
HAL Id: hal-03328244
https://hal.science/hal-03328244

Submitted on 9 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High performance computing of stiff bubble collapse on
CPU-GPU heterogeneous platform

Remy Dubois, Eric Goncalves da Silva, Philippe Parnaudeau

To cite this version:
Remy Dubois, Eric Goncalves da Silva, Philippe Parnaudeau. High performance computing of stiff
bubble collapse on CPU-GPU heterogeneous platform. Computers & Mathematics with Applications,
2021, 99, pp.246-256. �10.1016/j.camwa.2021.07.010�. �hal-03328244�

https://hal.science/hal-03328244
https://hal.archives-ouvertes.fr

High performance computing of stiff bubble collapse on

CPU-GPU heterogeneous platform

Remy Duboisb, Eric Goncalves da Silvaa,∗, Philippe Parnaudeaua

aInstitut Pprime, CNRS, UPR 3346,

11 Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France
bIDRIS, CNRS, UPS 851,

Campus Universitaire d’Orsay Rue John Von Neumann Bâtiment 506 BP 167 91403 Orsay Cedex, France

Abstract

SCB is an efficient fluid solver developed for computing two-phase compressible flows involving

strong shocks and expansion waves. It solves a four-equation diffuse-interface model, which is

derived from the five-equation model proposed by Kapila et al. The governing equations are

discretized by a finite volume method with explicit time stepping. SCB uses a fully parallel envi-

ronment via Message Passing Interfaces (MPI). With the fast growing number of heterogeneous

computing platforms including disparate hardware architectures, it becomes nowadays neces-

sary to develop hybrid parallelization strategies with a special care to portability. In this con-

text, we present an heterogeneous computing framework based on MPI library and OpenACC.

The choice of OpenACC is discussed. Performances, scalability and adaptability are illustrated

through a series of tests on an heterogeneous architecture. Validations are proposed on various

bubble collapses, in free-field or near a rigid wall. Comparisons are done with existing results

and analytical solutions. Furthermore a stiff shock-induced bubble collapse demonstrates the

capabilities and the high potential of the code.

Keywords: High performance computing, Compressible multiphase flow, Shock waves,

Heterogeneous CPU-GPU computing

∗Corresponding author.

Email addresses: remy.dubois@idris.fr (Remy Dubois), eric.goncalves@ensma.fr (Eric Goncalves da

Silva), philippe.parnaudeau@univ-poitiers.fr (Philippe Parnaudeau)

Preprint submitted to Computers and Mathematics with Applications August 29, 2021

1. Introduction

Cavitation erosion occurs when vapor bubbles collapse in the vicinity of solid walls. Erosion

then leads to adverse consequences, such as vibrations, material damages and performance loss.

Numerous experimental studies of the collapse of cavity in water either of inertial-type or under

shock loading aimed to understand the physical mechanisms [34, 5, 6, 39]. For a cavitation

bubble near a rigid wall, the high-speed liquid jet toward the boundary and the shock wave

emission during the collapse are responsible for cavitation erosion and structural damages. This

leading to the reduction of the expected lifespan of hydraulic components.

Shock-induced bubble collapse is an extremely violent event: the pressures generated by the

shock wave after jet impact sometimes reach a few GigaPascal and the jet velocity can reach

over 1000 m/s. Numerically, the simulation of such configurations is stiff to perform and re-

mains challenging. It has been extensively investigated to better understand the involved phys-

ical phenomena [3, 21, 25, 49, 15] and also to test and develop numerical schemes or models

[1, 2, 31, 29, 40, 38, 27, 11]. Yet, most of computations have been limited to two dimensions or

axisymmetric descriptions. Indeed, such simulations require not only an accurate model to treat

the interface region and the complex shock waves interaction correctly, but also highly efficient

flow solvers to manage the necessary large resolution near interfaces: computational grids can

reach over 1 billion nodes. Up to now, one can only cite few detailed fully three-dimensional

simulations, and furthermore, with limited resolution. The works of Hawker and Ventikos [19]

deeply investigated the various stages of shock-bubble interaction using a front-tracking tech-

nique. They performed 3D simulations on a grid composed by 64 million cells, corresponding to

100 points per bubble radius. In their study about shockwave lithotripsy, Coralic and Colonius

[8] used a spatial resolution about 50 cells per bubble radius, for bubble collapse simulations oc-

curring in a vessel. To test their multicomponent model, Beig and Johnsen [4] conducted various

3D simulations of shock-bubble interaction on a uniform grid composed by 500×400×400 nodes

(80 million nodes). Yet, the number of points per bubble radius was not given. More recently,

high-resolved simulations based on a five-equation model have been proposed by Wermelinger

et al. [46] to study a cloud collapse. They performed simulations on a computational grid com-

posed by 1728×1280×2560 nodes (more than 5 billion nodes), corresponding to 250 points per

bubble radius. Their efficient solver was parallelized with a hybrid paradigm using the MPI and

OpenMP programming models.

2

Due to the inherent large computational cost of such 3D simulations, the use of supercom-

puters turns out to be indispensable. The supercomputers’s world is evolving in order to offer

ever-increasing performance, as reflected by the Top500 list [42]. One aspect on which con-

structors are focusing on is the computational’s part of the supercomputer. In the last 20 years,

the enhancement of processor performances has been mainly oriented on increasing two aspects:

the number of cores and the size of the registers. This posturing has been followed to obtain

better energy efficiency by processors, while preserving Moore’s law. Still aiming to achieve

greater energy efficiency, hybridization of supercomputers began around ten years ago and to-

day, nothing has been launched without it. This heterogeneous technology is becoming more

and more available for a reasonable order of magnitude computers. Thus, little by little, the

need to use accelerator devices like Graphics Processing Units (GPU) was imposed to the High

Performance Computing (HPC) community, as well as numerous related paradigms to use them,

among which the most popular: CUDA, OpenACC, OpenCL and OpenMP. Since various pro-

gramming models must be considered, leveraging the compute power of hybrid architectures can

be really challenging. CUDA is widely used in the HPC community [32, 9], but Xia et al.[48]

illustrated the benefits of using the OpenACC directives on GPU and, more recently, Li and Shih

[26] showed that OpenACC can achieve quite similar performances compared to CUDA.

In this work, we investigate the performance of the multiphase solver SCB devoted to sim-

ulate stiff bubble collapses and compressible liquid-gas flows. The code solves a four-equation

hyperbolic system [13, 14], which is derivated from the five-equation model proposed by Kapila

et al.[23] and Murrone and Guillard [30]. In previous studies [16, 17], a programming approach

combining MPI and OpenMP libraries have been successfully implemented and the high poten-

tial of the four-equation model has been revealed on challenging 3D stiff cases. Here, we extend

the solver for GPU-accelerated clusters using OpenACC directives. Moreover, to fully exploit

modern heterogeneous supercomputers based on CPU and GPU, a special focus is done on a hy-

brid parallel strategy combining MPI and OpenACC in order to perform efficient simulations of

strong bubble collapses. A particular attention is paid to treat performance and portability with

equal importance. To demonstrate the capabilities of this solver, various 3D cases are computed:

free-field collapse and shock-induced collapse near a rigid wall. The latter has been compared

with the results of Wermelinger et al.[46]. Finally, the simulation of a stiff case proposed by

Paquette et al.[33] where potential wall damages were reported, is performed. Different analyses

3

are led by comparing cases where the shock intensity increases and where the stand-off distance

varies, showing significant discrepancies with the 2D cylindrical cases.

