers, or ∂Qk

B/∂pk <
0 < ∂Qk

B/∂pℓ; the direct price effect is stronger than the indirect one, or ∂Qk
B/∂pk +

∂Qk
B/∂pℓ < 0; buyers of device k value positively the number of applications available on

their devices, or ∂Qk
B/∂n

k
S > 0, but negatively the number of applications available on

the other device, or ∂Qk
B/∂n

ℓ
S < 0. Last, to compute the buyer surplus, we consider that

there exists a representative buyer with utility function UB(q1, q2, n
1
S, n

2
S) such that Q1

B

andQ2
B are solutions of max(q1≥0,q2≥0) UB(q1, q2, n

1
S, n

2
S)−p1q1−p2q2. Let VB(p1, p2, n

1
S, n

2
S)

denote the corresponding indirect utility.

Application Developers. There is a representative developer which develops qS
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applications at cost CS(qS). We assume that there are no platform-specific costs to port
applications on the various platforms; an assumption relaxed in Section 5 where we show
that porting costs create a specific source of market power. Let ni

B be the number of
buyers using a device running platform i’s operating system. Since there are no porting
costs, all applications are published on platform i as soon as uSn

i
B − ai ≥ 0, which we

assume from now on.17 The developer’s gross profit is thus given by US(qS, (n
i
B)i∈P) =

qS
∑

i∈P uSn
i
B − CS(qS) and its net profit writes as follows

(3.1) qS
∑
i∈P

(uSn
i
B − ai)− CS(qS).

Let QS((n
i
B, ai)i∈P) be the number of applications qS that maximizes (3.1) and denote

by VS((n
i
B, ai)i∈P) the corresponding developer profit.

Figure 3 summarizes the structure of the model.
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n

Platform I Platforms Ei

M1 M2

p1 p2

(β1
I , β

2
I ) (β1

Ei
, β2

Ei
)

aI aEiqS qS

q1 q2

Buyers

Developers
qS applications

Figure 3: The model with competing platforms and competing manufacturers.

Timing. In stage 1, platforms set the shares of the per-user benefit left to manufacturers
in exchange of using their operating systems and the fees charged to developers. In stage
2, manufacturers choose the operating system for their devices. Once operating systems
have been chosen, manufacturers set the prices of their devices in stage 3. Last, in stage
4, buyers decide whether to buy a device, and, simultaneously, developers decide how

17As in Section 2, this is without loss of generality since, otherwise, there would be no applications
developed for platform i and that platform would be strictly better off setting ai = 0 as soon as niB > 0.
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much applications to develop and on which platforms to publish. All decisions are public
and we look for the subgame-perfect equilibrium of the game.

Running Example under Competition.

- Buyers. The demand for device k is given by

(3.2) Qk
B(pk, pℓ, n

k
S, n

ℓ
S) =

(
v− pk − γ

(
pk −

pk + pℓ
2

))
+
(
uBn

k
S +

γ

2
uB(n

k
S −nℓ

S)
)
.

Terms in the first parenthesis in Equation (3.2) correspond to a standard product-
market interaction with imperfectly substitutable products. Terms in the second
parenthesis illustrate how indirect network effects between users of devices and
application developers impact the demand for the manufacturers’ products.

The utility function of the representative buyer is given by18

UB(q1, q2, n
1
S, n

2
S) = q0 +

∑
k=1,2

(vqk + uBn
k
Sqk)−

1

2

1

2(1 + γ)

(
2
∑
k=1,2

q2k + γ(
∑
k=1,2

qk)
2
)
,

where q0 is the numéraire and qk is the quantity of device k bought.

- Developers. CS(qS) =
1
2
q2S. Hence, QS((n

i
B, ai)i∈P) =

∑
i∈P(uSn

i
B − ai).

3.2. Participation Decisions

Consider now the last stage of the game. At that stage, platforms have set their
fees (βi

1, β
i
2, ai)i∈P and manufacturers have chosen their operating system and the prices

(p1, p2) for the devices.

There are two consequences to the fact that the developer is willing to publish all
its applications on all the platforms. First, whatever the choices of operating systems
by the manufacturers, the developer is able to interact with all the buyers of devices,
or

∑
i∈P ni

B = n1
B + n2

B. The developer’s profit can thus be rewritten more simply as
(uS(n

1
B + n2

B)− a)qS − CS(qS) where a ≡
∑

i∈P ai denotes the ‘total developer fee.’ The
number of applications nS that maximizes this profit is given by nS = QS(uS(n

1
B+n2

B)−a),
where QS = (C ′

S)
−1. Second, whatever their choices of operating systems, manufacturers

benefit from the same number of applications running on their devices, or n1
S = n2

S ≡ nS.
The demand for device k may now be written more simply as nk

B = Qk
B(pk, pℓ, nS).

Buyers’ and Developers’ Participation Decisions. Given the prices of devices
p1 and p2 and a total fee a paid by developers, the number of buyers of each device and
the number of applications must be consistent with each other and solve

(3.3)


n1
B = Q1

B(p1, p2, nS),
n2
B = Q2

B(p2, p1, nS),
nS = QS(uS(n

1
B + n2

B)− a).

Assume that the solution of (3.3) is unique and interior for the relevant range of prices.19

That solution defines, as functions of the prices of the devices and the developer fee, the

18This is Shubik and Levitan (1980)’s linear demands system, to which we append indirect network
effects additively.

19As shown in Appendix A.2, this requires that indirect network effects are not too strong.
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buyers’ demands for devices, denoted byDk(pk, pℓ, a) with k ̸= ℓ ∈ {1, 2}, and the number
of applications developed (also called the developers’ demand), denoted by DS(p1, p2, a).
The following intuitive properties hold: the developers’ demand is decreasing in the
prices of devices and in the developer fee (∂DS/∂pk < 0 and ∂DS/∂a < 0); the demand
for a device is decreasing in its own price and in the developer fee (∂Dk/∂pk < 0 and
∂Dk/∂a < 0). We further impose that the demand for a device is more responsive to its
own price than to the price of the other device (∂Dk/∂pk+∂Dk/∂pℓ < 0). In the running
example, all these properties hold provided that 2uBuS < 1.

3.3. Indirect Networks Effects impact Product Market Interactions.

Perhaps more surprising is the fact that indirect network effects impact the nature
of the interaction between manufacturers on the product market. The demand faced
by a manufacturer may, indeed, either increase or decrease with the price of the rival
manufacturer, depending on the strength of indirect network effects relative to the degree
of product market competition. Formally, using (3.3), it follows that

∂Dk

∂pℓ
=

∂Qk
B

∂pℓ
+

∂Qk
B

∂nS

∂DS

∂pℓ
,

which can be positive or negative. The intuition is as follows. If pℓ increases, then
some buyers are diverted from Mℓ, and Mk’s demand increases by ∂Qk

B/∂pℓ. This is
a standard rivalry effect created by product market competition between manufactur-
ers. The increase in pℓ has, moreover, a negative impact on the total number of buyers,
since the direct price effect on buyers of device ℓ is stronger than the indirect price
effect on buyers of device k (∂Qℓ

B/∂pℓ + ∂Qk
B/∂pℓ < 0). Since there are less buyers

overall, there are fewer applications too, for developers find it less attractive to develop
(∂DS/∂pℓ < 0). Because buyers value applications, this negatively affects Mk’s demand
by ∂Qk

B/∂nS. We therefore expect that when indirect network effects are small (that is,
when (∂Qk

B/∂nS)(∂DS/∂pℓ) ≈ 0), the rivalry effect created by product market competi-
tion dominates and ∂Dk/∂pℓ ≥ 0, that is, devices are demand substitutes. By contrast,
when product market competition is weak (that is, when ∂Qk

B/∂pℓ ≈ 0), then the inter-
action created by indirect network effects dominates and ∂Dk/∂pℓ ≤ 0, that is, devices
are demand complements. In our running example, devices are demand substitutes when
γ − 2uBuS(1 + γ) > 0, and demand complements otherwise.

In the sequel, we shall focus on the case studied by the bulk of the literature on
strategic vertical integration, namely the case where manufacturers’ products are demand
substitutes:

Assumption 1. Indirect network effects are not too strong relative to product market
competition so that manufacturers’ products are demand substitutes: for k ̸= ℓ, for all
(pk, pℓ, a)

∂Dk

∂pℓ
(pk, pℓ, a) ≥ 0.

In the running example, this amounts to σ ≡ γ − 2uBuS(1 + γ) ≥ 0.

In stage 3, manufacturers compete on the product market. Given a share βk of the
per-user benefit that Mk receives from the platform it has chosen and a total fee a paid
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by developers, let πk(βk, pk, pℓ, a) = (pk + βkr)Dk(pk, pℓ, a) denote Mk’s profit. We now
make some assumptions that ensure the price competition subgame is ‘well-behaved.’

Mk’s best response, denoted by Rk(βk, pℓ, a), is uniquely characterized by the first-
order condition ∂πk

∂pk
(βk, Rk, pℓ, a) = 0. Moreover, 0 ≤ ∂Rk/∂pℓ < 1 for all (βk, pk, pℓ, a),

so that prices of devices are strategic complements and best responses satisfy the usual
stability assumption.20 Last, Mk’s best response decreases with a, that is, ∂Rk/∂a ≤ 0 for
all (βk, pk, pℓ, a).

21 This assumption seems reasonable since an increase in the developer
fee negatively impacts the demand for device k. Together, these assumptions ensure
that there exists a unique pair of prices (p̂1(β1, β2, a), p̂2(β2, β1, a)) that form the Nash
equilibrium of stage 3 of the game, and that the equilibrium price of a manufacturer is
decreasing in its share of the per-user benefit and in the developer fee, or ∂p̂k/∂βk < 0
and ∂p̂k/∂a ≤ 0. We further impose that |∂p̂k/∂βk| < r.22,23

Let π̂k(βk, βℓ, a) = πk(βk, p̂k(βk, βℓ, a), p̂ℓ(βℓ, βk, a), a) denote Mk’s profit at the equi-
librium of the subgame starting at stage 3. From the assumptions made above, we obtain
the following: (i) ∂π̂k

∂a
(βk, βℓ, a) ≤ 0 for all (βk, βℓ, a) because an increase in the devel-

oper fee reduces the number of applications and acts thus as a negative shock on the
demands faced by manufacturers; (ii) a manufacturer’s profit increases with the share of
the per-user benefit it receives, or ∂π̂k

∂βk
(βk, βℓ, a) > 0 for all (βk, βℓ, a). Roughly speak-

ing, the assumptions on the manufacturers subgame ensure that the direct shift in their
profit functions (associated to a change in the sharing parameter or in the developer
fee) is stronger than the indirect shift in the marginal profit, which in turn changes the
equilibrium between manufacturers.24

3.4. Separation

The situation of ‘separation,’ in which none of the manufacturers are integrated with
either platforms, serves as our benchmark to assess the impact of vertical integration.25

Because several operating systems are available to manufacturers, there may exist several
Nash equilibria in the subgame of choice of operating systems by the manufacturers (stage
2 of our game). We want to avoid situations where a platform obtains some unduly
market power thanks to the mere lack of coordination between manufacturers. To that
end, we impose the following selection on the equilibrium set: If there exists several
Nash equilibria in the subgame starting at stage 2, we select the one that maximizes the
manufacturers’ joint profit. This is a mild yet meaningful restriction commonly found in

20This holds when 0 < ∂2πk

∂pk∂pℓ
< −∂2πk

∂p2
k

for all (βk, pk, pℓ, a). See Seade (1980) and Dixit (1986).

21Observe that ∂Rk

∂a < 0 amounts to ∂2πk

∂pk∂a
= ∂Dk

∂a +Dk
∂2Dk

∂pk∂a
(−∂Dk

∂pk
)−1 < 0. Hence, Rk decreases with

a if either ∂2Dk

∂pk∂a
< 0 or if ∂2Dk

∂pk∂a
> 0 but small enough.

22This is the equivalent of the usual assumption that cost pass-throughs are smaller than one. It can
be linked to the log-curvature of demand functions as discussed in Weyl and Fabinger (2013) and Ritz
(2015) for instance.

23All these assumptions are satisfied in our running example.
24Although intuitive, these properties may not always hold. In a Cournot oligopoly, Seade (1985),

Kimmel (1992) and Linnemer (2003), among others, find conditions under which an increase in the
marginal cost of several firms increases or decreases equilibrium profits; see Février and Linnemer (2004)
for a unifying framework. Cowan (2004) extends the analysis to demand shocks. See also Dixit (1986)
and Leahy and Neary (1997) for the case of Bertrand oligopolies.

25The social optimum and Ramsey benchmarks are qualitatively similar to those derived in Section 2
and available in Appendix A.2.
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the literature.26 Then, we obtain the following result.

Proposition 4. In equilibrium with competitive platforms, developers pay no fee (aS =
0), manufacturers obtain all the per-user benefit (βS = 1), platforms make no profits and
manufacturers are indifferent between any of the platforms’ operating systems.

Proof. See Appendix A.3.

To provide some intuition, suppose all platforms set β1 = β2 = 1 and a nil developer
fee. Platforms make no profit, developers publish their applications on all platforms
and manufacturers are indifferent between all the operating systems. Consider now a
deviation by, say, platform I, which sets aI < 0 and βI < 1 such that its profit remains
nil. Even though such deviation could be profitable for manufacturers, each manufacturer
individually has the incentives to choose a platform from the fringe. Indeed, the developer
can costlessly port its applications on platforms from the fringe while still enjoying the
subsidy offered by platform I; even if a manufacturer chooses a platform from the fringe,
it will still benefit from the same number of applications. And platforms from the fringe
offer a higher share of the per-user benefit, which attracts each manufacturer individually.
Put differently, a platform can freeride on the subsidy offered to the developer by another
platform.

3.5. Vertical Integration

Consider now that platform I is integrated with manufacturer M1. To streamline
the exposition, we directly consider that competition between non-integrated platforms
E1, ..., EN leads them to set a nil developer fee and a sharing parameter equal to 1, a
result that follows from the logic of Proposition 4. Our analysis proceeds as follows.
First, we show that vertical integration creates market power over developers. Second,
we study how such market power is exercised and its consequences on welfare.

Price Competition and Choice of Operating System. At stage 3 of the game,
the integrated platform and the non-integrated manufacturer compete in prices to sell
their devices to buyers. The outcome of that price competition subgame depends on
whether the non-integrated manufacturer chooses one the non-integrated platform’s op-
erating system (in the following, we will refer to this case by saying that M2 chooses
‘platform E’) or that of the integrated platform:

(E). When M2 chooses E’s operating system, its profit is (p2 + r)D2 and the integrated
platform’s profit is

(3.4) (p1 + r)D1 + aIDS

because developers are willing to reach buyers of the integrated manufacturer’s
device.

26To see its purpose in our setting, suppose that platform I sets (βI = 1, aI > 0) and platforms from
the fringe set (βE = 1, aE = 0). There are several Nash equilibria in the subgame starting at stage
2, one in which both manufacturers choose I’s operating system (because if a manufacturer deviates,
the developer still pays aI to reach buyers of the other manufacturer’s device), another one in which
each manufacturer adopts the operating system of a platform from the fringe. Clearly, the former is
Pareto-dominated (for manufacturers) by any of the latter.
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(I). When M2 chooses the integrated platform’s operating system, its profit writes now
as (p2 + βIr)D2 and that of the integrated platform is given by

(3.5) (p1 + r)D1 + aIDS + (1− βI)rD2

because it perceives some per-user benefit from the non-integrated manufacturer on
top of the revenues earned from developers.

In case (E) (resp. case (I)), price competition on the product market then leads to equilib-
rium prices denoted by pE1 (1, 1, aI) and pE2 (1, 1, aI) (resp. p

I
1(1, βI , aI) and pI2(βI , 1, aI)).

27

Let πE
1 (1, 1, aI) = (pE1 + r)D1(p

E
1 , p

E
2 , aI) + aIDS(p

E
1 , p

E
2 , aI) and πE

2 (1, 1, aI) = (pE2 +
r)D2(p

E
2 , p

E
1 , aI) (resp. πI

1(1, βI , aI) = (pI1 + r)D1(p
I
1, p

I
2, aI) + (1 − βI)rD2(p

I
2, p

I
1, aI) +

aIDS(p
I
1, p

I
2, aI) and πI

2(βI , 1, aI) = (pI2 + βIr)D2(p
I
2, p

I
1, aI)) denote profits corresponding

to case (E) (resp. (I)).

Pricing incentives of the integrated firm depend on whether or not it licenses its
operating system to the non-integrated manufacturer. Indeed, when this is the case,
increasing the price of device 1 increases the demand for device 2 since manufacturers’
products are demand substitutes, and, therefore, increases the revenues (1 − βI)rD2

generated by the licensing of the operating system.28 This is the so-called ‘accommodation
effect’ found in the literature on strategic vertical integration. This effect suggests that the
non-integrated manufacturer may be willing to accept a sharing parameter smaller than
1 to make the integrated manufacturer a softer competitor. Equivalently, the integrated
platform has some market power over the non-integrated manufacturer.

That market power is, however, constrained by the competitive pressure exerted by
platforms from the fringe. Indeed, the non-integrated manufacturer always has the option
to choose the fringe’s operating system. Therefore, the non-integrated manufacturer
adopts the integrated platform’s operating system if

(3.6) πI
2(βI , 1, aI) ≥ πE

2 (1, 1, aI).

The Integrated Platform’s Pricing Policy. At the first stage of the game,
the integrated platform’s profit writes as πI

1(1, βI , aI) = (pI1 + r)D1(p
I
1, p

I
2, aI) + (1 −

βI)rD2(p
I
2, p

I
1, aI) + aIDS(p

I
1, p

I
2, aI). Formally, βI and aI are solution of29

(3.7)

max
(βI ,aI)

πI
1(1, βI , aI)

s.t. πI
2(βI , 1, aI) ≥ πE

2 (1, 1, aI),
0 ≤ βI ≤ 1.

To study this problem, we proceed in two steps. First, we consider a relaxed problem in
which none of the constraints are taken into account. This allows to understand the logic

27For both cases, we adopt implicitly the same assumptions on best responses as those made in Section
3.3 to ensure that the price competition subgame is ‘well-behaved.’

28Formally, the integrated firm’s best response in price changes from D1 + (p1 + r)∂D1/∂p1 +
aI∂DS/∂p1 = 0 when M2 buys from the fringe, to D1 + (p1 + r)∂D1/∂p1 + aI∂DS/∂p1 + (1 −
βI)r∂D2/∂p1 = 0 when M2 chooses the integrated firm’s operating system. Since devices are demand
substitutes, ∂D2/∂p1 ≥ 0 and the integrated firm’s best response in price shifts upward when it licenses
its operating system.

29In the main text (but not in the numerical simulations), we neglect the constraint βI ≥ 0. When it
binds, it simply means the integrated firm wants to extract as much as possible of the per-user benefit
associated to licensing its operating system to the non-integrated manufacturer.
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underlying the exercise of market power by the integrated platform. Second, we solve for
the constrained problem.30

Maximizing the integrated firm’s profit requires to extract revenues from developers
and from the non-integrated manufacturer. This calls for increasing aI and decreasing
βI , while keeping an eye on how this impacts competition on the buyer’s market. But it
also requires to take advantage of network effects across both sides of the market. When,
for instance, buyers value strongly the applications offered by developers, the integrated
platform wants to boost the number of applications available on its device with a low
developer fee and extract some of the buyer surplus through a low sharing parameter
asked to the non-integrated manufacturer.

Let us assume that the solution of this relaxed problem is interior and denote by
(β∗

I , a
∗
I) the solution of the system formed by the two first-order conditions ∂πI

1/∂βI = 0
and ∂πI

1/∂aI = 0. In Appendix A.4, we characterize this solution for the running example.
Figure 4 below represents the two curves β∗

I = 1 and a∗I = 0 in the (uB, uS)-space to allow
a comparison with the separation benchmark.

Three broad cases must be considered:

- ‘Strong and buyer-skewed network effects.’ This corresponds to the green region
in Figure 4, in which buyers’ valuation for number of applications is larger than
developers’ valuation for the number of buyers (that is, uB > uS). There, the
solution of the relaxed problem calls for setting a negative developer fee (that is,
a∗I < 0) to boost the participation of developers and extracting the buyer surplus
thereby created with a low sharing parameter (that is, β∗

I < 1).

- ‘Strong and developer-skewed network effects.’ This corresponds to the red region
in Figure 4, in which uS ≫ uB. There, the solution of the relaxed problem leads to
a high sharing parameter (that is, β∗

I > 1) to boost the participation of buyers and
a high developer fee to extract the developer surplus (that is, a∗I > 0).

- In the blue region, network effects are rather balanced and weak across both sides
of the market. There, the integrated platform sets a positive developer fee (that is,
a∗I > 0) and a low sharing parameter (that is, β∗

I < 1).

The comparison between the outcome under separation (aS = 0, βS = 1) and the
optimal pricing policy obtained in the relaxed problem illustrates a central feature of our
model. The way that the integrated firm exercises its market power on developers and on
the non-integrated manufacturer depends on the strength and the structure of network
effects across both sides of the market. In a nutshell, when network effects are strong
and asymmetric, a two-sided market logic is at work: the integrated firm implements an
asymmetric pricing structure, subsidizing one side and taxing the other, to harness those
network effects. When network effects are weak and balanced, a one-sided market logic
is at work: the integrated platform exercises its market power by raising the developer
fee and decreasing the sharing parameter.

Let us now come back to the platform’s constrained problem as defined in (3.7) and
denote by (β∗∗

I , a∗∗I ) its solution. With respect to the relaxed problem, the first constraint
is that the sharing parameter must be positive and smaller than 1.

30Some conditions are required to ensure that the maximization problems are quasi-concave. In the
running example, these conditions are fully characterized in Appendix A.4.
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β∗
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Figure 4: The solution of the relaxed problem (β∗
I , a

∗
I) in the running example (with

v = r = 1).

