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37 Abstract. Proton\cherapy treatment for lungs remains challenging as images
38 enabling the detéction of inter- and intra-fractional motion, which could be used
39 for pretom» dose adaptation, are not readily available. 4D computed tomography
40 (4DCT) provides high image quality but is rarely available in-room, while in-room 4D
j; cone beam computed tomography (4ADCBCT) suffers from image quality limitations
43 stemming mostly from scatter detection. This study investigated the feasibility of using
44 virtual 4D computed tomography (4DvCT) as a prior for a phase-per-phase scatter
45 correctionsalgorithm yielding a 4D scatter corrected cone beam computed tomography
46 imdge (4DCBCT,,,), which can be used for proton dose calculation. 4DCT and
47 4DCBCT scans of a porcine lung phantom, which generated reproducible ventilation,
48 were acquired with matching breathing patterns.

49 Diffeomorphic Morphons, a deformable image registration (DIR) algorithm, was
50 used to register the mid-position 4DCT to the mid-position 4DCBCT and yield a
51 4DvCT. The 4DCBCT was reconstructed using motion-aware reconstruction based
52 on spatial and temporal regularization (MA-ROOSTER). Successively for each phase,
33 digitally reconstructed radiographs (DRRs) of the 4DvCT, simulated without scatter,
>4 were exploited to correct scatter in the corresponding CBCT projections. The
gg 4DCBCT,,, was then reconstructed with MA-ROOSTER using the corrected CBCT
57 projections and the same settings and deformation vector fields as those already used
58 for reconstructing the 4DCBCT. The 4DCBCT,, and the 4DvCT were evaluated
59 phase-by-phase, performing proton dose calculations and comparison to those of a
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ground truth 4DCT by means of dose-volume-histograms (DVH) and ga

rates (PR).

For accumulated doses, DVH parameters deviated by at most ]‘% int
and 2.0% in the 4DCBCT.,, case. The gamma PR for a (2%, 2 mm) eriterio
10% threshold were at least 93.2% (4DvCT) and 94.2% (4DCBCZTgs,), ctive

which 1

The 4DCBCT,,, technique enabled accurate proton dose calculati

the potential for applicability to clinical 4ADCBCT scans.

Keywords: 4D CBCT, proton therapy, lung cancer, lung pha
adaptive radiotherapy, motion management
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, scatter correction,
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1. Introduction

Proton therapy (PT) offers a ballistic advantage over photon therapy as there is
considerably less energy deposition along the trajectory to the target and ainegligible
amount beyond, due to the complete stopping of protons in matter at therapeutic
energies. This localised energy release allows significant dose sparing.in organs at risk
(OAR) and a reduced integral dose. In modern PT facilities, the dose distribution can
be shaped to improve dose conformity using pencil-beam scannedsintensity modulated
proton therapy (IMPT) (Lomax et al. 2001, Lomax et al. 2004).«"Protons are used
for treatment of different tumour entities such as head and meck (H&N) (Manzar
et al. 2020), oesophageal (Welsh et al. 2011), paediatric brain“(Lin et al. 2020),
gastrointestinal (Verma et al. 2016), meningioma (Weber‘etial. 2012), and non-small-cell
lung carcinoma (NSCLC) (Nakajima et al. 2018). PTanag alsorbe helpful in treatment-
related complications (Kim et al. 2019).

One drawback of PT is its high sensitivityste anatomical changes (Chen et al.
2020b), which may occur during treatment, and which aré typically classified as either
inter- or intra-fractional. Inter-fractional changes'include anatomical changes such as
weight loss, stochastic motion of internal ergans on a time scale of hours or more, and
changes in tumour size. The second group. comtains respiratory and cardiac motion
as well as the filling of bladder andwbowel, ‘and is particularly relevant for tumours
within the abdominothoracic region (Keall et al. 2006). The characteristic Bragg-peak
of charged particles makes P lwery susceptible to these changes, which can compromise
both target coverage and OAR sparing (Berman et al. 2015). Respiration patterns can
vary markedly between different fractions (McClelland et al. 2010, Zhang et al. 2015) and
hence, for the treatment of mosQng tumours in the lung, it is of paramount importance
to have daily 4D imaging. This_would enable the detection of those variations and
ideally allow their correction with treatment adaptation (Hoffmann et al. 2017, Jakobi
et al. 2017, Tseng et, al, 2018, " Albertini et al. 2020), so that the full potential of IMPT
can be exploited. Consequently, daily dose reconstructions including the geometry and
breathing curve of the day are highly desired, but not yet accessible in clinical practice.
Current approachesirely on weekly 4DCT acquisitions and offline adaptations (Meijers
et al. 2020a). It wouldythus be beneficial to use cone beam computed tomography
(CBCT) images, which are routinely acquired in the scope of image-guided PT for
patient jpositioning, to reconstruct the delivered fraction dose.