The paper is organized as follows: the governing equations and models are introduced in

Section 2. Section 3 presents the discretization of the four-equation system. Section 4 provides

an overview of the parallel paradigms implemented in our solver and Section 5 discusses per-

formances. Section 6 presents benchmark examples for validation as well as results from a stiff

shock-induced bubble collapse near a wall. Finally Section 7 gives conclusion and perspectives.

2. Four-equation model and governing equations

In the framework of homogeneous mixture model, one can assume that each phase is com-

pressible. Viscous effects are not considered in this study. According to different studies [21, 41],

the Reynolds numbers range is high which justify neglecting viscosity in simulations. Surface

tension effects are also neglected. Indeed, Weber numbers We = ρU
2D/σ based on bubble diam-

eter and jet velocity (around 800 m/s) are higher than 8.106. Thus, inertia is expected to dominate

surface tension effects. Mass transfer between phases is not expected to affect the bubble dynam-

ics over the major part of the collapse and is therefore ignored. In the following, subscripts l and

g are related respectively to the liquid and gas phases. The void fraction and vapor mass fraction

are α and Y, respectively. Equations read as:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu

∂t
+ ∇ · (ρu ⊗ u + P1) = 0, (2)

∂ρE

∂t
+ ∇ · (ρHu) = 0, (3)

∂α

∂t
+ u · ∇α = K ∇ · u, where K =

ρlc
2
l − ρgc2

g

ρlc
2
l

1−α
+
ρgc2

g

α

(4)

This model is built around conservation equations: mass (1), momentum (2) and total energy (3)

for the mixture. As well as a transport equation (4) for the void fraction with the source/sink

term on the right side.

In equations (1)-(4), ρ is the mixture density, u the velocity, P the pressure, 1 the identity

tensor, E the mixture total energy, and H the mixture total enthalpy. The total energy is E =

e + 1
2
(u · u) with e the internal energy and the total enthalpy is H = h + 1

2
(u · u) with h the

4

enthalpy. Furthermore, ρl, ρg, cl and cg denote respectively the density and sound velocity for

each phases. Finally, one can note that ρ = αρg + (1 − α)ρl.

K ∇·u in Equation (4) models the compression effects in the mixture. Recently Wermelinger

et al.[46] and Schmidmayer et al.[37] highlighted the importance of this term by comparing a

five-equation model without this term [2] and one with it [23]. The major contribution from

this term is that it keeps a correct thermodynamic behavior in the mixture. Schmidmayer [37]

also reported that the term K ∇ · u induces numerical instabilities that might be particularly

amplified. A comparison of the four and five-equation models has been recently proposed for

the simulation of shock-induced bubble collapse [17]. This study clearly showed the capability

of the four-equation model to reproduce as correctly as the five-equation model the physical

phenomena with a much lower computational cost.

Finally, an equation of state (EOS) is needed to close the problem. In the present case, a

convex stiffened gas EOS [28] is selected:

P(ρ, e, α, Y) = (γ(α) − 1)ρ(e − q(Y)) − γ(α)P∞(α), (5)

T (ρ, h, Y) =
hl − ql

Cpl

=
hg − qg

Cpg

=
h − q(Y)

Cp(Y)
, (6)

P∞(α) =
γ(α) − 1

γ(α)

[

α
γg

γg − 1
P∞g
+ (1 − α)

γl

γl − 1
P∞l

]

, (7)

1

γ(α) − 1
=
α

γg − 1
+

1 − α

γl − 1
, (8)

q(Y) = Yqg + (1 − Y)ql, (9)

Cp(Y) = YCpg
+ (1 − Y)Cpl

. (10)

In Equations (5)-(10), the quantities without index are to be related to the mixture. P∞ is the

constant reference pressure of the EOS, q is the energy at the reference state, γ the heat capacity

ratio, Cp and Cv are the thermal capacities.

The four-equation system (1)-(4) is hyperbolic and the speed of sound follows the Wallis formu-

lation [45] e. g. :
1

ρc2
wallis

=
α

ρgc2
g

+
1 − α

ρlc
2
l

(11)

5

3. Numerical method

Equations (1)-(4) are solved using the cell-centered finite volume method. One can write the

discretized equations system in the following generic matrix form:

∂W

∂t
+ ∇ · A + S∇ · u = 0, (12)

with W = (ρ, ρu, E, α)⊺ being the conservative state vector, A = (ρu, ρu ⊗ u + P1, αu)⊺ the

flux vector and S = (0, 0, 0,−(K + α))⊺ the source term vector. By considering a cell (i) with a

volume (Ω) delimited by surface (Γ) of normal unit vector n and knowing that S∇·u is discretized

following the approach of Daude et al.[10], the integration of system (12) becomes :

∂

∂t

∫

Ω

WdΩ +

∮

Γ

A · ndΓ + S̃

∮

Γ

u · ndΓ = 0, (13)

Where S̃ is some average of S on cell i. System (13) discretized on Cartesian grid, using an

explicit scheme for time evolution becomes:

Wn+1
i =Wn

i − ∆t
(m
∑

j=1

1

∆x j

A∗ij · nij − S̃

m
∑

j=1

1

∆x j

u∗ij · nij

)

(14)

Where A∗ is a numerical flux and S̃ is the discrete form of the non-conservative term. Fi-

nally, the numerical flux and the non-conservative term are computed by using a HLLC scheme

[43]. The temporal integration is performed with a fix time-step ∆t that respects the Courant-

Friedrichs-Lewy condition. In order to obtain the second-order in space and time, the TVD

MUSCL-Hancock method [44] is implemented by considering the three following steps.

1. Reconstruction of the solution via piecewise linear functions. As regard to robustness

consideration, primitive variables (ρ, u, P, α) are chosen and the minmod slope limiter is

used.

2. Advance of the solution by half time-step ∆t/2 before the derivation of time-centered in-

terface values. With the use of primitive variables, the equations are rewrited in the quasi-

linear form by introducing a matrix Awl
for each direction l. The expression can be easily

6

computed and is given only for the x-direction:

Awx
=

u.n ρ 0 0 0 0

0 u.n 0 0 1/ρ 0

0 0 u.n 0 0 0

0 0 0 u.n 0 0

0 ρc2
wallis 0 0 u.n 0

0 −K 0 0 0 u.n

3. Solve the Riemann problem with the HLLC scheme to update the conservative variables.

The numerical treatment of the boundary conditions is based on the use of the characteristic

relations of the four-equation system (see [17] for more details). High-resolution numerical

methods based on a weighted essentially non-oscillatory (WENO) reconstruction are currently

under development (see [18]).

4. Parallel paradigms and implementations

In a previous work [16], a programming approach allying the use of both MPI and OpenMP

libraries have been successfully implemented. In the framework of the large deployment of

CPU and GPU-based supercomputers, the parallelization of the code by combining MPI and

OpenACC has been carried out. In the following, both approaches and the gains obtained are

compared.

4.1. Distributed-memory parallelization: MPI

SCB uses a 5-point-stencil per direction, meaning that unknown at one point is computed

using 9 and 13 neighbors in 2D and 3D, respectively. For the MPI part, to parallelize HLL-

type Riemann solvers, a well-known strategy is to distribute global arrays across the processes.

The decomposition is made by using an 3D block partitionning of the matrix. The main idea

of this approach is to add ”ghost points” at each subdomain and to exchange data between each

neighbor of one subdomain. Each subdomain has a fixed size and is organized on a Cartesian

processor topology, two layers of auxiliary cells are defined at each boundary of a subdomain to

couple the computation. In the case of hybrid computing with GPUs, each GPU only processes

an integer number of subdomains and at least one subdomain. There is no constraint on the shape

7

of the subdomains, although an identical and square shape of each subdomain results in better

performance.

