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This paper introduces rough homotopic nerve complexes in a planar Whitehead CW space and their Rotman free group presentations. A rough homotopic nerve results is a collection of path-connected homotopic 1-cycles whose approximation boundary is nonempty. A homotopic 1-cycle has the structure of a 1-cycle in a CW space in which cycle edges are replaced by homotopic maps. Let △ be the members v of V (collection vertexes in path-connected 1-cycles), each written as a linear combination of the basis elements of a basis B ⊆ V . A presentation of G(V, +) is a mapping

The main results in this paper are (1)

Every rough homotopic vortex nerve has a free group presentation, (2) For a rough vortex nerve that consists of a finite collection of closed, convex sets in Euclidean space, the nerve and union of sets in the nerve have the same homotopy type and (3) Every Betti number has a corresponding rough set.

Introduction

This paper stems from recent work on homotopic nerve complexes [START_REF]Homotopic nerve complexes with free group presentations[END_REF] in a planar Whitehead CW space [17, §4-5] and their Rotman free group presentations [13, §11,p.239]. A CW complex in a space K is a closure-finite cell complex that is Hausdorff (distinct points in K are in disjoint neighborhoods), satisfying the containment property (closure of every cell complex is in K) and intersection property (common parts of cell complexes in K are also in K). A complex K is locally finite, i.e., every point p ∈ K is a member of some finite subcomplex of K and every complex has a finite number of faces [14, §5.2,p.65]. A planar CW complex K is a collection of 0-cells (vertexes), 1-cells (edges) and 2-cells (filled triangles). Briefly, a homotopic cycle results from a homotopic mapping on each vertex in a 1-cycle, resulting in a new cycle containing path-connected homotopic maps. In this paper, it is assumed that all homotopic nerve complexes are rough. Let B be a set of attributes of a nerve NrvE in a space X, and let

x ∈ NrvE, 

B * NrvE = x ∈ X : [[x] B ∩ X ̸ = ∅] B ⊂ NrvE (Lower approximation of NrvE). Bnd B (NrvE) = B * NrvE \ B * NrvE (Approximation boundary of NrvE).

Definition 1. Rough Nerve Complex.

A nerve complex is rough, provided Bnd B (NrvE) ̸ = ∅, i.e., the approximation boundary of the nerve complex is nonvoid. Definition 2. A rough homotopic nerve complex is a rough nerve, provided the approximation boundary region of the nerve is nonempty. For more about rough sets, see [START_REF] Pawlak | Rough sets[END_REF], [12, §1.3] Collections of planar cells attached to each other are sub-complexes in K. For the details, see Appendix A.
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Preliminaries

Homotopic nerves are briefly introduced in this section, starting with the definition of a 1-cycle. Definition 3. 1-Cycle. In a CW space K [START_REF]Combinatorial homotopy. I[END_REF], a 1-cycle E (denoted by cycE) in a CW space K is a collection of path-connected vertexes (0-cells) on edges (1-cells) attached to each other with no end vertex and cycE has a nonvoid interior.

Let I = [0, 1], the interval from 0 to 1 in mathbbR. Recall that a path in a space X is a continuous map h : I → X [14, §2.1,p.11].

Definition 4. [Homotopic Cycle]

In a space X in the Euclidean plane, let h : I → X be a path (briefly, hpath). A homotopic cycle E (denoted by hcycE) is a collection of hpath-connected vertexes attached to each other with no end vertex and hcycE has a nonvoid interior.

Example 1. A geometric realization of a simple homotopic cycle |hcycE| is shown in

Fig. 1. Each edge in |hcycE| is an hpath |h i | , i ∈ [0, . . . , n -1[n]].
In a homotopic cycle hcycE, every vertex v i is reachable by k maps from a distinguished vertex h 0 (0) = v 0 (a generator in the free group presentation of the homotopic cycle). An inverse homotopic map hi+k (0) is defined in terms of reverse movement (traversal from the h i+k (0) cycle vertex to the previous h i (0) cycle vertex) 1 . Theorem 1. [START_REF]Homotopic nerve complexes with free group presentations[END_REF] Every homotopic cycle in a CW space 1 o is a finite collection of path-connected vertices and 2 o the boundary of a homotopic cycle partitions the CW space into two regions. Proof. Immediate from Lemma 1.

