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Abstract—Automotive radar is a critical feature in advanced
driver-assistance systems. It is important in enhancing vehicle
safety by detecting the presence of other vehicles in the vicinity.
The performance of radar detection is, however, affected by the
interference from radars of other vehicles as well as the variation
in the target radar cross-section (RCS) due to varying physical
features of the target vehicle. Considering such interference
and random RCS, this work provides a fine-grained perfor-
mance analysis of radar detection. Specifically, using stochastic
geometry, we calculate the meta distribution of the signal-to-
interference-and-noise ratio that permits the reliability analysis of
radar detection at individual vehicles. We also evaluate the delay
aspect of radar detection, namely, the mean local delay which
is the average number of transmission attempts needed until
the first successful target detection. For a given target distance,
we obtain the optimal transmit probability that maximizes the
density of successful radar detection while keeping the mean
local delay below a threshold. We also provide several system
design insights in terms of the fraction of reliable radar links,
transmission delay, the density of vehicles, and congestion control.

I. INTRODUCTION
A. Motivation

Automotive radar is a key technology in modern vehicles
that is used to detect the presence of nearby objects and
proximal vehicles [1], [2]. These radars are now being widely
used in advanced driver-assistance systems (ADAS) to warn
the drivers of potential accidents. Due to such a widespread use
of radars and shared spectrum, the mutual radar interference
between vehicles is a rising concern. For instance, the vehicles
traveling from the opposite direction can blind a radar, which
might deteriorate the radar detection performance.

To accurately characterize the performance of an automotive
radar system, it is critical to take into account the randomly
located clutter in the environment [3] and the interfering
vehicles [4]. In particular, while detecting the target vehicle,
the radar observes reflections from the clutter resulting in ghost
targets, which deteriorates the estimation efficiency. On the
contrary, in the EU project MOSARIM [5], it is experimen-
tally discovered that the signals from interfering vehicles are
unlikely to cause ghost targets, but rather they create noise-
like combined interference. Accordingly, the characterization
of the interference and subsequently the signal-to-interference-
and-noise ratio (SINR) coverage is an important element in
the system-level performance of vehicular radars. Although
the topic of radar interference has been well-studied, many
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works are based on simulation and empirical approaches that
investigate the radar interference with complex ray-tracing and
stochastic environments. Such approaches are not amenable
to a link-level analysis of the radar detection performance,
namely, the performance of individual radars, especially in
the presence of dynamic wireless environment and traffic
scenarios. In this paper, we aim to provide a fine-grained
analysis of radar detection performance and give crisp insights
into the system design.

B. Related work

In [6], authors present a simulation study to predict the
interference potential between two radars, where the vehicles
are distributed on a long street according to the traffic flow
simulation. In [7], authors study the desired-to-undesired sig-
nal power ratio in ultra wideband automotive radar systems
using the mix of analysis and simulations. The work in [8]
studies the same metric by assuming a frequency modulation
continuous wave (FMCW) scheme. These works, however,
ignore different traffic scenarios due to dynamically changing
vehicle density and locations with geographical regions and
times. Such a randomness in the locations of vehicles can
be captured using tools from stochastic geometry, where
the locations of vehicles are modeled according to a point
process [9]-[12].

For automotive radars, using stochastic geometry, [13] cal-
culates the statistics of the interference power and the average
SINR performance of vehicular radars for a highway scenario.
For a planar geometry, [14] considers the strongest interferer
approximation to obtain the radar detection range and the false
alarm rate. While the previous works assume a constant radar
cross-section (RCS), [15] have recently studied the standard
successful radar detection probability p, = P(SINR > f)
with random RCS characterized by Swerling I model [16] that
captures the varying physical features of the target vehicle.
While ps is an important performance metric, it is simply
a spatial average of the detection performance of all radars
in a given network realization. Hence, it does not reveal
the performance of individual radars, which is of utmost
importance from the safety point-of-view. Hence, in this paper,
we provide a fine-grained view of the radar performance. In
particular, we calculate the meta distribution [17] of the SINR,
which yields the fraction of reliable radar links and enables
one to characterize the transmission delay as well.



C. Contributions

o For a bidirectional traffic scenario, we provide an ana-
lytical expression of the exact meta distribution (MD) of
the SINR for the random RCS characterized by Swerling
I model. We also give an accurate approximation of the
MD by the beta distribution.

o« We give simple analytical expressions of the standard
successful radar detection probability and the mean local
delay which captures the transmission delay.

o We propose an optimization framework to calculate the
transmit probability of a vehicular radar that maximizes
the density of successful radar detection while keeping
the mean local delay below a threshold. We also give a
congestion-control interpretation of this optimization.

o For fixed and random target distances, we highlight
systemic tradeoffs that reveal conditions for reliable and
low-latency radar detection.