4.2. Accelerator parallelization model: OpenMP

A simplified version of the main part of SCB with the OpenMP implementation is given in

Listing 1. A fine grained programming has been implemented, is a matter of using OpenMP’s

directives to automatically distributes the loops around the threads, with three basic principles.

The first principle assesses the size of the considered problem. Indeed, if the problem’s size

becomes too small, sharing the data between threads becomes irrelevant. The second principle

concerns the scheduling. OpenMP loop scheduling is provided to allow better load balancing

between threads. There are four kinds: static, dynamic, guided, each with its own advantage, and

a last one, runtime, which enables to select between the 3 previous ones when executing a run

using a variable system environment. Finally, the last principle consists of merging internal loops

(COLLAPSE) in order to enlarge the iteration space and thus to better distribute the iterations.

4.3. Accelerator parallelization model: OpenACC

OpenACC directives move computation and data from a host device to an accelerator device.

OpenACC integration, in this study, is quite similar to the OpenMP, with a notable distinction:

attention should be paid when copying data from the host device to the accelerator device to

avoid unnecessary round-trips between devices, as illustrated in Listing 2. A data region is firstly

created with ACC DATA COPY directive and then closed with ACC END DATA.

8

1 DO ndt=1,ndtmax

2

3 !$OMP PARALLEL IF(ijmax.gt.256) default(none)

4 !$OMP DO SCHEDULE (runtime) PRIVATE (i,j,k) COLLAPSE(2)

5 DO k=kmin,kmax

6 DO j=jmin,jmax

7 DO i=imin,imax

8 RI1=w1(i,j,k)−w1(i−1,j,k)

9 sl=dmax(0.0,dmin(Ri1,1.0))+dmin(0,dmax(1,Ri1))

10 W1(i,j,k)=W1(i−1,j,k)+1/4∗sl∗(W1(i−1,j,k)−W1(i−2,j,k))+1/4∗sl∗(W1(i ,j,k)−

W1(i−1,j,k))

11 ENDDO

12 ENDDO

13 ENDDO

14 !$OMP END DO

15 CALL BOUNDARY (W1)

16 !$OMP END PARALLEL

17 CALL MPI SENDRECV(W1, imax∗kmax, MPI DOUBLE PRECISION,&

neib mpi(N),tag, W1, imax∗kmax, MPI DOUBLE PRECISION,&

neib mpi(S) ,tag, comm, status, err mpi)

18

19 ENDDO

Listing 1: OpenMP implementation

1 !$ACC DATA COPY (W1)

2 DO ndt=1,ndtmax

3 !$ACC KERNELS DATA PRESENT(W1)

4 DO k=kmin,kmax

5 DO j=jmin,jmax

6 DO i=imin,imax

7 RI1=w1(i,j,k)−w1(i−1,j,k)

8 sl=dmax(0.0,dmin(Ri1,1.0))+dmin(0,dmax(1,Ri1))

9 W1(i,j,k)=W1(i−1,j,k)+1/4∗sl∗(W1(i−1,j,k)−W1(i−2,j,k))+1/4∗sl∗(W1(i ,j,k)−

W1(i−1,j,k))

10 ENDDO

11 ENDDO

12 ENDDO

13 !$ACC END KERNELS

14 CALL BOUNDARY (W1)

15 !$ACC UPDATE HOST(W1)

16 CALL MPI SENDRECV(W1, imax∗kmax, MPI DOUBLE PRECISION,&

neib mpi(N),tag,W1, imax∗kmax, MPI DOUBLE PRECISION,&

neib mpi(S) ,tag, comm, statut, err mpi)

17 !$ACC UPDATE DEVICE(W1)

18 ENDDO

19 !$ACC END DATA

Listing 2: OpenACC implementation

Due to the time loop, ACC DATA PRESENT notifies that the table W1 is already on the device

from another data region. The choice has been made to use the ACC KERNEL instead of ACC

LOOPS, preferring to leave the compiler optimizing by itself as much as possible. Indeed, Diaz

et al.[12] have shown similar performances for both approaches.

Calls to the MPI library are made from the host. Thus, the arrays used in the communications

must firstly be sent to the host using the host update directive: ACC UPDATE HOST. Once the

communication is completed, the result should be sent to the device using the update directive:

ACC UPDATE DEVICE. These transfers must therefore be avoided as much as possible because

they significantly affect performance and above all scalability.

5. Performance and scalability

The considered physical problems are characterized by high-speed dynamics and very small

spatio-temporal scales leading to an intensive computing usage. The physical phenomena require

the use of a very fine mesh, at least 106 and 109 cells in 2D and 3D, respectively. The physical

times of these phenomena are very short (order of microseconds). Combined with the difficulty

of the system (14) to be integrated by an implicit method, this implies the use of explicit time

integration schemes.

9

For these reasons, all the performances and scalability tests have been made with the physical

parameters of the problem presented in section 6.3 with a varying number of cells: 106 and 4×106

(called 1M and 4M, respectively) in 2D and 109 to 4×109 (called 1B and 4B, respectively) in 3D.

It can be noted that some compressible multicomponent and multiphase flow solvers, allowing

studies of collapsing bubble, offer a possibility of using an Adaptive Mesh Refinement (AMR)

[46, 36, 7]. But due to the very high pressure peaks induced by the collapse of the bubble,

the compression rate between regions with coarse and fine mesh may not be so far from 1.

Meanwhile the computation of the refinement takes so much time that, for this case, there is no

advantage. The fact that AMR does not always give gain has been reported by related studies

[35].

All the tests were carried out on supercomputer Jean Zay [20], which is a HPE SGI 8600

supercomputer composed with 1528 scalar compute nodes and 261 accelerated compute nodes.

Each scalar compute node is composed by 2 Intel Xeon Gold 6248 processors, and each acceler-

ated compute node by 2 Intel Xeon Gold 6248 processors and by 4 Nvidia Tesla V100. The total

peak performance is around 15.9 PFlop/s and Intel Omni-Path interconnections, with one link for

nodes without GPU, and four links for the others. All tests have been performed with disabled

hyperthreading option on processor. This section is organized into two parts. The first one is

devoted to analysing performances on a single device1 in order to draw the relevance of choosing

OpenACC paradigm on GPU as well as CPU. The second part is focused on the performances

obtained on multiple devices.

5.1. Single-device performance

SCB performance has been investigated on one Intel core (clock signal frequency of 2.5

GHz) and intel-advisor to extract roofline [47]. The executable has been generated with Intel

Ifort Compiler (version 19.0.4) using options:

-O3- f p-model strict -xHost -fma -align array64byte.

The case 1M has been selected to perform analysis, which focuses on two aspects:

• The computational limits of the solver.

• The performances extracted from OpenMP and OpenACC paradigms on a single CPU and

the performances obtained with OpenACC on the GPU.

1Device mean: one CPU core or a CPU with all its cores or a GPU card.

10

Prior to the analysis one can define arithmetic intensity, which is the ratio between floating-

point operations realized by application, relative to the amount of memory accesses that are

required to support them. The following metrics summarize the analysis:

• Arithmetic intensity value is around 0.3. This kind of arithmetic intensity shows that SCB

is driven by memory and bound to bandwidth.

• 7% of the theoretical peak of a single core is reached.

• A vectorization rate of around 85% (for this kind of architecture) is obtained.

• A memory bandwidth of around 21 GB/s (which is not so far from Level 3 cache) is

observed.

This range of value for arithmetic intensity is often observed for stencil codes [47, 22]. Opti-

mizations could be implemented to minimize this effect by managing cache levels of processors.