While the CBCTs acquired for patient alignment show the anatomy of the day
in treatment'position, they cannot be used directly for proton dose calculation due to
inagcurate CT numbers. Utilising CBCT scans (Rit et al. 2016, Veiga et al. 2016, Landry
& Huan2018) for proton dose calculation has seen considerable interest for anatomical
sites_unaffected by respiratory motion (Kurz et al. 2015, Landry et al. 2015, Veiga et
al. 2016, Thummerer et al. 2020, Lalonde et al. 2020), as it further offers the benefit
of neither increasing the dose burden nor requiring additional appointments for CT
scanning.
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Using CBCT for dosimetric evaluation necessitates image quality enhangements,
which can be achieved through the correction of artefacts, occurring due 4o scatter
detection (Siewerdsen & Jaffray 2001), detector lag and ghost (Siewerdsen & Jaffray
1999), beam hardening (Thing et al. 2016), and scatter glare (Poludniowski etial. 2011).
Correction methods depend on a wide range of techniques such ashlook-up tables
(Kurz et al. 2015), Monte-Carlo calculations (Mainegra-Hing & Kawrakow 2010, Thing
et al. 2016, Zollner et al. 2017) or image registration (Landry et al. 2015, Veiga et
al. 2016, Wang et al. 2016). A DIR of the CT to the CBCT aésults,in a virtual CT
(vCT) (Peroni et al. 2012), yielding sufficient image quality for PT dose calculation in
the H&N region, but which fails for entities with more anatomical changes from fraction
to fraction (Kurz et al. 2016). To overcome those geometrical errors; the vCT along with
the measured CBCT projections are used as input data for aso-called scatter correction
algorithm (SCA), which in fact corrects all low frequéency discrepancies such as scatter
and beam hardening (Zollner et al. 2017). The SCAdapplied inthis contribution, using a
vCT prior, is based on works by (Niu et al. 2010, Park.et al. 2015). It results in a scatter
corrected CBCT (CBCT,,,) with suitable quality for préton dose calculations (Park
et al. 2015, Kurz et al. 2016, Kim et al. 2016, Botas et al: 2018, Kim et al. 2020, Andersen
et al. 2020) and has also been successfully ‘@pplied for photon therapy (Hofmaier et
al. 2017). Furthermore, (Zollner et al. 2017) showed that the scatter estimate from
the SCA approaches the expected valuesifrom a Monte Carlo simulation. Nevertheless,
the feasibility of CBCT scatter correction in 4D, where new challenges, such as sparse
projection data per breathing phase occur, has not yet been shown.

More recent methods for CBCT, correction have been extended to tumour entities
affected by intra-fractional motion in the thoracic region. (Veiga et al. 2016) showed
range-corrected dose distributiens, on' vCTs using 3D averaged images of lung cancer
patients. (Niepel et al. 2019) extended the vCT approach to 4D by performing
4DCT to 4DCBCTyregistration, using photon therapy CBCT scanners and iterative
CBCT reconstruction by, (Hansen & Sgrensen 2018). (Bondesson et al. 2020) applied
a similar 4D approach, tordata from a proton therapy CBCT scanner, using a
different reconstruction approach by (Mory et al. 2016). Furthermore, in a study
on simulatedd@BCT, projections, (Shrestha et al. 2019) reconstructed a motion-
compensated 4DCBET on, which carbon ion dose calculation was feasible, by deforming
each phase-specific image and matching its position to that of the reference phase.

The objective of this study was to extend the 3D SCA approach to 4D by making
use of our,previous work on 4DvCT (Niepel et al. 2019, Bondesson et al. 2020), to allow
time-resolved dose calculation at each PT fraction in treatment position. We extend
the SCA of projections to a novel phase-based 4DCBCT correction method, referred to
as 4DCBCT,.,,. As a first proof of principle, the method was evaluated using a porcine
lungphantom, injected with simulated lesions, with reproducible but realistic breathing
motions (Biederer & Heller 2003). The phantom was used to obtain 4DCT images in two
different respiratory motion patterns. One simulated a breathing pattern for planning
and was used as input for 4DvCT generation, while the other was identical to the one
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present at the time of CBCT scanning, thus providing a ground truth for evaluation.
Lesion specific robust treatment plans, optimised on the average ground trutht€T, were
recalculated on all phases of both 4ADCBCT\,, and the ground truth 4DCT.