II. SYSTEM MODEL
A. Network geometry and channel model

We model a highway scenario by two parallel streets sep-
arated by distance L. Without loss of generality, we perform
our analysis from the perspective of the typical vehicle that
is located at the origin. The target vehicle is located in
front of the typical vehicle at distance of R. The typical
vehicle experiences interference from vehicles traveling in the
opposite direction. Let the beamwidth of the radar be 6. Thus
only the vehicles beyond a minimum distance dg = ﬁ from
the origin are the interfering vehicles. ’

The locations of interfering vehicles are modeled as points
of a 1-D Poisson point process (PPP) ® € R of density
A. Let the coordinates of potential interfering vehicles be
z = (x,L) € ®. Let p denote the probability that a vehicle
transmits in a time slot. Then a point z € ® is marked as:

0
e = {B(p)

where the vehicles closer than the distance dg do not interfere
with the typical vehicle, and B(p) is the Bernoulli random
variable with parameter p. The set C of interferers can be
obtained by applying random marks to ® and is given as C =
{z:2€® K(z)=1}.

The radar detection at the typical vehicle is considered to
be successful if the received SINR is larger than a threshold
(. We formulate the SINR in the following subsection.

B. Channel model and SINR

Let the transmit power of radars be P, and the transmit and
receive antenna gains be G and G, respectively. We adopt the
standard path-loss model with path-loss exponent c.. Due to the
wide variety of target vehicles, the target is assumed to have a
fluctuating (random) RCS, o, which is an exponential random
variable with mean & based on the Swerling 1 model [16].

2
Let the effective area of aperture be A, = 4G7; (J%) with ¢
the speed of light and f. the center frequency. Due to the line-

of-sight, we assume that the desired signal does not suffer from

sz < &
ZLL'Z(SQ,

any multipath and fading [13]. Consequently, the reflected
signal power from the target vehicle reaches the typical vehicle
with signal-strength [18]

S =m0 PR, (D

where 7, (fT“)QAe. The interference is caused due to

transmitted radar signals from z € C. These signals experience
fast fading, which is modeled as Rayleigh with variance 1, i.e.,
the fading power is exponentially distributed with mean 1. The
interference at the typical vehicle is given by

1= 7Ph.|z|*1(z €C), 2)
zED
where v, = Gi;‘e, h. is the fading power, and 1(-) is the

indicator function.
The SINR at the typical vehicle is given by
S - ’YlUCPR_Qa
Not1~ Not Lncg 2Pl *1(z € O

where Ny = NgW is the noise power with Ng the noise power
density and W the bandwidth.

C. Meta distribution (MD) of the SINR

In a stationary and ergodic point process setting, the SINR
MD provides a fine-grained view of the network. For instance,
it permits the calculation of the fraction of reliable links in the
network. Specifically, for an SINR threshold /5 and a reliability
threshold ¢, the meta distribution of the SINR is defined as

Fp (B,t) 2P (Ps(B) >t), BeRT, te[0,1], )

where the random variable P,(3) represents the link reliability
(or, alternatively, link success probability) and is given as

P.(8) 2 P(SINR > 3 | ®). (4)

SINR =

Here, conditioned on the point process @, the probability is
evaluated by averaging over the fading and the channel access
scheme (ALOHA in our case). For any ergodic point process
of vehicles, the MD can be interpreted as the fraction of
vehicles that achieve an SINR of 3 with reliability at least ¢ in
each realization of the network. Note that the mean of Py(3)
is the standard success probability ps(5) of radar detection,
which is also an important metric and is given as

ps(B) = P(SINR > B) = E(Py(B)). (5)

The MD has an extremely useful interpretation as the trans-
mission delay, which is discussed in the following subsection.

D. Mean Local Delay

The mean local delay is an important performance metric
that characterizes the transmission delay, namely, the mean
number of transmission attempts needed until the first suc-
cessful target detection in the presence of interference and
noise [19]. In each transmission attempt, the typical vehicle
transmits with probability p, and the transmission is successful
with probability P,(8) conditioned upon ®. Thus the local
delay is a geometric random variable with the conditional



mean P (obtained averaging over the fading and ALOHA).
Subsequently, the mean local delay D is given by

1 1 1
D=E Y N YN 6
[pPJ p [PJ p ©

where M_; is the —1st moment of the distribution of P, i.e.,
of the meta distribution.