The second constraint is the participation constraint of the non-integrated manufac-
turer, namely (3.6). Observe that the non-integrated manufacturer’s profit if it buys
the fringe’s operating system, namely πE

2 (1, 1, aI), coincides with its profit if it chooses
the integrated platform’s operating system for a sharing parameter βI = 1: this holds
because there is no accommodation effect when the integrated platform gives up all the
per-user benefit. Therefore, πE

2 (1, 1, aI) = πI
2(1, 1, aI), which implies that31

(3.8) πI
2(βI , 1, aI) ≥ πE

2 (1, 1, aI) ⇔ βI ≥ 1.

In words, the competitive pressure exerted by the fringe prevents the integrated platform
from exerting any market power on the non-integrated manufacturer, or β∗∗

I = 1. This
illustrates another standard result from the literature on strategic integration: absent
efficiency gains, vertical integration does not create market power over non-integrated
manufacturers.

The integrated platform still has some market power over the developer who wants
to access the buyers of its device. The optimal developer fee maximizes32 πI

1(aI) =
(pI1(aI)+r)D1(p

I
1(aI), p

I
2(aI), aI)+aIDS(p

I
1(aI), p

I
2(aI), aI), and is given by the first-order

condition dπI
1(a

∗∗
I )/daI = 0, or

(3.9)
([

DS + aI

(∂DS

∂aI
+

∂DS

∂p2

dpI2
daI

)]
+
[
(pI1 + r)

(∂D1

∂aI
+

∂D1

∂p2

dpI2
daI

)])∣∣∣
aI=a∗∗I

= 0.

Increasing the developer fee has both a direct impact on the number of applications and
the demand for the integrated manufacturer’s device, and an indirect impact through the
strategic effect on the non-integrated manufacturer’s price. Remember that, under our

31Remind that under our assumption the profit of a manufacturer is increasing in its sharing parameter.
32Prices and profits are written as function of this variable only from now on.
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assumptions, dpIk/daI ≤ 0. Hence, Equation (3.9) shows that increasing the developer
fee allows to capture revenues from developers (first bracketed term) but depreciates the
profit earned from buyers (second bracketed term). The first effect calls for increasing
the developer fee above the marginal cost, but the second one calls for decreasing it.
The integrated platform may still be willing to subsidize the developer if this boosts
sufficiently the demand for its own device.

Proposition 5. The integrated platform’s optimal pricing policy is as follows:

- All the per-user benefits is left to the non-integrated manufacturer: β∗∗
I = 1;

- The developer fee is the solution a∗∗I of (3.9).

In the running example, a∗∗I > 0 if and only if uB < h(uS) (with h(uS) > uS for all
uS > 0).

Proof. See Appendix A.5.

Figure 5 represents graphically Proposition 5. The integrated platform boosts the
number of applications with a negative developer fee only when network effects are suf-
ficiently strong and buyer-skewed. Otherwise, it sets a positive developer fee. Indeed,
with respect to the relaxed problem, the competitive pressure exerted by platforms from
the fringe forces the integrated platform to give up all the per-user benefits to the non-
integrated manufacturer. It is therefore less profitable to subsidize developers because
such a loss cannot be recouped with benefits earned from the licensing of its operating
system.

uB
0

uS uB = uS

σ = 0

a∗∗I >0
β∗∗
I =1

a∗∗I <0
β∗∗
I =1uB

= h(uS
)

Figure 5: The integrated platform’s optimal pricing policy (β∗∗
I , a∗∗I ) in the running ex-

ample.

Competitive Impact of Vertical Integration. We now assess the welfare impact
of vertical integration. Since the integration outcome coincides with that under separation
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when aI = 0, we only need to study how the non-integrated manufacturer’s profit πI
2(aI) =

(pI2(aI)+r)D2(p
I
2(aI), p

I
1(aI), aI), the buyer surplus VB(p

I
1(aI), p

I
2(aI), D

I
S(p

I
1(aI), p

I
2(aI), aI)),

and the developer surplus VS(aI , D1(p
I
1(aI), p

I
2(aI), aI) +D2(p

I
2(aI), p

I
1(aI), aI)) vary with

the developer fee aI .

To study whether vertical integration leads to foreclosure of the non-integrated man-
ufacturer, we can differentiate the non-integrated manufacturer’s profit with respect to
the developer fee to get

dπI
2

daI
(aI) = (pI2 + r)

(
∂D2

∂aI
+

∂D2

∂p1

dpI1
daI

)
< 0.

Since prices of devices decrease with the developer fee under our assumptions, we obtain
immediately the next proposition.

Proposition 6. Vertical integration creates foreclosure if and only if the developer fee
increases above the pre-merger level. Therefore, in the running example, foreclosure arises
if and only if uS > h(uB).

Proof. Immediate from the text.

This foreclosure effect is different from the one found in the literature for two reasons.

First, it does not stem from a ‘raise the rival’s cost’ effect. In our setting, foreclosure
is a collateral damage of the integrated platform’s market power on developers, but not
the result of its desire to soften competition on the buyer’s market.

Second, foreclosure is not systematic. When network effects are strong and buyer-
skewed, Proposition 5 has shown that the integrated firm lowers the developer fee (with
respect to the pre-merger level), which increases the non-integrated manufacturer’s profit.
A reverse result obtains when the integrated firm raises the developer fee above the pre-
merger level.

Consider now the impact of vertical integration on buyer and developer surpluses. The
analysis is slightly more involved since these surpluses are intertwined through indirect
network effects. We consider a small variation of the developer fee around its value under
separation (that is, 0). Simple manipulations lead to (omitting some arguments)

dVB

daI

∣∣∣∣
aI=0

= −QB

(
dpI1
daI

+
dpI2
daI

)
+

∂UB

∂nS

dDS

daI
,(3.10)

dDS

daI

∣∣∣∣
aI=0

=
1

1− 2∂QB

∂nS

∂QS

∂nB

(
∂QS

∂nB

(
∂QB

∂pk
+

∂QB

∂pℓ

)(
dpI1
daI

+
dpI2
daI

)
+

∂QS

∂a

)
.(3.11)

Equation (3.11) describes how the number of applications varies when the developer fee
charged by the integrated platform increases. First, since publishing applications be-
comes more costly, developers are less willing to participate; this corresponds to the term
∂QS/∂a < 0. Second, the prices paid by buyers decrease, so that there are more buyers
overall, which benefits developers through indirect network effects; this corresponds to
the term (∂QB/∂pk + ∂QB/∂pℓ)(dp

I
1/daI + dpI2/daI) > 0.

Equation (3.10) describes how the surplus of buyers varies when the developer fee
increases. There are two effects again. First, the prices paid by buyers decrease, which



Vertical Integration in Platform Markets 23

boosts the demand from those buyers (this corresponds to the first term in the right-
hand side). Second, fewer or more applications are developed, which impacts negatively
or positively buyers through indirect network effects.

This suggests that the impact of vertical integration on buyers and on developers is a
priori ambiguous. For instance, taxing developers with a positive fee may actually improve
the surpluses of buyers and developers, if doing so sufficiently reduces the prices of devices
and boosts the number of buyers. Next proposition provides a complete characterization
of the impact of vertical integration on buyer and developer surpluses in our running
example.

Proposition 7. In the running example, vertical integration

- increases buyer surplus if either uB ≥ h(uS) or uS ≥ hB(uB);

- increases developer surplus if and only if either uB ≥ h(uS) or uS ≥ hS(uB).
33

Proof. See Appendix A.6.

Figure 6 represents graphically Proposition 6 and Proposition 7.

uB
0

uS uB = uS

σ = 0

h(uS)

hB(uB)

hS(uB)

π2↗
VB↗
VS↗

π2↘
VB↗
VS↘

π2↘
VB↘
VS↘

π2↘
VB↗
VS↗

Figure 6: Impact of vertical integration on the non-integrated manufacturer’s profit (π2),
buyer surplus (VB), and developer surplus (VS) in the running example.

Several comments are worth making. First, and quite remarkably, vertical integration
can improve buyer and developer surpluses simultaneously even in the absence of efficiency
gains. The intuition is that, when indirect network effects are sufficiently strong and
asymmetric, the integrated firm’s market power over developers leads to an asymmetric
pricing structure that better internalizes network effects. The price structure is thus closer

33In Appendix A.6, we show that hB(uB) = ((γ + 2)uB)/(2(γ + 1)u2B + 1) and hS(uB) =

(1/2)(
√

2(γ + 4) + (γ + 3)2u2B − (γ + 3)uB).
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to the one that would be socially desirable, that is, prices under vertical integration are
closer to their Ramsey counterparts than under separation.34

More precisely, with buyer-skewed network effects (uB > h(uS)), the integrated plat-
form subsidizes developers (see Proposition 5). Although the prices of devices increase,
buyers benefit from an increase in the number of applications, which explains that their
surplus increases following the merger. By contrast, with developer-skewed network ef-
fects (uS > hB(uS)), the integrated platform taxes developers, which tends to reduce
the number of applications. However, the prices of devices decrease and buyer surplus
increases following the merger. In these two cases of strongly-skewed indirect network
effects, which correspond to the green and orange regions in Figure 6, the surpluses of
buyers and developers increase because the integrated firm implements an asymmetric
pricing structure that is more in line with the Ramsey optimum.

Second, the impact of vertical integration on foreclosure is now disconnected from its
impact on buyers or on developers. We already know from Proposition 6 that foreclosure
is related to the developer fee chosen by the integrated platform. Proposition 7 shows
that what matters for buyer and developer surpluses is the asymmetry between network
effects. Figure 6 illustrates that buyers and developers gain from the vertical merger
when network effects are either strongly buyer-skewed (uB > h(uS)), a region where the
developer fee decreases, or strongly developer-skewed (uS > hB(uS), a region where the
developer fee increases.

Third, when network effects become smaller or more symmetric, there is less value to
create through an asymmetric pricing structure and the integrated firm’s market power
is more likely to be detrimental. In Appendix A.6, we show that, when uB < h(uS) and
uS < hB(uS), the buyer surplus may either increase or decrease.35

Our analysis provides therefore a new efficiency defense for vertical integration in
platform markets. Vertical integration creates market power on the developer side of the
market. That market power is used by the integrated firm to extract more profit from
developers and from the non-integrated manufacturer; a potentially harmful effect for
buyers. In a two-sided market, however, that market power is also used to internalize
indirect network effects between the two sides of the market; a potentially beneficial effect
for buyers.

Although consumer surplus seems to be the standard pursued by antitrust authorities,
it is also interesting to briefly look at total welfare. Figure 7 computes total welfare for
a particular specification of our running example.36 It shows that welfare also improves
following vertical integration when network effects are sufficiently strong and asymmetric.

These simulations can be used to study the role of parameter γ that describes the
degree of substitutability between manufacturers’ products on the downstream market

34In Appendix A.2, we characterize the Ramsey optimum with competing manufacturers. For the
running example, the Ramsey optimum is such that p1 + r = p2 + r ≥ 0 and a ≤ 0 iff uB ≥ 2u3S .

35In Proposition 7, the conditions for the buyer surplus to increase are sufficient only. In Appendix
A.6, we show that the intermediate region {(uB , uS) : uB ≤ h(uS) and uS ≤ hB(uB)} can be divided
into two subsets, one in which the buyer surplus increases and the other in which it decreases. The
frontier between these two subsets is represented by the red dashed curve in Figure 6.

36The Python code of the simulations is available on the authors’ webpages, as well as other simulations.
If otherwise not specified, we use the following set of parameters values: γ = 4, v = 2, r = 0.5.
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(a) ∆VB (b) ∆W

Figure 7: Impact of vertical integration on the buyers surplus (VB, left panel) and on
total welfare (W , right panel): VB and W decrease (resp. increase) following integration
in the red area (resp. the blue area).

(Figure 8). Intuitively, as γ increases, products become more substitutes and price com-
petition between manufacturers intensifies. As a result, prices become more rigid and
cost-based. For the integrated platform, this implies that internalizing network effects
through an asymmetric price structure becomes less interesting: there is no point in sub-
sidizing developers if the price charged to buyers cannot be raised. Therefore, as the
simulations reported in Figure 8 suggest, vertical integration becomes more harmful to
buyers when manufacturers’ products are more demand substitutes. Both network effects
and the intensity of competition between manufacturers matter to determine whether ver-
tical integration benefits or hurts buyers.

(a) γ = 2 (b) γ = 6 (c) γ = 10

Figure 8: Impact of vertical integration on buyers surplus (VB) for different degrees
of substitutability between manufacturers (γ): VB decreases (resp. increases) following
integration in the red area (resp. the blue area).
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4. Efficiency Gains

We now study vertical mergers that bring efficiency gains. Efficiency gains are mod-
eled as follows: following the merger, the per-buyer benefit associated to the integrated
platform’s operating system becomes r0 > r. Put differently, the integrated platform I
is better able to create value from user-generated data obtained from the manufacturers
that use its operating system.37 The separation benchmark is unchanged (see Section
3.4).

From now on, we consider that platform I is integrated with manufacturer M1. Under
vertical integration, we can still apply the logic of Lemma 4 to show that, in equilibrium,
platforms from the fringe set βE = 1 and aE = 0.

As in Section 3.5, pricing incentives at stage 3 of the game depend on the choice of
operating system by the non-integrated firm. To track changes in the per-user ben-
efit, we adopt now the following notations. When the non-integrated manufacturer
adopts the fringe’s operating system, M2 obtains a net per-user benefit of 1 · r. Let
(pE1 (r0, r, aI), p

E
2 (r, r0, aI)) and (πE

1 (r0, r, aI), π
E
2 (r, r0, aI)) be the prices of devices and the

profits in that case. When the non-integrated manufacturer adopts the integrated firm’s
operating system,M2 obtains a net per-user benefit of βI ·r0. Let (pI1(r0, βIr0, aI), p

I
2(βIr0, r0, aI))

and (πI
1(r0, βIr0, aI), π

I
2(βIr0, r0, aI)) be the prices of devices and the profits in that case.

For future reference, we have in particular πI
1(r0, βIr0, aI) = (pI1 + r0)D1(p

I
1, p

I
2, aI) +

(1− βI)r0D2(p
I
2, p

I
1, aI) + aIDS(p

I
1, p

I
2, aI), π

I
2(βIr0, r0, aI) = (pI2 + βIr0)D2(p

I
2, p

I
1, aI) and

πE
2 (r, r0, aI) = (pE2 + r)D2(p

E
2 , p

E
1 , aI).

The roadmap of our analysis is as follows. First, we show that efficiency gains pro-
vide the integrated firm with some market power over the non-integrated manufacturer
(Section 4.1). Second, we study the way such market market power is exercised (Section
4.2) and show that it is not necessarily detrimental either to buyers and developers or to
the non-integrated manufacturer (Sections 4.3 and 4.4).

4.1. Efficiency Gains Create Market Power

Efficiency gains create market power vis-à-vis the non-integrated manufacturer. To
understand why, observe that, at stage 3 of the game, the integrated platform’s profit
when it supplies the non-integrated manufacturer writes now as

(4.1) (p1 + r0)D1 + (1− βI)r0D2 + aIDS.

Comparing the integrated platform’s profit with efficiency gain (Equation (4.1)) and
without (Equation (3.5)) shows that, with efficiency gains, even when the integrated
platform provides the same value as the fringe in terms of per-user benefits, that is, when
βIr0 = r, it earns some strictly positive profit from licensing its operating system, namely
(1 − βI)r0D2 = (r0 − r)D2 > 0. Hence, even when both operating systems are licensed
on the same terms, the non-integrated manufacturer now strictly prefers adopting the
integrated firm’s operating system because this makes that firm more accommodating on
the buyers market: πI

2(βIr0 = r, r0, aI) > πE
2 (r, r0, aI).

This implies that the integrated platform is now able to license its operating system

37We could have assumed that synergies between platform I and manufacturer M1 decrease the
(marginal) cost of I’s operating system. Those two formulations are equivalent in our model.
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against a sharing parameter strictly smaller than the fringe’s. Put differently, efficiency
gains create market power over the non-integrated manufacturer. The integrated firm’s
market power remains constrained by the fringe’s behavior, though, and the following
participation constraint must be satisfied

(4.2) πI
2(βIr0, r0, aI) ≥ πE

2 (r, r0, aI).

To relate with the case of no efficiency gains, the participation constraint (4.2) rewrites
as follows in the running example

(4.3) βI ≥ βI(r0, r) ≡ 1− r0 − r

r

8 + σ(8 + σ)

8(1 + σ)
.

Comparing with (3.8) shows that as soon as the merger creates efficiency gains (r0 > r),
it also empowers the integrated platform with some market power over the non-integrated
manufacturer (that is, βI(r0, r) < 1). The next step consists in analyzing how the
integrated platform uses its market power over the developer and the non-integrated
manufacturer.

4.2. The Integrated Firm’s Pricing Policy

The integrated platform’s problem can be written as follows

(4.4)

max
(βI ,aI)

πI
1(r0, βIr0, aI)

s.t. πI
2(βIr0, r0, aI) ≥ πE

2 (r, r0, aI),
0 ≤ βI ≤ 1.

It is again useful to introduce the solution of the relaxed problem (that is, when none
of the constraints in the above problem are taken into account), which we denote by
(β∗

I (r0), a
∗
I(r0)). Up to the fact that the integrated firm’s sharing parameter is now r0,

the outcome of the relaxed problem can be represented in a similar way as in Figure 4.

Consider now the constrained problem (4.4) in our running example. In Appendix A.7,
we show that the main features of the solution to that problem, denoted by (β∗∗

I (r0), a
∗∗
I (r0)),

can be summarized with Figure 9. There are three regions of interest depending on which
constraints are binding.

Suppose that network effects are buyer-skewed (green region below the 45◦-line in
Figure 9). In that case, absent any constraints the integrated platform would like to set
a low sharing parameter and a negative developer fee (β∗

I (r0) < 1 and a∗I(r0) < 0). With
respect to Section 3.5, setting a sharing parameter below the pre-merger level is now
feasible thanks to the efficiency gains that create upstream market power. Hence, with
buyer-skewed network effects, we expect that the non-integrated manufacturer’s partic-
ipation constraint becomes binding and that the integrated platform charges a sharing
parameter below the pre-merger level (that is, β∗∗

I (r0) = βI(r0, r) < 1). The integrated
platform may also subsidize developers if network effects are sufficiently asymmetric.

Suppose now that indirect network effects are sufficiently developer-skewed (red region
in Figure 9). The integrated firm then wants to subsidize buyers with a high sharing pa-
rameter and tax developers with a positive fee. Hence, we expect that the integrated firm
gives up all the per-user benefit to the non-integrated manufacturer and taxes developers
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Figure 9: The integrated platform’s optimal pricing policy (β∗∗
I (r0), a

∗∗
I (r0)) in the running

example with efficiency gains.

(that is, β∗∗
I (r0) > 1 and a∗∗I (r0) > 0).

Last, it is also possible that none of the constraints are binding (blue region in Figure
9), in which case the solution of the integrated platform’s problem is actually the solution
of the relaxed problem. This arises with moderately developer-skewed network effects.
In that case, with respect to the pre-merger outcome, the integrated firm moderately
decreases the sharing parameter but taxes developers.

4.3. Competitive Impact of Vertical Integration with Efficiency Gains: Polar Cases

With efficiency gains, the impact of vertical integration on buyers, developers and the
non-integrated manufacturer is less straightforward to assess because both the developer
fee and the sharing parameter change with respect to the separation benchmark. For
instance, when the developer fee increases beyond its pre-merger level, this does not
necessarily imply foreclosure, for the sharing parameter could be lowered leading to a
net gain for the non-integrated manufacturer. We explore this intuition by analyzing two
polar cases.

Consider first that developers do not value the participation of buyers (that is, uS = 0
in our running example). Without efficiency gains, buyers and developers, as well as the
non-integrated manufacturer, benefit from integration. With efficiency gains, the inte-
grated platform decreases the sharing parameter below the pre-merger level (β∗∗

I (r0) < 1)
and sets a negative fee for developers (a∗∗I (r0) < 0). Since developers do not value the
participation of buyers, they are better off following integration because their participa-
tion is subsidized. Things are more complicated for the buyers and the non-integrated
manufacturer. On the one hand, both benefit from the fact that the participation of
developers is subsidized. On the other hand, the integrated platform exploits its com-
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petitive advantage and extract more from the non-integrated manufacturer. Intuitively,
this latter effect prevails when network effects are weak overall, that is, when buyers also
value weakly the participation of developers. Next proposition formalizes this intuition.

Proposition 8. Consider the running example and assume uS = 0. Following integra-
tion,

- there is foreclosure if and only if uB is small enough;

- buyers are better off if and only if uB is large enough;

- developers are always better off.

Proof. See the Online Appendix.

Let us now consider another polar case in which buyers do not value the participation
of developers (that is, uB = 0 in our running example). The integrated platform sets a
developer fee above the pre-merger level (a∗∗I (r0) > 0), as in the case without efficiency
gains. The difference is that efficiency gains provide incentives to increase the sharing
parameter. When uS is small (resp. large), the integrated platform sets a sharing param-
eter below (resp. beyond) the pre-merger level. Therefore, intuitively, not only buyers
and developers but also the non-integrated manufacturer may benefit from integration
when developers value strongly the participation of buyers. Next proposition formalizes
this intuition.

Proposition 9. Consider the running example and assume uB = 0. Following integra-
tion,

- there is foreclosure if and only if uS is either large enough or small enough;

- buyers are better off if and only if uS is large enough;

- developers are better off if and only if uS is large enough.

Proof. See the Online Appendix.

4.4. Competitive Impact of Vertical Integration with Efficiency Gains: Numerical
Simulations

In this Section, we extend Propositions 8 and 9 using numerical simulations.38 The
results are depicted in Figures 10, 11 and 12, which represent the range of parameters uB

and uS for which integration harms or benefits buyers, developers and the non-integrated
manufacturer respectively.

Overall, the results of the simulations are in line with those of Section 3.5. First,
there is no foreclosure when network effects are skewed toward buyers (see Figure 10).
Second, buyers and developers benefit from integration when network effects are suffi-
ciently asymmetric (see Figures 11 and 12 respectively). Third, when network effects are
rather balanced, buyers, developers and the non-integrated manufacturer all lose from
the vertical merger (see Figures 10, 11 and 12 respectively).

