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Abstract 

We review past and recent progress in Nano-Imprint Lithography (NIL) methods to (nano-) structure 

inorganic materials from sol-gel liquid formulations and colloidal suspensions onto a surface. This 

technique, first inspired by embossing techniques, was developed for soft polymer processing, as final or 

intermediate materials, but is today fully adapted to hard inorganic materials with high dielectric constant, 

such as metal oxides, with countless chemical compositions provided by the sol-gel chemistry. 

Consequently, NIL has become a versatile, high throughput, and highly precise microfabrication method 

that is mature for lab developments and scaling up. We first describe the state-of-the-art in nanofabrication 

methods and the plethora of approaches developed in the last decades to imprint metal oxides from inorganic 

solutions. These are discussed and compared in terms of performances, issues, and ease of implementation. 

The final part is devoted to relevant applications in domains of interest.   

1 Generalities on Nano fabrication techniques and NIL 

  

From the early ages, technics to cut, sculpt, etch, mold, assemble pieces of matter have been developed and 

constantly optimized to satisfy the growing demand for functional materials. Since the inception of 

nanotechnology, these operations have to be mastered at the nanoscale. For these tasks, many top-down and 

bottom-up methods exist. However, they do not simultaneously fulfill all the necessary criteria of 

performance such as spatial resolution, pattern complexity, hierarchy, scalability, dimensionality, cost-

effectiveness, a span of processable materials. Thus, motivations to optimize them and develop new ones 

persist as a flourishing domain of research and development.  

Many materials exhibiting various intrinsic properties (mechanical, chemical, electrical, optical, thermal, 

etc.) are exploited in numberless functions once nanostructured onto a surface. Amongst them, metal oxides 

are extremely valuable for their extreme chemical, mechanical and thermal stability and range of physical-

chemical properties. Thanks to its hardness, chemical inertness, transparency and low background 

fluorescence, glass is one of the preferred choices for micro- and nano-fluidics device fabrication. In 

photonics, metasurfaces require optical properties that are found in dielectrics such as SiO2 often combined 

with high index dielectric TiO2 or (plasmonic) gold1. For nano-electronics, silica remains one of the key 
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dielectric materials. Micro-mechanical scaffolds or persistent data storage systems need extremely stable 

materials such as TiO2
2.  

For planar nanofabrication, either bottom-up (self-assembly) or top-down (lithography, etching) methods 

exist. First, bottom-up nano-structuration approaches based on micellar block copolymers self-assembly 

have shown great successes during the last decade3, 4, 5. A large variety of templating agents can be coupled 

with inorganic polymerization reactions for the design of periodically organized nanostructured metal-oxide 

hybrid phases6,7. Achievable periods and/or feature dimensions ranging from several nanometers to several 

tens of nanometers. However, the patterns adopt a periodical arrangement and exhibit many defects, no 

spatial control (position and direction), and poor long-range ordering limiting their applications. Amongst 

the top technological achievements of the last century in nanofabrication, photon-assisted processing 

methods are with no doubt the more technologically advanced ones. Photolithography combined with dry 

or wet etching of the hard metal oxides is today available with acceptable performances in terms of quality, 

versatility, resolution, throughput, cost, and achievable morphologies8, 9,10,11. Still, these methods remain 

cumbersome and are constrained by a limited choice of required photosensitive selective masks, containing 

complex organic radical or cationic non-linear absorbers (photo-initiators) which are expensive, often 

colored, poorly soluble in photopolymers, and could be toxic12. Furthermore, photolithography faces an 

intrinsic critical limitation in resolution dictated by the wavelength of incident writing light waves (high-

energy ultraviolet radiation (deep-UV) is used nowadays in production lines to elaborate features smaller 

than 40 nm13). Besides, these methods require hard-masks that need to be prepared by cumbersome Electron 

Beam Lithography (EBL), or Focused Ions Beam (FIB)14. Subtractive techniques involving laser/material 

interactions sharing similar non-linear optical effects but at much higher powers, are also available and are 

used to etch dense metal oxide surfaces. This approach has the advantage of ablating hard transparent 

materials such as glass beyond the diffraction limit, well into the nanoscale domain15, 16, but with poor axial 

resolution17.  

Therefore, the alternative Nano Imprint Lithography method applicable to a large number of materials is 

extremely appealing as a reason of its high performance associated with its ease of implementation. The 

first work on nano-imprint lithography (NIL) was developed by Stephen Chou and al. in the 1990s when its 

team reported 25 nm patterns, initially etched in a silicon mold, transferred in a polymeric resist18. This 

experiment was performed by strongly pressing the mold (P=50-100 bars) while heating at 100 °C to deform 

and shape the thermoplastic polymer. This study opened the way to lithography at the sub-resist 100 nm 

scale. Imprinting of sol-gel resists was first demonstrated by Lukosz and al. in the 1980s at high pressure 

(P=280-500 bars) through hot embossing19. Even if the pressure used to imprint the sol-gel resist was rapidly 

reduced, it still represented one of the major drawbacks of this technique. Indeed, silicon substrates used in 

microelectronics can easily break if the applied pressure is not perfectly homogeneous. The use of hard and 

brittle molds (mostly silicon or fused silica) presented several downsides: (i) resist often sticks to the mold 

surface due to its high surface energy (ii) long-range deformation can easily break the mold (iii) solvent and 

air bubbles cannot escape once trapped under the mold (iv) rigid molds cannot accommodate any curvature 

or defects. Due to all those limitations, costly hard molds could be used only a very limited number of times. 

The emergence of Soft Nano Imprint Lithography (Figure 1), first developed by Whitesides et al. in the 

1990s, tackled all those problems by the introduction of polydimethylsiloxane (PDMS) elastomeric molds20. 