III. CALCULATION OF THE META DISTRIBUTION

Lemma 1. Conditioned on ®, the success probability Ps()
of radar detection is given by

H p
el | E

z€®:x > 1+ GR—2>

B(P) = T(R) < +1 —p> , (D

where T (R) = exp (ﬁ%) .

Proof: The conditional success probability Py is

P.(B) =P (SINR > 3| @)

_ B(No + 2. ce 12Phe|[2]"%)1(z € C)
=P <ac > PRt ’@)
a - he|lz||~*1 C

W T(R)E (exp < Pl ;;Igf'zla t< )>>

—By2Ph. ||z "
R pEexp(_— +1-—p].
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The step (a) is due to the exponential distribution of .. The
step (b) is obtained by averaging over ALOHA and due to the
fact that the fading is independent across all the interfering
links. Finally, the expression in (7) follows from the Laplace
transform of the exponentially distributed 5. [ |

The direct evaluation of the exact distribution of P, is
impossible. Thus, we take an indirect approach to evaluate
it through the calculation of its moments.

Theorem 1. The b-th moment My, of Py is given by

=T'(b,Rjexp(AF),  beC, (8)
where
s ( © (B L) )k
n 20 L .
b kE::l <k>p ves, \I+ (a2 + L2)o2 ) "

B = 6;1;@&, and T'(b, R) = exp (ﬁ%) )

Proof: We have

p
M, =Eg (T(R) ( H R
z€P:x>d9 L+

oR— 2«
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= T'(b,R) exp (—)\/ 1—
do

b
p
(1 @ en _p) dx) ' ®

=T'(b, R)Eg

Using the binomial expansion, (8) follows. [ ]
Some useful corollaries of Theorem 1 follow immediately.

Corollary 1. For the special case of a = 2, the first moment
M of P; is given in the closed form as

—BNoR*

ps(B) = My = exp (a’ylP

B
) exp < DA (R
7T do
X (2 — arctan <\/m> )) . (10)

Corollary 2. The mean local delay is evaluated as
1 1 BN,
Dp)=-M_,=- _—
- B Lo (20
oo 12 L2 -5
xexp()\/ Al + L) a). (11)
o 1+ (1—p)B(a®+L?)"2

For the special case of o = 2, (11) simplifies to

1 BNoR* g
Plp) =, o ( anP ) P <p’\ (1—p)p' + L2

m 1)
x<2—ar0tan< (1—p§ﬁ’+L2>>>. (12)

The exact meta distribution of the SINR can be calculated
using the Gil-Palaez theorem as [17]

1 1/°0 S(e=7ulos=) My,
0 u

du,

where Mj, is the ju-th moment evaluated using (8).

A. Approximation by the Beta Distribution

Here we provide a simple yet accurate approximation of
the SINR MD using the beta distribution. This approximation
arises naturally as the support of Ps(3) is [0, 1]. The MD can
be approximated as the beta distribution by matching the first
moment M; and the second moment M,. Specifically, the MD
can be approximately expressed as

k1ko k2)

F(B,t)~1—1. (1

where I ( fo 2*~Y(1—2)¥"1dz/B(x,y) is the regu-
larized 1nc0mplete beta functlon with B(-, ) the beta function,
]Cl = Ml, and kQ = (Ml — Mg)(l — Ml)/(M2 — M12) The
accuracy of the beta approximation is confirmed in Fig. 1a.

IV. OPTIMAL TRANSMISSION PROBABILITY

Using first moment M; = pg (given by (5)), one can
determine the density dg of vehicles that observe a successful
radar detection for a fixed target distance R. Specifically,
ds = pAps. The operator prescribes an optimal transmit
probability that maximizes ds subject to a constraint on the
mean local delay D. In other words,

p*(R) = argmax  ds(p) = pAps
p€(0,1]
1
subject to D(p) = —M_1 <dp, dp € [1,00). (13)
p



The Karush—Kuhn-Tucker (KKT) conditions with the mul-
tiplier p are as follows:

¢ d —BNoR* o
£ o () ()
1 ﬂNgR4) pr G’
- —do| =0
“(pexp( onp )P <2 (1—p)6’+L2>> O] ’
(14)
1 BNOR“) pr S’
= — | —dy| =0
g pexp( onp eXp(z (1—p)5/+L2> O} ’
(15)
=0, (16)

1 5NOR4> pr S’

= B N ) 17

pexp(5%P exp<2 T_pf L2 o < (17)
where (14) is the stationarity condition and (15) is the com-
plementary slackness. Additionally, (16) and (17) are the dual
and primal feasibility conditions.