38The Python code of the simulations is available on the authors’ webpages, as well as other simulations.
Unless specified in the figure caption, we use the following set of parameters values: γ = 4, v = 2, r = 0.5.
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(a) γ = 4, r0 − r = 0.3 (b) γ = 4, r0 − r = 0.6 (c) γ = 4, r0 − r = 0.9

(d) γ = 1, r0 − r = 0.3 (e) γ = 1, r0 − r = 0.6 (f) γ = 1, r0 − r = 0.9

Figure 10: Impact of vertical integration on the non-integrated manufacturer’s profit (π2)
for different levels of the efficiency gains (r0 − r): π2 decreases (resp. increases) following
integration in the red area (resp. the blue area).

Consider first that network effects are developer-skewed. As efficiency gains increase,
Figure 10 suggests that foreclosure becomes less of an issue. This arises because the
integrated platform sets a sharing parameter close or equal to 1. Put differently, efficiency
gains are passed through almost entirely to the non-integrated manufacturer. This effect
can be strong enough to compensate for the increase in the developer fee. This happens
when efficiency gains are sufficiently large and when manufacturers’ products are weak
substitutes, that is when γ is small (Figures 10d, 10e and 10f). In this case, competition
on the downstream market is weak and the non-integrated manufacturer benefits fully
from the high sharing parameter.

Second, the non-integrated manufacturer is foreclosed when network effects are bal-
anced and weak, that is in the neighborhood of (uB, uS) = (0, 0) (see Figure 10). This is
reminiscent of the literature on the strategic effects of vertical integration: when vertical
integration creates efficiency gains, the non-integrated rival is (partially) foreclosed (see,
e.g., Chen, 2001).

Third, buyers and developers are better off following integration when network effects
are strong and asymmetric, that is when either uS is large and uB is small or the opposite
(see Figures 11 and 12). These are situations where a platform would like to internal-
ize network effects through an asymmetric price structure. When it creates efficiency
gains, vertical integration allows the platform to implement an even more asymmetric
price structure because it now has some control over its sharing parameter. Buyers and
developers benefit as well from such a more asymmetric price structure.
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(a) r0 − r = 0.3 (b) r0 − r = 0.6 (c) r0 − r = 0.9

Figure 11: Impact of vertical integration on buyer surplus (VB) for different levels of
efficiency gains (r0 − r): VB decreases (resp. increases) following integration in the red
area (resp. in the blue area).

(a) r0 − r = 0.3 (b) r0 − r = 0.6 (c) r0 − r = 0.9

Figure 12: Impact of vertical integration on developer surplus (VS) for different levels of
efficiency gains (r0 − r): VS decreases (resp. increases) following integration in the red
area (resp. the blue area).

The results from the simulations reinforce the main message of our analysis. A verti-
cally integrated platform is empowered with some market power on users on both sides
of the market and on the non-integrated manufacturer. However, because vertical inte-
gration allows for a better internalization of network effects, the exercise of this market
power is not necessarily at the expense of the non-integrated firm. Buyers and developers
may also benefit from integration.

5. Coordination Motives and Porting Costs

Coordination Motives. Although a quintessential feature of platform markets is the
presence of indirect network effects linking various groups of agents, these markets also
frequently exhibit direct network effects of paramount importance. For instance, operat-
ing systems often feature applications or software programs that aim to take advantage
of direct network effects between buyers.39 Hence, when more manufacturers adopt the
same operating system, this creates extra benefits for buyers of devices using the same

39iMessage, FaceTime and Airdrop are prime examples for iOS.
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operating system.40 Ultimately, part of these benefits may end up being pocketed by man-
ufacturers, which creates coordination motives between manufacturers. Our goal is to
analyze how such coordination motives impact on our assessment of vertical integration.

To do so, we consider our model without efficiency gains (in which vertical integration
does not create any market power over the non-integrated manufacturer) and modify it
as follows. If manufacturers choose different operating systems, then quasi-demands are
given as before by (3.2) and the analysis is the same as in Section 3.5. If manufacturers
choose the same operating system, then quasi-demands are now given by41

(5.1)


Q̃1

B = Q1
B + αB,

Q̃2
B = Q2

B + αB,

Q̃S = QS.

Parameter αB is positive and used as a shortcut to capture the magnitude of the ex-
tra gains for buyers when manufacturers adopt the same operating systems. Demands
(D̃1, D̃2, D̃S) that solve (5.1) are clearly increasing in αB. Let us further assume that the
profits of manufacturers associated with these demands, denoted by (π̃i

1, π̃
i
2) with i ∈ P ,

are also increasing in αB.
42

The analysis under separation is immediate. In any equilibrium, manufacturers co-
ordinate on one platform i ∈ P , obtain the whole per-user benefit, and the developer is
charged a nil fee by platforms. Essentially, the addition of the extra benefit αB simply
leads manufacturers to choose the same platform because there is now a coordination
motive.

Consider now that platform I is vertically-integrated with manufacturer M1. If M2

chooses platform E from the fringe, manufacturers equip their devices with different
operating systems and there are no extra benefits. M2’s profit is then given by πE

2 (1, 1, aI).
If, instead, M2 chooses I’s operating system, there are extra benefits and M2’s profit is
denoted by π̃I

2(βI , 1, aI).
43 We have π̃I

2(1, 1, aI) > πE
2 (1, 1, aI) because, if platform I sets

the same sharing parameter as the fringe, M2 now strictly prefers I’s operating system to
take advantage of the extra benefits. Therefore, the integrated firm can now offer βI < 1
while still ensuring that M2 adopts I’s operating system. To illustrate, in the running
example the participation constraint (3.8) becomes with coordination motives

(5.2) βI ≥ β̃I(αB) ≡ 1− αB

r

4 + 3σ

4(1 + σ)
.

Much as in the case of efficiency gains (see in particular Equation (4.3)), coordination
motives create market power over the non-integrated manufacturer. That market power
arises even though platforms are symmetric (i.e., there are no efficiency gains) because
vertical integration somewhat forces the coordination of the manufacturers on the inte-
grated firm’s operating system.

40One could argue similarly that developers care about the community of programmers using a par-
ticular operating system because this may help lowering development costs.

41This formulation where only buyers received a fixed benefit when manufacturers choose the same
operating system is chosen for its tractability.

42Although intuitive, this property does not always hold; see the discussion in footnote 24.
43This profit is defined as before (see Section 3.5) except that demands (D1, D2, DS) are replaced by

(D̃1, D̃2, D̃S).



Vertical Integration in Platform Markets 33

The integrated platform’s problem can be written as follows:

(5.3)

max
(βI ,aI)

π̃I
1(1, βI , aI)

s.t. π̃I
2(βI , 1, aI) ≥ πE

2 (1, 1, aI),
0 ≤ βI ≤ 1.

This problem is quite similar to the one analyzed in Section 4 and its solution will feature
the same main properties. For the running example, the complete resolution is provided
in Appendix A.8. One noticeable difference is the following. Since vertical integration
does not create any efficiency gains, the non-integrated manufacturer M2 and, indirectly,
the developers, do not benefit from a more advantageous sharing parameter when the
integrated platform decides to subsidize buyers. This happens when network effects are
developer-skewed and the integrated platform prefers to tax developers, which harms both
M2 and the developers. We therefore expect, contrary to Section 4, that when network
effects are developer skewed, there is always foreclosure and developers are worse off.

We can confirm these two intuitions by studying two polar cases (Propositions 10 and
11) and by performing numerical simulations (Figures 13, 14 and 15).44

Proposition 10. Consider the running example with coordination motives and assume
uS = 0. Following integration,

- there is foreclosure if and only if uB is small enough;

- buyers are better off if and only if uB is large enough;

- developers are always better off.

Proof. See the Online Appendix.

Proposition 11. Consider the running example with coordination motives and assume
uB = 0. Following integration,

- there is always foreclosure;

- buyers are better off if and only if uS is large enough;

- developers are always worse off.

Proof. See the Online Appendix.

Porting Costs. Throughout our analysis, we have maintained the assumption that
there are no platform-specific cost for the developer. In practice, the programming lan-
guages used in Android and iOS strongly differ45 and it appears that Android application
development is usually longer and more costly because of the fragmentation issue that
impacts this operating system. We now discuss informally how platform-specific costs to
port applications on operating systems impact on our analysis. Roughly speaking, we
show that porting costs create a coordination motive for manufacturers.

44The Python code of the simulations is available on the authors’ webpages, as well as other simulations.
As in Section 4.4, we use the following set of parameters values: γ = 4, v = 2, r = 0.5.

45Mainly Java, C, C++ and Kotlin for the former and Objective C or Swift for the latter.
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(a) αB = 0.1 (b) αB = 0.2 (c) αB = 0.3

Figure 13: Impact of vertical integration on buyer surplus (VB) for different levels of the
gain for buyers when manufacturers adopt the same operating system (αB): VB decreases
(resp. increases) following integration in the red area (resp. in the blue area).

(a) αB = 0.1 (b) αB = 0.2 (c) αB = 0.3

Figure 14: Impact of vertical integration on developer surplus (VS) for different levels
of the gain for buyers when manufacturers adopt the same operating system (αB): VS

decreases (resp. increases) following integration in the red area (resp. the blue area).

Let us assume now that the developer bears a unit cost ci > 0 to port each application
on platform i’s operating system. To streamline the analysis, let us further assume that
ci = c for all i ∈ P . At the last stage of the game, the developer decides to publish
its applications on platform i if uSn

i
B ≥ ai + c. Therefore, the number of applications

developed is now given by QS(
∑

i∈P(uSn
i
B − (ai+ c))1{uSn

i
B−(ai+c)≥0}). Last, assume that

c is sufficiently small so that uSn
i
B > c when ni

B > 0; this ensures that all applications
are published on any platform i that has attracted at least one manufacturer and that
sets a nil developer fee.46

Consider that I and M1 are integrated. If M2 chooses E’s operating system, the
number of applications is given by

(5.4) QE
S

(
uS(n

1
B + n2

B)−
∑
i=I,E

(ai + c)1{uSn
i
B−(ai+c)≥0}

)
.

46When c becomes sufficiently large, and when manufacturers have chosen different operating systems,
the developer might find it profitable to publish on only one operating system, i.e., to single-home rather
than to multi-home.
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(a) αB = 0.1 (b) αB = 0.2 (c) αB = 0.3

Figure 15: Impact of vertical integration on the non-integrated manufacturer’s profit (π2)
for different levels of the gain for buyers when manufacturers adopt the same operating
system (αB): π2 decreases (resp. increases) following integration in the red area (resp.
the blue area).

If M2 chooses instead I’s operating system, the number of applications is then given by

(5.5) QI
S

(
uS(n

1
B + n2

B)− (aI + c)1{uSn
I
B−(aI+c)≥0}

)
.

Comparing (5.4) and (5.5) immediately leads to QI
S > QE

S : With porting costs, choosing
the integrated platform’s operating system leads to more applications because it saves
on the developer’s cost. This therefore leads to higher demands for both devices. Hence,
porting costs create a coordination motive for the non-integrated manufacturer. Put
differently, and using notations that should be familiar by now, we have now πI

2(1, 1, aI) >
πE
2 (1, 1, aI) and the integrated platform is thus empowered with some market power over

the non-integrated manufacturer. To illustrate further, considering the running example
and assuming that platforms from the fringe offer (βE = 1, aE = 0), the participation
constraint (3.8) becomes with porting costs

βI ≥ 1− c uB

r

4 + 3σ

4(1 + σ)
.

Given the analysis above (see in particular equations (4.3) and (5.2)), we expect that
such market power may not always be detrimental to welfare.47

6. Conclusion

We develop a model of a platform market, in which platforms interact with manu-
facturers of devices and there are indirect network effects between buyers of devices and

47Porting costs also introduce a novelty, which is best seen by considering the case of separation. If
non-integrated manufacturers choose the same platform, say I, setting a nil developer fee (i.e., aE = 0)
no longer ensures that the developer publishes on E’s operating system because of the porting costs.
This means that platform I can now set any developer fee such aI + c ≥ 0 without being threaten that
a rival platform attracts the developer with a lower developer fee. Although platforms still compete
fiercely and should make no profits in equilibrium, some partial cross-subsidization between both sides
of the market becomes possible, even under separation. A complete characterization of the equilibrium
outcome under separation and integration with porting costs is left for future research.
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developers of applications. We study the consequences of vertical integration between
one of the platforms and one of the manufacturers.

The sources of upstream market power, and their consequences on foreclosure or on
consumer surplus, are different from those unveiled in the extant literature. Even absent
any efficiency gains, vertical integration creates market power over developers who want
to access the buyers of the integrated manufacturer’s device. With efficiency gains, coor-
dination motives or porting costs, vertical integration creates additionally some market
power over the non-integrated manufacturer. However, what is key is how the integrated
firm exploits these sources of market power. Our analysis unveils that this depends both
on the strength and on the structure of indirect network effects. When network effects
are strong in level but also sufficiently asymmetric in structure, the integrated firm im-
plements an asymmetric pricing structure, which may well improve buyer and developer
surpluses as well as the non-integrated manufacturer’s profit. Our analysis therefore
warns policy-makers against a blind application of the standard view on foreclosure when
dealing with platform markets.

As in standard markets, antitrust authorities may want to limit the anti-competitive
effects of vertical integration by constraining the pricing instruments between the inte-
grated platform and non-integrated manufacturers. In the context of platform markets,
such remedy raises some issues. For instance, constraining the integrated firm’s sharing
parameter is likely to impact the pricing on the developer side of the market, thereby
dampening the internalization of network effects.

Our setting could be extended in various directions. First, throughout the analysis,
we have maintained the assumption that manufacturers’ products remain demand substi-
tutes. With (imperfect) demand complements, the integrated platform should have less
incentives to foreclose the non-integrated manufacturer. Second, and relatedly, analyzing
the incentives of both manufacturers and platforms to differentiate their products, and
the consequences on the assessment of vertical integration, would be worth investigating.
Third, there is always multi-homing on the developer side and single-homing on the buyer
side of the market in our analysis. Different patterns may be more relevant depending on
the platform markets under consideration and this is likely to impact on the assessment
of vertical integration. These extensions are left for future research.
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Anderson, S. and Ö. Bedre-Defolie (2023): “Hybrid Platform Model,” Working
paper.

Armstrong, M. (2006): “Competition in Two-Sided Markets,” The RAND Journal of
Economics, 37, 668–691.

Caillaud, B. and B. Jullien (2003): “Chicken & Egg: Competition among Interme-
diation Service Providers,” The RAND Journal of Economics, 34, 309–28.

Chen, Y. (2001): “On Vertical Mergers and Their Competitive Effects,” The RAND
Journal of Economics, 32, 667–85.

Chen, Y. and M. H. Riordan (2007): “Vertical Integration, Exclusive Dealing, and
Expost Cartelization,” The RAND Journal of Economics, 38, 1–21.



Vertical Integration in Platform Markets 37

Choi, J. P. and S.-S. Yi (2000): “Vertical Foreclosure with the Choice of Input Spec-
ifications,” The RAND Journal of Economics, 31, 717–743.

Church, J. and N. Gandal (2000): “Systems Competition, Vertical Merger, and
Foreclosure,” Journal of Economics & Management Strategy, 9, 25–51.

Cowan, S. (2004): “Demand Shifts and Imperfect Competition,” Tech. Rep. 188, Dis-
cussion paper, University of Oxford.

Crawford, G. S., R. S. Lee, M. Whinston, and A. Yurukoglu (2018): “The
Welfare Effects of Vertical Integration in Multichannel Television Markets,” Economet-
rica, 86, 891–954.

Dixit, A. (1986): “Comparative Statics for Oligopoly,” International Economic Review,
27, 107–122.

Doganoglu, T. and J. Wright (2010): “Exclusive Dealing with Network Effects,”
International Journal of Industrial Organization, 28, 145–154.

Edgeworth, F. Y. (1925): The Theory of Pure Monopoly, Macmillan, The Royal
Economic Society, vol. 1 of Papers Relating to Political Economy.

Etro, F. (2021): “Product Selection in Online Marketplaces,” Journal of Economics &
Management Strategy, 30, 614–637.

Evans, D. (2013): “Economics of Vertical Restraints for Multi-Sided Platforms,” CPI
Journal, 9.

Février, P. and L. Linnemer (2004): “Idiosyncratic Shocks in an Asymmetric
Cournot Oligopoly,” International Journal of Industrial Organization, 22, 835–848.

Hagiu, A. and R. S. Lee (2011): “Exclusivity and Control,” Journal of Economics &
Management Strategy, 20, 679–708.

Hagiu, A. and D. Spulber (2013): “First-Party Content and Coordination in Two-
Sided Markets,” Management Science, 59, 933–949.

Hagiu, A., T.-H. Teh, and J. Wright (2022): “Should Platforms Be Allowed to Sell
on Their Own Marketplaces?” The RAND Journal of Economics, 53, 297–327.

Hart, O. and J. Tirole (1990): “Vertical Integration and Market Foreclosure,” Brook-
ings Papers on Economic Activity: Microeconomics, special issue, 205–276.

Hombert, J., J. Pouyet, and N. Schutz (2019): “Anticompetitive Vertical Merger
Waves,” The Journal of Industrial Economics, 67, 484–514.

Hunold, M. and K. Stahl (2016): “Passive Vertical Integration and Strategic Dele-
gation,” The RAND Journal of Economics, 47, 891–913.

Jullien, B., A. Pavan, and M. Rysman (2021): “Chapter 7 - Two-sided markets,
pricing, and network effects,” in Handbook of Industrial Organization, Volume 4, ed.
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A. Appendix

A.1. Monopoly Platform and Monopoly Manufacturer

This Appendix is devoted to the analysis of the case with a monopoly platform and a
monopoly manufacturer.

Demand Functions. At the last stage of the game, given prices (p, a), the number of buyers
and the number of developers solve

(A.1)

{
nB = QB(p, nS),
nS = QS(uSnB − a).

In the following, with a slight abuse of notations, let ∂QS
∂a (a, nB) = −Q′

S(uSnB − a) and
∂QS
∂nB

(a, nB) = uSQ
′
S(uSnB − a). To avoid ‘cornered-market’ solutions, in which all buyers

or all developers participate in equilibrium, we assume that indirect network effects are not too
strong so that, in the relevant range, each manufacturer faces a demand that is locally elastic
with respect to prices.
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Assumption A.1. In the relevant range of (p, a), (nB, nS) satisfy
∂QS
∂nB

(a, nB)
∂QB
∂nS

(p, nS) < 1.

Assumption A.1 is maintained throughout this section. We can then show the next result.

Lemma A.1. System (A.1) has a unique interior solution.

Proof. From system (A.12), we have

(A.2) DB(p, a) = QB(p,QS(uSDB(p, a)− a)).

For a given (p, a), DB(p, a) is thus a fixed point of ψ(x) = QB(p,QS(uSx − a)). Notice then
that ψ′(x) = ∂QS

∂x (a, x)∂QB
∂nS

(p,QS(uSx − a)). Assumption A.1 implies that |ψ′(·)| < 1, so
that ψ(·) is a contraction mapping and Equation (A.2) has a unique solution. It follows that
DB(p, a) = QB(p,DS(p, a)) is uniquely defined. DS(p, a) = QS(uSDB(p, a)−a) is thus uniquely
defined as well.

We can then show the following result.

Lemma A.2. ∂DB
∂p (p, a) < 0, ∂DS

∂p (p, a) < 0, ∂DB
∂a (p, a) < 0 and ∂DS

∂a (p, a) < 0.

Proof. By the implicit function theorem, DB(p, a) is continuously differentiable. Differentiating
Equation (A.2) with respect to p and rearranging terms, we find (omitting some arguments)

∂DB

∂p

[
1− ∂QS

∂nB
(a,DB)

∂QB

∂nS
(p,DB)

]
=
∂QB

∂p
(p,DB).

By Assumption A.1, the term in squared brackets is positive. Therefore, ∂DB/∂p is negative.
Since ∂QS/∂nB > 0, DS(p, a) = QS(uSDB(p, a)− a) is decreasing in p.

From Equation (A.1), the developer demand solves

(A.3) DS(p, a) = QS(uS(QB(p,DS(p, a)).

By the implicit function theorem, DS(p, a) is continuously differentiable. Differentiating Equa-
tion (A.3) with respect to a and rearranging terms, we obtain (omitting some arguments)

∂DS

∂a
=

∂QS
∂a

1− ∂QS
∂nB

∂QB
∂nS

.

By Assumption A.1, the denominator is positive, and therefore, ∂DS/∂a has the sign of ∂QS/∂a,
which is negative. Since DB(p, a) = QB(p,DS(p, a)) and ∂QB/∂nS > 0, ∂DB/∂a is also
negative.

Benchmarks: Social Optimum, Ramsey Pricing and Monopoly Pricing. Remind that
Π(p, a) = (p+r)DB(p, a)+aDS(p, a) andW (p, a) = VB(p,DS(p, a))+VS(a,DB(p, a))+Π(p, a).
Consider the following change of variables: φ : (p, a) 7→ (nB, nS) = (DB(p, a), DS(p, a)). It is
a C1-diffeomorphism since, under Assumption A.1, the system of equations nB = QB(p, nS)
and nS = QS(uSnB − a) has a unique solution, namely (nB, nS) = (DB(p, a), DS(p, a)), in the
relevant range of parameters. Therefore, instead of optimizing wrt (p, a) we can optimize wrt
(nB, nA). Let (P (nB, nS), A(nB, nS)) = φ−1(nB, nS).