Soft molds have low surface energy (yPDMS= 21 mJ.m
-2 compared to ySi= 52 mJ.m

-2

), are permeable to 

solvent vapors, and can deform to follow the features of the substrate. PDMS is inexpensive and each mold 

can be used dozen times. Soft-NIL allowed to drastically reduce the pressure (P < 5 bars) and temperature 

applied to emboss the resist layer. With the huge improvements made in the past decades, Soft-NIL is 
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currently performed at ambient pressure and room temperature and is now reaching sub-10 nm resolution21 

on sol-gel resists when performed with optimized PDMS molds.  

Figure 1. Schematic illustration of soft-NIL processing   

The fabrication of the molds is performed by using a prepolymer - generally composed of vinyl 

functionalized linear di-methyl- siloxane and a silicon-hydride functionalized linear di-methyl-siloxane – 

mixed with a catalyst – generally a platinum compound - and poured onto a pre-patterned surface. The cross-

linking reaction, called hydrosilylation, is catalyzed by platinum and involves the addition of Si-H bonds 

across unsaturated bonds. The transition of the prepolymer from a viscous liquid to a solid elastomer takes 

usually several hours at room temperature. It is generally accelerated by heating at a mild temperature for 

instance 70 °C. The hydrosilylation cross-linking route is generally preferred as no by-products are formed 

and it offers a comfortable time working window before extended cross-linking occurs. Once fully cross-

linked, the resulting mold is easily demolded from the master thanks to its elasticity (Figure 2). The mold 

perfectly replicates the initial master features (relative shrinkage between master and mold can be 

neglected). Many molds can be fabricated from a single master. However, with extensive use, defects will 

start to appear on the master owing to the local adhesion of PDMS during mold release. For this reason, the 

surface of the master (for instance often made of silicon) is functionalized (e.g. with fluoroalkylsilanes) to 

decrease the surface energy, reducing the interactions with the PDMS chains.  

When patterns with features smaller than 100 nm are needed, the excessive softness of PDMS can induce 

deformations of the mold shape while printing. This phenomenon has been widely studied both theoretically 

and experimentally22,23. As first demonstrated by Delamarche et al.,22 only a fraction of the 

structures accessible by nanofabrication in hard materials will give stable structures in PDMS stamps. If the 

aspect ratio of the motifs is too high, structures can collapse under their own weight. During the stamping 

process, capillary forces can be strong enough to deform the stamp features and contact two neighboring 

structures. This is the case for densely packed structures, long grating lines or tightly spaced pillars. These 

structures are prone to pairing due to their high surface-to-volume ratio. Once collapsed it is hard to restore 

the PDMS features. Different ways of restoring the structures have been explored such as washing with low 

surface tension solvents or with water containing surfactants but with little success22. The easiest way to 

prevent the deformation of small patterns is to increase the rigidity of the PDMS material.  

Thin Film 

Stamp mold
Imprint and consolidation 

Unmolding
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Figure 2. a) Schematic representation of the mold preparation. The precursor is poured onto the 

hydrophobized surface of the master and cured before demolding. b) Picture of a silicon master and its 

negative replica into a flexible mold. c) SEM image showing a defect on a silicon master after the 

preparation of many PDMS stamps. 

Such PDMS, called hard-PDMS (h-PDMS), has been firstly developed by Schmid et al in 200024. Hard-

PDMS uses branched siloxanes, shorter cross-linkers, and a higher concentration of reactive groups 

compared to standard PDMS in order to increase the cross-linking density and the rigidity between the cross-

linking points. The different concentrations in reactants and their ratios have been extensively studied21 and 

commercial products are now available. PDMS hardness is estimated through its Young’s modulus that is 

about 20-30 MPa for conventional PDMS whereas it goes to 60 to 70 MPa for h-PDMS. Other materials 

than PDMS can be used, such as siloxane-composites25 or thermo-plastic polymers 26. However, they miss 

the intrinsic advantages of PDMS. Similarly, using pure h-PDMS has its limitations: a high-modulus 

polymer can increase the stress during the curing step, rendering it difficult to separate it from the master; 

h-PDMS has low flexibility, making conformal contact on rough surfaces rather difficult. The increased 

rigidity leads also to a poor accommodation to inhomogeneous stress during imprinting that might lead to 

plastic deformation or cracking of the stamp or of the substrate. In order to increase the rigidity and, at the 

same time, keep the advantages of low-modulus PDMS, hybrid stamps have been developed with a thin h-

PDMS layer of few microns that contains the patterns and a thick layer of standard PDMS of about 0.5 mm 

(Figure 2). In addition, to minimize in-plane deformation, for easier handling and automatization, this 

assembly (standard PDMS + hard PDMS) can then be backed by a thin glass plate.   

Applying soft-NIL processes to directly imprint sol-gel metal oxides is highly interesting. However, it is 

quasi-unachievable due to two limitations: the impossibility to deform a brittle ceramic film and the 

difficulty to reach a plastic state at moderate temperature. A promising soft-NIL method on metal oxides 

exploits as-deposited sol-gel layers (xerogels). Xerogels are poorly cross-linked networks of sol-gel, 

organometallic precursors or hydrolyzed intermediates. Such gels remain flexible and will stiffen from 
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advancing polycondensation during drying and aging of the films and finally with thermal annealing to form 

the metal oxides. The properties of xerogels can be exploited in soft-NIL at two conditions: (i) that 

imprinting takes place when the layer is in a gel-like phase and (ii) the demolding is made after sufficient 

solidification. Both these controls are challenging in sol-gel since the as-deposited layers undergo more or 

less fast cross-linking upon drying and mild thermal activation. These phenomena are generally 

accompanied by the release of water or solvent molecules that are trapped within the materials underneath 

the mold, affecting the replica morphology, density, and shrinkage factor. Eventually, the demolded material 

is converted into a purely inorganic and rigid metal oxide after calcination.  