The accuracy of the 4DCBCT., was evaluated by analysing, images and
quantitative deviations of CT numbers to the corresponding réference 4DCT.
Accumulated and phase-per-phase dose distributions were comparedsby means of dose-
volume histograms (DVHs) and gamma pass-rates (PRs). Additionally,{the¢ 4DvCT

generated within the SCA workflow was compared to 4DCT in & similar fashion.
~

2. Material and methods

2.1. Data acquisition

Image acquisition was carried out with a 4D artiCHEST phantom (PROdesign GmbH,
Germany), consisting of two hard plastic layers, thesouter one filled with water, the
inner one filled with an ex vivo porcine lung aud a watersfilled diaphragm. The latter
were covered with ultrasound gel to ensure motion with reduced friction. A pressure
pump, which drove the diaphragm, could be manually set to realistic values for the
breathing rate and amplitude (Biederer & Heller 2003). The phantom is displayed in
(Rabe et al. 2021), where a more comprehensive description is outlined. Four tumours of
different sizes were mimicked by injeeting a‘gelatin-water mixture (mass concentration
= 0.3g ml™!) into the lung. The volumesief the tumours ranged from 16 cm? - 20 cm?,
being comparable in size to stage,T1 or T2 NSCLC lesions (Edge & Compton 2010).

The on-board CBCT imaging system of an Elekta Synergy linac (XVI 4.5.1, Elekta,
Sweden) was used for 4 min moving 4DCBCT acquisitions with a shifted detector (tube
voltage = 120kVp, tube cirrent =32 mA, exposure time = 20 ms, collimator = M20,
filter = F1, #frames = 18204512 X 512 pixels, and pixel size of 0.8 mm). The exposure
time and tube curremnt were adjusted to avoid saturation and loss of object edge as
described by (Niepel.et aly2019). Additionally, a Toshiba Aquilion LB (Canon Medical
Systems, Japan) CT scanner was used to acquire 4DCTs with a reconstruction grid of
1.074mm x 1.074mm x 2mm. The breathing signal of the 4D phantom was recorded
with an Anzai belt (Anzai, Japan) and a dedicated adapter.

Changing the vacuum level in the cavity of the phantom and the pressure amplitude,
used fordnflating.the diaphragm, provided the possibility to achieve different specific
patient-like bréathing curves, as the lung could be inflated and moved to a varying
degreer The séttings we employed generated a breathing motion of the lung with a
respiration/rate of 11 breaths per minute. The vacuum pump as well as the diaphragm
pressure amplitude were set to obtain a large amplitude for the planning motion (plan)
and a smaller one for the day-of-treatment reference motion (ref) to acquire moving
images'in two different configurations. A total data set containing two 4DCT scans of
the moving phantom (plan and ref, respectively) with 10 phases each and one moving
day-of-treatment CBC'T was acquired in a single measurement session of 3.5h. Figure
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a) phO plan (b) phO ref (c) ph6 plan d) ph6 ref

Figure 1: 4DCT images of the inhale (phase 0) and exhale (phase 6)-phases of the two
different motions (plan and ref) are displayed with level =,-3007and window = 1600.
The inhale phases in both motions were comparable; whilesthe exhale phases
showed the intended larger amplitude for the planningmotion , . For better
comparability, two horizontal lines indicate the diaphragm pesition of the respective
reference motion.

shows CT images of the extreme phases for (both motions. Between the inhale and
exhale phases the centroid positions of #he injected timours moved 2.3 mm, 3.3 mm,
5.8 mm and 5.5 mm for the ref CT data setiand. 1.7 mm, 3.5 mm, 10.7mm and 10.8 mm
for the plan CT data set, respectively.

2.2. 4DCBCT,,, workflow

The workflow depicted in figure 2hwas adjusted from the 4DvCT generation workflow,
implemented in OpenREGGUI (https://openreggui.org/) and used by (Bondesson
et al. 2020). 4DCT planmn& images and day-of-treatment 4DCBCT projections,
equidistantly separated into 10 phases, were used as input for the 4DvCT workflow.
Utilising a 3D Feldkamp, Davis and Kress (FDK) algorithm (Feldkamp et al. 1984),
implemented in the reconstruetion toolkit (RTK) (Rit et al. 2014), a static average
3DCBCT image wasreconstrueted with 410 x 410 x 264 voxels on a 1 mm X 1 mm X 1 mm
grid from the projectionss Subsequently, an average CT obtained from the 10 4DCT
phases was rigidly registered onto the 3SDCBCT. With the help of this alignment, each
of the 10 4DCT phases was transferred to the CBCT space.

Mid-positioning A mid-position image (Wolthaus et al. 2008a) of the 4DCT (1qpCT)
was used.as a starting point of this workflow because of reduced motion artefacts.