However, such a kind of optimization requires a deep rewriting of the compute kernel that is

more challenging. For this reason, we favor optimizations through programming paradigms that

do not depend on the hardware and do not require important rewriting.

Before starting the comparison between performances obtained with executables built with

OpenMP or OpenACC, the influence of the results using OpenMP is being checked when exe-

cutables are generated by two compilers: PGI and Intel. Performances obtained do not show any

significant differences. In the worst case the executable produced by Intel compiler is 10% slower

than the one obtained with PGI (see Table 1). This performance gap is caused by -fp-model strict

optimization with the Intel compiler.

Moreover, we note that overall, the scaling across several threads is very similar. This leads to

think that the obtained performances do not depend on the compiler and therefore the analysis of

the performance between the two accelerator parallelization models can be driven as objectively

as possible.

11

Table 1: Comparison of calculation times using the OpenMP library.

case 1M case 4M

Time Time

Threads Intel-v19.0.4 PGI-v19.7 Intel-v19.0.4 PGI-v19.7

1 763.04 691.00 3052.60 2770.12

2 385.58 348.77 1541.07 1399.92

4 207.86 183.43 830.75 733.03

8 119.49 102.73 473.50 408.13

16 81.90 69.67 318.96 268.62

20 74.23 62.10 286.18 244.35

The relevance of the use of OpenACC is now analyzed as regard to the portability and ef-

ficiency on heterogeneous supercomputing platforms. The executable has been generated with

PGI Fortran compiler (version 19.7) with options:

-Mpreprocess -fast -m64 -acc -Mvect=nocond -ta=multicore.

The parallel speedup and efficiency (see Figure 1) show that by using less than half of the whole

CPU, performances with OpenMP or OpenACC are nearly the same. Using more than half cores

of a CPU, discrepancies become notable. Thus, regardless of the paradigm, the performances

obtained from 1 to 10 cores have a parallel efficiency of more than 80%. Then, by using more

than half cores of a CPU, parallel efficiency decreases notably with OpenMP implementation,

while it remains above 70% with OpenACC.

12

 1

 2

 4

 8

 16

 1 2 4 8 16

S
pe

ed
up

Threads

Ideal
1M cells,OMP
1M cells, ACC
4M cells, OMP

4M celles, ACC

 50

 60

 70

 80

 90

 100

 110

 1 2 4 8 16

R
el

at
iv

e
pe

rf
or

m
an

ce
 %

Threads

1M cells,OMP
1M cells, ACC
4M cells, OMP

4M celles, ACC

Figure 1: Strong scaling on single Intel Xeon Gold 6248. With OMP: OpenMP, ACC: OpenACC.

Yet, it is also necessary to consider the computation time provided by both implementations.

The comparison of the calculation time is given in Table 2 for cases 1M and 4M. With 1 core the

OpenACC executable is two times slower than the OpenMP one, while with 20 cores, OpenACC

requires the same execution time as OpenMP. It is also noticeable that the time execution spread

between OpenMP and OpenACC also decreases as the problem size increases. OpenMP scal-

ing is mainly driven by the choice of fine-grained programming, which does not allow optimal

performances.

Using this version of PGI, these results show that the choice of accelerator parallelization

model for multicore CPUs can be either OpenACC or OpenMP, provided that the number of

cores used is well adjusted.

13

Table 2: Comparison of computational time between OpenMP (OMP) and OpenACC (ACC) on CPU.

case 1M case 4M

Time Speedup Time Speedup

Threads OMP ACC OMP ACC

1 691.00 1243.85 1.8 2770.12 4047.05 1.46

2 348.77 603.18 1.73 1399.92 2016.77 1.44

4 183.43 309.99 1.69 733.03 1047.72 1.43

8 102.73 176.96 1.72 408.13 600.99 1.47

16 69.67 113.77 1.63 268.62 389.09 1.44

20 62.10 78.60 1.26 244.35 255.85 1.04

Finally, we consider the parallel performance and portability of the code on a heterogeneous

supercomputer composed of CPUs and GPUs. In order to compare CPU and GPU performances

separately, two tests have been set up on one device: 1 Intel Xeon Gold 6248 and 1 GPU NVidia

Tesla V100 card, respectively. The executable has been generated with PGI Fortran compiler.

One can see on Table 3 that GPU performances are from 2 to 27 times faster than CPU, depending

on the number of cores used on CPU.

Table 3: Comparison of computational time between OpenMP on CPU (CPU) and OpenACC on GPU

(GPU).

case 1M case 4M

Time Speedup Time Speedup

Threads CPU GPU CPU GPU

1 691.00 34.60 19.97 2770.12 102.79 26.94

20 62.10 1.79 244.35 2.37

All these results reflect the ability of the OpenACC paradigm to efficiently exploit the cores

of a CPU as well as GPU accelerator cards and give credits to test it on multi-accelerator-devices,

e. g. multi-CPU versus multi-GPU.

14

5.2. Multi-device performance

In this part, the performances of the code are studied in the context of distributed parallel

computing. To begin, performances are extracted by using a single parallelization paradigm that

supports data distribution on several devices, namely MPI. Then, various tests are conducted

using the hybrid computation concept, e. g. in the present case, by mixing MPI with OpenMP

(MPI-OpenMP) or OpenACC (MPI-OpenACC). Analyses are conducted on both a homogeneous

platform (CPU only) and a heterogeneous platform (CPU and GPU).

The strong scaling tests are shown in Figure 2, using grids composed of: 1 billion cells (1B)

and 4 billion cells (4B). MPI implementation alone (MPI-Alone) is tested and a parallel efficiency

of around 50% relative to 15, 360 cores is observed, if the problem size is large enough. To

maintain an efficiency greater than 80%, a minimum of around 106 cells per MPI subdomain is

an optimum. This rather high value is explained by the fact that the arithmetic intensity is rather

low, around 0.3, implying that the latency-dominated scenario is observed early in the speedup

curve. Thus, when using less than 1 million cells per sub-domain the lower efficiency is not

related to an increase in communication time, but to a decrease in computing time.

Figure 2 also shows that on a homogeneous platform, 1 MPI + 2 OpenMP threads give at

least the same performances as the MPI-Alone, as long as the subdomains’ size criterion pro-

vided previously, is respected. The MPI-OpenMP version provides a performance of around

75% of 3, 800 cores, which is a gain of around 5% in comparison to the MPI performance alone.

Thus, a performance of around 7% of the theoretical peak performance can be sustained, with an

efficiency of 75% relative to 3, 800 cores for a given problem with a size of 1 billion cells. Nev-

ertheless, MPI-OpenACC hybrid mode on CPU cannot reproduce 2D’s performances obtained

in section 5.1 wih OpenACC paradigm.

15

 1

 2

 4

 8

 16

 32

 64

 128

 120 240 480 960 1920 3840 7680 15360

S
pe

ed
up

 (
no

rm
al

iz
ed

)

Number of CPU cores

Ideal
1B cells
4B cells

 1

 2

 4

 8

 16

 32

 240 480 960 1920 3840 7680

S
pe

ed
up

 (
no

rm
al

iz
ed

)
Number of CPU cores

Ideal
1B cells, MPI-Alone

1B Cells, 2xThreads OMP
1B Cells, 4xThreads OMP
1B Cells, 2xThreads ACC
1B Cells, 4xThreads ACC

(a) Homogeneous platform: CPU/CPU. Normalized speedups with MPI-Alone (left) and MPI-OpenMP or

MPI-OpenACC (right).