Sol-gel approaches rely on the use of polymeric or organic stabilizing agents in order to adjust the rheology 

and the precursor reactivity and achieve a good resolution and a large geometrical aspect ratio of the final 

3D structures. The main drawback associated with this approach is the severe shrinkage following the 

evaporation of organic moieties during the annealing step (up to 60-80%vol)27–30. Sol-gel formulations 

containing metal oxide nanoparticles (NPs) can be directly imprinted resulting in a reduced shrinkage 30 and 

materials having lower density (resulting from the presence of pores associated with the NP packing). A 

compromise thus needs to be found between lower shrinkage and denser material. Of course, stabilizing-

agent-free xerogels can be used allowing for a reduced shrinkage factor. However, the very high viscosity 

of the intermediate xerogel will prevent efficient mass transfer within the sharp features of the mold. In fine, 

no increase in the aspect ratio will be found.  

In order to promote the filling of the mold features, a technique called Degassed Assisted Patterning, taking 

advantage of the properties of PDMS to enhance its permittivity towards solvents has been developed. 

Historically, Degassed Assisted Patterning was used in microfluidics as a pump-free manipulation. First 

reported by Hosokawa et al in 200431, it allowed to pre-store the pumping energy in the degassed PDMS in 

order to obtain a liquid flow in the PDMS channels during the experiment without the use of external 

pumping. Indeed, the solubility of a gas in PDMS follows Henry’s law: the concentration of gas dissolved 

is proportional to the partial pressure of the gas around the mold.  

 

Figure 3. Scheme presenting the Degassed Assisted patterning (DAP) process applied to the nano- 

impression of sol-gel layers.  

When a PDMS  is degassed and brought back to the atmosphere, it equilibrates by absorbing air 32. 

Therefore, by using degassed PDMS molds, a better filling of the cavities can be achieved. The patterning 

process can thus be broken down in four steps (Figure 3): i) the mold is first pumped under vacuum (P < 10 

mbars) for a few minutes; ii) straight after breaking the vacuum, the mold is deposited on as-prepared 

xerogels; iii) Air trapped in the mold cavities is easily pumped through the mold, promoting the filling of 

the cavities; iv) Solvents, generally trapped within the material underneath the mold, are pumped out 

improving the filling of the PDMS pattern cavities. To complete the imprinting step, consolidation of the 
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xerogel is achieved through UV or thermal curing before un-molding and final thermal treatment is often 

required to achieve the pure metal oxide material.  

The following Table 1 provides the characteristics of all replicas reviewed in this article for direct 

comparison. It gathers examples of patterns obtained with the different techniques discussed below (i.e. UV-

, thermal-, pressure-, or vapor-pressure-assisted NIL), with different inorganic materials, from different 

“resins” composed of sol-gel precursors, nanoparticles, organic binders and fluidizer, solvents, etc., and 

post-treated in various conditions. Dimensions and aspect ratios are provided as a benchmark for readers, 

knowing that they have been designed for related specific applications, taking into account the (controlled) 

anisotropic shrinkages occurring during drying under the mold and during post-curing after demolding. 

Shrinkage can therefore be detrimental since it creates internal tensile stresses fragilizing the mechanical 

stability of the pattern, but also beneficial since it can be predicted and used as a tool to control a feature’s 

heigh in certain cases. Other important characteristics, such as controlled or residual porosity, stability for 

further processing or in operating conditions, adhesion to the substrate, etc. are also critical to meet the 

targeted requirements for applications. For instance, highly (meso)porous, high specific surface area 

materials are required for masse and/or charge transfer (sensors, electrodes), while dense materials are 

preferred for better control of optical parameters in optics and photonics. In some cases, such as for 

photoelectrodes, controlled porosity together with controlled refractive index and absorbance dispersions 

are necessary, which makes the fabrication by NIL extremely delicate.  
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Technique Materials Final thermal 

annealing 

Dimensions 

(nm) 

Aspect   

ratio H/W 

Applications Reference 

UV NIL TiO2-SiO2-PMMA 150 0C 127*105 1.2 - [35] 

UV NIL TiO2 None 230*265 

200 *35 

0.8 

6 

- [30] 

UV NIL Ti/TMSPM 120 0C 80*2000  - [36] 

UV NIL ZnO/Benzyl methacrylate (BzMA) None 300*300 1 LEDs [37] 

UV NIL ZnO 350 0C 400*200 2 - [38] 

S-FIL TiO2 450°C 53*62 1  [39] 

UV NIL TiO2 None 400*300 - Photonic crystal [41] 

UV NIL SiO2 500 0C 1.5*1.5µm 1 - [42] 

UV NIL ZnO None Random 

pyramids, 

(~1µm) 

- Solar cells [45] 

UV NIL ZnO None Random 

pyramids, 

(~1µm) 

- Solar cells [43] 

Pressure T-NIL PEDOT: PSS None 300*70 - Solar cells [46] 

Pressure T-NIL AuNPs 140 0C 405*750 

 

- - [47] 

Pressure T-NIL TiO2 None 260*200 

240*200 

1.35*2.6 µm 

1.3 

1.2 

0.5 

- [48] 

Pressure T-NIL Al2O3, Ga2O3, In2O3, Y2O3, B2O3, 

TiO2, SnO2, ZrO2, GeO2, HfO2, 

Nb2O5, Ta2O5, V2O5, and WO2 

300-475 0C - 1 - [40] 