At the social optimum, (nB, nS) solve max(nB ,nS)W (P (nB, nS), A(nB, nS)) = UB(nB, nS)−
P (nB, nS)nB+US(nB, nS)−A(nB, nS)nS+(P (nB, nS)+r)nB+A(nB, nS)nS . Assume an interior
optimum. Using the fact that ∂UB

∂q = P and ∂US
∂q = A, the first-order conditions wrt nB and nS

yield respectively P + r + ∂US
∂nB

= 0 and A + ∂UB
∂nS

= 0. These two equations define the socially
optimal prices (p∗, a∗).
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At the Ramsey optimum, (nB, nS) solve max(nB ,nS)W (P (nB, nS), A(nB, nS)) subject to
Π(P (nB, nS), A(nB, nS)) = (P (nB, nS) + r)nB + A(nB, nS)nS ≥ 0. Denote by λ the La-
grange multiplier associated to the break-even constraint. Observe that λ must be strictly
positive at the Ramsey optimum since the break-even constraint is strictly violated at the
unconstrained optimum. Assume an interior optimum. Using the fact that ∂P

∂nB
= 1

∂QB/∂p

and ∂P
∂nS

= −∂QB/∂nS

∂QB/∂p , ∂A
∂nB

= −∂QS/∂nB

∂QS/∂a
and ∂A

∂nS
= 1

∂QS/∂a
, the first-order conditions on the

Lagrangean W (P (nB, nS), A(nB, nS)) + λΠ(P (nB, nS), A(nB, nS)) yield

P + r +
1

1 + λ

∂US

∂nB
=

λ

1 + λ

(
1

ηB
− 1

ηS

∂QS

∂nB

)
,

A+
1

1 + λ

∂UB

∂nS
=

λ

1 + λ

(
1

ηS
− 1

ηB

∂QB

∂nS

)
,

(A.4)

where ηB = − 1
nB

∂QB
∂p and ηS = − 1

nS

∂QS
∂a . These two conditions define the Ramsey prices

(pR, aR) as functions of the multiplier λ.

Since the break-even constraint must bind at the optimum, we have

(A.5) (P + r)nB +AnS = 0.

This shows in particular that either P + r < 0 and A > 0, or P + r > 0 and A < 0, or
P + r = A = 0 at the optimum. Combining (A.4) and (A.5), we obtain

(A.6) λ = −
nS

∂UB
∂nS

+ nB
∂US
∂nB

n2B
∂P
∂nB

+ n2S
∂A
∂nS

+ nBnS

(
∂P
∂nS

+ ∂A
∂nB

) .
Let Den denote the denominator in (A.6). Since λ > 0 and the numerator in (A.6) is positive,
we must have Den < 0. Then, by combining Equations (A.4) and (A.5), we obtain the following
expression for the margin P + r

(A.7) P + r =
nS

(
∂UB
∂nS

(nB
∂P
∂nB

+ nS
∂A
∂nB

)− ∂US
∂nB

(nB
∂P
∂nS

+ nS
∂A
∂nS

)
)

Den− nS
∂UB
∂nS

− nB
∂US
∂nB

.

Since the denominator is negative, Equation (A.7) shows that P +r has the sign of f(nB, nS) =
∂US
∂nB

(nB
∂P
∂nS

+ nS
∂A
∂nS

) − ∂UB
∂nS

(nB
∂P
∂nB

+ nS
∂A
∂nB

). Then, using the fact that ∂P
∂nB

= 1
∂QB/∂p ,

∂P
∂nS

= −∂QB/∂nS

∂QB/∂p , ∂A
∂nB

= −∂QS/∂nB

∂QS/∂a
and ∂A

∂nS
= 1

∂QS/∂a
, we have after rearranging terms

f(nB, nS) =
1

ηB

(
∂UB

∂nS
+
∂US

∂nB

∂QB

∂nS

)
− 1

ηS

(
∂US

∂nB
+
∂UB

∂nS

∂QS

∂nB

)
,

where ηB = − 1
nB

∂QB
∂p (p, nS) and ηS = − 1

nS

∂QS
∂a (a, nB).

At the monopoly optimum, (nB, nS) solve max(nB ,nS)Π(P (nB, nS), A(nB, nS)) = (P (nB, nS)+
r)nB +A(nB, nS)nS . Assume an interior optimum. The first-order conditions write as follows

P + r +
∂P

∂nB
nB +

∂A

∂nB
nS = 0,

A+
∂A

∂nS
nS +

∂P

∂nS
nB = 0.

(A.8)

We can use again the fact that ∂P
∂nB

= 1
∂QB/∂p ,

∂P
∂nS

= −∂QB/∂nS

∂QB/∂p , ∂A
∂nB

= −∂QS/∂nB

∂QS/∂a
and

∂A
∂nS

= 1
∂QS/∂a

, as well as the notations ηB = − 1
nB

∂QB
∂p (p, nS) and ηS = − 1

nS

∂QS
∂a (a, nB), to
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obtain the characterization of the optimal monopoly prices (pm, am) given in Section 3.

Running Example. Next, we study the same problems but in the context of our running
example. This allows, first, to determine the conditions under which the solutions are interior,
and, second, to obtain a neat characterization of which side is taxed/which side is subsidized as
function of network effects. Assumption A.1 amounts to uBuS < 1 and is maintained throughout
this section.

Social Optimum. Consider the problem max(p,a)W . We have ∂2W/∂p2 = −(1 − uS(2uB +
uS))/(1− uBuS)

2, ∂2W/∂a2 = −(1− uB(uB +2uS))/(1− uBuS)
2 and (∂2W/∂p2)(∂2W/∂a2)−

(∂2W/∂a∂p)2 = (1− (uB + uS)
2)/(1− uBuS)

2. Therefore, a necessary and sufficient condition
for the Hessian to be negative definite is uB + uS < 1. Notice that uB + uS < 1 ⇒ uBuS < 1.

Ramsey Pricing. Consider the problem max(p,a)W subject to Π(p, a) ≥ 0. Π(p, a) is strictly
concave in (p, a) under the assumption uB + uS < 2. We have indeed ∂2Π/∂p2 = −2/(1 −
uBuS) < 0, ∂2Π/∂a2 = −2/(1 − uBuS) < 0 and (∂2Π/∂p2)(∂2Π/∂a2) − (∂2Π/∂a∂p)2 = (4 −
(uB + uS)

2)/(1 − uBuS)
2 > 0. The Lagrangian L(p, a) = W (p, a) + λΠ(p, a), with λ ≥ 0, is

thus strictly concave as the sum of two strictly concave functions when uB + uS < 1. The
optimum is then characterized by the first-order conditions ∂L/∂p = 0 and ∂L/∂a = 0, and
the complementary slackness condition λ∂L/∂λ = 0. The constraint must bind at the optimum
since the unconstrained outcome violates the break even constraint (except in the degenerate
case uB = uS = 0). Therefore, λ > 0 at the optimum. Using the first-order conditions
∂L/∂p = 0 and ∂L/∂a = 0, we can express the optimal price pR and developer fee aR as
functions of the multiplier λ

pR + r =
(r + v)

(
−λ(2λ+ 1) + (λ+ 1)2uBuS + (λ+ 1)2u2S

)
(λ(uB + uS − 2) + uB + uS − 1)(λ(uB + uS + 2) + uB + uS + 1)

,(A.9)

aR =
(λ+ 1)(r + v)(λuB + uB − λuS)

(λ(uB + uS − 2) + uB + uS − 1)(λ(uB + uS + 2) + uB + uS + 1)
.(A.10)

Replacing these values in the break-even constraint Π(pR, aR) = 0, the multiplier λ must satisfy

(A.11) (uB + uS)
2 =

λ(2λ+ 1)2

(λ+ 1)3
.

The right-hand side in (A.11) is strictly increasing and takes values in [0, 4) for λ ∈ [0,+∞).
Therefore, (A.11) has a unique strictly positive solution in λ when (uB + uS)

2 < 4, which is
ensured by our assumption uB + uS < 1. Denote that solution by λR. We can use (A.11) to
replace (uB + uS)

2 as a function of λR in the denominator of (A.10) (which is the same as the
denominator of (A.9)) to show that this denominator is equal to −4λR − 1/(λR + 1) < 0. As a
consequence, and using again (A.10), we obtain

Sign(aR) = −Sign(pR + r) = −Sign(λRuB + uB − λRuS).

Observe now that aR = 0 (or equivalently pR + r = 0) amounts to λR = uB/(uS − uB) with λ
R

the unique positive solution of (A.11). Plugging this expression in (A.11), we obtain that the
following condition between uB and uS must hold to have aR = 0 (or equivalently pR + r = 0):
uB = u3S .

Integration. Consider the problem max(p,a)Π(p, a). We have already established that Π(p, a) is
strictly concave in (p, a) if (uB + uS)

2 < 4. Monopoly prices are given by

pI + r =
(r + v)(2− uS(uB + uS))

4− (uB + uS)2
and aI =

(r + v)(uS − uB)

4− (uB + uS)2
.

Therefore, aI ≥ 0 ⇔ uB ≤ uS and pI + r ≥ 0 ⇔ uS(uB + uS) ≤ 2. From this, we



Vertical Integration in Platform Markets 43

can compute profit and surpluses: ΠI = (r+v)2

2−(uB+uS)
, V I

B = 2(r+v)2

(2−(uB+uS))2(2+(uB+uS))2
, V I

S =

(r+v)2(uB+uS)
2

2(2−(uB+uS))2(2+uB+uS)2
.

Separation. Consider last the case of separation. At stage 2 of the game, M chooses its price
p to maximize its profit πM (p) = (p + βr)DB(p, a). This profit is strictly concave in p when
uBuS < 1. Hence, M ’s best response is uniquely characterized by the first-order condition,
which yields P (β, a) = 1

2(v − βr − auB). At stage 1 of the game, I chooses (β, a) to maximize
its profit πI(β, a) = (1 − β)rDB(P (β, a), a) + aDS(P (β, a), a). πI(β, a) is strictly concave in
(β, a) iff 8−u2B − 6uBuS −u2S = 4(2−uBuS)− (uB +uS)

2 > 0, a condition which is implied by
the concavity condition under integration (uB + uS)

2 < 4; hence, we assume from now on that
(uB + uS) < 2 in order to carry meaningful comparisons between integration and separation.

Solving for the first-order conditions with respect to β and a leads to

βS∗ = − vf(uS , uB)− rf(uB, uS)

r(f(uS , uB) + f(uB, uS))
and aS∗ =

(r + v)(uS − uB)

f(uS , uB) + f(uB, uS)
,

where f(uS , uB) = 4−uS(3uB+uS), f(uB, uS) = 4−uB(3uS+uB) and f(uS , uB)+f(uB, uS) =
8 − u2B − 6uBuS − u2S > 0 by assumption. Notice that three cases have to be considered:
f(uS , uB) ≥ 0 and f(uB, uS) ≥ 0; f(uS , uB) ≤ 0 and f(uB, uS) ≥ 0; f(uS , uB) ≥ 0 and
f(uB, uS) ≤ 0.

The previous optimization did not take into account the constraint β ∈ [0, 1]. We have that
βS∗ ≤ 1 is equivalent to f(uS , uB) ≥ 0 and βS∗ ≥ 0 is equivalent to vf(uS , uB) ≤ rf(uB, uS).
Let us thus define aS0 = argmaxa πI(β = 0, a) = vuS−ruB

2(2−uBuS)
and aS1 = argmaxa πI(β = 1, a) =

(r+v)uS

2(2−uBuS)
. I’s optimal price under separation is thus characterized as follows

(βS , aS) =


(0, aS0 ) if (1),

(βS∗ , a
S
∗ ) if (2),

(1, aS1 ) if (3).

where (1) corresponds to parameters values such that vf(uS , uB) ≥ rf(uB, uS); (2) corresponds
to f(uS , uB) ≥ 0 and vf(uS , uB) ≤ rf(uB, uS); and (3) corresponds to f(uS , uB) ≤ 0 .

M ’s equilibrium price is thus given by pS = P (βS , aS), or

pS =


ru2

B+v(4−3uBuS)
8−4uBuS

if (1),
−r(2−uB(uB+uS))+v(6−5uBuS−u2

S)

8−u2
B−6uBuS−u2

S
if (2),

1
2

(
v − r − uBuS(r+v)

4−2uBuS

)
if (3).

We can then compute profit and surpluses under separation:

ΠS
M =


(ru2

B+v(4−3uBuS))
2

16(uBuS−2)2(1−uBuS)
if (1),

4(r+v)2(1−uBuS)

(u2
B+6uBuS+u2

S−8)
2 if (2),

(r+v)2(4−3uBuS)
2

16(uBuS−2)2(1−uBuS)
if (3),

ΠS
I =


r2u2

B+rv(8−6uBuS)+u2
Sv

2

8(u2
Bu2

S−3uBuS+2)
if (1),

(r+v)2

8−u2
B−6uBuS−u2

S
if (2),

u2
S(r+v)2

8(2−uBuS)(1−uBuS)
if (3),

V S
B =


(ru2

B+v(4−3uBuS))
2

32(2−uBuS)2(1−uBuS)2
if (1),

2(r+v)2

(8−u2
B−6uBuS−u2

S)
2 if (2),

(r+v)2(4−3uBuS)
2

32(2−uBuS)2(1−uBuS)2
if (3),

V S
S =


(ruB+uSv)

2

32(1−uBuS)2
if (1),

(r+v)2(uB+uS)
2

2(8−u2
B−6uBuS−u2

S)
2 if (2),

u2
S(r+v)2

32(1−uBuS)2
if (3).

Running Example: Comparison between Integration and Separation. We can now
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compare prices under integration (pI , aI) with those under separation (pS , aS). We assume
that uB + uS < 2, which ensures that the optimization problem is strictly concave both under
integration and under separation. This also implies that f(uS , uB)+f(uB, uS) = 4(2−uBuS)−
(uB + uS)

2 = 8− u2B − 6uBuS − u2S > 0. To streamline the exposition, we limit ourselves to the
case v = r = 1; the condition vf(uS , uB) ≶ rf(uB, uS) then boils down to uB ≶ uS .
Price comparisons.

- Consider Case (1) or uB ≥ uS . Then, pI − pS = −4+u2
B−3uBuS

4(2−uBuS)
− u2

S−u2
B

4−(uB+uS)2
. This

expression can be either positive or negative for the relevant values of parameters.

- Consider Case (2), that is, f(uS , uB) = 4 − uS(3uB + uS) ≥ 0 and uS ≥ uB. Then,

pI − pS = − 8(1−uBuS)(2−uB(uB+uS))
(4−(uB+uS)2)(8−u2

B−6uBuS−u2
S)
, which is negative under our assumptions.

- Consider Case (3), that is, f(uS , uB) = 4 − uS(3uB + uS) ≤ 0. Then, pI − pS =
u2
B−u2

S
4−(uB+uS)2

+ uBuS
2(2−uBuS)

, which is positive under our assumptions.

Profit comparison. As far as the industry profit is concerned, a simple revealed preference
argument shows that this profit is always larger under integration than under separation since
the integrated structure can replicate any (p, a) implemented by the separated entities.
Comparisons of the surplus of buyers.

- Case (1). V I
B − V S

B = 8
(2−(uB+uS))2(2+uB+uS)2

− (4+u2
B−3uBuS)

2

32(2−uBuS)2(1−uBuS)2
. In that case,

the assumption is that uB ≥ uS and uBuS < 1. V I
B − V S

B ≥ 0 ⇔ 8
4−(uB+uS)2

−
4+u2

B−3uBuS

2(2−uBuS)(1−uBuS)
≡ A − B. Now, since 4 − (uB + uS)

2 = 4(1 − uBuS) − (uS − uB)
2 ≥

4(1 − uBuS), A ≥ 2
1−uBuS

. We have 2
1−uBuS

≥ 4+u2
B−3uBuS

2(2−uBuS)(1−uBuS)
⇔ 4(2 − uBuS) ≥

4 + u2B − 3uBuS ⇔ 4 ≥ uB(uB + uS), which always holds since uB + uS < 2. Therefore,
A ≥ B or V I

B − V S
B ≥ 0.

- Case (2). V I
B −V S

B =
64(1−uBuS)(2(1−uBuS)+4−(uB+uS)

2)
(2−uB+uS)2(2+uB+uS)2(8−u2

B−6uBuS−u2
S)

2 , which is positive under our

assumptions.

- Case (3). V I
B − V S

B = 8
(2−(uB+uS))2(2+uB+uS)2

− (4−3uBuS)
2

8(2−uBuS)2(1−uBuS)2
. In that case, the

assumption is that 4 − 3uBuS ≤ u2S (which implies uS ≥ uB) and uBuS < 1. Hence,
V I
B − V S

B ≥ 0 ⇔ 8
4−(uB+uS)2

≥ 4−3uBuS
(2−uBuS)(1−uBuS)

≡ A − B. Now, since 4 − (uB + uS)
2 =

4(1 − uBuS) − (uS − uB)
2 ≥ 4(1 − uBuS), A ≥ 2

1−uBuS
. Since 4 − 3uBuS ≤ u2S , B ≤

u2
S

(2−uBuS)(1−uBuS)
. Then,

u2
S

(2−uBuS)(1−uBuS)
≤ 2

1−uBuS
⇔ u2S ≤ uS(uB + uS), which always

holds since uB + uS < 2. Hence, A ≥ B or V I
B − V S

B ≥ 0.

Comparisons of the surplus of developers.

- Case (1). V I
S −V S

S = 1
32(uB+uS)

2( 64
(2−(uB+uS))2(2+uB+uS)2

− 1
(1−uBuS)2

). Then, V I
S −V S

S ⇔
8

4−(uB+uS)2
≥ 1

1−uBuS
⇔ 8(1− uBuS) ≥ 4− (uB + uS)

2 ⇔ 4(1− uBuS) + (uB − uS)
2 ≥ 0,

which always holds under our assumptions.

- Case (2). V I
S − V S

S = 2(uB + uS)
2( 1

(2−(uB+uS))2(2+uB+uS)2
− 1

(8−u2
B−6uBuS−u2

S)
2 ). Then,

V I
S − V S

S ≥ 0 ⇔ 1− uBuS ≥ 0, which holds under our assumptions.

- Case (3). V I
S − V S

S = 2(uB+uS)
2

(2−(uB+uS))2(2+uB+uS)2
− u2

S
8(1−uBuS)2

. Then, V I
S − V S

S ≥ 0 ⇔
4(uB+uS)

4−(uB+uS)2
≥ uS

1−uBuS
. Since 4 − (uB + uS)

2 = 4(1 − uBuS) − (uS − uB)
2, a sufficient

condition for V I
S − V S

S ≥ 0 is thus 4(uB+uS)
4(1−uBuS)

≥ uS
1−uBuS

, which always holds under our
assumptions.
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A.2. Competing Platforms and Competing Manufacturers: Generalities

Demand Functions with Indirect Network Effects. In the last stage of the game,
given prices (p1, p2, a), the number of buyers and the number of developers solve

(A.12)


n1B = Q1

B(p1, p2, nS),
n2B = Q2

B(p2, p1, nS),
nS = QS(uS(n

1
B + n2B)− a).

In the following, with a slight abuse of notations, let ∂QS/∂a(a, nB) = −Q′
S(uSnB − a) and

∂QS/∂nB(a, nB) = uSQ
′
S(uSnB − a). To avoid ‘cornered-market’ solutions, in which all buyers

or all developers participate in equilibrium, we assume that indirect network effects are not too
strong so that, in the relevant range, each manufacturer faces a demand that is locally elastic
with respect to prices.

Assumption A.2. In the relevant range of (p1, p2, a), n
1
B + n2B and nS satisfy ∂QS

∂nB
(a, n1B +

n2B)
(
∂Q1

B
∂nS

(p1, p2, nS) +
∂Q2

B
∂nS

(p2, p1, nS)
)
< 1.

This assumption is maintained throughout the analysis.

Lemma A.3. System (A.12) has a unique interior solution.

Proof. Let DB(p1, p2, a) = D1(p1, p2, a)+D2(p2, p1, a). From system (A.12), we have (omitting
some notations)

(A.13) DB = Q1
B(p1, p2, QS(uSDB − a)) +Q2

B(p2, p1, QS(uSDB − a)).

For a given (p1, p2, a), DB(p1, p2, a) is thus a fixed point of ψ(x) = Q1
B(p1, p2, QS(uSx − a)) +

Q2
B(p2, p1, QS(uSx− a)). Notice then that

ψ′(x) =
∂QS

∂nB
(a, x)

(
∂Q1

B

∂nS
(p1, p2, QS(uSx− a)) +

∂Q2
B

∂nS
(p2, p1, QS(uSx− a))

)
.

Assumption A.2 implies that |ψ′(·)| < 1, so that ψ(·) is a contraction mapping and Equa-
tion (A.13) has a unique solution. It follows that DB(p1, p2, a) is uniquely defined; hence,
DS(p1, p2, a) = QS(uSDB(p1, p2, a) − a) is also uniquely defined, as well as Dk(pk, pℓ, a) =
Qk

B(pk, pℓ, DS(p1, p2, a)).

Lemma A.4. The following properties hold: ∂Dk
∂pk

(pk, pℓ, a) < 0, ∂DS
∂pk

(pk, pℓ, a) < 0, |∂Dk
∂pk

(p, p, a)| >
|∂Dk
∂pℓ

(p, p, a)|, ∂Dk
∂a (pk, pℓ, a) < 0 and ∂DS

∂a (pk, pℓ, a) < 0.

Proof. By the implicit function theorem, DB(p1, p2, a) = D1(p1, p2, a)+D2(p2, p1, a) is continu-
ously differentiable. Differentiating Equation (A.13) with respect to p1 and rearranging terms,
we find (omitting some arguments)

∂DB

∂p1

[
1− ∂QS

∂nB

(
∂Q1

B

∂nS
+
∂Q2

B

∂nS

)]
=
∂Q1

B

∂p1
+
∂Q2

B

∂p1
.

By Assumption A.2, the term in squared brackets is positive. Therefore, ∂DB/∂p1 is negative.
Similarly, ∂DB/∂p2 < 0. Since ∂QS/∂nB > 0, DS(p1, p2, a) = QS(uSDB(p1, p2, a) − a) is de-
creasing in both p1 and p2. Then, ∂D1/∂p1 = ∂Q1

B/∂p1 + (∂DB/∂p1)(∂Q
1
B/∂nS)(∂QS/∂nB),

which shows that ∂D1/∂p1 < 0. Similarly, ∂D1/∂p2 = ∂Q1
B/∂p2+(∂DB/∂p2)(∂Q

1
B/∂nS)(∂QS/∂nB).

For symmetric prices, ∂DB/∂p1 = ∂DB/∂p2, and therefore, |∂D1/∂p1|−|∂D1/∂p2| = |∂Q1
B/∂p1|−

|∂Q1
B/∂p2| < 0, which is negative under our assumptions.
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From Equation (A.12), the developer demand solves

(A.14) DS(a, p1, p2) = QS(uS(Q
1
B(p1, p2, DS(a, p1, p2)) +Q2

B(p2, p1, DS(a, p1, p2)))− a).