 100

 200

 400

 800

 1600

 3200

 6400

 4 8 16 32 64 128 256 512

C
om

pu
ta

tio
n

tim
e

(s
)

Number of device

Ideal
1B cells, MPI-Alone

1B cells, 1MPI+1GPU
4B cells, MPI-Alone

4B cells, 1MPI+1GPU

 60

 70

 80

 90

 100

 4 8 16 32 64 128 256 512

R
el

at
iv

e
pe

rf
or

m
an

ce
 %

Number of device

1B cells, MPI-Alone
1B Cells, 1MPI+1GPU

4B cells, MPI-Alone
4B Cells, 1MPI+1GPU

(b) Heterogeneous platform: CPU/GPU. Device represents either 1 CPU (e.g. 20 MPI processes) or 1

GPU card attached to 1 MPI process. Scaling curve (left) and efficiency curve (right).

Figure 2: Strong scaling, speedups and performances obtained on: a) homogeneous platform composed of

CPUs and b) heterogeneous platform composed of CPUs and GPUs.

Here, the performances obtained on the homogeneous platform are compared to those ob-

tained on the heterogeneous platform. These performances have been measured by increasing

the number of devices. A device corresponds to all the cores of a CPU (20 cores) on the ho-

16

mogeneous platform and to 1 MPI process (e. g. 1 core) attached to one GPU card on the het-

erogeneous platform case. MPI-Alone and MPI-OpenACC (GPU) scalability are quite similar

(see Figure 2) as long as the size of the problem remains moderate (1B), with higher efficiency

when using multi-GPU. When the problem becomes larger (4B), the multi-GPU version still

maintains an efficiency of more than 80%, while it can decrease drastically with MPI-Alone or

MPI-OpenMP mode. The performance curve reveals that in order to maintain an acceptable per-

formance of 80%, the sub-domain decomposition must be with at least 10 million cells per GPU

card, whereas 1 million cells per sub-domain are sufficient for CPU, like it is reported below.

This explains the lower performance observed on the CPU part (Figure 2).

Lastly, while the performances in terms of scalability and efficiency are highlighted on the

heterogeneous architecture, it is also necessary to consider the acceleration provided by the use

of multi-GPU compared to multi-CPU, as shown on Table 4.

It can be noted that performances observed with one GPU card are not reproduced in the

context of MPI-OpenACC. This lower multi-GPU performance is mostly due to the additional

cost of communications that GPU cards imply. To address this drawback, some preliminary tests

are currently conducted with MPI Cuda-aware.

Table 4: Comparison of 3D case (1B, 4B) computational time between MPI on CPU and MPI-OpenACC

on GPU.

case 1B case 4B

CPU GPU CPU GPU

Cores Times Cards Times Cores Times Cards Times

240 1400 24 1917 960 1001 96 1030

480 730 48 955 1920 530 192 580

960 470 96 658 3840 318 384 320

1920 245 192 432

3840 136 384 228

Briefly, these performance results illustrate a very good scaling of the code from the resources

offered by GPU computing. Given that the OpenACC version provides quite encouraging results

17

on any type of device, it becomes obvious that the OpenACC choice is interesting at the moment.

6. Numerical results

In this section, numerical tests with various 3D bubble collapses are provided. First, with

the simulation of a spherical bubble collapsing in a free-field, then investigating the collapse of a

bubble impacting by a normal shock wave with the same set of physical parameters, and finally

showing the ability of the solver to compute a very stiff case.

6.1. Spherical bubble collapse in a free-field

The study consists of simulating the collapse of a gas bubble trapped in a liquid. This collapse

is driven by the effect of a pressure jump between the internal pressure of the bubble Pb and the

liquid Pl∞ . At the initial time, the physical parameters of the study are:

• an air bubble, with a radius R0 = 1 mm and an uniform internal pressure P(b,0),

• the fluid is water at rest,

• pressure in the water are given by: P(l,0)(R) =
R0

R
(P(b,0) − Pl∞), and the ratio of pressure is

Pl∞

P(b,0)

= 353,

• Densities of air and water are initially 1 kg/m3 and 1000 kg/m3, respectively.

This kind of configuration, which is slightly compressible, allows to compare the evolution

of the effective bubble radius R with the solution resulting from the Keller-Miksis equation [24].

The effective bubble radius is defined as:

R =

(

3Vb

4π

)1/3

, with Vb =

∫

αdΩ

where Vb is the total volume of gas.

Using the symmetry of the problem, a rectangular computational domain is considered for a

quarter of the bubble and taken large enough to minimize the impact of the boundary conditions.

The computational domain, relatively to R0, is [Lx × Ly × Lz] = [100R0 × 50R0 × 50R0]. The

position of the center of the bubble is (xb, yb, zb) = (50R0, 0, 0). Symmetry conditions are applied

in both planes (x−y) and (x− z), while non-reflecting conditions are applied on the other faces of

the domain. Let introduce Nr(b,0)
, the number of points per initial bubble radius and t∗ = t/(R0/cl)

18

a dimensionless time. The grid refinement influence is studied by considering 3 meshes with

Nr(b,0)
= [10, 20, 30], respectively.

The time evolution of the dimensionless bubble radius R/R0 is presented in Figure 3 (left part)

for the different meshes, with and without the Kdiv term in the void ratio equation. When using

the finest grid, a very good agreement is obtained with the Keller-Miksis solution. Moreover, the

effect of the Kdiv term is clearly highlighted: this term in the four-equation model produces a

significantly more accurate result, especially at the minimum radius around time t∗ = 8. Such a

behaviour has been commented in recent papers using a five-equation model [46, 37].

t /(R0/c l)

R
 /

R
0

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Keller-Miksis
Nr=30
Nr=20
Nr=10
w/o Kdiv, Nr=30
w/o Kdiv, Nr=20
w/o Kdiv, Nr=10

(a)

t /(R 0/cl)

P
m

ax
(G

P
a)

7 8 9 10
0

1

2

3

4

5

6
Nr=40
Nr=30
Nr=20
Nr=10
w/o Kdiv, Nr=30
w/o Kdiv, Nr=20
w/o Kdiv, Nr=10

(b)

Figure 3: Time evolution for the collapse with Pl∞/P(b,0) = 353 of: a) the effective bubble radius R/R0 and

b) the maximum pressure inside the liquid (in Gpa).

The maximum pressure evolution inside the fluid is plotted in the right part of the figure. A

finer grid with Nr(b,0)
= 40 is added to clearly attest the mesh convergence for the peak intensity.

The effect of the Kdiv term is spectacular. The pressure peak observed at the minimum radius at

around time t∗ = 8 is largely lower without this term (by a factor 12). Besides, the high magnitude

obtained with the complete model and using the finest grid (more than 5 GPa) illustrates the

violence of the collapse and the stiffness of the numerical problem being dealt with. On the other

hand, we observe that the spatial resolution has a great influence on the pressure intensity.