Pressure T-NIL ZnO 250 0C 200*800 0.5 - [49] 

Pressure T-NIL SiO2 550 0C - 4 - [29] 

Pressure T-NIL SiO2 None 150*50 1.2 - [50] 

Pressure T-NIL TiO2 500 0C 270* 900 - Solar cells [51] 

Thermal NIL Lead Zirconate titanate 650 0C 25*380 0.07 - [52] 

Thermal NIL TiO2 and ITO 500 0C 340*340 - - [32] 

Environmental 

Thermal NIL 

 

TiO2/MOF (ZIF 8) 450 0C 240*200 1.2 Sensors [53] 

Environmental 

Thermal NIL 

 

TiO2 450 0C - 1 - [54] 

Environmental 

Thermal NIL 

 

TiO2 450 0C - 0.5 

0.92 

1 

- [55] 

Environmental 

Thermal NIL 

TiO2/Ag 450 °C - 1 Solar cells [56] 

Environmental 

Thermal NIL 

TiO2, Al2O3, Y-ZrO2, Methyl SiO2, 

mesoporous SiO2 

450 0C - 1 - [57] 

Environmental 

Thermal NIL 

TiO2 

SiO2 

400 0C 25*700 

100*1000 

- - [58] 

Environmental 

Thermal NIL 

TiO2 450 0C - 1 - [59] 

Environmental 

Thermal NIL 

Methylated silica (Si4O7Me2) 450 0C 200*120 1.7 ARC [60] 

Direct printing SiO2 200 0C 400 - Solar cells [61] 

Direct printing BaTiO3 None 400*120 3 Pietzoelectric [62] 

Direct printing SiO2 200 0C 120*245 - Solar cells [64] 

Thermal NIL LiMn2O4 (LMO) 400 0C 420*390 

1.1um*1.9um 

800nm*3.1um 

0.9 

1.7 

3.8 

Electrodes for 

batteries 

[56] 

Thermal NIL TiO2 nanoparticle 750 0C 200*200 1 Electrodes for 

batteries 

[55] 

Table 1. Characterization of all replica reviewed in this article. 
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2 UV-NIL processes 

UV-NIL method is one of the most developed and used in recent years. From its outset till today, it has been 

adapted to a plethora of different materials, including organic, hybrid organic/inorganic, and inorganic 

metals and metal oxide materials from sol-gel solutions and/or nanoparticles (NPs) dispersions. A 

prerequisite is that the imprinted materials (precursors) need to absorb UV radiation. UV-NIL processes 

involve several steps, starting first with liquid deposition (e.g. spin, dip, ink, spray, etc.) of the “resin” 

solution, followed by imprinting with a UV resistant and transparent mold stamp, composed of typically 

Polydimethylsiloxane (PDMS), poly-urethane-acrylate (PAU), Quartz, or Perfluoropolyether (PFPE), so 

that curing through UV exposure takes place directly underneath the mold. Once the material is cross-linked 

enough, the mold is delicately peeled off to prevent damaging the replica. UV-NIL enables working at room 

temperature with low or no external pressure. It thus does not require temperature cycling and leads to 

relevantly high throughput on substrates compatible with UV curing. UV-NIL has been demonstrated to be 

a high-volume and cost-effective patterning technique, able to achieve sub-10 nm resolution.  

2.1 UV-NIL from hybrid (organic/inorganic) resins 

Kim et al. in 200533, reported the fabrication of photonic crystal TiO2-SiO2-PMMA hybrid structures by 

UV-NIL. The sol-gel derived solution was prepared from 3-(Trimethoxysilyl) propyl 

methacrylate (MPTMS), diphenylsilanediol (DPSD) and titanium ethoxide (Ti(OC2H5)4) precursors, 

together with a photoinitiator (i.e. Irgacure 184).  The nanoimprint was performed after deposition of the 

solution using a PDMS mold with ring patterns and applying UV (365 nm / 2.5 J.cm-2) irradiation for 30s. 

After unmolding, the sample was cured at 150 °C for 3h. They reported a relatively low shrinkage of 2-2.5 

vol% of the hybrid organic-inorganic replicate yielding the following final dimensions: diameter 105 nm 

and 127 nm depth (aspect ratio = 1.2).  In 2009, Park et al.28 developed a formulation based on photosensitive 

titanium (titanium-n-butoxide bis (2-ethyl-hexanoate) single precursor. The solution was first deposited on 

silicon substrates by spin coating before being imprinted with different molds such as PDMS and PUA 

(PolyUrethane Acrylate) under 2-bar pressure and 365 nm radiation for 20 min. No photo-initiator was used 

since the cross-section of Ti centers was sufficient to trigger the cross liking of the network. They reported 

faithful replication for different features, such as 180 nm in depth and 265 nm in diameter dots from a PDMS 

mold, or lines of 200 nm height and 35 nm wide from a PUA mold, reaching excellent aspect ratio of ~ 6 

(see Figure 4). In 2010, P. Prosposito et al.34 used a formulation based on MPTMS, Titanium propoxide, 

acetylacetone chelating agent, and Irgacure 184 (CIBA) photoinitiator. The initial film was spin-coated on 