The maximum expiration phase was chosen as reference phase, since the least
artefacts were expected there due to minimal motion. Deformation vector fields (DVFs)
from each’ 4DCT phase with respect to the reference phase were determined using
DIR. All DIRs were performed using a diffeomorphic Morphons algorithm (Janssens
et al. 2011) with 8 resolution scales. The number of iterations of the scales was set
to 2 and 5 for the finest and second finest scales and 10 for the 6 coarsest scales.
Additionally, a Gaussian regularization of 1.25 mm standard deviation was applied. The
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Figure 2: Sketch depicti
input (blue box), via 4

mportant steps of the complete workflow from

dose calculation (g unded rectangles show images, hexagons represent
projections, rectang nd for actions and parallelograms for DVFs.

parameters are Q previous studies performing CT to CBCT DIR for the lung

(cf. supplem @, naterial of (Veiga et al. 2016)). Averaging these 10 DVFs yielded
the mean motion c

of the
the me

th respect to the reference phase generated 10 DVFs with respect to
position. Applying this new set of DVFs (DVFsypcr) to the corresponding
4D T ed each phase to the time-weighted mean position. The median of these

p

es yielded the motion-compensated ,iqpCT.

BCT reconstruction In order to extract the respiratory signal from the 4DCBCT
ions, the following steps of the Amsterdam Shroud algorithm (Zijp et al. 2004)

je
ere performed. On the original projection images, a logarithmic transform and
perior-inferior derivative was conducted to enhance features in this direction, e.g. the
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diaphragm. Transversely summed pixels of all projections were concatenated to generate
a 2D Amsterdam Shroud image, which was cropped to show only the main éscillatory
signal. The phase of the analytic signal was used to determine the breathing,phases. I'he
measured CBCT projections, the breathing phases and the 4DCT velogity fields from
the mid-positioning were input data for 4DCBCT reconstruction (see theésupplementary
material for Amsterdam shroud image and corresponding extracted bréathing phase).

The MA-ROOSTER (Mory et al. 2016) optimisation algorithm implemented in
RTK (Rit et al. 2014) compromises between respiration-correlatéd technigques, showing
high-contrast yet significant streaks and motion-compensated method\s, which are less
affected by streaks with the drawback of fully relying on a metion prior or estimate to
reconstruct a single 3DCT image. MA-ROOSTER is based on ROOSTER, which uses
a 4D conjugate gradient approach, that minimises the cost'function 3, ||RaSaf — pall3:
where R is a forward projection operator, .S is an interpolater along the time dimension,
f is a vector containing the 3D image volumes f1, fo/0nfn, N isthe number of phases, p is
the measured projection, and « is the projection index. ROOSTER uses a motion mask,
corresponding to a segmented region with expected mover?lent, and therefore removing
motion outside of it. Additionally, MA-ROOSTER, bends the temporal regularisation
to follow moving structures, so that neither small structures are smoothed away nor
high-intensity structures are spread to adjacent phases.

Using the same dimension and spacing settings as for the 3DCBCT reconstruction
and the DVFsypor, the 4DCBCT recomstruction was performed with regularisation
parameters Yspace = 5 - 107 alld Yiime = 6.5 1072

Yspace controlled the spatial:3D total variation for denoising the image, larger values
favouring images with a lower spatial total variation (i.e., less noise). Similarly, Ytime
controlled the weight givendortemporal 1D total variation but after warping the images
according to the DVFs which/faveur 4D CT images describing the same motion as the
one described by the DVFs for increasing ~iime-

4DvCT generationt The ADCBCT mid-position image was generated analogously to the
ADCT, yieldingshe mid-position CBCT (1iapCBCT) and DVFsypeper. Subsequently,
applying DIRswith the.same settings as described in subsection , the miapCT(plan)
was registered onto the g, CBCT (day-of-treatment) yielding a mid-position virtual CT
(miapvC L) The inverted DVFs peper were applied subsequently onto the 1,iqp,vCT to
obtain & 4DvCT. This workflow was previously presented and evaluated in (Bondesson
et al. 2020).

2.3 \Scatter correction

The SCA was based on works by (Park et al. 2015) and (Niu et al. 2010). It was
gondueted on a per-phase level, meaning that the inputs were a single phase of the
ADvCT and the corresponding 4DCBCT projections

Iraw,a
Praw,a = — In [—0 (1)

Page 8 of 24
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where [, is the total intensity measured by the CBCT detector and I, is the open
field intensity. The raw intensity (lraw.q) consists of a scatter component (lga) and
a primary component (In;.). The latter was calculated by applying the forward
projection operator R to the vCT phase according to the CBCT geometry using
RTK and was assumed to be scatter-free. Accounting for the tube eurrent—exposure
time (mAs) per projection, a correction factor (CF) of 4.0, defined’as the,ratio of a
reference value mAs (tube current = 64 mA, exposure time = 40 ms) and the measured
CBCT acquisition mAs (32mA, 20ms), was multiplied with [gy . Subtracting these
projections from each other and convolving them with a generous smo?ching filter (F'),
as described in (Kurz et al. 2016), led to projection scatter {Zsea o)

Isca,oz = F<[ravv,a -CF — Ipri,oz) . (2)
Subtracting lscao from the measured I,y o generateddeorrectediprojections (Ieor )
Icor,a = Iraw,oz -CF — ]sca,oz . (3)

Applying this successively to all of the 10 phases, & set ©f corrected projections was
obtained. Utilising MA-ROOSTER, the log-transférmed corrected projections (peor.o =
—In I a/1In) were reconstructed to the ADCBCT .oy analogously to the ADCBCT, with
the same vector fields and settings.