19

6.2. Shock-induced bubble collapse near a solid wall, Psh = 353 bar

The study consists of simulating the collapse of a single gas bubble immersed in water near a

solid wall and impacted by a normal shock wave for which the downstream pressure is Psh = 353

bar. This problem has been investigated numerically in 2D by Johnsen and Colonius [21] and

more recently in 3D by Wermelinger et al.[46]. A spherical air bubble with an initial radius R0,

located at coordinates (x(b,0), y(b,0), z(b,0)), is immersed in water at temperature 293 K under the

following initial conditions:

(ρ, u, p) =

(998 kg/m3, 0 m/s, 105 Pa) inside the liquid

(1 kg/m3, 0 m/s, 105 Pa) inside the gas

(15)

To close the problem, material parameters for the stiffened gas EOS are set to:

(γl, p∞l
,Cpl

) = (6.68, 4.103 · 108 Pa, 1650 J/kg.K), for the liquid phase (16)

(γg, p∞g
,Cpg

) = (1.4, 0 Pa, 1487 J/kg.K), for the gas phase. (17)

All spatial dimensions are defined relatively to the initial radius R0. The computational do-

main is [Lx × Ly × Lz] = [8R0 × 12R0 × 12R0] and the position of the bubble is located at

(x(b,0), y(b,0), z(b,0)) = (6R0, 0, 0). The incident shock wave normal to x-direction is initialized at

position xsh = 4.85R0. The stand-off distance between the bubble center and the wall, which is

a major parameter that governs the bubble collapse dynamics, is set to H/R0 = 2. Due to the

symmetry of the problem, only a quarter of the bubble is simulated. A slip condition is used

for the wall. As previously, Nr(b,0)
represents the number of nodes per initial bubble radius. Two

meshes have been simulated with Nr(b,0)
= [55, 110].

The main phenomena involved in this shock-bubble interaction have been described by var-

ious authors (see for example [21, 19]). Due to the pressure difference between both sides, the

bubble is asymmetrically contracted and becomes toroid shaped during the process. It induces a

jet of water along the axis of flow symmetry. When this water jet impacts the opposite bubble

interface, an intense blast wave or water-hammer shock is formed generating a high-pressure

zone. The bubble is then cut into pieces. The impact of the blast wave on the wall produces

a strong pressure peak, which can cause material damages leading to erosion. To illustrate this

bubble collapse, visualizations at different times t∗ = t/(R0/cl) are plotted in Figure 4. Different

20

quantities are presented on borders: the longitudinal velocity component (in m/s) on the the ver-

tical symmetry plane, the pressure (in bar) on the wall and the modulus of the density gradient

(Schlieren-like representation) on the horizontal symmetry plane. Inside the volume, the isosur-

face of void ratio α = 0.15 is plotted. At time t∗ = 5.1, the incident shock wave has impacted

the wall and the reflected wave is located on the bubble. At time t∗ = 8.4, one can clearly ob-

serve the toroidal shape of the bubble, the high-speed jet penetrating inside the bubble and the

generation of the blast wave. At time t∗ = 10.1, the leftward front of the blast wave has impacted

the wall causing an intense pressure peak and the reflected wave propagates toward the bubble

pieces. Finally at time t∗ = 12.1, the reflected wave has impacted the bubble fragments leading

to a recollapse and continues its propagation.

(a) t∗ = 5.1 (b) t∗ = 8.4

(c) t∗ = 10.1 (d) t∗ = 12.1

Figure 4: Visualization of the shock-induced collapse with Psh/P(b,0) = 353 at different times t∗.

Longitudinal velocity component, wall pressure, Schlieren-like representation and isosurface of void ratio.

21

The time evolution of the dimensionless effective bubble radius R/R0 is plotted in Figure 5

(left part) and compared with the Keller-Miksis solution obtained with the ratio Pl∞/P(b,0) = 353.

Of course, the analytical profile is given for illustrative purposes. The radius evolution is close

to the inertial free-field case up to time t∗ = 10. At this time, the blast wave impacted the wall

and the reflected wave recollapses the bubble pieces.

t /(R 0/cl)

R
/R

0

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1 Nr=110
Nr=55
free-field

(a)

t /(R 0/cl)

P
m

ax
(G

P
a)

7 8 9 10
0

5

10

15 Nr=110
Nr=55

(b)

Figure 5: Time evolution for the shock-induced collapse with Psh/P(b,0) = 353 of: a) the effective bubble

radius R/R0 compared with the free-field theory and b) the maximum pressure inside the liquid (in GPa).

The maximum pressure evolution, plotted on the right part of Figure 5, illustrates the high-

pressure peak obtained when the water jet impacts the bubble interface generating the blast wave.

The maximum pressure intensity is around 12 GPa, corresponding to 340 times the initial shock

pressure Psh.

The dimensionless maximum pressure along the wall is considered in Figure 6 (left part) as a

function of time t∗ for both meshes. The influence of the spatial distribution is weak for the wall

pressure evolution. The first peak at time t∗ = 3 is due to the impact of the incident shock wave

on the wall. The most important peak, of about 0.65 GPa, is induced by the impact of the blast

wave on the wall at time t∗ = 9.24. In the study of Wermelinger et al., a peak intensity of 0.67

GPa obtained at time t∗ = 9.34 was monitored. The present results are therefore in very good

agreement with those of Wermelinger et al. As regard to the 2D results obtained by Johnsen and

22

Colonius, they showed a pressure peak P/(ρlc
2
l
) around 0.2. For the stand-off distance H/R0 = 2,

it highlights the fact that the wall pressure peak for the cylindrical collapse is close to the wall

pressure value of the spherical case.

t /(R 0/cl)

P
w

m
ax

/(
ρ l

c l2)

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3 Nr=110
Nr=55

(a)

t /(R 0/cl)

P
w

ax
is

/(
ρ l

c l2)

2 4 6 8 10 12 14
0

0.1

0.2

0.3 Nr=110
Nr=55
ref. [44]

(b)

Figure 6: Time evolution for the shock-induced collapse with Psh/P(b,0) = 353 of: a) the maximum wall

pressure and b) the wall pressure along the axis.

The wall pressure evolution monitored on the bubble axis is plotted in Figure 6 (right part)

and compared with the solution of ETH Zurich [46]. One can see that the results match very well

the solution obtained in [46]. Small discrepancies are noticeable for the secondary waves impact

after time t∗ = 12.

6.3. Shock-induced bubble collapse near a solid wall, Psh = 1200 bar

This subsection considers a stiffer case with a more intense incident shock wave. The test

is similar to the one presented in [33]. It consists of simulating the collapse of a single gas

bubble immersed in water near a solid wall and impacted by a normal shock wave for which the

downstream pressure is Psh = 1200 bar. The bubble with an initial bubble radius R0 = 0.05 mm

is immersed in water at temperature 298 K under the following initial conditions:

(ρ, u, p) =

(1000 kg/m3, 0 m/s, 105 Pa) inside the liquid

(1.176 kg/m3, 0 m/s, 105 Pa) inside the gas

(18)

23

To close the problem, material parameters for the stiffened gas EOS are set to:

(γl, p∞l
,Cpl

) = (2.35, 109 Pa, 5844 J/kg.K), for the liquid phase (19)

(γg, p∞g
,Cpg

) = (1.4, 0 Pa, 1009 J/kg.K), for the gas phase. (20)

As previously, only a quarter of the bubble is being considered. The computational domain is

[Lx × Ly × Lz] = [8R0 × 12R0× 12R0] and the initial position of the bubble is (x(b,0), y(b,0), z(b,0)) =

(6R0, 0, 0). The incident shock wave normal to x-direction is initialized at position xsh = 4.85R0.

As previously, Nr(b,0)
represents the number of nodes per initial bubble radius. Two meshes have

been simulated with Nr(b,0)
= 55 and 110, respectively. This study considers two values of the

stand-off distance: H/R0 = 2 and H/R0 = 1.4.