Si wafers and pre-baked at 80 °C for 30 min for removal of residual solvent. The structures were imprinted 

by pressing the PDMS stamp on the layer under 300 W filtered (< 400 nm) Xe-Hg lamp for 1 min. After 

unmolding, curing at 120 °C for 90 min was applied. The final structures of the grating were 80 nm in height 

and 2 µm wide. In this process, an 80 nm residual layer was retained and ~6% of shrinkage was measured 

after the final densification. In these three works, the final replicas remain titanium-organic-based materials, 

since no high-temperature annealing was applied. Removal of the organic linkers by high thermal treatment 

would have led to dense TiO2 accompanied by a more pronounced shrinkage.  
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Figure 4. Schematic diagram of ultraviolet-assisted nanoimprint lithography process using the 

photosensitive titanium organic compound titanium (IV) di-n-butoxide bis(2 ethylhexanoate)28. Reprinted 

with permission from [Park, H.-H.; Choi, D.-G.; Zhang, X.; Jeon, S.; Park, S.-J.; Lee, S.-W.; Kim, S.; Kim, 

K.; Choi, J.-H.; Lee, J.; Yun, D. K.; Lee, K. J.; Park, H.-H.; Hill, R. H.; Jeong, J.-H. Photo-Induced Hybrid 

Nanopatterning of Titanium Dioxide via Direct Imprint Lithography. J. Mater. Chem. 2010, 20 (10), 1921. 

https://doi.org/10.1039/b921343k.] Copyright 2010, ROYAL SOCIETY OF CHEMISTRY. 

 

Jo et al.35 elaborated ZnO polymer composite structures from nanoparticles. Firstly, they prepared a ZnO 

Nanoparticles (NPs) dispersion in the required resin system (ethanol and benzyl methacrylate (BzMA)), 

which was spin-coated (3000 rpm for 30 s) on a Si substrate. The replication process included placing the 

PDMS mold onto the thin-film, for 10 min under 5 atm pressure with 365 nm UV light (Figure 5 (c)). Then, 

regular patterns, such as line grating (width 200 nm and height 250 nm) and cylindrical pillars (300 nm 

diameter and height) were formed (Figure 5 (a) and (b)). In this example, the organic resin plays the role of 

UV-binder allowing for a large proportion of the material to be composed of ZnO.  
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In 2014, Chong et al,36 used ZnO precursor-resin formulation obtained by dissolving Zinc acetate dihydrate 

(Zn(CH3COO)2.2H2O), 2-nitrobenzaldehyde (UV-linker), with mono-ethanolamine (MEA, 

(NH2CH2CH2OH) in 2-methoxyethanol (CH3OCH2CH2OH).  The sol-gel-based ZnO-precursor resin was 

spin-coated (3500 rpm, 1min) on SiO2/Si and on flexible polyimide substrates before a PUA mold was 

applied on it. The material was crosslinked under 365 nm exposure for 3 min under air pressure of 0.02 MPa 

air pressure. The grating line patterns were 200 nm in height, aspect ratio of about ~2, and 1 µm periodicity 

after the final annealing at 350°C for 60 min. Although they did not report any shrinkage, they observed a 

residual layer of 30 nm that was completely removed by wet etching in 0.025% HNO3. Additional growth 

of ZnO was applied by keeping the ZnO nanostructures in an aqueous solution of Zinc nitrate (Zn (NO3)2 ∙ 

6H2O) in the presence of hexamethylenetetramine (C6H12N4) and polyethylenimine (PEI)).  

 

Step-and-Flash Imprint Lithography (S-FIL) was used by Ganesan et al. and Dinachali et al. to prepare 

organic polymer patterns37,38. Contrary to common UV-NIL, S-FIL relies on photopolymerization chemistry 

of low viscosity resins, enabling to fill the mold cavities by the capillary forces with low mechanical pressure 

at room temperature. This S-FIL UV-NIL method was exploited by Ganesam et al. in 2012 37 to elaborate 

TiO2 nanostructures. They first prepared TiO2 resists by directly mixing methacrylic acid, ethylene glycol 

diacrylate, isobutyl acrylate (monomer flow), and photo-initiator with Titanium (IV) ethoxide. This solution 

was spin-coated on Si wafer before applying the PDMS mold and irradiating with UV (300 mW cm-2) for 

60 s. After unmolding, the imprinted patterns were heat-treated at 450 °C for 1 h in air to remove the organics 

and convert the inorganic parts into Anatase as 100 nm dimples, 200 nm squares and 100 nm line gratings. 

The latter underwent a shrinkage to approximately one-quarter in transversal and longitudinal directions, 

maintaining the original aspect ratio around 1. The same group transposed the S-FIL technique to various 

other metal oxide38 using formulations composed of Al, Hf, Ti, Zr, Nb and Ta alkoxides combined with a 

polymerizable chelating agents 2-(methacryloyloxy)ethyl acetoacetate (MAEAA), a reactive diluent, a 

crosslinker, and a photo-initiator. After spin-coating on Si substrates, the quartz template was applied and 

the cross-linking was obtained after 60 s under UV light (4.4 mWcm-2). 20-25 nm wires with an aspect ratio 

of about 1 were obtained after annealing at 475 °C for 1h. The decomposition-induced, high shrinkage was 

Figure 5. SEM micrographs of ZnO nano-particles containing a submicron-scale pillar structure: (a) top view 

and (b) cross-section view. (c) Schematic diagram of the fabrication process of ZnO nano-particles containing 

functional patterns by UV imprint lithography35. Reprinted with permission from [Jo, H.-B.; Byeon, K.-J.; 

Lee, H.; Kwon, M.-H.; Choi, K.-W. Fabrication of ZnO Nano-Structures Using UV Nanoimprint Lithography 

of a ZnO Nano-Particle Dispersion Resin. J. Mater. Chem. 2012, 22 (38), 20742. 

https://doi.org/10.1039/c2jm32509h] Copyrigth 2012, ROYAL SOCIETY OF CHEMISTRY. 