2.4. Treatment planning

The day-of-treatment 4DCT"dataset was aligned to the CBCT space as described
in subsection 2.2  All ten .phages of the day-of-treatment 4DCT, 4DvCT and
4DCBCT,,,, using the same generic' CT density calibration curve, were transferred
to the research version 8.9976f6he commercial treatment planning system RayStation
(RaySearch Laboratories; Sweden); on which treatment was planned. We used a beam
model corresponding to a generic IBA pencil beam scanning beam line and nozzle
("RSL_IBA_DED").“The four different simulated tumours were contoured on all 4ADCT
phases. For all lesions,hinternal target volumes (ITVs) were created, which were then
copied to the average CT. A density override of each ITV was performed using muscle
tissue with a densityrofd.05¢g cm = (Meijers et al. 2020a, Ribeiro et al. 2021).

For each ofithedfournITVs, a 3D robust optimised pencil beam scanning proton
treatmenteplan administering 60 Gy in 30 fractions with a 3-field arrangement was
created/on the average CT. The field angles were set to avoid sharp edges and screws of
the phantem. The beams were optimised simultaneously. The specific angles are stated
in ghe supplementary material. The Monte Carlo dose engine was used during plan
optimisation with a statistical error of 1%. Following (Meijers et al. 2020a), the clinical
robustness settings (range error = +3%, setup error = +6 mm) were used. The robust
optimisation used a minmax method, in which the worst case scenario regarding the
optimisation functions is considered (Fredriksson et al. 2011). Each IMPT plan fulfilled
the clinical goal of at least 95% volume above 57 Gy and was optimised using a constant
relative biological effectiveness (RBE) of 1.1 (Paganetti et al. 2002). Subsequently, all
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Figure 3: Scheme relating different data sets (clinieally acquired in blue, generated in

red and reference in orange) to each other. R

four plans were re-computed on every phase and medality (day-of-treatment 4DCT,
4DvCT, 4DCBCT,,,) without density override, generating a total of 120 different dose
distributions.

2.5. Computer hardware

DIR, reconstruction and filtering wasiperformed on a computer with two Intel Xeon E5-
2630 v3 processors at 2.4 GHz with each having 8 physical cores and hyper-threading
enabled, resulting in a total of 32thréads. The GPU was a Nvidia Quadro P6000 with

24 GB memory.

2.6. Data analysis

Figure [3] shows .an overview relating the different data sets to each other. The blue
coloured boxessrepresent/the data sets, which would be typically acquired in a clinical
setting. Red background colour represents the image sets, which were generated as
explained in‘subsection 2.2 In order to assess the accuracy of these generated images
an additional 4DCT, shown in orange, was acquired with the same day-of-treatment
breathing, motion as the 4DCBCT, which was different to the motion of the initial
planning 4DCT.

The image quality of the different 4D modalities was analysed using difference plots
and mean error (ME) calculations in terms of CT numbers in Hounsfield unit (HU)
with. the day-of-treatment 4DCT as reference. The 4DvCT and 4DCBCT,,, methods
were further evaluated by comparing dose-volume histogram (DVH) parameters (Dag,
Dos%, Dmean, 11V, Dimean, ung) and calculating global gamma PR using (3%, 3mm) and
(2%, 2mm) criteria with a 10% dose threshold for lesion-specific robust proton plans
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versus day-of-treatment reference 4DCT for individual phases and accumulated doses.
Accumulated doses were calculated for each 4D image and ITV of each lesion. The
accumulation was done by applying the DVFsypcor to the respective 4DCT. phase doeses
and the DVFsy;pcper to the respective phase doses of 4DvCT and 4DCBCIT,,. and
averaging the results.

3. Results

3.1. Comparison between different modalities

Figure [4] displays an exemplary sagittal slice of 4DCT(ref),24DCBCT, 4DvCT and
4DCBCT,,, for phases 0 (inhale), 3 and 6 (exhale) agywell as' corresponding image
differences. Quality enhancements in 4DvCT and 4DEBCTg, compared to 4DCBCT
were observed. The 4DvCT showed the expected lowrnoise images similar to the 4DCT.
Both the 4DvCT and 4DCBCT,,, showed good agreement to the 4DCT in regions of
homogeneous tissue. At boundaries, such as the diaphragm-lung interface, differences
of more than 100 HU were observed.