The time evolution of the effective bubble radius R/R0 is plotted in Figure 7 (left part) for

the stand-off distance H/R0 = 2 and compared with the Keller-Miksis solution obtained with

Pl∞/P(b,0) = 1200. One can see that the minimum radius, close to 0.185, is higher than the

previous case where it was close to 0.1. It is therefore expected a less intense pressure peak

during the collapse due to the less important volume reduction. The evolution of the maximum

pressure in the liquid, plotted in the right part of the figure, confirms this point. The peak intensity

reaches 4.8 GPa, corresponding to 40 times the shock pressure Psh, whereas it was around 12

GPa in the previous case. Interestingly, the water-hammer pressure decreases when the incident

shock intensity increases. The inverse behaviour was depicted for the cylindrical collapse: it was

observed an increase of the the water-hammer pressure with increasing the incident shock. Yet,

proportionally with the incident shock intensity, the water-hammer shock is weakest at higher

shock intensities, as commented by different authors [21, 19, 15].

24

t /(R 0/cl)

R
/R

0

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1 Nr=110
Nr=55
free-field

(a)

t /(R 0/cl)
P

m
ax

(G
P

a)
2 4 6 8

0

2

4

6 Nr=110
Nr=55

(b)

Figure 7: Time evolution for the shock-induced collapse with Psh/P(b,0) = 1200 and H/R0 = 2 of: a) the

effective bubble radius R/R0 compared with the free-field theory and b) the maximum pressure inside the

liquid (in GPa).

Figure 8 illustrates, for both meshes and for the ratio H/R0 = 2 the time evolution of the

maximum pressure in the liquid (on the left) and the maximum pressure along the wall (on the

right). The main phenomena involved in the collapse are similar to the previous case. The most

important peak at around time t∗ = 5.15 corresponds to the blast wave formation when the liquid

jet impacts the opposite bubble interface. The second peak at around time t∗ = 7 is due to the

recollapse of the bubble pieces by the reflected wave. At the wall, the first peak is due to the

incident shock wave and the most intense peak is due to the impact of the generated blast wave.

At a later time, other peaks emerge due to secondary waves generated by the recollapse of the

bubble pieces. The influence of the mesh is clearly noticeable for the capture of these secondary

waves.

25

t /(R 0/cl)

P
m

ax
/(

ρ l
c l2)

2 4 6 8
0

0.5

1

1.5

2

2.5 Nr=110
Nr=55

(a)

t /(R 0/cl)
P

w
m

ax
/(

ρ l
c l2)

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5 Nr=110
Nr=55

(b)

Figure 8: Time evolution for the shock-induced collapse with Psh/P(b,0) = 1200 and H/R0 = 2 of: a) the

dimensionless maximum pressure and b) the dimensionless maximum wall pressure.

The same quantities are plotted in Figure 9 for the stand-off distance H/R0 = 1.4. A similar

behaviour is observed.

t /(R 0/cl)

P
m

ax
/(

ρ l
c l2)

2 4 6 8
0

0.5

1

1.5

2

2.5

3 Nr=110
Nr=55

(a)

t /(R 0/cl)

P
w

m
ax

/(
ρ l

c l2)

2 4 6 8
0

0.5

1

1.5 Nr=110
Nr=55

(b)

Figure 9: Time evolution for the shock-induced collapse with Psh/P(b,0) = 1200 and H/R0 = 1.4 of: a) the

dimensionless maximum pressure and b) the dimensionless maximum wall pressure.

As expected, closer is the bubble, the more intense is the pressure peak due to the blast wave

impact. The magnitude of the most important pressure peak on the wall is reported in Table 5

26

for both values of the stand-off distance. Moreover, 2D results are added, obtained with the same

4-equation model and with a number of nodes per bubble radius equal to 150. The pressure

is divided by the incident shock pressure Psh. As previously commented, the maximum wall

pressure peak obtained with a 2D simulation is fairly close to the 3D solution (the gap is about

7%) when the bubble is located at a distance 2R0 not too close to the wall. It is no more the case

when the bubble becomes closer to the wall. For the situation where H/R0 = 1.4, the pressure

peak provided by the 3D simulation (which is 24 times the shock intensity) approximatively

doubles compared to the 2D result.

Table 5: Maximum wall pressure during the shock-induced collapse with Psh/P(b,0) = 1200. Comparison

between the 3D simulations and the 2D ones for H/R0 = 2 and 1.4.

stand-off distance H/R0 = 2 H/R0 = 1.4

3D simulation 2D simulation 3D simulation 2D simulation

maximum value of Pw/Psh 8.43 7.83 24.0 11.96

7. Conclusion

This study presents a compressible two-phase flow solver devoted to compute strong shock-

interface interactions. In the framework of diffuse interface methods, a four-equation model was

used. The computational approach is based on a HLL-type Riemann solver discretized through a

finite volume method. A particular attention is paid on the parallel strategy and the performance

portability to fully exploit heterogeneous architectures. An hybrid well-suited MPI+OpenACC

implementation was developped and a detailed performance study assessed the high potential of

the proposed approaches. Results indicated that OpenACC paradigm was mature and provided

a good efficiency on any kind of devices and therefore seems to be a relevant choice for hy-

brid implementation with MPI library. The present study validates the implementations on the

benchmark of the bubble collapse in a free-field by comparison with the analytical solution of the

Keller-Miksis equation. Then a shock-induced bubble collapse was computed and a very close

agreement with existing results was illustrated. Finally, a strong collapse near a rigid wall was

investigated for two positions of the bubble. A high pressure peak at the wall was predicted for

the case where the bubble is closest to the wall. Moreover, results underlined the importance of

performing 3D simulations for the prediction of the wall damage in comparison with 2D results.

27

These results highlighted the robustness of the solver and the ability of the proposed methods to

compute efficiently challenging two-phase flows. Ongoing and future works are in progress to

investigate multi-bubble collapse.

Acknowledgements

This research was supported by the French National Research Agency ANR (project 18-

CE46-009). Computations have been performed on the supercomputer facilities of the the Mesocen-

tre CRIANN (project 2018004) and the HPC resources of GENCI under allocations A0072A10981.

Author contributions

All of the authors were involved in the preparation of the manuscript and have read and

approved the final manuscript version.

[1] R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative ap-

proach, J. Computational Physics, (1996), 125, 150-160.

[2] G. Allaire, S. Clerc and S. Kokh A five-equation model for the simulation of interfaces between compressible fluids,

J. Computational Physics, (2002), 181, 577-616.

[3] G.J. Ball, B.P. Howell, T.G. Leighton and M.J. Schofield, Shock-induced collapse of a cylindrical air cavity in

water: a free-Lagrange simulation, Shock Waves, (2000), 10, 265-276.

[4] S. Beig and E. Johnsen, Maintaining interface equilibrium conditions in compressible multiphase flows using in-

terface capturing, J. Computational Physics, (2015), 302, 548-566.

[5] N.K. Bourne and J.E. Field, Shock-induced collapse and luminescence by cavities, Phil. Trans. R. Soc. Lond. A,

(1999), 357, 295-311.

[6] A. Brujan, G. S. Keen, A. Vogel and J. R. Blake, The final stage of the collapse of a cavitation bubble close to a

rigid boundary, Phys. Fluids, (2002), 14, 85.

[7] S.H. Bryngelson, K. Schmidmayer, V. Coralic, K. Maeda, J. Meng and T. Colonius, MFC: An open-source high-

order multi-component, multi-phase, and multi-scale compressible flow solver, Computer Physics Communication,

(2021), 266, 107396.

[8] V. Coralic and T. Colonius, Shock-induced collapse of a bubble inside a deformable vessel, European Journal of

Mechanics B/Fluids, (2013), 40, 64-74.

[9] P. Costa, E. Phillips, L. Brandt and M. Fatica, GPU acceleration of CaNS for massively-parallel direct numerical

simulations of canonical fluid flows, Computers and Mathematics with Applications, (2021), 81, 502-511.