 

https://doi.org/10.1039/c2jm32509h
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determined to be around 80% in each case (see Table 2), which is due to the high proportion of organic 

stabilizer and fluidizer required in this process.   

 
Table 2. Summary of the Approximate Feature Size Reduction at Every Step of the Imprinting Process of 

Various Oxides with a 100 nm Line and Space Grating Mold (Aspect Ratio 1)38.( Reprinted with permission 

[Dinachali, S. S.; Saifullah, M. S. M.; Ganesan, R.; Thian, E. S.; He, C. A Universal Scheme for Patterning 

of Oxides via Thermal Nanoimprint Lithography. Adv. Funct. Mater. 2013, 23 (17), 2201–2211. 

https://doi.org/10.1002/adfm.201202577] Copyright 2013, JOHN WILEY AND SONS ADVANCED 

FUNCTIONAL MATERIAL. 

 

 

resin 

The feature size of the imprint after S-FIL Oxide feature size after the heat treatment of imprinted 

structures  

 

 

Total feature size 

reduction concerning 

mold feature size (%) Width of imprint 

(nm) 

Feature size reduction 

(%) 

Width of the oxide feature 

(nm) 

The feature size of reduction 

(%) 

Al2O3 85 15% 20 76% 80% 

HfO2 86 14% 20 77% 80% 

TiO2 83 17% 18 78% 82% 

ZrO2 79 21% 22 72% 78% 

Nb2O5 76 24% 25 68% 75% 

Ta2O5 72 21% 25 65% 75% 

 

One advantage of NIL methods is the possibility to elaborate 3D patterns by replication layer atop layer. In 

2014, Beaulieu et al.39 reported TiO2 3D photonic crystal structures (PCs) from line gratings pilling. They 

started from a dispersion of TiO2 NPs that was first transferred into a mixture of N-methylpyrrolidone 

(NMP) and methanol (MeOH) before mixing with UV-curable polymer resist (Norland Optical Adhesive 

60). After spin coating, the formulation, capillary infiltration into the PDMS cavities was facilitated by the 

low viscosity, and curing took place with UV exposure (11 J.cm−2, 365 nm). After demolding, the next stack 

was applied with the same replication procedures, and patterns with 300 nm depth (D) and 400 nm line 

width (LW) were obtained. Even with 2 successive imprints, the obtained aspect ratio remained as low as 

before in one stack (LW = 400 nm, D = 300 nm), confirming the shrinkage induced by the departure of the 

sacrificial organic binders. A similar approach was used by Yoon et al. in 2020 to elaborate high aspect ratio 

TiO2 patterns meta-lenses40.TiO2 nanoparticles composite were prepared by mixing Dipentaerythritol penta-

/hexa-acrylate binder, 1-Hydroxycyclohexyl phenyl ketone as photoinitiator, and TiO2 NPs dispersed in 

methyl isobutyl ketone. 3 μL of the solution was dropped on a glass substrate and imprinted with PDMS 

molds under UV light and 2 bar pressure for 5 min. After demolding, the obtained line and pillar features 

showed lateral dimensions between 100 and 400 nm for a constant height of around 700 nm.  Varying the 

TiO2 content between 0% and 100% allowed to adjust the refractive index of the material between 1.5 and 

2 in the visible. Alternatively, Arisoy et al.41 reported the elaboration of anti-microbial pillar arrays (called 

sharkskin patterns) from mixtures of TiO2 nanoparticles inorganic source and NOA (Norland Optical 

Adhesive 60) or TEOS as binders, with several compositions. After spin-coating on poly-ethylene 

terephthalate (PET) substrates, the imprinting took place with PDMS stamps under 50°C for 30 min, 

followed by a UV-curing (365 nm, 11 J/cm2) or a NIR-curing (Adphos, 3 kW), for NOA-containing or 

silica-containing systems, respectively. The final shark-skin patterns were composed of 1.6 μm height and 

1.3 μm width pillars in every case, suggesting that both types of binders (organic or inorganic) were efficient 

in the process.    

 

 

https://doi.org/10.1002/adfm.201202577
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Figure 6. (a) SEM images of nanostructured films after thermal treatment, respective solutions were 

prepared with pure binder system, a sol–gel matrix with 40 wt% spherical SiO2 particles content and a sol–

gel matrix with 40 wt% branched SiO2. AFM profiles of nanostructures were obtained with a pure binder 

(b) and a sol–gel matrix with 40 wt% branched SiO2 particles (c).42 Reprinted with permission from [Back, 

F.; Bockmeyer, M.; Rudigier-Voigt, E.; Löbmann, P. Periodic Nanostructures Imprinted on High-

Temperature Stable Sol–Gel Films by Ultraviolet-Based Nanoimprint Lithography for Photovoltaic and 

Photonic Applications. Thin Solid Films 2014, 562, 274–281. https://doi.org/10.1016/j.tsf.2014.04.082] 

Copyright 2014, ELSEVIER- THIN SOLID FILMS). 

In 2014, Back et al,42 reported the impact of silica-based formulation on the shrinkage and crack formation 

during densification on glass through UV-NIL. Two sol-gel sources of SiO2 were used: the binder composed 

of Tetraethoxysilane (TEOS) and 3-glycidoxypropyltriethoxysilane (GPTES) (hybrid polymeric binder) and 

colloids composed of SiO2 NPs. Three formulations (SiO2 spherical, branched and pure binder) where 

studied by mixing the two sources in different proportions. Thin films were deposited by dip-coating 

(withdrawal rate 10 cm/min) and curing by UV irradiation for 60 sec (Dry max 5000EC, 400 Watt) under 

the PDMS mold, followed by a thermal annealing at 500 °C for 1 h. The final patterns were composed of 2 

𝜇m periodic features with lower degrees of shrinkage for higher contents in condensed SiO2 (see Figure 6 

and Table 3).  