Homotopic Nerves
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Free Group Presentations of Homotopic Nerves

A finite group G is free, provided every element x ∈ G is a linear combination of its basis elements (called generators) [3, §1.4, p. 21]. We write B to denote a nonempty basis set of generators g 1 , . . . , g |B| and G(B, +) to denote the free group with binary operation +. For the details, see Appendix B. Let F be a finite collection of closed, convex sets in Euclidean space. Then the nerve of F and union of the sets in F have the same homotopy type.

Corollary 2. [11] If H(X) is a finite collection of closed, convex sets in Euclidean space. Then the homotopic nerve of H(X) and union of the sets in H(X) have the same homotopy type.

Proof. Immediate from Theorem 6.

Application

An obvious application of rough homotopic nerves results from free group presentations of the nerves, where each nerve is realized geometrically as a collection of nested cycles with nonvoid intersection, superimposed on dominant shapes that appear in a sequence of triangulated video frames. In that case, we can consider a topology of data view of the persistence of the nerves that appear, later disappear and sometimes reappear in a sequence of video frames. Example 3. A pair of rough homotopic nerves whose appearance overlap over a sequence of video frames is shown in Fig. 3.

This leads to barcodes that record the persistence of nerves with paricular Betti numbers over subsequences of video frames. Examples of such barcodes can be found in [START_REF] Peters | Bold-independent computational entropy assesses functional donut-like structures in brain fmri images[END_REF] and in [START_REF]Temporal proximity of 1-cycles in cw spaces. Time-varying cell complexes[END_REF].

Recall that a Betti number is a count of the number generators in a free group [3, §4,p. 24]. Theorem 7. [START_REF]Temporal proximity of 1-cycles in cw spaces. Time-varying cell complexes[END_REF] Every free group presentation of a cycles nerve has a Betti number.

Using the fact that every cyclic nerve has a corresponding homotopic cycle nerve with an approximation boundary and the result from Theorem 7, we obtain the following result.

Corollary 3. Every free group presentation of a rough homotopic nerve has a Betti number.

Proof. Immediate from Theorem 7, since very rough homotopic nerve is also homotopic nerve.

Recall that a cover of a space X is a collection of subsets E ∈ 2 X such that X = E [18, §15.9,p. 104 ]. Definition 6. [15, §4,p. 12]. A cover of a space X is a good cover, provided, X has a collection of subsets E ∈ 2 X such that X = E and finite E ̸ = ∅ is contractible, i.e., all nonvoid intersections of the finitely many subsets E ∈ 2 X are contractible.

The result from Corollary 3 provides a stepping stone to tracking the persistence of rough homotopoic homotopic nerves in good covers of triangulated video frame shapes. A frame shape persists, provided its rough homotopic nerve continues to appear over a sequence of consecutive video frames. Figure 4. Persistent butterfly shapes with the same Betti number in a pair of video frames that appear over a short temporal interval Example 4. Vigolo Hawaiian butterfly shapes with the same Betti number in a pair of video frames are depicted in Fig. 4. Notice that these butterfly shapes vary in appearance (e.g., homotopic nerve hNrvE t.00 in Fig. 4.1 has wings darker in color than the wings of the hNrvE t.01 in Fig. 4

.2). Even so, each of these sample homotopic nerves have same Betti number.

From these observations, we have the following conjectures.

Conjecture 1. Every approximation boundary has a corresponding homotopic nerve.

Conjecture 2. Every approximation boundary has a corresponding Betti Number.

Remark 1. We know that every approximation boundary has a geometric realization as a collection homotopic cycles with vertexes that represent points in the boundary between the upper and lower approximation of a finite, nonempty set. Let Bnd(hNrvE) be an approximation boundary of a homotopic nerve hNrvE.