Remark 1. For no constraint on D, the optimal probability

Dy IS obtained by equating c:gj to 0. For 69 = 0, we have

. . [ 2y/B' 4+ L?
pu (1) = clip (W) ; (18)
where clip(-) is defined as
0, =<0,
clip(z) =<z, 0<z<l1, (19)
1, x>1.

Next, let p; and po be the two solutions to the equation:

1 ﬂN0R4) prAS
z =dy. (2
peXp( oy P b <2 (1—p)ﬂ’+L2> o

From the complementary slackness condition, when p = 0,
the optimal transmit probability p* is evaluated as pj, if
ﬁD(p}*w) < dp. In other words, if the solution to (18)
satisfies the delay constraint, the typical vehicle selects the
same probability for a channel access. Also (as discussed in
Fig. 3a), there exists two solutions (p; and pg, with p; < ps)
to (20). Thus, in the case p},(R) does not satisfy (17), the
optimal transmit probability is the solution to (20), i.e., either
p1 or py which minimizes dg. This is further discussed in
Section VI with reference to Fig. 4.

V. RANDOM TARGET DISTANCE

For fixed target distance, from (8), we note that the standard
success probability ps, i.e., M7, decreases with an increase in
the density A of interfering vehicles. However, it is intuitive to
assume that as \ increases, i.e., in the case of dense vehicular
traffic, the target vehicle is also closer to the typical vehicle.
In that case, it is important to characterize the moments by
averaging over the locations of the target vehicle for a given
A.! For that, we assume that the locations of vehicles in the

I'This is equivalent to averaging over a random target distance.

TABLE I

NETWORK PARAMETERS [2], [20]
Parameter Symbol Value
Transmit power P 10 dBm
Lane distance L 10 m
Mean RCS c 30 dbsm
Path loss exponent « 2
Antenna gain Gt = Gy 30 dBi
Center frequency fe 76.5 GHz
Noise power density Ng —174 dBm/Hz
Bandwidth w 25 kHz
Beamwidth 0 15°

lane of the typical vehicle form a PPP yx, which is independent
of ®, but has the same density . Accordingly, the b-th moment
M, of the MD is obtained by averaging M, given by (8) over
the locations of the target vehicle. Thus, we have

—bﬂ/RQQNQ

—_— —A\F,
WP ) oA

where the pdf of R is given by

fr(r) = Xexp (=Ar).
Corollary 3. We notice that, for b =1,

dp)\Ml
dA

M, =Ep {exp (

= pM; + pA [/ Ky exp (=A(F1 + 1)) dr
0

_/Oo K A(Fy + 1) exp (“A(F1 + 7)) dr|, 1)
0

dMl

! p2a
where K,, = exp (%). Note that we have >0

ax
for A\ — 0 and dé\fl < 0 for A — oo. This indicates that

the fraction of vehicular links that experience a successful
radar detection increases with X\ as it increases from 0 since
the target vehicle comes closer to the typical vehicle. On the
other hand, for a large ), the interference increases, thereby
decreasing the density pAM, of successful radar detection.

VI. RESULTS AND DISCUSSIONS

A list of parameters and their default values are given in
Table I.

A. Illustrations of the meta distribution

Fig. la depicts the fine-grained reliability performance of
radar detection. It shows qualitatively that, for R = 15 m
and 8 = 5 dB, most vehicles perform a successful radar
detection with 40% reliability (i.e., with probability 0.4), while
virtually no vehicle can perform a successful radar detection
with 80% reliability. Fig. 1a also shows that 60% of vehicles
can perform a successful radar detection with 60% reliability at
B = 5 dB. Hence, the meta distribution permits an analysis on
a per-vehicle basis, which is of great importance in vehicular
networks. Moreover, Fig. 1a confirms the accuracy of the beta
approximation of the MD.

As a function of the SINR threshold 3, for fixed reliability
threshold ¢, Fig. 1b shows that the value of 3 can be obtained
such that a certain fraction of vehicles have a minimum
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(a) The exact meta distribution
and the beta distribution approx-
imation for R = 15 m.

(b) Meta distribution as a func-
tion of the SINR threshold 3 for
t = 0.99.

Fig. 1. Illustrations of the meta distribution for p = 0.5, A = 0.04.
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Fig. 2. Meta distribution as a function of fixed target distance R at p = 0.2
and 8 = 0 dB for different vehicle densities and reliability thresholds.

probability of successful radar detection. For instance, for
fixed target distance, to achieve at least 99% probability of
successful radar detection for 99% of the vehicles, an SINR
threshold 5 of at most —14.96 dB may be chosen. Fig. 1b
also depicts that a possibility of large R due to its random
nature leads to worse performance compared to the fixed target
distance case at smaller /3, while at a higher [, a possibility
of small R benefits the random distance case.