By the implicit function theorem, DS(a, p1, p2) is continuously differentiable. Differentiating
Equation (A.14) with respect to a and rearranging terms, we find (omitting some arguments)

∂DS

∂a
=

∂QS
∂a

1− ∂QS
∂nB

(
∂Q1

B
∂nS

+
∂Q2

B
∂nS

) .
By Assumption A.2, the denominator is positive, and therefore, ∂DS/∂a has the sign of ∂QS/∂a,
which is negative. Since Dk(pk, pℓ, a) = Qk

B(pk, pℓ, DS(pk, pℓ, a)) and ∂Q
k
B/∂nS > 0, ∂Dk/∂a is

also negative.

Assumptions in the Running Example. Assumption A.2 writes as 2uBuS < 1. Solving for
nkB, k = 1, 2, and nS in (3.3), we obtain

Dk(pk, pℓ, a) =
2v − (2 + σ)pk + σpℓ − 2uBa

2(1− 2uBuS)
,(A.15)

DS(p1, p2, a) =
uS(2v − p1 − p2)− a

1− 2uBuS
,(A.16)

where σ = γ − 2uBuS(1 + γ), which is positive by assumption. From (A.15), and since σ ≥ 0
and 0 ≤ 2uBuS < 1, Dk is strictly decreasing in pk and a. Manufacturers’ products are
demand substitutes since ∂Dk/∂pℓ = σ/(2(1− 2uBuS)) ≥ 0. From (A.16), we have that DS is
decreasing in p1, p2 and a. Finally, the direct price effect is stronger than the indirect one since
−∂Dk/∂pk − ∂Dk/∂pℓ = 1/(1− 2uBuS) > 0.

We now check that the price competition subgame is ‘well-behaved’ in the running example.
Consider the separation benchmark. Developers pay a total fee a, and Mk earns a profit equal
to πk = (pk + βkr)Dk. ∂

2πk/∂p
2
k = −(2 + σ)/(1− 2uBuS) < 0, so that πk is strictly concave in

pk and Mk’s best response is uniquely characterized by the first-order condition ∂πk/∂pk = 0.
The best response is given by Rk(pℓ, βk, a) = (2(v − βkr) + σ(pℓ − βkr) − 2uBa)/(2(2 + σ)).
We then have 0 < ∂Rk/∂pℓ < 1 and ∂Rk/∂a ≤ 0. Equilibrium prices are given by p̂k =
(−2auB(4 + 3σ) + v(8 + 6σ) + (2 + σ)(−βℓrσ − 2βkr(2 + σ)))/((4 + σ)(4 + 3σ)). We obtain
then that: ∂p̂k/∂βk = −r(2(2 + σ)2)/((4 + σ)(4 + 3σ)), which belongs to (−2r/3, r/2] for
σ ≥ 0; ∂p̂k/∂βℓ = −r(σ(2 + σ))/((4 + σ)(4 + 3σ)), which belongs to (−1/3, 0] for σ ≥ 0; and
∂p̂k/∂a = − 2uB

(4+σ) ≤ 0.

Last, we check that these assumptions are satisfied when I and M1 are integrated and
the integrated platform sets a developer fee aI and a sharing parameter βI for M2. I’s profit
writes as (p1 + r)D1 + (1 − βI)rD2 + aIDS and its best response is R1(p2, βI , aI) = (2(v −
r − (uB + uS)aI) + σ(p2 − βIr))/(2(2 + σ)), which is increasing with a slope smaller than 1 in
p2 and decreasing in aI . M2’s profit writes as (p2 + βIr)D2 and its best response is given by
R2(p1, βI , aI) = (2(v−βIr)+σ(p1−βIr)−2uBaI)/(2(2+σ)). Those best responses satisfy our
assumptions. Additionally, equilibrium prices are given by pI1 = −βIr + (−r − aI(2uB + uS) +
2v + 3βIr)/(4 + σ) + (−r − aIuS + βIr)/(4 + 3σ) and pI2 = −βIr + (−r − aI(2uB + uS) + 2v +
3βIr)/(4 + σ) + (r + aIuS − βIr)/(4 + 3σ). These prices are decreasing in βI at a rate smaller
than r and decreasing in aI .

Ramsey Prices in the General Case. Note that we can assume that p1 = p2 ≡ p with-
out loss of generality. To ease the exposition, consider the following notations: DB(p, a) =
D1(p, p, a)+D2(p, p, a), DS(p, a) = DS(p, p, a), Π(p, a) = (p+r)DB(p, a)+aDS(p, a),W (p, a) =
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VB(p, p,DS(p, a)) + VS(a,DB(p, a)) + Π(p, a). Ramsey prices solve the following problem

(A.17)
max
(p,a)

W (p, a)

s.t. Π(p, a) ≥ 0.

Let λ ≥ 0 be the Lagrange multiplier associated to the constraint. Assume that this problem
is well-behaved so that its solution can be characterized through first-order conditions.

Consider the following change of variables: φ : (p, a) 7→ (nB, nS) = (DB(p, a), DS(p, a)). It is
a C1-diffeomorphism since, under Assumption A.2, the system of equations nB = Q1

B(p, p, nS)+
Q2

B(p, p, nS) and nS = QS(uSnB−a) has a unique solution, namely (nB, nS) = (DB(p, a), DS(p, a)),
in the relevant range of parameters. Let (P (nB, nS), A(nB, nS)) = φ−1(nB, nS). Problem (A.17)
then rewrites as follows

max
(nB ,nS)

W = UB(1/2nB, 1/2nB, nS)− P (nB, nS)nB + US(nS , nB)−A(nB, nS)nS

+(P (nB, nS) + r)nB +A(nB, nS)nS
s.t. (P (nB, nS) + r)nB +A(nB, nS)nS = 0.

The first-order conditions on nB and nS can be written as follows (omitting notations)

(A.18)

1
2

(
∂UB
∂q1

+ ∂UB
∂q2

)
+ r + ∂US

∂nB
+ λ

(
∂P
∂nB

nB + P + r + ∂A
∂nB

nS

)
= 0,

∂UB
∂nS

+ ∂US
∂qS

+ λ
(

∂P
∂nS

nB + ∂A
∂nS

nS +A
)
= 0.

Then, noticing that the maximization problems of the representative buyer and developer give
∂UB
∂q1

= P , ∂UB
∂q2

= P , and ∂US
∂qS

= A, Equations (A.18) rewrite as follows

(A.19)
P + r + ∂US

∂nB
+ λ

(
∂P
∂nB

nB + P + r + ∂A
∂nB

nS

)
= 0,

∂UB
∂nS

+A+ λ
(

∂P
∂nS

nB + ∂A
∂nS

nS +A
)
= 0.

With no break-even constraint, the welfare-maximizing prices are obtained by setting λ = 0
in (A.19): P + r = − ∂US

∂nB
< 0 and A = −∂UB

∂nS
< 0. These conditions violate the break-even

constraint. Therefore, λ > 0 and the break-even constraint is binding at the Ramsey optimum

(A.20) (P + r)nB +AnS = 0,

which shows in particular that either P + r ≤ 0 and A ≥ 0, or P + r > 0 and A < 0 at the
optimum. Then, combining Equations (A.19) and (A.20), we obtain

(A.21) λ = −
nS

∂UB
∂nS

+ nB
∂US
∂nB

n2B
∂P
∂nB

+ n2S
∂A
∂nS

+ nBnS

(
∂P
∂nS

+ ∂A
∂nB

) .
Let Den denote the denominator in (A.21). Since λ > 0 and the numerator in (A.21) is positive,
we have Den < 0. Then, by combining Equations (A.19) and (A.20), we obtain the following
expression for the margin P + r

(A.22) P + r =
nS

(
∂UB
∂nS

(nB
∂P
∂nB

+ nS
∂A
∂nB

)− ∂US
∂nB

(nB
∂P
∂nS

+ nS
∂A
∂nS

)
)

Den− nS
∂UB
∂nS

− nB
∂US
∂nB

.

Since the denominator is negative, Equation (A.22) shows that P+r has the sign of f(nB, nS) =
∂US
∂nB

(nB
∂P
∂nS

+ nS
∂A
∂nS

) − ∂UB
∂nS

(nB
∂P
∂nB

+ nS
∂A
∂nB

). Then, noticing that ∂P
∂nB

= 1
∂QB/∂p and ∂P

∂nS
=
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−∂QB/∂nS

∂QB/∂p (where, with a slight abuse of notations, ∂QB/∂p = ∂QB/∂p1 + ∂QB/∂p2),
∂A
∂nB

=

−∂QS/∂nB

∂QS/∂a
and ∂A

∂nS
= 1

∂QS/∂a
, we have after rearranging terms

f(nB, nS) =
1

ηB

(
∂UB

∂nS
+
∂US

∂nB

∂QB

∂nS

)
− 1

ηS

(
∂US

∂nB
+
∂UB

∂nS

∂QS

∂nB

)
,

where ηB = − 1
nB

∂QB
∂p (p, nS) and ηS = − 1

nS

∂QS
∂a (a, nB).

Next, we study the same problem but in the context of our running example. This allows,
first, to determine the conditions under which the constrained-maximization problem is concave,
and, second, to obtain a neat characterization of which side is taxed/which side is subsidized
as function of network effects.

Ramsey Prices in the Running Example. Consider the unconstrained problem max(p,a)W .
Assume 2(uB+uS)

2 < 1, which ensures that the Hessian is negative definite so thatW is strictly
concave. We have indeeed ∂2W/∂p2 = −(2 − 4uS(2uB + uS))/(1 − 2uBuS)

2 < 0, ∂2W/∂a2 =
−(1 − 2uB(uB + 2uS))/(1 − 2uBuS)

2 < 0 and (∂2W/∂p2)(∂2W/∂a2) − (∂2W/∂a∂p)2 = (2 −
4(uB+uS)

2)/(1−2uBuS)
2 > 0. Solving for the first-order conditions, we obtain p = −(2uS(uB+

uS)v+r(1−2uB(uB+uS)))/(1−2(uB+uS)
2) and a = −(2uB(v+r))/(1−2(uB+uS)

2), which
yields p+ r ≤ 0 and a ≤ 0.

Consider now problem (A.17). Π is strictly concave under the assumption 2(uB +uS)
2 < 1.

We have indeed ∂2Π/∂p2 = −4/(1 − 2uBuS) < 0, ∂2Π/∂a2 = −2/(1 − 2uBuS) < 0 and
(∂2Π/∂p2)(∂2Π/∂a2)− (∂2Π/∂a∂p)2 = (8− 4(uB + uS)

2)/(1− 2uBuS)
2 > 0.

The Lagrangian L =W +λΠ, with λ ≥ 0, is thus strictly concave as the sum of two strictly
concave functions. The optimum is then characterized by the first-order conditions ∂L/∂p = 0
and ∂L/∂a = 0, and the complementary slackness condition λ∂L/∂λ = 0. The constraint must
bind at the optimum since the unconstrained outcome violates the break even constraint (except
in the degenerate case uB = uS = 0). Therefore, λ > 0 at the optimum.

Using the first-order conditions ∂L/∂p = 0 and ∂L/∂a = 0, we can express the optimal
price pR and developer fee aR as functions of the multiplier λ

aR =
2(λ+ 1)(v + r)(λuB + uB − λuS)

−4λ+ 2 (λ2 ((uB + uS)2 − 2) + 2λ(uB + uS)2 + (uB + uS)2)− 1
,(A.23)

pR + r =
(v + r)

(
−λ(2λ+ 1) + 2(λ+ 1)2uBuS + 2(λ+ 1)2u2S

)
−4λ+ 2 (λ2 ((uB + uS)2 − 2) + 2λ(uB + uS)2 + (uB + uS)2)− 1

.(A.24)

Replacing in the constraint Π = 0, the multiplier λ satisfies

(A.25) (uB + uS)
2 =

λ(2λ+ 1)2

2(λ+ 1)3
.

The right-hand side in (A.25) is strictly increasing and takes values in [0, 2) for λ ∈ [0,+∞).
Therefore, (A.25) has a unique strictly positive solution in λ when (uB + uS)

2 < 2, which is
ensured by our assumption 2(uB + uS)

2 < 1. Denote that solution by λR. We can use (A.25)
to replace (uB + uS)

2 as a function of λR in the denominator of (A.23) (which is the same as
the denominator of (A.24)) to show that this denominator is equal to −4λR − 1/(λR + 1) < 0.
As a consequence, and using again (A.25), we obtain

Sign(aR) = −Sign(pR + r) = −Sign(λRuB + uB − λRuS).

Observe now that aR = 0 (or equivalently pR + r = 0) amounts to λR = uB/(uS − uB) with λ
R

the unique positive solution of (A.25). Plugging this expression in (A.25), we obtain that the
following condition between uB and uS must hold to have aR = 0 (or equivalently pR + r = 0):
uB = 2u3S .



Vertical Integration in Platform Markets 49

A.3. Proof of Proposition 4 (Separation Outcome)

Existence. Suppose all platforms offer (β = 1, a = 0) and thus make no profit. The developer
publishes all its applications on all the operating systems and manufacturers are indifferent
between any of the operating systems. There are a priori three possible configurations to
consider: (i) both manufacturers choose I; (ii) M1 chooses I and M2 chooses E; (iii) both
manufacturers choose E. However, in all these configurations, all platforms make a nil profit
and manufacturers’ profits are given by π̂1(1, 1, 0) = π̂2(1, 1, 0). These configurations are thus
essentially equivalent from the platforms’ perspective.

Consider now the possible deviations by platform I.

(i). First, consider a deviation (βI < 1, aI < 0). Because aI < 0, the developer publishes its
applications on I even if no manufacturers choose I’s operating system.

If both manufacturers choose I’s operating system, M1’s profit is given by π̂1(βI , βI , aI).
If M1 chooses E and M2 chooses I, M1’s profit is given by π̂1(1, βI , aI). Since π̂1(1, βI , aI) >
π̂1(βI , βI , aI),M1 chooses the fringe’s operating system rather than I’s. Hence, following I’s de-
viation, it is not possible that both manufacturers choose I. A configuration in whichM1 chooses
I and M2 chooses E is not an equilibrium either because π̂1(βI , 1, aI) < π̂1(1, 1, aI). Both man-
ufacturers choosing E is the only continuation following I’s deviation because π̂1(1, 1, aI) >
π̂1(βI , 1, aI).

Hence, the deviation leads to both manufacturers choosing E and to a strictly negative
profit for I (no manufacturers and aI < 0). It is thus not profitable for I.

(ii). Second, consider a deviation (βI < 1, aI ≥ 0). Consider that the developer publishes
on I when at least one manufacturer chooses I’s operating system, or equivalently that aI is not
too large (this is the most favorable scenario for I’s deviation). If both manufacturers choose
I’s operating system, M1’s profit is given by π̂1(βI , βI , aI). If M1 chooses E and M2 chooses
I, profits are given by π̂1(1, βI , aI) and π̂2(βI , 1, aI). Therefore, both manufacturers choosing
I is not part of the continuation following I’s deviation. Again, it is immediate to show that,
following I’s deviation, both manufacturers choose E and the developer does not publish on I.
The deviation is thus not profitable.

(iii). Third, consider a deviation (βI = 1, aI ≥ 0). Consider that the developer publishes on
I when at least one manufacturer chooses I’s operating system, or equivalently that aI is not
too large (again, this is the most favorable scenario for I’s deviation). If both manufacturers
choose I, M1’s gain is π̂1(1, 1, aI). If M1 chooses E and M2 chooses I, M1’s gain is again
π̂1(1, 1, aI). Hence, given that the other manufacturer chooses I, each manufacturer is indifferent
between I and E. Therefore, both manufacturers choosing I is a part of the continuation
equilibrium. It is immediate to show that both manufacturers choosing E is also an equilibrium
since π̂1(1, 1, 0) > π̂1(1, 1, aI).

Observe, though, that manufacturers collectively gain if they both choose E rather than I,
for their total profit would be π̂1(1, 1, 0) + π̂2(1, 1, 0) > π̂1(1, 1, aI) + π̂2(1, 1, aI) when aI > 0.
Our criterion selects both manufacturers choosing E as the continuation following the deviation
by I. Hence, the deviation is not profitable for I.

Uniqueness. It remains to show that (β = 1, a = 0) for all platforms is the unique equilibrium.

(i). Consider a situation where I sets (βI < 1, aI) and attracts both manufacturers. Assume
that aI is such that the developer is not discouraged from publishing on I. Then, E can set
βE = βI + ε, ε > 0 but small, and aE = 0. Both manufacturers choose E since π̂1(βI , βI , aI) <
π̂1(βE , βI , aI +0) (both manufacturers choosing I is not a Nash equilibrium) and π̂1(βE , βE , 0+
1{aI≤0}) ≥ π̂1(βI , βE , aI + 0) (both manufacturers choosing E is a Nash equilibrium).

(ii). Consider now a situation where I sets (βI < 1, aI) and attracts M1 only. Consider
that M2 chooses E that offers (βE < 1, aE). Assume that aI and aE are such that that the
developer is not discouraged from publishing on I and on E respectively. Then, E′ can set
βE′ = max(βI , βE) + ε, ε > 0 but small, and aE′ = 0. Both manufacturers choose E′ since
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π̂1(βI , βE , aI + aE) < π̂1(βE′ , βE ,1{aI≤0} + aE + 0) (both manufacturers choosing I is not a
Nash equilibrium) and π̂1(βE′ , βE′ ,1{aI≤0} + 1{aE≤0} + 0) ≥ π̂1(βI , βE , aI + 1{aE≤0} + 0) (both
manufacturers choosing E′ is a Nash equilibrium).

A consequence of (i) and (ii) is that a strategy (βI < 1, aI) leads at best to a nil profit in
equilibrium. That strategy is thus strictly dominated by (βI = 1, aI = 0).

(iii). A strategy (βI = 1, aI < 0) is never used at equilibrium because it leads at best to a
nil profit. It is also strictly dominated by (βI = 1, aI = 0).

(iv). It remains to study the strategy (βI = 1, aI > 0). If both manufacturers choose I, then
E can offer (βE = 1, aE = aI − ε), with ε > 0 but small. Since π̂1(1, 1, aI) > π̂1(1, 1, aI + aE)
and π̂1(1, 1, aE) > π̂1(1, 1, aI + aE), there are two Nash equilibria in the subgame starting at
stage 2: both manufacturers choose I; and both manufacturers choose E. According to our
selection criterion, both manufacturers choose E, which leads to a nil profit for I. Similarly, if
M1 only chooses I, and M2 chooses E that offers (βE , aE), E

′ can offer (βE′ = 1, aE′ = aI − ε),
ε > 0 but small, and ensures that M1 choose E′. The strategy (βI = 1, aI > 0) is dominated
by (βI = 1, aI = 0).

A consequence of (i)-(ii)-(iii)-(iv) is that there is no other equilibrium than the one in which
all platforms offer (β = 1, a = 0).

A.4. Unconstrained Outcome with No Efficiency Gains in the Running Example

We study the unconstrained outcome and derive formally the curves drawn in Figure 4. Let
πI1(βI , aI) = (pI1 + r)D1(p

I
1, p

I
2, aI) + (1 − βI)rD2(p

I
2, p

I
1, aI) + aIDS(p

I
1, p

I
2, aI), where prices pI1

and pI2 are given in Appendix A.2.

Conditions for Concavity. We find conditions that ensure the concavity of the maximiza-
tion problem max(βI ,aI) π

I
1(βI , aI). One can show that a sufficient condition is 2(uB +uS)

2 < 1.
This is, however, an overly restrictive condition that prevents from studying situations with
quite asymmetric network effects. In the sequel, we establish a set of necessary and sufficient
conditions that ensure the concavity of the previous problem. Computations show that:

(i) ∂2πI1/∂β
2
I = −[4(σ + 1)(σ + 2)(σ(9σ + 32) + 32)]/[(σ + 4)2(3σ + 4)2(1 − 2uBuS)], which

is strictly negative.

(ii) ∂2πI1/∂a
2
I = −[2(σ+4)2(3σ+4)2−4(σ+2)(3σ+4)2u2B−4(3σ+4)(σ(7σ+32)+32)uBuS−

4(σ(σ(7σ + 40) + 64) + 32)u2S ]/[(σ + 4)2(3σ + 4)2(1− 2uBuS)].

(iii) (∂2πI1/∂β
2
I )(∂

2πI1/∂a
2
I)− (∂2πI1/∂aI∂βI)

2 = −4r2(σ+1)[5σ2(9u2B+22uBuS +9u2S −20)+
16σ(5u2B+14uBuS+5u2S−12)+9σ3((uB+uS)

2−2)+16((3uB+uS)(uB+3uS)−8)]/((σ+
4)2(3σ + 4)2(1− 2uBuS)

2).

Simplifying these expressions further, the Hessian is negative definite if and only if −2(σ +
4)2(3σ+4)2+4(σ+2)(3σ+4)2u2B+4(3σ+4)(σ(7σ+32)+32)uBuS+4(σ(σ(7σ+40)+64)+32)u2S <
0 and 5σ2(9u2B +22uBuS +9u2S − 20)+16σ(5u2B +14uBuS +5u2S − 12)+9σ3((uB +uS)

2− 2)+
16((3uB + uS)(uB + 3uS)− 8) < 0.