Line profiles Figure [5| shows two line profiles,for all modalities for the inhale and
exhale phases in the inferior-superior direction as indicated with the yellow arrows on
the thumbnails on top of each plot. Beth plots show a similar behaviour in CT numbers
for CT, vCT and CBCT,,. The original CBCT with non-corrected HU systematically
underestimated the diaphragm (left side of the plots), tumour (centre of the plots) and
shell (right side of the plots)valuesiby around 200 HU to the reference CT, while it
overestimated the values in lung tissue by roughly the same amount. At the edges of
the diaphragm and the outer shell, as well as inside the tumour, CBCT,, consistently
overestimated HU values'compared to CT and vCT.

Mean error Figuref6lshows three different mean error plots in HU versus phase for the
three contours lung, body (whole phantom) and outer shell. Each sub-figure compares
the reference CT with one of the three remaining images. The top right sub-figure,
comparing CT and original CBCT, shows substantial discrepancies as expected. The two
bottom sub-figures showed similar results with reduced deviations. The ME differences
for the lung contour, which varied in absolute terms between close to 0 and slightly above
(vCT) or below (CBCT,,,) 10 HU, changed sign for phases close to the exhale phase 6.
Consequently;the body contour, which was the union of lung and shell, showed reduced
errors close to the maximum breathing amplitude. The values of the shell remained
approximately constant throughout all different phases with difference values of around
10 HU (vCT) and 15HU (CBCT,,,), respectively.
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Figure'4: Phase 0 (inhale), phase 3 and phase 6 (exhale) are shown with level = -300
and window = 1600 for 4DCT, 4DCBCT, 4DvCT and 4DCBCT,.,. Additionally, the

differences 4DvCT-4DCT and 4DCBCT,,-CT are displayed.
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Figure 5: Line profiles displaying HU versus distance along, the yellow line in mm in
inferior-superior for the modalities CT, CBCT, vCT fand GBCT,,, of the inhale (phase
0) and exhale (phase 6) breathing phase. Thumbnails are displayed with level = -300

and window = 1600.
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Figure 6: Plots showing mean error in HU versus breathing phases for three different
contours, which are displayed on the top left. The CT numbers were subtracted from
CBCT, vCT and CBCT,,,. For better readability, the ordinate is rescaled to a smaller
range for the vCT and CBCT,,, case.
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Figure 7: Proton dosedistributions of I'TV, are displayed. To improve clarity, no values
below 15 Gy are.shown in the CT, vCT, and CBCT,,, cases. For better readability,
of the differeneerplots vOT and CBCT,,, to the CT (expressed as percentage of the
prescribed dose)absolute dose differences smaller than 0.4% are masked. The CTs are
shown with level = 2300 and window = 1600 for phase 0 (inhale), phase 3 and phase 6
(exhale).

3.2. Protom dose analysis

Figure [ffdisplays axial slices of proton dose distributions of the ITVy plan, calculated
onivphases 0, 3 and 6 of CT, vCT and CBCT,,. Additionally, dose difference plots
between vCT and CBCT,,, to CT are shown. A good agreement was observed for vCT
and CBCT,,. Only minor deviations of a few percent between reference CT images
and generated vCT and CBCT,,, and within different phases were found.
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Figure 8: Dose-volume histograms of ITV, and lung for CT,
extreme phases and the accumulated dose.

Dose-volume histograms DVHs for exemplary I'TV, and the lung are presented in figure
for inhale and exhale phase and the accumulated dose.»The images confirm good
agreement in all scenarios. On the right tail of the DVH eurve of 1TV, slightly larger
dose values for vCT and CBCT,, were seen on beth extreme phases. Overall smaller
deviations were detected for the lung. For I'TV 4 the vCT-CT difference ADgy, ADggy,
are for phase 0 -1.0%, -1.0%, for phase 6 0.1%, -0.5% and for the accumulated dose
0.2%, 0.1%. The corresponding values for,.the CBCT 4,-CT difference are for phase 0
-0.7%, -0.5%, for phase 6 -0.2%, -0.7% and\forsthe accumulated dose 0.0%, 0.8%.

Table[T]displays differences in DVH parametersifor accumulated dose calculations on
vCT and CBCT,, to the corresponding G The values confirmed the good agreement
as ADyy, and ADggy were not larger than 2% for all vCT and CBCT,,, comparisons
with respect to the CT. Mean dose values for I'TV and lung had a maximum deviation
of 1.3% over all cases.

Quantitative results regarding the proton dose comparison are summarised in table
2 displaying gamma PR fer"acenmulated doses of vCT and CBCT,,, compared to CT
for two gamma criteria and all four plans. The gamma PR for vCT and CBCT,,, were
between 97% and 100% for a (3%, 3mm) criterion and between 93% and 98% for a
(2%, 2mm) criterion. DVH parameters and gamma PR results on a per-phase level are
shown in the supplementary material.