 

 

 

 

 

 

 

https://doi.org/10.1016/j.tsf.2014.04.082
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Table 3. Comparison of residual stress and film porosity of pure binder system and particle-filled systems 

with a particle content of 40 wt% after thermal curing at 500 °C for 1 h.42 Reprinted with permission from[ 

Back, F.; Bockmeyer, M.; Rudigier-Voigt, E.; Löbmann, P. Periodic Nanostructures Imprinted on High-

Temperature Stable Sol–Gel Films by Ultraviolet-Based Nanoimprint Lithography for Photovoltaic and 

Photonic Applications. Thin Solid Films 2014, 562, 274–281. https://doi.org/10.1016/j.tsf.2014.04.082] 

copyright 2014,  ELSEVIER- THIN SOLID FILMS). 

Morphology  Structure accuracy [%] Shrinkage of volume [%] Axial shrinkage [%] Lateral shrinkage [%] 

Pure binder 71 64 53 11 

40% spherical  85 37 24 8 

40% branched  91 17 16 1 

 

When the annealing temperature increases from 200 to 500 °C, features lose 64% in volume, which can be 

considerably reduced when using high concentrations of dense silica sources. In addition, less shrinkage is 

accompanied by less cracks, suggesting that the presence of NPs allowed for better stress relaxation during 

densification.  

Whatever the imprinting method, one has to find conditions to enable a faithful infiltration of the mold 

cavities with a fluid enough resin and with minimal deformation. Organic fluidizers and binders are 

generally used to achieve these conditions and facilitate replication. A limited proportion of them is needed 

when used with nanoparticle inorganic sources, which leads to reduced related shrinkage for inorganic rich 

materials, as a result of their lower surface interacting with the medium. Potential issues of using 

nanoparticles lay in the need of a longer treatment for consolidation, the creation of residual inter-particle 

porosity, and the formation of a rough surface associated with the size of the particles.  

2.2 UV-NIL with pure inorganic materials  

A strategy to overcome the latter potential issues has been reported by several groups, especially with ZnO 

due to its interesting electrical and optical characteristics. In 2010 and 2011, the group of Escaree and 

Battagelia43,44,45 reported the elaboration of different structures with an original approach schemed in Figure 

7.  
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Firstly, flexible molds (PDMS45 and PEN45,43,44) were coated with a 10-nm-thick sputtered chromium layer 

and an anti-adhesion monolayer of trichloro (tridecafluorooctyl) silane. ZnO was then deposited on the mold 

by chemical vapor deposition (LP-CVD) at 180 °C and using (C2H5)2Zn and H2O as precursor gases. As-

prepared samples were anchored on a glass substrate under UV exposure (365 nm) with 1 bar pressure for 

20 min. The mold was thus released and the patterns of pyramids, gratings, dimple pillars with relatively 

large size (~1 µm) were obtained. The use of dense ZnO allowed producing patterns that did not require any 

additional consolidation-induced shrinkage. Still, this method remains relatively cumbersome compared to 

traditional UV NIL.  

3 Thermal NIL  

The thermal NIL (also known as hot embossing) process is the earliest type of NIL introduced by S.Y. 

Chou18. T-NIL is one of the most attractive NIL techniques due to its simplicity and capability to replicate 

nanostructures into various types of materials onto various thermally resistant substrates. Mold stamps can 

be PDMS, Nikel, Quartz, PFPE, PUA, etc. In typical T-NIL processes a stamp mold is brought in contact 

with the resin, the whole system is heated-up either to soften a thermoplastic resin (that will regain its rigidity 

after cooling) or to crosslink a thermally curable fluidic resin. T-NIL is categorized in three different 

methods: Pressure thermal NIL, Direct thermal NIL and Vapor Pressure Thermal NIL. They differ by the 

underlying phenomena used to fill-up the mold cavities. In Pressure T-NIL, a slight mechanical pressure 

helps the viscous resin to infiltrate the mold, while in Direct T-NIL the resin is fluid enough for infiltration 

that can be enhanced by heating or pumping through the mold. In Vapor-Pressure T-NIL, one adjusts the 

vapor pressure of the solvent (mainly water or ethanol) in the chamber to stabilize the resin content in the 

solvent at a given value defined by adsorption/desorption equilibrium, adjusting, then, the viscosity for 

infiltration. This latter method can be used in combination with pumping.  

Figure 7. Schematic process flow for nanomoulding of ZnO. a–i, The process can be divided into mold 

fabrication (b–d), ZnO deposition (e) and layer transfer (f-i)44. Reprinted with permission from 

[Battaglia, C.; Escarré, J.; Söderström, K.; Charrière, M.; Despeisse, M.; Haug, F.-J.; Ballif, C. 

Nanomoulding of Transparent Zinc Oxide Electrodes for Efficient Light Trapping in Solar Cells. Nat. 

Photonics 2011, 5 (9), 535–538. https://doi.org/10.1038/nphoton.2011.198] Copyright 2011,  

SPRINGER NATURE-NATURE PHOTONIC. 