Instead of working with (uB, uS), it turns out to be easier to work with (σ, uS) with σ =
γ−2(1+γ)uBuS (which is possible since such transformation is a C1-diffeomorphism). Remind
that σ ≥ 0 by assumption and σ ≤ γ by definition. Equipped with this change of variables, we
have that ∂2πI1/∂a

2
I < 0 and (∂2πI1/∂β

2
I )(∂

2πI1/∂a
2
I)− (∂2πI1/∂aI∂βI)

2 > 0 are equivalent to

(A.26) f(x) =
1

x(1 + γ)(1 + σ)(4 + σ)2(4 + 3σ)2
(
4x2(1 + γ)2(32 + σ(64 + σ(40 + 7σ)))

−2x(1 + γ)(4 + 3σ)(2(2 + σ)(16 + 5σ(4 + σ)) + γ(32 + 3σ(16 + σ(7 + σ))))

+(γ − σ)2(2 + σ)(4 + 3σ)2
)
< 0
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and

(A.27) g(x) =
1

x(1 + σ)(4 + σ)2(4 + 3σ)2
(
4x2(1 + γ)2(4 + 3σ)(12 + σ(11 + 3σ))

−4x(1 + γ)(128 + γ(4 + 3σ)(12 + σ(11 + 3σ)) + σ(272 + σ(212 + σ(73 + 9σ))))

+(γ − σ)2(4 + 3σ)(12 + σ(11 + 3σ))
)
< 0,

where x = u2S . Notice that the denominators in (A.26) and (A.27) are identical and positive.
Let N1 and N2 denote the numerators in (A.26) and (A.27) respectively. We have

N2 −N1 = (γ − σ)2(4 + σ)(4 + 3σ) + 4x2(1 + γ)2(16 + σ(16 + σ(5 + 2σ)))

+ 2x(1 + γ)(γ(4 + 3σ)(8 + σ(26 + 3σ(5 + σ))) + 2σ(48 + σ(76 + σ(37 + 6σ)))) > 0.

Put differently, Condition (A.27) is more demanding than Condition (A.26), that is N2 < 0 is a
necessary and sufficient condition for the concavity of the maximization problem. Then, simple
computations show that condition N2 < 0 amounts to

(A.28)
(uB + uS)

2 − 2

(uS − uB)2
<

16 + σ(16 + 5σ)

(2 + σ)(32 + σ(32 + 9σ))
.

Since the right-hand side in (A.28) is positive, a sufficient condition for the concavity of the
maximization problem is (uB +uS)

2 < 2. When (uB +uS)
2 > 2, condition (A.28) is more likely

to be satisfied if (uS−uB)2 large, that is, roughly speaking when network effects are sufficiently
asymmetric.

Let us now describe the set of (uB, uS) such that (A.28) is satisfied, which as we have
seen amounts to g(x) < 0. The numerator in g(x) is a polynomial of degree 2 in x, whose
discriminant is equal to 64(1+ γ)2(1+σ)(2+σ)(32+σ(32+ 9σ))(γ(4+ 3σ)(12+σ(11+ 3σ))+
2(32 + σ(56 + σ(33 + 7σ)))) > 0. Therefore, it has two distinct real roots x(σ) and x(σ). Since
the numerator in g(x) is positive when x = 0, the smallest root is positive: x(σ) > 0. It follows
that, for a given γ ≥ 0, g(x) < 0 amounts to x(σ) < u2S < x(σ). Define uS(σ) =

√
x(σ),

uB(σ) = γ−σ
2(1+γ)uS(σ)

, uS(σ) =
√
x(σ) and uB(σ) = γ−σ

2(1+γ)uS(σ)
. By construction, the set of

(uB, uS) such that (A.28) is satisfied is the set of (uB, uS) whose frontiers are given by the two
parametric curves C = (uB(σ), uS(σ)) and C = (uB(σ), uS(σ)) for all σ ∈ [0, γ]. Curves C and C
are represented in Figure 16.

Simple computations show that the slope of the parametric curves (given by u̇S(σ)/u̇B(σ))
is equal to

(A.29) − 2(1 + γ)x(σ)

(γ − σ) + 2 x(σ)
x′(σ)

,

where x(σ) = x(σ) for the curve C and x(σ) = x(σ) for the curve C. Computations show that
x′(σ) < 0 < x′(σ). Plugging this in Equation (A.29) shows that the curve C is downward sloping

in the plane (uB, uS). Computations then show that (γ − σ) + 2 x(σ)
x′(σ) > 0, which proves that

the curve C is downward sloping in the plane (uB, uS).

Figure 16 represents the sufficient condition (area below the red curve) and the necessary
and sufficient condition (area below the blue curves) for the concavity of the maximization
problem (given that we focus on σ ≥ 0).

Unconstrained Optimum. Denote now by (β∗I , a
∗
I) the unique solution of the system formed
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uB
0

uS
uB = uS

σ = 0

(uB + uS)
2 = 2

C

C

Figure 16: Necessary and sufficient conditions for the concavity of the maximization
problem in the running example.

by the two first-order conditions ∂πI1/∂βI = 0 and ∂πI1/∂aI = 0. Simple computations lead to

r(1− β∗I ) =
(v + r)(3σ + 4)

(
−3σ(σ + 4) + (σ(3σ + 13) + 20)uBuS + (σ(3σ + 11) + 12)u2S − 16

)
Den

,

(A.30)

a∗I =
(v + r)(3σ + 4)(σ(3σ + 11) + 12)(uB − uS)

Den
,

(A.31)

with Den < 0 since it is proportional to −(∂2πI1/∂β
2
I )(∂

2πI1/∂a
2
I) + (∂2πI1/∂aI∂βI)

2 < 0.

First, a∗I = 0 is equivalent to uB = uS .

Second, β∗I = 1 amounts to −3σ(σ + 4) + (σ(3σ + 13) + 20)uBuS + (σ(3σ + 11) + 12)u2S −
16 = 0 with σ = γ − 2(1 + γ)uBuS . Expressing uB as a function of σ, β∗I = 1 amounts to
(σ(3σ+13)+20)(γ−σ))/(2(γ+1))−3σ(σ+4)+(σ(3σ+11)+12)u2S −16 = 0, a second degree
polynomial in uS with a positive root equal to

û
β∗
I=1

S (σ) =

√
γ + 8σ

9σ2+33σ+36
+ σ + 8

3

2(γ + 1)
.

Define û
β∗
I=1

B (σ) = (γ − σ)/(2(γ + 1)ûS(σ)). Then, the set of (uB, uS) such that β∗I = 1 is

described by the curve associated to the parametric equations (uB = û
β∗
I=1

B (σ), uS = û
β∗
I=1

S (σ))
for all σ ∈ [0, γ].

Straightforward computations show that (û
β∗
I=1

S (σ))2 > (û
β∗
I=1

B (σ))2 for all σ, so that the set

of (uB, uS) such that β∗I = 1 lies strictly above the 45◦-degree line. We have (û
β∗
I=1

B (γ), û
β∗
I=1

S (γ)) =

(0,
√

(3γ(γ + 4) + 16)/(γ(3γ + 11) + 12)). Simple computations then show that (û
β∗
I=1

S )2(γ) ∈
[x(γ), x(γ)] and (û

β∗
I=1

S )2(0) ∈ [x(0), x(0)].

Last, we also have

(A.32)
d
dσ û

β∗
I=1

S (σ)

d
dσ û

β∗
I=1

B (σ)
= −C

D
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with C = (
(
σ
(
σ
(
9σ2 + 66σ + 185

)
+ 264

)
+ 176

)
(γ(σ(3σ+11)+12)+(3σ+4)(σ(σ+5)+8))) > 0

and D = (σ(3σ+11)+12)(γ(σ(σ(9σ(3σ+22)+571)+792)+464)+σ(σ(σ(3σ(3σ+38)+569)+
1352)+1584)+768) > 0; this derivative is thus strictly negative for all σ. Hence, the parametric

curve (û
β∗
I=1

B (σ), û
β∗
I=1

S (σ)) for σ ∈ [0, γ] is strictly downward-sloping in the (uB, uS)-plane.

Simple computations also show that: (i) (û
β∗
I=1

S (0))2 = (8+3γ)/(6(1+γ)), which belongs to

[x(0) = (8+3γ−4
√
4 + 3γ)/(6(1+γ)), x(0) = (8+3γ+4

√
4 + 3γ)/(6(1+γ))]; (ii) (û

β∗
I=1

S (γ))2 =
(γ + 4)/(γ(3γ + 11) + 12) + 1 < x(γ) = 2

3(γ/(γ(3γ + 11) + 12) + 4/(3γ + 4) + 3).

To summarize, β∗I = 1 describes a curve in the (uB, uS)-space that is always above the
45◦-degree line and is strictly downward-sloping, starts and ends within the sets of admissible
values, as depicted in Figure 4.

A.5. Proof of Proposition 5

We consider here the constrained outcome with no efficiency gains in the running example.
Let πI1(aI) = (pI1 + r)D1(p

I
1, p

I
2, aI) + aIDS(p

I
1, p

I
2, aI), where the prices pI1 and pI2 are given in

Appendix A.2. From the analysis of Appendix A.4, this is a strictly concave function of aI
provided that (A.28) holds. Therefore, as shown in Appendix A.4, the objective is concave in
aI iff u2S ∈ [x(σ), x(σ)] for σ ∈ [0, γ].

The first-order condition leads to

a∗∗I = −(3σ + 4)(v + r)(2(σ + 2)(3σ + 4)uB − (3σ(σ(σ + 7) + 16) + 32)uS)

H

with H = (σ+4)2(3σ+4)2−2(σ+2)(3σ+4)2u2B−2(3σ+4)(σ(7σ+32)+32)uBuS−2(σ(σ(7σ+
40) + 64) + 32)u2S > 0 when u2S ∈ [x(σ), x(σ)].

The curve a∗∗I = 0 is given by −(2(σ+ 2)(3σ+ 4)uB − (3σ(σ(σ+ 7)+ 16) + 32)uS) = 0 and
can be expressed as a function of (uS , σ) as (3σ(σ(σ + 7) + 16) + 32)uS − (σ + 2)(3σ + 4)(γ −
σ)/((γ + 1)uS) = 0, which has a unique positive root

û
a∗∗I =0
S (σ) =

√
(σ + 2)(3σ + 4)(γ − σ)√

(γ + 1)(3σ(σ(σ + 7) + 16) + 32)
.

Define û
a∗∗I =0
B (σ) = (γ − σ)/(2(γ + 1)û

a∗∗I =0
S (σ)). Then, the set of (uB, uS) such that a∗∗I = 0

is characterized by the parametric equations (uB = û
a∗∗I =0
B (σ), uS = û

a∗∗I =0
S (σ)) for all σ in

the relevant range. We can check that û
a∗∗I =0
S (σ) ∈ [x(σ), x(σ)] (so that the curve associated

to the parametric equations always lies within the set of admissible values) using brute force
computations that are similar to those performed in Appendix A.4 and are not reported here.

We have: limσ→γ(û
a∗∗I =0
B (γ), û

a∗∗I =0
S (γ)) = (0, 0), (û

a∗∗I =0
B (0), û

a∗∗I =0
S (0)) = (

√
γ/(γ + 1), (1/2)

√
γ/(γ + 1)).

Simple computations also show that (û
a∗∗I =0
S (σ))2 ≤ (û

a∗∗I =0
B (σ))2 for all σ ∈ [0, γ], which shows

that the curve a∗∗I = 0 lies below the 45◦-degree line in the (uB, uS)-space. Its derivative is
given by

d
dσ û

a∗∗I =0
S (σ)

d
dσ û

a∗∗I =0

B (σ)
=
I

J
,

with I = 2(σ + 2)(3σ + 4)(γ(3σ(σ(σ(3σ + 20) + 46) + 48) + 64) + σ(3σ(σ(11σ + 80) + 200) +
640) + 256) > 0 and J = (3σ(σ(σ + 7) + 16) + 32)((3σ(σ + 4) + 8)(3σ(σ(2σ + 9) + 16) +
32) − γ(3σ(σ(σ(3σ + 20) + 46) + 48) + 64)). The denominator J is equal to zero when γ =
[(3σ(σ + 4) + 8)(3σ(σ(2σ + 9) + 16) + 32)]/[3σ(σ(σ(3σ + 20) + 46) + 48) + 64]. The right-hand
side is strictly increasing in σ and is equal to 4 for σ = 0. Hence, if γ < 4, the slope is always
positive. If γ ≥ 4, there is a vertical asymptote and the slope is first positive and then negative.
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Notice also that

d
dσ û

a∗∗I =0
S (σ)

d
dσ û

a∗∗I =0

B (σ)

∣∣∣∣∣
σ=0

=
γ + 4

2(4− γ)
and

d
dσ û

a∗∗I =0
S (σ)

d
dσ û

a∗∗I =0

B (σ)

∣∣∣∣∣
σ=γ

=
2(γ + 2)(3γ + 4)

3γ(γ(γ + 7) + 16) + 32
.

To summarize, a∗∗I = 0 describes a curve in the (uB, uS)-space such that: it goes through (0, 0),
it is always below the 45◦-degree line, and it is strictly increasing if γ < 4 or increasing then
decreasing if γ ≥ 4. Therefore, there exists a uniquely defined function h : uS 7→ h(uS) such
that, for all (uB, uS), a

∗∗
I (uB, uS) > 0 if and only if uB < h(uS).

A.6. Proof of Proposition 7

Impact on Buyers. Let V I
B(aI) be the buyer surplus under vertical integration when βI = 1

and the developer fee is set at some value aI . Let V S
B be the buyer surplus under separation.

Let ∆VB(aI) = V I
B(aI)− V S

B . Computations show that

∆VB(aI) = aI

(
aI −

2(σ + 2)(3σ + 4)2(v + r)((σ + 2)uB − uS)

K

)
K

(σ + 4)2(3σ + 4)2(1− 2uBuS)2

whereK = (σ+2)2(3σ+4)2u2B+
[
(σ + 2)(σ(σ + 16) + 16)− 2uBuS(σ + 1)(σ + 4)2

]
u2S−2uBuS(σ+

2)(3σ + 4)2. We show first that K > 0. Since 2uBuS < 1, the term in brackets in K is strictly
greater than (σ + 2)(σ(σ + 16) + 16) − (σ + 1)(σ + 4)2 = (3σ + 4)2. Plugging this in K then
gives K > (3σ + 4)2(uS − uB(2 + σ))2 ≥ 0. This implies that the sign of ∆VB(aI) is given by
the sign of aI(aI − 2(σ + 2)(3σ + 4)2(v + r)((σ + 2)uB − uS)/K).

First Sufficient Condition. Consider that a∗∗I < 0, which amounts to uB > h(uS), with h
defined in Appendix A.5 and such that h(uS) > uS . Consequently, a

∗∗
I < 0 implies (σ+2)uB −

uS > 0, so that ∆VB(a
∗∗
I ) > 0. Therefore, we have established a first sufficient condition

a∗∗I < 0 ⇒ ∆VB(a
∗∗
I ) > 0.

Second Sufficient Condition. Consider that a∗∗I ≥ 0. If (σ + 2)uB − uS ≤ 0, then
∆VB(a

∗∗
I ) ≥ 0. Notice that (σ + 2)uB − uS ≤ 0 is equivalent to

uS ≥ hB(uB) ≡
(γ + 2)uB

2(γ + 1)u2B + 1
.

hB is first increasing then decreasing, reaching a maximum at uB = 1/
√

2(γ + 1) and leading
to uS = (γ + 2)/(2

√
2(γ + 1)). These values of (uB, uS) satisfy σ ≥ 0 iff γ ≥ 2.

hB can also be represented with the parametric equations (uB =
√
(γ − σ)/(2(γ + 1)(σ + 2)),

uS = ûS(σ) ≡
√

(σ + 2)(γ − σ)/(2(γ + 1))) for σ ∈ [0, γ]. This rewriting allows to get imme-
diately that hB is strictly above the 45◦-degree line, and goes through (0, 0) (for σ = γ) and
(
√
γ/(4(γ + 1)),

√
γ/(γ + 1)) (for σ = 0). This also shows that the conditions a∗∗I ≥ 0 (i.e.,

uB ≤ h(uS)) and (σ+2)uB−uS ≤ 0 (i.e., uS ≥ hB(uB)) define a non-empty set. Last, straight-

forward manipulations show that û
2
S(σ) belongs to [x1(σ), x1(σ)] for all σ, so that it always

belongs to the admissible set.

Intermediate Region. It remains to study the sign of ∆VB(a
∗∗
I ) when a∗∗I ≥ 0 and (σ+2)uB−

uS ≥ 0. Observe that (σ + 2)uB − uS ≥ 0 amounts to u2S ≤ xa(σ) ≡ (σ + 2)(γ − σ)/(2(γ + 1)).
Similarly, a∗∗I ≥ 0 amounts to u2S ≥ xa(σ) ≡ (σ+2)(3σ+4)(γ−σ)/((γ+1)(3σ(σ(σ+7)+16)+32))
(see Appendix A.5). Simple computations show that xa(σ) > xa(σ) for all σ in [0, γ), so the
interval in non empty.
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On this interval, the sign of ∆VB(a
∗∗
I ) is given by the sign of

a∗∗I − 2(σ + 2)(3σ + 4)2(v + r)((σ + 2)uB − uS)

K
.

Replacing uB by (γ − σ)/(2(γ + 1)uS) and up to some positive multiplicative terms (namely,
v + r, H and K), the previous expression has the same sign as h1(x) = (σ + 2)3(3σ + 4)3(γ −
σ)3+4(γ+1)(σ+2)(3σ+4)x2[γ2(σ(σ(σ(23σ+183)+507)+584)+240)+γ(σ(σ(σ(σ(49−5σ)+
562)+1618)+1840)+736)+σ(σ(σ(σ(37−4σ)+422)+1184)+1312)+512]−4(γ+1)2x3(γ(3σ+
4)(σ(σ+4)(σ(19σ+65)+ 88)+ 128)− σ(σ(σ+3)(σ+8)+ 16)(3σ(σ(σ+6)+ 10)+ 16))− (γ +
1)(σ + 2)2(3σ + 4)2x(γ − σ)(3γ(3σ(σ(σ + 7) + 16) + 32) + σ(σ(σ(3σ + 61) + 288) + 480) + 256)
with x = u2S . One can then show that h1(xa) < 0 < h1(xa) and also h′1(xa) < 0 < h′1(xa).
Since h′1(x) is a polynomial of degree 2, it has at most two real roots and only one of these
roots belongs to [xa, xa]. Since h′1(xa) < 0 < h′1(xa), this implies that there exists a unique
x̃ ∈ (xa, xa) such that h1 decreases for x ∈ [xa, x̃] and increases for x ∈ [x̃, xa]. This finally
implies that there exists a unique xB0 (σ) ∈ (xa, xa) such that h1(x

B
0 (σ)) = 0.

Let û
∆VB(a∗∗I )=0
S (σ) =

√
xB0 (σ) and û

∆VB(a∗∗I )=0
B = (γ − σ)/(2(1 + γ)û

∆VB(a∗∗I )=0
S (σ)). By

construction, the parametric curve C̃ = (û
∆VB(a∗∗I )=0
B , û

∆VB(a∗∗I )=0
S ), σ ∈ [0, γ], is the frontier of

the set of (uB, uS) such that ∆VB(a
∗∗
I ) ≤ 0 when a∗∗I ≥ 0 and (σ+2)uB−uS ≥ 0. Since xB0 (σ) is

continuous and differentiable with respect to σ and the function σ 7→ (û
∆VB(a∗∗I )=0
B , û

∆VB(a∗∗I )=0
S )

is injective, the curve C̃ divides the (uB, uS)-space into two connected subsets, one in which the
buyer surplus increases, the other in which it decreases.

Impact on Developers. Let V I
S (aI) be the developer surplus under vertical integration when

βI = 1 and the developer fee is set at some value aI . Let V S
S be the developer surplus under

separation. Let ∆VS(aI) = V I
S (aI)− V S

S . Computations show that

∆VS(aI) =
(σ − 2uS(2uB + uS) + 4)2

2(σ + 4)2(1− 2uBuS)2
aI

(
aI −

4(σ + 2)uS(v + r)

σ − 2uS(2uB + uS) + 4

)
.

Using σ = γ−2(1+γ)uBuS , we rewrite σ−2uS(2uB+uS)+4 = 0 as 4+γ−2u2S−2uSuB(γ+3) = 0
and denote the unique positive solution of this second degree polynomial equation in uS by

hS(uB) =
1

2

(√
2(γ + 4) + (γ + 3)2u2B − (γ + 3)uB

)
.

We thus have σ − 2uS(2uB + uS) + 4 > 0 ⇔ uS < hS(uB). The following facts are easily
established: (i) hS is strictly decreasing and strictly convex; (ii) hS(0) =

√
2 + γ/2 > 0; (iii)

hS(uB) = uB ⇔ uB = uS = 1/
√
2 ⇔ σ = −1. This implies that, in the (uB, uS)-space, and for

σ ≥ 0, hS is strictly decreasing and above the 45◦-degree line.

First Sufficient Condition. Therefore, if a∗∗I < 0 (which amounts to uB > h(uS), with h
below the 45◦-degree line), then we also have σ − 2uS(2uB + uS) + 4 > 0 (which amounts to
uS < hS(uB), with hS above the 45◦-degree line). As a consequence, we obtain a first sufficient
condition

a∗∗I < 0 ⇒ ∆VS(a
∗∗
I ) > 0.

Second Sufficient Condition. Next, we want to show the existence of another sufficient
condition

σ − 2uS(2uB + uS) + 4 < 0 ⇒ ∆VS(a
∗∗
I ) > 0.

Notice that σ − 2uS(2uB + uS) + 4 < 0 (which amounts to uS > hS(uB) and thus implies
uS > uB) implies a∗∗I > 0 (because a∗∗I < 0 amounts to h(uS) < uB and thus implies uS < uB).
Therefore, σ − 2uS(2uB + uS) + 4 < 0 implies ∆VS(a

∗∗
I ) > 0.
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It remains to show that the condition σ − 2uS(2uB + uS) + 4 < 0 is compatible with the
conditions for concavity. The condition uS > hS(uB) can be equivalently expressed in terms of
(uS , σ) as uS > ũS(σ) ≡

√
(γ(σ + 2) + 3σ + 4)/(2(γ + 1)) with σ ∈ [0, γ]. Simple computations

show then that ũ2S(σ) ≥ x(σ) and ũ2S(σ) ≤ x(σ) for all σ.