4. Discussion

A novel algorithm for 4ADCBCT correction, which is based on 4DvCT, was successfully
implemented and evaluated. The acquisition of CT and CBC'T scans of the porcine lung
phantom; with /a reproducible breathing motion in a geometry similar to the human
thorax, allowed for a 4DCT ground truth image and thus the experimental evaluation
of the 4DCBCT.,, method and comparison to the intermediate 4DvCT step. Proton
dose caleulation was feasible and accurate on both 4DvCT and 4DCBCT,, for the
poreine lung phantom scans. The 4DCBCT,,, was evaluated in the context of proton
therapy for the first time. Accumulated doses calculated on the 4DvCT and 4DCBCT,,,
were in good agreement with those calculated on the reference 4DCT. DVH parameter
comparisons deviated at most 1.7% in the 4DvCT and 2.0% in the 4DCBCT,,, case,
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Table 1: Relative differences between accumulated dose on vCT and CBCT.4 to CT
in Das, Dos%, Dmean, irv and Diean 1ng for all plans. All dose difference yalues are
displayed in percent.

vCT CBCTeor vCT CBCTeor

ITV, ITV, ITV, ITV, ITV, ITV, ITVg# 1TV,
TV, ITV, ITVy, ITV, ITV; ITV, ITVy ITVy

ADqyy, ADgsg ~

1.7% -0.1% 2.0% -0.2% 1.3%  1.2% 1.6% £1.4%
04% 02% -01% 0.0% 0.8%  0.1% 0.9% 0.8%

ADmean, 1TV ADmean, lung

0.9%  0.4% 1.0%  0.4% 1.1%4" 1.3% 1.0% 1.2%

0.3% -0.1% 04% 0.0%  -1.2%w 0% -0.5% 0.6%
&

Table 2: Gamma-index PR in percent fortwo different global criteria with a fixed dose
threshold of 10%. The accumulated doses ofwCT and CBCT,,, were compared to the
corresponding dose values on CT.

vCT CBCT., vCT CBCT..,
plan (3%, 3 mm) (2%, 2 mm)

ITV, 7.3 9.983 934 942
TV, ‘987 1993 932 955
TV, 9r6m’ 984 947 957
TV, 4997 997 975  97.9

respectively. Additionally, gamma PR for a (3%, 3mm) criterion with 10% threshold
were at least 9743% (4DvCT) and 98.3% (4DCBCT,,;). The motion amplitude between
inhale and exhale forsthe centroid positions of the simulated tumours ranged from
2.3mm to 10.8 mam, Wwhichyis in accordance to the range typically observed in clinical
routine (Wolthaus et al. 2008b). The observed dose calculation accuracy was very similar
between the four different simulated tumours, which were distributed in the lung and
had different extents of motion.

Measuring doses would be of interest, but remains challenging due to the closed
shellhof the porcine phantom. A study by (Mann et al. 2016) investigated the same
porcine phantom in combination with a dosimetric gel. This MRI study reported a
high agreement between measured and calculated doses while achieving a homogeneous
coverage of the PTV. The measurements showed a gamma PR between 87.4% and 94.4%
for a (3%, 3mm) criterion.

A range analysis was not conducted since small differences become extensive in lung
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tissue, due to its low density. The DVH and gamma analysis results are comparable
to those reported by (Shrestha et al. 2019) for a 4DCBCT carbon-ion lung, cancer
study, which used simulated projections and a motion-compensated” reconstruction
algorithm. Furthermore, the DVH analysis and gamma PR showed good agreement
to previous 4DvCT studies. (Niepel et al. 2019) used a different reconstiuction (Hansen
& Sgrensen 2018) and vCT generation approach which relied on phasé=per-phase CT to
CBCT Morphons DIR; they obtained phase specific (3%, 3mm) PR above 95% for a
two field plan and did not consider accumulated doses. (Bondesson etral. 2020) applied
the 4DvCT algorithm used in this work to a proton therapy-specifie CBCT scanner and
obtained accumulated dose (3%, 3mm) PR > 95%. Both studies didénot use injected
simulated tumours but used residual tissues as surrogate.

It should be noted that, in our study, DVH difference,values were in most cases
slightly larger for the 4DCBCT,,, than the 4DvCT, whereas for the gamma PR slightly
larger values were achieved with the 4ADCBCT,,. These minordifferences of a few tenths
of a percent can likely be explained by the differeneein regions of interest. DVHs relate
to voxels inside specific organs, while the gamma evaltiation covers the dose volume
covered by the 10% isodose.

For 4ADCBCT,,, it should be stressed that large anatomical changes, which DIR
cannot always model accurately, could not be simulated in our experimental setup.
Consequently, we could not demonstratesthe better anatomical fidelity for CBCT,,,
over vCT reported by (Kurz et al. 2016), who analysed the difference of 3DCBCT,,,
and 3DvCT by comparing thé ¢entours of PTV, CTV, bladder, and rectum to reference
contours made on the initial 3DCBCT. The 3DCBCT,-based contours showed an
improved agreement with the reference 3DCBCT contours over the 3DvCT ones, which
were hampered by inaccurate 'DIR.