That is, we can define a continuous homotopic mapping (call it h : [0, 1] → Bnd(E)) that maps each boundary point starting with a point h(0

) = v 0 ∈ Bnd(E) to another point h(i) = v i ∈ Bnd(E) in the approximation boundary of E. Let I = [0, 1], the unit interval. A path in a space X is a continuous map h : I → X, I = [0, 1] with endpoints h(0) = x 0 , h(t) = x t , 0 < t < 1 and h(1) = x 0 [14, §2.1,p.11].
Hence, the homotopoic mapping h over the interval I constructs a path in a homotopic cycle (call it hcycE 0 ). It is entirely possible that more than one homotopic mapping will be needed to consume all of the points in an approximation boundary.

In that case, also starting with v 0 , introduce a second homotopic mapping h 1 that maps each boundary point starting a point v 0 to another point v i in the approximating boundary of the set E.

Continue introducing such homotopic maps until all of the points in the approximation boundary are consumed. By forcing every homotopic cycle to begin and end at v 0 in the approximation boundary, we construct a homotopic nerve that is a geometric realization of the approximation boundary of the set E. That is, all paths in the homotoptic nerve have v 0 in common.

The proof of Conjecture 2 then leads to a proof of Conjecture 1.

Remark 2. By associating every approximation boundary with a homotopic nerve constructed using the method in Remark 1, we then arrive at a Betti number signature of every rough set using the result in Corollary 3. Hence, every collection of approximation boundaries can be partitioned into disjoint sets of homotopic nerves, each with its own Betti number. In that case, every collection of rough sets can be partitioned into disjoint sets, each with its own Betti number.

Remark 2 leads to the following two results.

Theorem 8. Every collection of rough sets can be partitioned into disjoint sets so that each rough set has its own Betti number.

Proof. Let X be a collection of approximation boundaries. Using the construction method in Remark 1, X is partitioned into n disjoint sets X B1 , . . . , X Bi , . . . , X Bn so that each subset X Bi , each with its own Betti number B i . By replacing the approximation boundaries in each X Bi with the corresponding rough sets, we have partitioned a collection of rough sets into disjoint sets, each with its own Betti number.

Theorem 9. Every Betti number has a corresponding rough set.

Proof. This is an immediate consequence of Theorem 8.

Appendix A. Cell Complexes

A planar Whitehead cell complex K [START_REF]Computational geometry, topology and physics of digital images with applications. Shape complexes, optical vortex nerves and proximities[END_REF] (usually called a CW complex) is a collection of n-dimensional minimal cells e n α , n ∈ {0, 1, 2}, i.e., K = e n α ⊂ R 2 : n ∈ {0, 1, 2} . in the Euclidean plane π. Definition 7. A cell subcomplex shE := {e n α } ∈ 2 K (shape complex) is a closed subcomplex, provided the subcomplex includes both a nonempty interior (denoted by int(e n α )) and its boundary (denoted by bdy(e n α )). In effect, shE is closed, provided shE = int(shE) ∪ bdy(shE) (Closed subcomplex).

Let 2 π be the collection of all subsets in the Euclidean plane π. In the plane, a Whitehead Closure-finite Weak (CW) cell complex K ∈ 2 π has two properties, namely, C: A cell complex K is closure-finite, provided each cell e n α ∈ K is contained in a finite subcomplex of K. In addition, each cell e n α ∈ K has a finite number of immediate faces. One cell e n α is an immediate face of another cell e m α , provided e n α ∩ e m α ̸ = ∅ [START_REF] Switzer | Algebraic topology -homology and homotopy[END_REF] (also called a common face). W: The plane π has a weak topology induced by cell complex K, i.e., a subset S ∈ 2 π is closed, if and only if S ∩ e n α is also closed in e n α for each n, α [14, §5.3, p. 65]. A collection K ∈ 2 π is called a CW complex, provided it has the closure-finite property and π has the weak topology property induced by K.