Intermediate Region. Last, we establish that when a∗∗I > 0 and σ− 2uS(2uB +uS)+ 4 > 0,
∆VS(a

∗∗
I ) is strictly negative. From the computations made to analyze the buyer surplus, a∗∗I > 0

is equivalent to u2S > xa(σ). Simple computations show that σ−2uS(2uB+uS)+4 > 0 amounts
to u2S < x̃a(σ) ≡ (γ(σ+2)+3σ+4)/(2(γ+1)). Computations show that ∆VS(a

∗∗
I ) = 0 amounts

to h2(x) ≡ (σ+2)(3σ+4)2(γ−σ)(γ(σ+2)−σ(2σ+7)− 4)+2(γ+1)2(σ(σ+4)(σ(19σ+65)+
88)+ 128)x2 − (γ+1)(3σ+4)x(γ(σ+2)(3σ(3σ(σ+7)+ 46)+ 88)+ σ(σ(σ(31σ+251)+ 720)+
880) + 384) = 0, with x = u2S and x ∈ [xa, x̃a]. The previous expression is a strictly convex
second degree polynomial in x with a strictly positive discriminant. Hence, it admits two reals
roots. Computations show that h2(xa) < 0 and h2(x̃a) < 0, which proves that h2(x) < 0 for all
x ∈ [xa, x̃a]. Hence, if a

∗∗
I > 0 and σ − 2uS(2uB + uS) + 4 > 0, then ∆VS(a

∗∗
I ) < 0.

A.7. Efficiency Gains

We consider here the constrained outcome with efficiency gains in the running example. Let
∆ = r0 − r > 0 denote the efficiency gain. The integrated platform’s problem writes as follows

max
(βI ,aI)

πI1(r0, βIr0, aI)

s.t. πI2(βIr0, r0, aI) ≥ πE2 (r, r0, aI)

In the running example, the constraint πI2(βIr0, r0, aI) ≥ πE2 (r, r0, aI) can be rewritten as βI ≥
βI with

βI = 1−
(
1− r

r0

)8 + σ(8 + σ)

8(1 + σ)
.

Let us then define: aI = argmaxaI π
I
1(r0, βIr0, aI); the unconstrained outcome (β∗I , a

∗
I) =

argmax(βI ,aI) π
I
1(r0, βIr0, aI); aI(r0) = argmaxaI π

I
1(r0, r0, aI).

Condition for Concavity. Up to the fact that the integrated firm’s sharing parameter is
now r0, the maximization problem max(βI ,aI) π

I
1(r0, βIr0, aI) is the same as the one described in

Section 3.5. Hence, the Hessian is negative definite under the same conditions as those stated
in Appendix A.4.

Curve β∗I = 1. Up to the fact that the integrated firm’s sharing parameter is now r0, the
solution of the relaxed problem is the same as in Section 3.5. The curve describing the
set of parameters (uB, uS) such that β∗I = 1 is therefore described by the parametric curve

(û
β∗
I=1

B (σ), û
β∗
I=1

S (σ)) for σ ∈ [0, γ] (see Appendix A.4).

Curve β∗I = βI . Computations show that β∗I − βI has the sign of r(16(−8 + (3uB + uS)(uB +
3uS)) + 16(−12 + 5u2B + 14uBuS + 5u2S)σ + 5(−20 + 9u2B + 22uBuS + 9u2S)σ

2 + 9(−2 + (uB +
uS)

2)σ3)(8+σ(8+σ))−8v(1+σ)(4+3σ)(−16−3σ(4+σ)+u2S(12+σ(11+3σ))+uBuS(20+σ(13+
3σ)))+r0(−512+u2B(4+3σ)(8+σ(8+σ))(12+σ(11+3σ))+σ(−1280+u2Sσ(4+3σ)(12+σ(11+
3σ))− 2σ(656+ σ(340+ σ(86+ 9σ)))) + 2uBuS(320+ σ(768+ σ(764+ σ(384+ σ(91+ 9σ)))))).
Expressing uB as a function of σ, computations show that the previous expression has the sign
of −16vx(1+γ)(1+σ)(4+3σ)(−((4+3σ)(8+σ(5+σ)))−γ(12+ σ(11+3σ))+2x(1+γ)(12+
σ(11+3σ)))+r(8+σ(8+σ))(4x2(1+γ)2(4+3σ)(12+σ(11+3σ))+(γ−σ)2(4+3σ)(12+σ(11+
3σ))−4x(1+γ)(128+γ(4+3σ)(12+σ(11+3σ))+σ(272+σ(212+σ (73+9σ)))))+ r0(4x

2(1+
γ)2σ2(4+3σ)(12+σ(11+3σ))+(γ−σ)2(4+3σ)(8+σ(8+σ))(12+σ(11+3σ))−4x(1+γ)(512+
γ(2+σ)2(4+3σ)(12+σ(11+3σ))+σ(1600+σ(2080+ σ(1444+σ(556+σ(109+9σ))))))), where
x = u2S . The previous expression is a polynomial of degree 2 in x. Computations show that, if
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r0 − r is not too large, this polynomial has two distinct real roots, one of which is positive and
the other negative. To find out which one is positive, we compute their values when r0 = r.
Indeed, in this case, βI = 1 and thus the curves β∗I = βI and β∗I = 1 are the same. The values
of the two roots when r0 = r must thus be those found when studying the β∗I = 1 curve. The

computations are not reported here for the sake of brevity. Denote by û
β∗
I=βI

S (σ) the square

root of the positive root of the polynomial and let û
β∗
I=βI

B (σ) = (γ − σ)/(2(γ + 1)û
β∗
I=βI

S (σ)).
Then, the set of (uB, uS) such that β∗I = βI is described by the parametric curve associated to

the parametric equations (uB = û
β∗
I=βI

B (σ), uS = û
β∗
I=βI

S (σ)) for all σ ∈ [0, γ].

The slope of the parametric curve (û
β∗
I=βI

B (σ), û
β∗
I=βI

S (σ)) when r0 = r is given by −A/B
where A = (((4 + 3σ)(8 + σ(5 + σ)) + γ(12 + σ(11 + 3σ)))(176 + σ(264 + σ(185 + 66σ + 9σ2)))
and B = (12 + σ(11 + 3σ))(768 + γ(464 + σ(792 + σ(571 + 9σ(22 + 3σ)))) + σ(1584 + σ(1352 +
σ(569+ 3σ(38+ 3σ)))))). Since both A and B are positive, the slope of the parametric curve is
negative when r0 = r. By continuity, this shows that, if r0 − r is not too large, the parametric

curve (û
β∗
I=βI

B (σ), û
β∗
I=βI

S (σ)) is downward sloping in the (uB, uS)-space. Simple computations

also show that: (û
β∗
I=βI

B (0))2 = (3(r + v)γ2)/((1 + γ)(2r(8 + 3γ)− (r0 − v)(8 + 3γ) + (64(2r −
r0 + v)2 +48(2r− r0 + v)2γ+9(r0 + v)2γ2)1/2); (û

β∗
I=βI

S (0))2 = (2r(8+ 3γ)− (r0 − v)(8+ 3γ)+

(64(2r− r0 + v)2 + 48(2r− r0 + v)2γ + 9(r0 + v)2γ2)1/2)/(12(r+ v)(1 + γ))); (û
β∗
I=βI

B (γ))2 = 0;

and (û
β∗
I=βI

S (γ))2 = ((8(r+ v)(1+ γ)(4+3γ)(16+3γ(4+ γ))− 2(256+ γ(640+ γ(656+ γ(340+
γ(86 + 9γ)))))∆))/((4 + 3γ)(12 + γ(11 + 3γ))(8(r + v)(1 + γ)− γ2∆))), where ∆ = r0 − r.

Binding Constraints. Let us first notice that the two parametric curves (û
β∗
I=1

B (σ), û
β∗
I=1

S (σ))

and (û
β∗
I=βI

B (σ), û
β∗
I=βI

S (σ)), for σ ∈ [0, γ], cannot cross each other when r0 > r, for otherwise we

would have βI = 1, which is impossible. Computations then show that û
β∗
I=1

S (γ) > û
β∗
I=βI

S (γ).

Since û
β∗
I=1

B (0) = û
β∗
I=βI

B (0) = 0, this implies that the parametric curve (û
β∗
I=1

B (σ), û
β∗
I=1

S (σ)) is

above the parametric curve (û
β∗
I=βI

B (σ), û
β∗
I=βI

S (σ)) in the (uB, uS)-space.
To conclude, we have the following in the (uB, uS)-space: the constraint βI ≤ 1 is binding at

optimum above the parametric curve (û
β∗
I=1

B (σ), û
β∗
I=1

S (σ)) for σ ∈ [0, γ]; none of the constraints
βI ≤ 1 and βI ≥ βI are binding at the optimum between the two parametric curves; the

constraint βI ≥ βI is binding at the optimum below the parametric curve (û
β∗
I=βI

B (σ), û
β∗
I=βI

S (σ))
for σ ∈ [0, γ].

Curve aI = 0. Straightforward but tedious computations show that aI ≥ 0 amounts to
8r(4 + 3σ)(−2uB(2 + σ)(4 + 3σ) + uS(32 + 3σ(16 + σ(7 + σ)))) + uS(−8v(4 + 3σ)(32 + 3σ(16 +
σ(7 + σ))) + ∆ (−512 + σ(4 + σ)(−256 + σ(4 + σ)(−20 + 9σ)))) + uB(4 + 3σ)(16v(2 + σ)(4 +
3σ) + ∆(256 + σ(384 + σ (184 + 3σ(12 + σ))))) ≥ 0. Let us now work with (σ, uS) by using
uB = (γ − σ)/(2uS(1 + γ)). Introducing also x = u2S , aI ≥ 0 amounts to 16r(4 + 3σ)(−((γ −
σ)(2+σ)(4+3σ))+x(1+γ)(32+3σ(16+σ(7+σ))))−16v(4+3σ)(−((γ−σ)(2+σ)(4+3σ))+x(1+
γ)(32+3σ(16+σ(7+σ))))+∆ (2x(1+γ)(−512+σ(4+σ)(−256+σ (4+σ)(−20+9σ)))+(γ−
σ)(4+3σ)(256+σ(384+σ(184+3σ(12+σ))))) ≥ 0. The left-hand side is linear and decreasing
in x. It is therefore positive when x < x̃(σ) = (((γ − σ)(4 + 3σ)(−16r(2 + σ)(4 + 3σ) + 16v(2 +
σ)(4+3σ)+∆(256+σ(384+ σ(184+3σ(12+σ))))))/(−2(1+γ)(8 r(4+3σ)(32+3σ(16+σ(7+
σ)))+8v(4+3σ)(32+3σ(16+σ(7+σ)))− ∆(−512+σ(4+σ)(−256+σ(4+ σ)(−20+9σ)))))).

Let ûaI=0
S (σ) =

√
x̃(σ) and ûaI=0

B (σ) = (γ − σ)/(2(1 + γ)
√
x̃(σ)). By construction, aI > 0

above the parametric curve (ûaI=0
B (σ), ûaI=0

S (σ)), σ ∈ [0, γ], in the (uB, uS)-space. Computa-
tions then show that the slope of the parametric curve is positive when ∆ goes to 0 and that
the parametric curve is below the 45◦-degree line. By continuity, the slope will remain strictly
positive and the parametric curve below the 45◦-degree line for all σ when ∆ is sufficiently close
to 0.
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Curve β∗I r0 = r. Following the same reasoning, one can show that there exists a downward

slopping parametric curve (u
β∗
I r0=r

B (σ), u
β∗
I r0=r

S (σ)), σ ∈ [0, γ], such that, in the (uB, uS)-space,
β∗I r0 > r above this curve and β∗I r0 < r below this curve.

A.8. Coordination Motives

We consider the situation with coordination motives studied in Section 5. First, it is straight-
forward to show that the Hessian matrix associated to the unconstrained problem does not de-
pend on αB. Hence, the Hessian is negative definite under the same conditions as those stated
in Appendix A.4.

The optimal pricing policy associated to the unconstrained problem is as follows: β∗I and a∗I
are given by (A.30) and (A.31) respectively in which v+ r is replaced by v+ r+αB. Therefore,
the curves a∗I = 0 and β∗I = 1 are the same as in Appendix A.4.

The constraint π̃I2(βI , 1, aI) ≥ πE2 (1, 1, aI) writes as follows

(A.33) βI ≥ β̃I ≡ 1− αB
(3σ + 4)

4r(σ + 1)
.

Let us then define ãI = argmaxaI π̃
I
1(1, β̃I , aI) and ãI(1) = argmaxaI π̃

I
1(1, 1, aI).

Straightforward but tedious computations show that β∗I ≥ β̃I amounts to 3σ3(4(r+v)(uS(uB+
uS) − 1) + αB(−3u2B − 2uBuS + u2S + 2)) + σ2(4(r + v)(2uS(8uB + 7uS) − 15) + αB(−45u2B −
46uBuS +11u2S +40))+ 4σ((r+ v)(33uBuS +23u2S − 28)+αB(−20u2B − 23uBuS +3u2S +20))+
16(r + v)(5uBuS + 3u2S − 4)− 16αB(3u

2
B + 5uBuS − 4) ≥ 0.

Let us now work with (σ, uS) by using uB = (γ−σ)/(2uS(1+ γ)). Introducing also x = u2S ,
β∗I ≥ β̃I amounts to 8(γ + 1)r(σ + 1)x(−γ(σ(3σ + 11) + 12)− ((3σ + 4)(σ(σ + 5) + 8)) + 2(γ +
1)(σ(3σ+11)+12)x)+8(γ+1)(σ+1)vx(−γ(σ(3σ+11)+12)− ((3σ+4)(σ(σ+5)+8))+2(γ+
1)(σ(3σ+11)+12)x)+αB(−(3σ+4)(σ(3σ+11)+12)(γ−σ)2+4(γ+1)2σ(σ(3σ+11)+12)x2+
4(γ +1)x(γ(σ+2)(σ(3σ+11)+ 12)+ σ(σ+6)(σ(3σ+11)+ 20)+ 64)) ≥ 0. The left-hand side
is a strictly convex second order polynomial in x, which takes a strictly negative value at x = 0.
That polynomial admits two roots x(σ) and x(σ) with x(σ) < 0 < x(σ). Therefore, β∗I ≥ β̃I
if and only if x ≥ x(σ). Using αB = α(v + r) to simplify further, we have x(σ) = A/B with
A = σ3(−α(3γ+29)+6γ+44)+σ2(−17αγ−86α+28γ+126)+2σ(−α(17γ+60)+23γ+76)+8(1−
α)(3γ+8)+3(2−α)σ4+[α(3σ+4)(σ(3σ+11)+12)2((α+4)σ+4)(γ−σ)2+(α(γ(σ+2)(σ(3σ+
11)+12)+σ(σ+6)(σ(3σ+11)+20)+64)−2(σ+1)(γ(σ(3σ+11)+12)+(3σ+4)(σ(σ+5)+8)))2]1/2

and B = 2(γ + 1)(σ(3σ + 11) + 12)((α+ 4)σ + 4).

Consider the parametric curve defined as follows: (û
β∗
I=β̃I

B = (γ−σ)/(2(1+γ)
√
x(σ)), û

β∗
I=β̃I

S =√
x(σ)) for σ ∈ [0, γ]. Computations show that û

β∗
I=β̃I

B (γ) = 0 < û
β∗
I=β̃I

S (γ) and that 0 <

û
β∗
I=β̃I

B (0) < û
β∗
I=β̃I

S (0) ⇔ α ≤ 1. The slope of the parametric curve for α = 0 is given by
(A.32). By continuity, it remains strictly negative for all σ when α is sufficiently close to 0.

Last, straightforward but tedious computations show that ãI ≥ 0 amounts to (8ruB(2 +
σ)(4 + 3σ) + uB(4 + 3σ)(8v(2 + σ) + αB(4 + σ)(8 + 3σ)) − 4ruS(32 + 3σ(16 + σ(7 + σ))) +
uS(−αB(4 + σ)(16 + σ(20 + 3σ)) − 4v(32 + 3σ(16 + σ(7 + σ))))) ≤ 0. Let us now work with
(σ, uS) by using uB = (γ − σ)/(2uS(1 + γ)). Introducing also x = u2S , ãI ≥ 0 amounts to
αB(4+σ)(−((γ−σ)(4+3σ)(8+3σ))+2x(1+γ)(16+σ(20+3σ)))+8r(−((γ−σ)(2+σ)(4+3σ))+
x(1+γ)(32+3σ(16+σ(7+σ))))+8v(−((γ−σ)(2+σ)(4+3σ))+x(1+γ)(32+3σ(16+σ(7+σ)))) ≤ 0.
The left-hand side is linear and increasing in x. It is therefore positive when x > x̃(σ) =
((γ − σ)(4 + 3σ)(8r(2 + σ) + 8v(2 + σ) + αB(4 + σ)(8 + 3σ)))/(2(1 + γ)(64(2(r + v) + αB) +
96(2(r + v) + αB)σ + 4(21(r + v) + 8αB)σ

2 + 3(4(r + v) + αB)σ
3)).

Let ûãI=0
S (σ) =

√
x̃(σ) and ûãI=0

B (σ) = (γ − σ)/(2(1 + γ)
√
x̃(σ)). By construction, ãI > 0

above the parametric curve (ûãI=0
B (σ), ûãI=0

S (σ)), σ ∈ [0, γ], in the (uB, uS)-space. Computa-
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tions then show that the slope of the parametric curve when αB goes to 0 is (2(2 + σ)(4 +
3σ)(256+σ(640+3σ(200+σ(80+11σ)))+γ(64+3σ(48+σ(46+σ(20+3σ))))))/((32+3σ(16+
σ(7+σ)))((8+3σ(4+σ))(32+3σ(16+σ(9+2σ)))−γ(64+3σ(48+σ(46+σ(20+3σ)))))), which
is positive. Moreover, when αB goes to 0, we have ûãI=0

B (σ)2− ûãI=0
S (σ)2 = ((γ−σ)(1+σ)(16+

3σ(4 + σ))(48 + σ(68 + 3σ(9 + σ))))/(4(1 + γ)(2 + σ)(4 + 3σ)(32 + 3σ(16 + σ(7 + σ)))), which
is nonnegative since γ ≥ σ. This thus shows that the parametric curve is below the 45◦-degree
line when αB = 0. By continuity, the slope will remain strictly positive and the parametric
curve below the 45◦-degree line for all σ when αB is sufficiently close to 0.

Figure 17 summarizes the main features of the optimal pricing policy with coordination
motives.

uB
0

uS uB = uS

σ = 0

β∗
I = 1

β∗
I = β̃I

β∗∗
I =1

a∗∗I >0

β∗∗
I =β∗

I<1
a∗∗I =a∗I>0

β∗∗
I =β̃I<1
a∗∗I >0

β∗∗
I =β̃I<1
a∗∗I <0

Figure 17: The integrated platform’s optimal pricing policy (β∗∗
I , a∗∗I ) in the running

example with coordination motives.
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B. Online Appendix (Not For Publication)

B.1. Impact of Vertical Integration with Efficiency Gains: Polar Cases

Let ∆ = r0 − r > 0 denote the efficiency gain. Remind that the integrated platform’s
problem writes as follows

max
(βI ,aI)

πI1(r0, βIr0, aI)

s.t. πI2(βIr0, r0, aI) ≥ πE2 (r, r0, aI)
0 ≤ βI ≤ 1.

In the running example, the constraint πI2(βIr0, r0, aI) ≥ πE2 (r, r0, aI) can be rewritten as βI ≥
βI with

βI = 1−
(
1− r

r0

)8 + σ(8 + σ)

8(1 + σ)
.

Let us then define: aI = argmaxaI π
I
1(r0, βIr0, aI); (β∗I , a

∗
I) = argmax(βI ,aI) π

I
1(r0, βIr0, aI);

aI(r0) = argmaxaI π
I
1(r0, r0, aI).

Proof of Proposition 8 (Buyer-skewed Network Effects, uS = 0). For later ref-
erence, note that when uS = 0 the integrated platform sets βI = βI and aI = aI . Simple
computations show that

aI = −uB (16(v + r)(2 + γ)(4 + 3γ) + (16 + 3γ(4 + γ))(8 + γ(8 + γ))∆)

8(4 + 3γ)((4 + γ)2 − 2u2B(2 + γ))
.

Moreover, when uS = 0, a necessary condition to ensure that the maximization problem

max(βI ,aI) π
I
1(r0, βIr0, aI) is concave is uB ≤ ūB =

√
2(2+γ)(32+γ(32+9γ))
(4+3γ)(12+γ(11+3γ)) .

Impact on Manufacturer M2. Let π
I
2(βIr0, r0, aI) beM2’s profit under vertical integration when

the sharing parameter is equal to βI and the developer fee is set at some value aI . Let πS2 be
M2’s profit under separation. Let ∆π2(βI , aI) = πI2(βIr0, r0, aI)−πS2 . Computations show that

(B.1) ∆π2(βI , aI) =

2(2 + γ)[v(4 + 3γ)− r0(γ − 4βI(1 + γ))− aIuB(4 + 3γ)]2

(4 + γ)2(4 + 3γ)2
− 2(2 + γ)(v + r)2

(4 + γ)2
.

One can show that the term in brackets in the right-hand side of (B.1) is nonnegative, for
otherwise M2’s markup is negative under integration. Therefore, ∆π2(βI , aI) has the same sign
as

f(βI , aI) =
(v(4 + 3γ)− r0(γ − 4βI(1 + γ))− aIuB(4 + 3γ))

(4 + 3γ)
− (v + r).

Then, computations show that

(B.2) f(βI , aI) =

16(v + r)u2B(2 + γ)(4 + 3γ)− (4 + γ)
[
4γ(2 + γ)(4 + γ)− u2B(8 + 3γ)(8 + γ(8 + γ))

]
∆

8(4 + 3γ)((4 + γ)2 − 2(2 + γ)u2B)
.

For all uB ≤ ūB, computations show that the denominator in (B.2) is positive. Therefore
f(βI , aI) has the same sign as its numerator. Then, simple computations show that the nu-
merator of f(βI , aI) is increasing in uB, is negative when uB = 0 and positive when uB = ūB.
It follows that there exists a unique ûB ∈ (0, uB) such that f(βI , aI), and thus ∆π2(βI , aI) as
well, is negative if and only if uB < ûB.
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Impact on Buyers. Let V I
B(βIr0, aI) be the buyer surplus under vertical integration when the

sharing parameter is equal to βI and the developer fee is set at some value aI . Let V S
B be the

buyer surplus under separation. Let ∆VB(βIr0, aI) = V I
B(βIr0, aI)− V S

B .