Since, tumour shrinkage and pleural effusion might be difficult to model by DIR, it
is likely that 4DCBE Tg,, 18 beneficial in such scenarios. Cavity correction steps, which
address these limitations,of DIR, have been proposed by (Veiga et al. 2016) and would
be needed for 4DEBCT,,.

Similar vismal improvements were observed in studies of static targets (Park
et al. 2015, Kurz ethal«<2016) in 3D, although one should keep in mind that these
studies relied ondFDK reconstructions. Additionally, the reported gamma PR of these
patient studies weredn the same order of magnitude as in our study. (Kurz et al. 2016)
values are not directly comparable as different regions were investigated. However, (Park
et al. 2015) reports for lung 98.6% (3%, 3mm) and 93.0% (2%, 2mm), which is similar
to our values.

The constant overshoot of CT numbers in the 4DCBCT images might originate
from differences in the X-ray spectra, beam hardening and spectral response of the CT
andr€BCT, which might not be perfectly captured by our scatter correction approach.
Overshoot observed at the edges of the tumour and the shell, might also be caused by
the DIR and the resampling steps, leading to slight blurring of the vCT images used for
generating CBCT,.,. However, the different impact of these effects cannot be resolved
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within our experimental set-up and thus remains unknown.

By applying different breathing motions for the planning and referenge. states,
we could show that the DIR can be employed successfully, yielding ‘good geometric
agreement between the 4DvCT and reference 4DCT images. Minor, yet perceptible,
misalignments of diaphragm and shell were visible in our study. 4These residual
mismatches led to divergences at boundaries such as the diaphragmslung interface (cf.
figure [4). Nevertheless, the feasibility of deforming a 4DCT into a 4DvCT with updated
motion, which can be used as a prior for scatter correction eventually «yielding the
4DCBCT,,, can be concluded. by

As stated above, the porcine lung phantom, having a conStant breathing
pattern and a non-varying anatomy, is an ideal tool for proof-ef-principle studies, as
demonstrated in various applications such as MR motion tracking (Rabe et al. 2021) or
proton radiography-based range uncertainty assessment (Meijers et al. 2020b). However,
the workflow has to be evaluated with clinical data 6f lung patiénts in a next step. Lung
cases with changing tumour sizes over the course of the treatment, which as stated above
could not be simulated in this study, would be jof particulgr interest.

However, studies with patient datasusually lack ground truth information as the
same reproducible breathing motion and patient setup between the different acquisitions
cannot be provided. The phantom allows to cemprehensively evaluate the method before
applying it to patient cases. This stressesithe value of first performing proof-of-principle
phantom studies (Landry et al. 2014).

When applied to patiént, data, the "4DCBCT., method would allow dose
reconstruction by splitting thesdose plan into different phases similar to (Ribeiro et
al. 2021). This offers the advantage toraccount for the interplay between respiratory
motion and pencil beam deélivery. in/the geometry of the patient setup right before
treatment, and may permit’ protocol robustness evaluation without the need of
additional 4DCT scans» Furthermore, this method would have the potential to be used
for daily online dose‘adaptation in the future.

Before application in clinical online scenarios, the needed computation time would
have to be addressed. 'In this proof-of-concept study, no special effort was made
to accelerate«the computation, resulting in runtimes of roughly 4h for the entire
workflow. The 4DvCT workflow, as a prerequisite of the 4ADCBCT,, workflow, currently
takes roughly 3.5 hs The successive 4ADCBCT,, workflow, whose runtime again is
not optimised, gurrently needs around 30 min. Current bottlenecks are DIRs using a
Morphons.algorithm, 4DCBCT and 4DCBCT,,, reconstructions using MA-ROOSTER,
and filtering during the scatter correction, which needs to be conducted separately for
each,phase. Further overall parallelisation and a GPU-based filtering could speed up
the proeess. Another promising approach would be to use deep learning also in 4D
sincenit. was successfully applied to 3D CBCT correction scenarios in the last years
(Hansen et al. 2018, Kurz et al. 2019, Landry et al. 2019, Thummerer et al. 2020, Chen
et al. 2020a).
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5. Conclusions

In this work, a 4DCBCT,,, technique, based on a phase-per-phase scatter correction,
which uses a 4DvCT as a prior, has been investigated for proton dose calculations
on porcine lung phantom data. The results of this experimental validation study for
4DCBCT,, showed usability for accurate proton dose calculation. Similar performance
was observed for the 4DvCT. The applied method generates up-to-date in-reom images,

accounting for breathing motion and potentially anatomical changes, and is thus of

clinical interest for daily 4D proton dose estimation. o
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