Minimal cell planar complexes are given in Table 1. [START_REF] Whitehead | Simplicial spaces, nuclei and m-groups[END_REF], later formalized in [START_REF]Combinatorial homotopy. I[END_REF]. In this work 2 , a cell complex K (or complex) [ generators in X. A mapping of the form {X, △} → G, a free group, is called a presentation of G.

We write G(V, +) to denote a group G on a nonvoid set V with a binary operation +. For a group G(V, +) presentable as a collection of linear combinations of members of a basis set B ⊆ V , we write G(B, +).

  [x] B = {y ∈ X, a ∈ B : a(x) = a(y)} (equivalence class containing x). B * NrvE = {x ∈ X : [x ∈ NrvE] B ⊂ NrvE} (Lower approximation of NrvE).

  [4, §1.5, pp. 1-9-1.11].

Figure 2 .Definition 5 .

 25 Figure 2. homotopic nerve hNrvE = {hcycE, hcycE ′ : hcycE ∩ hcycE ′ ̸ = ∅}.

Lemma 2 .Theorem 5 . [ 8 ]Corollary 1 .

 2581 [6, §4, p. 10] Every 1-cycle in a CW space K has a free group presentation. Every finite homotopic nerve has a free group presentation. Every finite rough homotopic nerve has a free group presentation. Proof. Immediate from Def. 2 and Theorem 5. Theorem 6. [1, §III.2,p. 59].

  17, §4, p. 221] is a Hausdorff space (union of disjoint open cells e, e n , e n i ) such that the closure of an n cell e n ∈ K (denoted by cl(e n ) is the image of a map f : σ n → cl(e n ), where σ n is a fixed n-simplex and where the boundary bdy(e n ) (otherwise known as the contour of a complex) is defined by bdy(e n ) = Complex contour → closure cl(e n ) minus Int(e n ) interior f (bdy(e n )) = cl(e n ) -int(e n ).Notice that a subcomplex X ⊂ K has the weak topology, since X is the union of a finite number intersections X ∩ cl(e) for single cells e ∈ K [17, §5, p. 223]. From a geometric perspective, a cell complex is a triangulation of the CW space K [16, p. 246]. Appendix B. Free Group Presentation Definition 8. Rotman Presentation[13, p.239] Let X = {g 1 , . . . } , △ = {v = kg i , v ∈ groupG, g i ∈ X} be a set of generators of members of a nonempty set X and set of relations between members of G and the 2 Here, we use cl(e n ) (closure of a cell) and bdy(e n ) (contour of a cell), instead of Whitehead's ēn and ∂(e n ).

  Temporally near rough homotopic nerves over a sequence of video frames with |hNrvE| appearing at time t 0 and disappearing at time t end and |hNrvE ′ | appearing at time t ′ 0 and disappearing at time t ′ end .
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	Figure 3.			

hNrvE t.00 ) = 3, hNrvE t.00 δ ∥Φ t ∥ hNrvE t.01 f rE ′ : t + 0.1sec

  

	f rE : tsec
	hNrvE t.00 hcycHb ′ hcycHa ′ v 0 v 1 v 2 4.1: Vigolo Hawaiian butterfly hNrvE t.00 hcycHa hcycHb in video frame f rE at time t at the begin-ning of a temporal interval [t, t + 05sec], Betti no. β(hNrvE t.01 hcycHa hcycHb hcycHb ′ hcycHa ′ v 0 v 1 v 2 4.2: Vigolo Hawaiian butterfly hNrvE t.01 in video frame f rE ′ at time t + 0.1sec in temporal interval [t, t + 05sec], Betti no. β(

hNrvE t.01 ) = 3, hNrvE t.00 δ ∥Φ t ∥ hNrvE t.01

  

Table 1 .

 1 Minimal Planar Cell Complexes

	Minimal Complex Cell e n : n ∈ {0, 1, 2} Planar Geometry	Interior
	e 0	Vertex	nonempty
	e 1	Edge	line segment w/o end points
	e 2	Filled triangle	nonempty triangle interior w/o edges

Remark 3. Closure finite cell complexes with weak topology (briefly, CW complexes) were introduced by J.C.H. Whitehead
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