Fig. 2 depicts the ranging capability of the radar. Specif-
ically, the maximum target distance to maintain a minimum
probability of reliable radar detection can be determined for
different A and ¢. For example, at A = 0.005, about 95%
of vehicles can detect the target successfully with probability
99% for the maximum target distance of 20 m.

B. Mean local delay and density of successful radar detection

For fixed target distance R, Fig. 3a shows the transmission
delay performance of the radar through the mean local delay
D. In particular, a small transmit probability p offers a smaller
chance of transmission which increases the transmission pe-
riod, while a high value of p results in higher interference and
hence reduces the probability of a successful radar detection.

x1073

R =60m

R=30m

R=40m

Mean local delay D
PAps(6)
n

R=50m

R=60m

0 0.5 1 0 0.5 1
Transmit probability p Transmit probability p
(a) Mean local delay against p. (b) Density of successful radar

detection ds = pAps against p.

Fig. 3. Tradeoffs associated with the transmit probability p for different target
distances R at A = 0.01 and 8 = 0 dB.
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Fig. 4. Optimal transmit probability against A for different values of the target
distance and delay constraints at 5 = 0 dB.

Thus, for both cases, D increases. Also, an increase in R
reduces the successful radar detection probability, which in-
creases D. A complementary behavior with p can be observed
for the density ds = pAps of successful radar detection, i.e., an
increase in p reduces the standard success probability ps due to
the increased interference. Thus there might exist an optimal
p that maximizes ds depending on other network parameters.
Fig. 4 now jointly considers the effect of p on D and
ds. In particular, it shows the optimal transmit probability
p* that maximizes the density dgs, while keeping D below a
threshold dy. The probability p* is obtained by solving (13) for
fixed target distance R and vehicle density A. This provides a
framework for congestion control, where a channel is said to
be congested when the number of vehicles accessing it goes
beyond a threshold degrading the radar detection performance.
One method to control the congestion is to reduce the access
rate of vehicles, i.e., the transmit probability p of vehicles.
For a small )\, the interference and hence the mean local
delay is small. Thus p* is governed by (18) as if there is
no delay constraint. On the contrary, as \ increases beyond a
threshold (e.g., A > 0.03 for R = 30 m and A > 0.007 for
R =60 m) with dy = 5, p* does not decrease further. In this
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regime, p* is governed by the solution to (20), and the typical
vehicle accesses the channel more frequently to compensate
for the reduced probability of successful radar detection due to
increased interference with A and to satisfy the delay constraint
of dy. Note from Fig. 3a that two solutions to (20) satisfy a
given delay constraint with equality, whereas, from (10), we
see that dy = pAps(B) is a function of the product of p and
A. Consequently, for a high value of A, the solution to (13) is
the lower value of p that satisfies (20).

Interestingly, for any R, p* is almost the same for a large
A. This is again evident from Fig. 3a where we see that, for
a given dy, different R have the same p; (the lower value of
p that meets the delay constraint). Thus, for a large A with
a delay constraint, the typical vehicle should transmit with a
constant probability irrespective of the transmit distance.

For the random target distance R, Fig. 5 shows that there
exists an optimal vehicle density A that maximizes the density
ds of successful radar detection, which is also shown in
Corollary 3. Unlike the fixed target distance case, where p*
can be less than 1, for random R, p = 1 maximizes dj.

VII. CONCLUSIONS

The fine-grained reliability analysis of a vehicular radar us-
ing the meta distribution of the SINR offers several key design
insights into the radar detection performance. For example, in
the presence of radar interference and the random radar cross-
section, our framework permits one to calculate the fraction
of radars that perform a reliable target detection. Also, using
this framework, one can calculate the mean local delay which
characterizes the transmission delay. We provide performance
limits of the reliable radar detection. In particular, one can
determine the maximum SINR threshold, the maximum target
distance, and the maximum vehicle density to allow a certain
fraction of vehicles to perform reliable detection and satisfy
the constraint on the maximum mean local delay. We also
reveal the congestion-control aspect of our framework, where
we show the behavior of the optimal transmit probability with
the vehicle density to maximize the density of successful
radar detection for both the fixed and random target distances.
Specifically, the results show that, beyond a certain vehicle

density, the optimal transmit probability increases with the
density under stringent delay constraints.

From a broader perspective, since the reliability and the
delay are two critical aspects of vehicular networks, the results
in this work may contribute greatly towards understanding
the ultrareliable low-latency communications (URLLC) in
vehicular networks.
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