Our first step is to show that V I
B(βIr0, aI) is increasing in uB. Omitting notations, we have

(B.3)
dV I

B

duB
(βIr0, aI) =

∂VB
∂uB

+
∂VB
∂βI

dβI
duB

+
∂VB
∂aI

daI
duB

.

Computations show that the first term in Equation (B.3) is positive, the second term is nil since
dβI/duB = 0 and the third term is positive. This shows that V I

B(βIr0, aI) is increasing in uB,
and so is ∆VB(βIr0, aI) consequently.

Then, we notice that ∆VB(βIr0, aI) is positive when uB = uB. Therefore, there exists
ûB ≤ 0 such that ∆VB(βIr0, aI) is nonnegative if and only if uB ≥ ûB.

48

Impact on Developers. When uS = 0, the developers surplus is simply given by V I
S (βIr0, aI) =

a2I/2 and therefore ∆VS(βIr0, aI) ≥ 0.

Proof of Proposition 9 (Developer-skewed Network Effects, uB = 0). When uB =
0, a necessary condition to ensure that the maximization problem max(βI ,aI) π

I
1(r0, βIr0, aI) is

concave is uS ≤ ūS =
√

2(2+γ)(32+γ(32+9γ))
(4+3γ)(12+γ(11+3γ)) .

We know from Section 4.2 that, first, M2’s participation constraint is binding when uS ≤
û
β∗
I=βI

S (γ) and, second, that the constraint βI ≤ 1 is binding when uS ≥ û
β∗
I=1

S (γ). We also

know that û
β∗
I=βI

S (γ) < û
β∗
I=1

S (γ). When uB = 0, the integrated platform’s optimal pricing
policy is therefore given by

(βII , a
I
I) =


(βI , aI) if uS ≤ û

β∗
I=βI

S (γ),

(β∗I , a
∗
I) if û

β∗
I=βI

S (γ) < uS ≤ û
β∗
I=1

S (γ),

(1, aI(r0)) if uS > û
β∗
I=1

S (γ),

where

βI =
8r(1 + γ)− γ2∆

(8(1 + γ) (r +∆)
,

aI =
8uS(r + v)(4 + 3γ)(32 + 3γ(16 + γ(7 + γ)))− uS(−512 + γ(4 + γ)(−256 + γ(4 + γ) (−20 + 9γ)))∆

8(4 + γ)2(4 + 3γ)2 − 16u2S(32 + γ(64 + γ(40 + 7γ)))
,

β∗
I =

v(4 + 3γ)(−16− 3γ(4 + γ) + u2S(12 + γ(11 + 3γ))) + r(64 + γ(96 + γ(52 + 9γ))) + (64 + γ(96 + γ(52 + 9γ)))∆

2(2 + γ)(32 + γ(32 + 9γ))− u2S(4 + 3γ)(12 + γ(11 + 3γ)))(r +∆)
,

a∗I =
uS(4 + 3γ)(12 + γ(11 + 3γ))(r + v +∆)

2(2 + γ)(32 + γ(32 + 9γ))− u2S(4 + 3γ)(12 + γ(11 + 3γ))
,

aI(r0) =
uS(4 + 3γ)(32 + 3γ(16 + γ(7 + γ)))(r + v +∆)

(4 + γ)2(4 + 3γ)2 − 2u2S(32 + γ(64 + γ(40 + 7γ)))
.

Impact on Manufacturer M2. Let π
I
2(βIr0, r0, aI) beM2’s profit under vertical integration when

the sharing parameter is equal to βI and the developer fee is set at some value aI . Let πS2 be
M2’s profit under separation. Let ∆π2(βI , aI) = πI2(βIr0, r0, aI)− πS2 . We have

πI2(βIr0, r0, aI) =
2(2 + γ)(v(4 + 3γ)− aIuSγ + r0(4(1 + γ)βI − γ))2

(4 + γ)2(4 + 3γ)2

48One can additionally find conditions under which ûB is positive. If this is the case, ∆VB(βIr0, aI)
is negative in the neighborhood of uB = 0.
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and

πS2 =
2(r + v)2(2 + γ)

(4 + γ)2
.

Tedious calculations then show that: (i) πI2(β
I
I r0, r0, a

I
I) is decreasing in uS when uS ≤ û

β∗
I=βI

S (γ);

(ii) πI2(β
I
I r0, r0, a

I
I) is increasing in uS when û

β∗
I=βI

S (γ) < uS ≤ û
β∗
I=1

S (γ); (iii) πI2(β
I
I r0, r0, a

I
I)

is decreasing in uS when uS > û
β∗
I=1

S (γ); (iv) ∆π2(β
I
I , a

I
I) < 0 when uS = 0. Together,

since ∆π2(β
I
I , a

I
I) is continuous in uS , these observations show that ∆π2(β

I
I , a

I
I) is positive

for some parameters values only if ∆π2(β
I
I , a

I
I) > 0 when uS = û

β∗
I=1

S (γ). Put differently,

there exists an interval [uM2
S , ūM2

S ] such that: (i) if ∆π2(β
I
I , a

I
I) > 0 when uS = û

β∗
I=1

S (γ), then,

∆π2(β
I
I , a

I
I) > 0 for all uS ∈ (uM2

S , ūM2
S ), (ii) uM2

S ≤ û
β∗
I=1

S (γ) ≤ ūM2
S , (iii) if ∆π2(β

I
I , a

I
I) ≤ 0

when uS = û
β∗
I=1

S (γ), then, uM2
S = û

β∗
I=1

S (γ) = ūM2
S .

Impact on Buyers. When uB = 0, calculations show that the buyer surplus under integration
is given by

(B.4) V I
B(βIr0, aI) =

1

(4 + γ)2(4 + 3γ)2
(2 + γ)(2aIuSv(4 + 3γ)2 + v2(2 + γ)(4 + 3γ)2+

a2Iu
2
S(16 + γ(16 + γ)) + r20(16 + 16βIγ(1 + γ) + γ(16 + γ) + β2I (1 + γ)(16 + γ(16+

9γ))) + 2r0(v(4 + 3γ)2(1 + βI + βIγ) + aIuS(16 + γ(16 + γ + 8βI(1 + γ))))).

The buyer surplus under separation is given by

V S
B =

(v + r)2(2 + γ)2

(4 + γ)2
.

Tedious calculations then show that: (i) ∆V I
B(βIr0, aI) is increasing in uS , (ii) ∆V I

B(βIr0, aI)
is positive when uS = ūS , and (iii) that the sign of ∆V I

B(βIr0, aI) depends on the values of γ
and ∆ when uS = 0. Indeed, when uS = 0, we have

∆V I
B(βIr0, aI) =

2 + γ

(64(1 + γ)(4 + γ)2(4 + 3γ)2)
(64(r + v)2(1 + γ)(2 + γ)(4 + 3γ)2

− 16(r + v)(1 + γ)(4 + 3γ)2(−8 + γ2)∆

+ (1024 + γ(2048 + γ(1088 + γ(−64 + γ(−112 + γ(16 + 9γ))))))∆2)).

The previous equation shows that, for instance, when ∆ is small ∆V I
B(βIr0, aI) is positive.

From the three observations above, we conclude that there exists a cutoff ũBS such that
∆VB(β

I
I r0, a

I
I) is nonnegative if and only if uS ≥ ũBS .

Impact on Developers. When uB = 0, calculations show that the developer surplus under
integration is given by

V I
S (βIr0, aI) =

(2uS(v(2 + γ) + r0(1 + βI(1 + γ)))− aI(4 + γ − 2u2S))
2

2(4 + γ)2

and the developer surplus under separation is given by

V S
S =

2u2S(2 + γ)2(v + r)2

(4 + γ)2
.

As is standard in models with linear demands, V I
S (βIr0, aI) is proportional to the square of

the developers demand. It follows that ∆VS(βIr0, aI) = V I
S (βIr0, aI) − V S

S has the sign of
(2uS(v(2 + γ) + r0(1 + βI(1 + γ)))− aI(4 + γ − 2u2S))− 2uS(2 + γ)(v + r).
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Tedious calculations then show that: (i) ∆VS(β
I
I r0, a

I
I) is negative when uS ≤ û

β∗
I=βI

S (γ), (ii)

∆VS(β
I
I r0, a

I
I) is increasing in uS when uS ≥ û

β∗
I=1

S (γ), and (iii) that the sign of ∆V I
S (r0, aI(r0))

depends on the values of γ and ∆ when uS = uS . Indeed, when uS = uS , simple calculations
show that ∆V I

S (r0, aI(r0)) has the sign of

(B.5) − (r + v)(4 + 3γ)(32 + 3γ(16 + γ(7 + γ)))(64− γ(16− 3γ(20 + 3γ(5 + γ))))

+ (4 + γ)(6144 + γ(22016 + γ(33728 + γ(29008 + γ(15316 + γ(5021 + 9γ(106 + 9γ)))))))∆,

which can be positive or negative depending on the values of γ and the efficiency gain.

From the observations above, we conclude that there exists a cutoff ũSS such that ∆VS(β
I
I r0, a

I
I)

is nonnegative if and only if uS ≥ ũSS .

B.2. Impact of Vertical Integration with Coordination Motives: Polar Cases

Proof of Proposition 10. As shown in Appendix A.8, when uS = 0, β∗I = β̃I and a∗I = ãI .
Moreover, when uS = 0, a necessary condition to ensure that the maximization problem of
platform I is concave is u2B ≤ ū2B = 2/3(3 + 4/(4 + 3γ) + γ/(12 + γ(11 + 3γ))).

Impact on Manufacturer M2. Let ∆π2(βI , aI) = π̃I2(βI , 1, aI)− πS2 . Simple computations show
that ∆π2(βI , aI) has the sign of 3(v+αB)(1+γ)+r(−1+4βI)(1+γ)−aIuB(4+3γ). Evaluating
this expression at aI = ãI and βI = β̃I and differentiating with respect to uB, we find that
d∆π2(β̃I , ãI)/duB has the sign of (uB(4 + γ)2(4 + 3γ)(8r(2 + γ) + 8v(2 + γ) + αB(4 + γ)(8 +
3γ)))/(2((4 + γ)2)2 − 2u2B(2 + γ)), which is positive. Put differently, ∆π2(β̃I , ãI) is increasing
in uB. Then, computations show that, when αB > 0, ∆π2(β̃I , ãI) evaluated at uB = 0 and at
uB = ūB is negative and positive respectively. Therefore, by continuity, there exists û∆π2=0

B > 0

such that ∆π2(β̃I , ãI) is negative if and only uB < û∆π2=0
B .

Impact on Buyers. Let V S
B and V I

B(β̃I , ãI) denote respectively the buyers surplus under separa-
tion and integration. Let ∆V I

B(β̃I , ãI) = V I
B(β̃I , ãI)−V S

B . Computations show that d∆V I
B(β̃I , ãI)/duB

is equal to (uB(2+γ)(4+γ)(8r(2+γ)+8v(2+γ)+αB(4+γ)(8+3γ))(4r(2+γ)(4+γ)+4v(2+
γ)(4 + γ) + αB(3u

2
B(2 + γ)2 + (4 + γ)2)))/(4(−2u2B(2 + γ) + (4 + γ)2)3). Computations then

show that the denominator in the previous expression is positive when uB ≤ ūB. Therefore,
d∆V I

B(β̃I , ãI)/duB ≥ 0 and ∆V I
B(β̃I , ãI) is increasing in uB. Then, computations show that,

when αB > 0, ∆V I
B(β̃I , ãI) evaluated at uB = 0 and uB = ūB is negative and positive respec-

tively. Therefore, by continuity, there exists û
∆V I

B=0
B > 0 such that ∆V I

B(β̃I , ãI) is negative if

and only uB < û
∆V I

B=0
B .

Impact on Developers. When uS = 0, the developers surplus is simply given by V I
S (βI , aI) =

a2I/2 and therefore ∆VS(β̃I , ãI) ≥ 0.

Proof of Proposition 11. As shown in Appendix A.8, when uB = 0, there exists thresholds

û
β∗
I=β̃I

S and û
β∗
I=1

S such that the solution of platform I’s maximization problem under integration

is: β∗∗I = β̃I and a
∗∗
I = ãI when uS ≤ û

β∗
I=β̃I

S ; β∗∗I = β∗I and a∗∗I = a∗I when û
β∗
I=β̃I

S < uS ≤ û
β∗
I=1

S ;

β∗∗I = 1 and a∗∗I = ãI(1) when uS ≥ û
β∗
I=1

S . Moreover, when uB = 0, a necessary condition to
ensure that the maximization problem of platform I is concave is u2S ≤ ū2S = 2(2 + γ)(32 +
γ(32 + 9γ))/(4 + 3γ)(12 + γ(11 + 3γ)).

Impact on Manufacturer M2. Computations show that ∆π2(βI , aI) has the sign of 3(v+αB)−
aIuSγ+3(v+αB)γ+ r(−1+4βI)(1+ γ), which is increasing in βI and decreasing in aI . Since,
following integration and when uB = 0, βI (weakly) decreases and aI increases, we have that
∆π2(β

∗∗
I , a

∗∗
I ) ≤ 0.

Impact on Buyers. In the following, we are going to show that ∆V I
B(β

∗∗
I , a

∗∗
I ) is increas-

ing in uS . Differentiating with respect to uS , we have d∆V I
B(β

∗∗
I , a

∗∗
I )/duS = ∂V I

B/∂uS +
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(∂V I
B/∂βI)(dβ

∗∗
I /duS) + (∂V I

B/∂aI)(da
∗∗
I /duS), omitting arguments for the sake of conciseness.

Then, computations show: (i) ∂V I
B/∂uS = (1/((4+γ)2(4+3γ)2))2aI(2+γ)((v+αB)(4+3γ)2+

aIuS(16+γ(16+γ))+r(16+γ(16+γ+8βI(1+γ)))), which is positive since aI = a∗∗I ≥ 0 when
uB = 0; (ii) ∂V I

B/∂βI = (1/((4+γ)2(4+3γ)2))2r(1+γ)(2+γ)(16(v+αB + rβI)+8(r+aIuS +
3(v + αB) + 2rβI)γ + 9(v + αB + rβI)γ

2), which is positive; (iii) ∂V I
B/∂aI = (1/((4 + γ)2(4 +

3γ)2))2uS(2+γ)((v+αB)(4+3γ)2+aIuS(16+γ(16+γ))+r(16+γ(16+γ+8βI(1+γ)))), which
is positive. Then, computations show that dβ∗I/duS = (2uS(r + v + αB)(4 + 3γ)(12 + γ(11 +
3γ))(64+γ(96+γ(52+9γ))))/(r(u2S(4+3γ)(12+γ(11+3γ))−2(2+γ)(32+γ(32+9γ)))2) > 0
and, since dβ∗∗I /duS = 0 when β∗∗I ̸= β∗I , we thus have dβ∗∗I /duS ≥ 0 for all uS . Similarly,
computations show that da∗∗I /duS ≥ 0 for all uS . Together, this shows that ∆V I

B(β
∗∗
I , a

∗∗
I ) is

increasing in uS . Then, computations show that, when αB > 0, ∆V I
B(β

∗∗
I , a

∗∗
I ) is negative when

uS = 0 and ∆V I
B(β

∗∗
I , a

∗∗
I ) is positive when uS = ūS . Therefore, by continuity, there exists

û
∆V I

B=0
S > 0 such that ∆V I

B(β
∗∗
I , a

∗∗
I ) < 0 if and only if uS < û

∆V I
B=0

S .

Impact on Developers. Computations show that ∆V I
S (βI , aI) has the sign of aI(−4 + 2u2S −

γ) + 2ruS(−1 + βI)(1 + γ) which is increasing in βI and decreasing in aI if 2u2S < 4 + γ.

Computations show that the last inequality holds when uS < û
β∗
I=1

S . Since βI decreases and aI
increases following integration when uB = 0, we therefore have that ∆V I

S (β
∗∗
I , a

∗∗
I ) ≤ 0 when

uS < û
β∗
I=1

S . When uS ≥ û
β∗
I=1

S , ∆V I
S (β

∗∗
I , a

∗∗
I ) has the sign of −((uS(r + v + αB)(−4 + 2u2S −

γ)(4+3γ)(32+3γ(16+γ(7+γ))))/(−(4+γ)2(4+3γ)2+2u2S(32+γ(64+γ(40+7γ))))). Simple
calculations then show that this last expression is increasing in uS and negative in uS = ūS .

Therefore, ∆V I
S (β

∗∗
I , a

∗∗
I ) < 0 when uS ≥ û

β∗
I=1

S .



Vertical Integration in Platform Markets 65

B.3. Additional Simulations - Impact of Vertical Integration with Efficiency Gains

Last, we provide several additional simulations for the various settings discussed in the main
text.49

(a) γ = 1, r0 − r = 0 (b) γ = 1, r0 − r = 0.3 (c) γ = 1, r0 − r = 0.6

(d) γ = 4, r0 − r = 0 (e) γ = 4, r0 − r = 0.3 (f) γ = 4, r0 − r = 0.6

(g) γ = 8, r0 − r = 0 (h) γ = 8, r0 − r = 0.1 (i) γ = 8, r0 − r = 0.2

Figure 18: Impact of vertical integration on buyer surplus (VB) for different degrees of
substitutability (γ) and levels of efficiency gains (r0 − r): VB decreases (resp. increases)
following integration in the red area (resp. in the blue area).

49The Python code of the simulations is available on the authors’ webpages. We use the following
value for parameter v: v = 2.
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(a) γ = 1, r0 − r = 0 (b) γ = 1, r0 − r = 0.3 (c) γ = 1, r0 − r = 0.6

(d) γ = 4, r0 − r = 0 (e) γ = 4, r0 − r = 0.3 (f) γ = 4, r0 − r = 0.6

(g) γ = 8, r0 − r = 0 (h) γ = 8, r0 − r = 0.3 (i) γ = 8, r0 − r = 0.6

Figure 19: Impact of vertical integration on developer surplus (VS) for different degrees
of substitutability (γ) and levels of efficiency gains (r0−r): VS decreases (resp. increases)
following integration in the red area (resp. in the blue area).
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(a) γ = 1, r0 − r = 0 (b) γ = 1, r0 − r = 0.3 (c) γ = 1, r0 − r = 0.6

(d) γ = 4, r0 − r = 0 (e) γ = 4, r0 − r = 0.3 (f) γ = 4, r0 − r = 0.6

(g) γ = 8, r0 − r = 0 (h) γ = 8, r0 − r = 0.3 (i) γ = 8, r0 − r = 0.6

Figure 20: Impact of vertical integration on the non-integrated manufacturer’s profit
(π2) for different degrees of substitutability (γ) and levels of efficiency gains (r0 − r): π2

decreases (resp. increases) following integration in the red area (resp. in the blue area).
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(a) γ = 1, r0 − r = 0 (b) γ = 1, r0 − r = 0.3 (c) γ = 1, r0 − r = 0.6

(d) γ = 4, r0 − r = 0 (e) γ = 4, r0 − r = 0.3 (f) γ = 4, r0 − r = 0.6

(g) γ = 8, r0 − r = 0 (h) γ = 8, r0 − r = 0.3 (i) γ = 8, r0 − r = 0.6

Figure 21: Impact of vertical integration on total welfare (W ) for different degrees of
substitutability (γ) and levels of efficiency gains (r0 − r): W decreases (resp. increases)
following integration in the red area (resp. in the blue area).
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B.4. Additional Simulations - Impact of Vertical Integration with Coordination Motives

(a) γ = 1, αB = 0 (b) γ = 1, αB = 0.2 (c) γ = 1, αB = 0.4

(d) γ = 4, αB = 0 (e) γ = 4, αB = 0.2 (f) γ = 4, αB = 0.4

(g) γ = 8, αB = 0 (h) γ = 8, αB = 0.2 (i) γ = 8, αB = 0.4

Figure 22: Impact of vertical integration on buyer surplus (VB) for different degrees of
substitutability (γ) and levels of the gain for buyers when manufacturers adopts the same
operating system (αB): VB decreases (resp. increases) following integration in the red
area (resp. in the blue area).
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(a) γ = 1, αB = 0 (b) γ = 1, αB = 0.2 (c) γ = 1, αB = 0.4

(d) γ = 4, αB = 0 (e) γ = 4, αB = 0.2 (f) γ = 4, αB = 0.4

(g) γ = 8, αB = 0 (h) γ = 8, αB = 0.2 (i) γ = 8, αB = 0.4

Figure 23: Impact of vertical integration on developers surplus (VS) for different degrees
of substitutability (γ) and levels of the gain for buyers when manufacturers adopts the
same operating system (αB): VB decreases (resp. increases) following integration in the
red area (resp. in the blue area).
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(a) γ = 1, αB = 0 (b) γ = 1, αB = 0.2 (c) γ = 1, αB = 0.4

(d) γ = 4, αB = 0 (e) γ = 4, αB = 0.2 (f) γ = 4, αB = 0.4

(g) γ = 8, αB = 0 (h) γ = 8, αB = 0.2 (i) γ = 8, αB = 0.4

Figure 24: Impact of vertical integration on the non-integrated manufacturer’s profit
(π2) for different degrees of substitutability (γ) and levels of the gain for buyers when
manufacturers adopts the same operating system (αB): VB decreases (resp. increases)
following integration in the red area (resp. in the blue area).
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(a) γ = 1, αB = 0 (b) γ = 1, αB = 0.2 (c) γ = 1, αB = 0.4

(d) γ = 4, αB = 0 (e) γ = 4, αB = 0.2 (f) γ = 4, αB = 0.4

(g) γ = 8, αB = 0 (h) γ = 8, αB = 0.2 (i) γ = 8, αB = 0.4

Figure 25: Impact of vertical integration on total welfare (W ) for different degrees of
substitutability (γ) and levels of the gain for buyers when manufacturers adopts the
same operating system (αB): VB decreases (resp. increases) following integration in the
red area (resp. in the blue area).
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