[10] F. Daude,P. Galon,Z. Gao and E. Blaud, Numerical experiments using a HLLC- type scheme with ALE formulation

for compressible two-phase flows five-equation models with phase transition, Computers and Fluids, (2014), 94,

112-138.

[11] F. Denner and B. van Wachem, Numerical modelling of shock-bubble interactions using a pressure-based algorithm

without Riemann solvers, Experimental and Computational Multiphase Flow, (2019), 1(4), 271-285.

28

[12] J.M. Diaz, G. Jost, S. Chandrasekaran and S. Pino, Is OpenMP 4.5 target offload ready for real life ?, SuperCom-

puting OpenMP booth talks, SC18 Dallas, (2018).

[13] E. Goncalves, Numerical study of expansion tube problems: toward the simulation of cavitation, Computers and

Fluids, (2013), 72, 1-19.

[14] E. Goncalves and B. Charriere, Modelling for isothermal cavitation with a four-equation model, Int. J. Multiphase

Flow, (2014), 59, 54-72.

[15] E. Goncalves , Y. Hoarau and D. Zeidan, Simulation of shock-induced bubble collapse using a four-equation model,

Shock Waves, (2019), 29, 221-234.

[16] E. Goncalves and P. Parnaudeau, SCB: An efficient and simple parallel code to simulate a 3D shock-induced bubble

collapse. IUTAM Symposium on Computational Modelling of Instabilities and Turbulence in Separated Two-Phase

Flows, June 10-12, Dublin, 2019.

[17] E. Goncalves and P. Parnaudeau, Comparison of multiphase models for computing shock-induced bubble collapse,

Int. J. Numerical Methods for Heat and Fluid Flow, (2020), 22, 3845-3877.

[18] K. Kozhanova, E. Goncalves and Y. Hoarau, High-order numerical methods for compressible two-phase flows,

Finite Volumes for Complex Applications, FCVA-9, June 15-19, Bergen, Norway, 2020. Springer Proceedings in

Mathematics and Statistics, 323, 685-693.

[19] N. Hawker and Y. Ventikos, Interaction of a strong shockwave with a gas bubble in a liquid mediam: a numerical

study, J. Fluid Mechanics, (2012), 701, 59-97.

[20] HPE SGI 8600 (Jean Zay), (2019), http://www.idris.fr/eng/jean-zay/cpu/jean-zay-cpu-hw-eng.html

[21] E. Johnsen and T. Colonius, Numerical simulations of non-spherical bubble collapse, J. Fluid Mechanics, (2009),

629, 231-262.

[22] S. Kamil, C. Chan, L. Oliker, J. Shalf and S. Williams, An auto-tuning framework for parallel multicore stencil

computations, IEEE International Symposium on Parallel & Distributed Processing, (2010).

[23] A. Kapila, R. Menikoff, J. Bdzil, S. Son and D. Stewart, Two-phase modeling of deflagration to detonation transi-

tion in granular materials: reduced equations, Physics of Fluids, (2001), 13, 3002-3024.

[24] J.B. Keller and M. Miksis, Bubble oscillations of a large amplitude, J. Acous. Soc. Am., (1980), 68, 628-633.

[25] E. Lauer, X.Y. Hu, S. Hickel and N.A. Adams, Numerical investigation of collapsing cavity arrays, Physics of

Fluids, (2012), 24, 052104.

[26] X. Li and P-C. Shih, An early performance comparison of Cuda and OpenACC, MATEC Web of Conferences,

ICMIE 2018, (2018), 208.

[27] OS. Majidi and A. Afshari An adaptive interface sharpening methodology for compressible multiphase flows, Com-

put. Math. Applications, (2016), 72, 2660-2684.

[28] O.L. Metayer, J. Massoni and R. Saurel, Elaborating equations of state of a liquid and its vapor for two-phase flow

models, Int. J. Thermal Sciences, (2004), 43, 265-276.

[29] S. Muller, P. Helluy and J. Ballmann, Numerical simulation of a single bubble by compressible two-phase fluids,

Int. J. Numerical Methods Fluids, (2010), 62(6), 591-631.

[30] A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flows problems, J. Compu-

tational Physics, (2005), 202, 664-698.

[31] R. Nourgaliev, T. Dinh and T. Theofanous, Adaptive characteristics-based matching for compressible multifluid

29

dynamics, J. Computational Physics, (2006), 213, 500-529.

[32] C. Obrecht, F. Kuznik, B. Tourancheau and J-J. Roux, A new approach to the lattice Boltzmann method for graphics

processing units, Computers & Mathematics with Applications, (2011), 61, 3628-3638.

[33] Y. Paquette, M. Fivel, G. Ghigliotti, E. Johnsen and J-P. Franc, Fluid-Structure Interaction in Cavitation Erosion,

(2018), 10th International Symposium on Cavitation CAV2018, Baltimore, USA.

[34] A. Philipp and W. Lauterborn, Cavitation erosion by single laser-produced bubbles, J. Fluid Mechanics, (1998),

361, 75-116.

[35] D. Rossinelli, B. Hejazialhosseini, P. Hadjidoukas, C. Bekas, A. Curioni, A. Bertsch, S. Futral,

S.J. Schmidt,N.A. Adams and P. Koumoutsakos, 11 PFLOP/s simulations of cloud cavitation collapse, SC ’13:

Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis,

Denver, CO, (2013), 1-13.

[36] K. Schmidmayer, F. Petitpas, S. Lemartelot and E. Daniel, ECOGEN: An open-source tool for multiphase, com-

pressible, multiphysics flows, Computer Physics Communication, (2019), 251, 107093.

[37] K. Schmidmayer, S.H. Bryngelson and T. Colonius, An assessment of multicomponent flow models and interface

capturing schemes for spherical bubble dynamics, J. Computational Physics, (2020), 402, 109080.

[38] R.K. Shukla, C. Pantano and J.B. Freund, An interface capturing method for the simulation of multi-phase com-

pressible flows, J. Computational Physics, (2010), 229, 7411-7439.

[39] O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz and M. Farhat, Shock waves from nonspherical

cavitation bubbles, Physical Review Fluids, (2017), 2, 093601.

[40] H. Terashima and G. Tryggvason, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J.

Computational Physics, (2009), 228, 4012-4037.

[41] A. Tiwari, C. Pantano and J.B. Freund, Growth-and-collapse dynamics of small bubble clusters near a wall, J.

Fluid Mechanics, (2015), 775, 1-23.

[42] TOP 500 The list. http://top500.org/

[43] E. Toro, M. Spruce and W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves,

(1994), 4, 25-34.

[44] B. van Leer, On the relation between the upwind-differencing schemes of Godunov, Engquist–Osher and Roe, SIAM

J. Sci. Stat. Comput., (1984), 5(1), 1-20.

[45] G. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, (1967), New York, NY.

[46] F. Wermelinger, U. Rasthofer, P.E. Hadjidoukas and P. Koumoutsakos, Petascale simulations of compressible flows

with interfaces, J. Computational Science, (2018), 26, 217-225.

[47] S. Williams, A. Waterman and D. Patterson, Roofline: An insightful visual performance model for floating-point

programs and multicore architectures, Communications of ACM, (2009), 52, issue 4.

[48] Xia Y, Lou J, Luo H, Edwards J, Mueller F. OpenACC acceleration of an unstructured CFD solver based on a

reconstructed discontinuous Galerkin method for compressible flows. Int. J. Numerical Methods Fluids, (2015),

78, 123-139.

[49] G. Xiang and B. Wang, Numerical study of a planar shock interacting with a cylindrical water column embedded

with an air cavity. J. Fluid Mechanics, (2017), 825, 825-852.

30