 

https://doi.org/10.1038/nphoton.2011.198
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3.1 Pressure thermal NIL 

3.1.1 Pressure T-NIL combined with dry deposition of the final material   

Transfer patterning of inorganic materials was reported by Kang et al in 2008 46. They deposited by electron 

beam evaporation a 40 nm thick layer of metals (Cu, Au and Ag) on a patterned PDMS and pressed it (<40 

KPa) onto poly (3,4-ethylenedioxythiophene)/poly (styrene sulfonic acid) (PEDOT:PSS) at 80 °C to deposit 

electrode wires. Park et al.47 replicated different micro/nanoscale structures by dispersing 2–3 nm sized gold 

nanoparticles (AuNPs) encapsulated by hexanethiol on a flat Poly Vinyl Phenol (PVP) layer supported on 

PI/Glass, before imprinting with a PDMS stamp at 40 KPa and 80 °C for 30 min. A final stabilization at 140 

°C for 10 min yielded gold-based patterns with following dimension: width 750 nm, pitch 4 µm for micro 

wires, diameter 4.5 µm, pitch 8 µm for micro holes and width 2 µm and pitch 8 µm for microdots structures. 

More recently, Visser et al,48 prepared TiO2 Mie resonators on Si and glass substrates from a colloidal 

dispersion of anatase and rutile TiO2 NPs (~ 50 nm in diameter). First, a drop of the suspension was 

dispersed on the substrate surface and then the PDMS mold was pressed down at 100 g/cm2 and at 100 °C 

until the NPs solution was dried out. Finally, PDMS stamp was peeled-off to obtain patterns with the 

compact TiO2 NPs as shown in Figure 8.   

 

Figure 8. Scanning electron microscopy (SEM) images of the fabricated TiO2 NP-based optical coatings on 

Si. Cross-section SEM images of the embossed (a) parabolic microcone array, (b) nanodisk-1 array, and (c) 

nanodisk-2 array structures on Si. The top view SEM images are included as insets. (d) Camera top view 

image of the typical embossing area (~ 1 cm2)48. Reprinted with permission from [Visser, D.; Chen, D. Y.; 

Désières, Y.; Ravishankar, A. P.; Anand, S. Embossed Mie Resonator Arrays Composed of Compacted 

TiO2 Nanoparticles for Broadband Anti-Reflection in Solar Cells. Sci. Rep. 2020, 10 (1), 12527. 

https://doi.org/10.1038/s41598-020-69518-6], open-access attribution 4.0 International (CC BY 4.0) 

license, Copyright  2020, NATURE, SCIENTIFIC REPORTS.  

3.1.2 Pressure T-NIL from hybrid (organic/inorganic) resins  

The T-NIL process has been studied with different metal oxides (Al2O3, Ga2O3, In2O3, Y2O3, B2O3, TiO2, 

SnO2, ZrO2, GeO2, HfO2, Nb2O5, Ta2O5, V2O5, and WO2) from hybrid formulations by Dinachali et al.38 in 

2013 and later on by Zhang et al.49 in 2017. The resists were prepared by mixing corresponding metal 

alkoxides with 2-(methacryloyloxy) ethyl acetoacetate (MAEAA) as a chelating agent and ethylene glycol 

dimethacrylate (EDMA) as cross-linker and BPO (Benzoyl peroxide). The solution was deposited by spin 

coating on Si wafers and NIL was performed with a PDMS mold under 30 bar and at 110 °C - to 130 °C for 

15 min - 5 h, depending on the oxide. After demolding, patterns were annealed between 300-475 °C for 1-

2 h. Typical characteristics are reported in Table 4. As expected with sol-gel molecular inorganic precursors 

https://doi.org/10.1038/s41598-020-69518-6
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and with such a high content of stabilizing agents, a relatively high shrinkage accompanies the final 

annealing. The reason for the fluctuation in shrinkage is likely attributed to the difference in organic content 

used for each metal oxide and to the difference in coordination degree of each metal, allowing more or less 

coordinating solvent molecules prior to thermal curing.  

 

Table 4. Summary of the approximate feature size reduction at every step of the imprinting of various 

oxides with a 250 nm grating mold (aspect ratio = 1) using the chelated monomer route. The imprinted 

patterns were subjected to isothermal heat-treatment38. Reprinted with permission from [Dinachali, S. 

S.; Saifullah, M. S. M.; Ganesan, R.; Thian, E. S.; He, C. A Universal Scheme for Patterning of Oxides 

via Thermal Nanoimprint Lithography. Adv. Funct. Mater. 2013, 23 (17), 2201–2211], copyright 2013,  

JOHN WILEY AND SONS, ADVANCED FUNCTIONAL MATERIALS. 

 
 

 

3.1.3 Pressure T-NIL from sol-gel solutions   

In 2017, Zhang et al.49 reported T-NIL of sol-gel ZnO on large surfaces. The solution was prepared by 

dissolving Zinc acetate 2-hydrate (Zn (CH3COO)2•2H2O) in N,N-dimethylformamide (DMF) solvent in 

presence of chelating diethanolamine (DEA). The ZnO sol was spin-coated on 8-inch polyimide substrate 

(PI) and imprinted with a PDMS mold under 0.6 MPa pressure and 250 °C for 2 h, followed by annealing 

in air at 250 °C for 2 h. The final dimension of the nano-hole arrays was obtained with a diameter of 800 

nm and depth of 200 nm. The size reduction in the z-direction (depth) of pillars was observed from 400 nm 

(depth of pillars from master) to 200 nm (depth of the replicated pillars). At such a relatively low 

temperature, organic linkers were not fully eliminated.  

Grating pattern molds were used to obtain square patterns of silica by two steps of hot embossing. Peroz et 

al. in 200927 and Letailleur et al. in 201050 used a simple sol-gel formulation prepared by hydrolyzing 

methyltriethoxysilane (MTEOS) in a hydroalcoholic acidic solution. A 300 nm thick film was spin-coated 

on the Si/glass substrate and was first imprinted with a PDMS mold heated at 110 °C for 240 s under < 0.2 

MPa pressure. The stamp was then demolded and rotated at 90° for the second imprinting to take place in 

the same conditions. Finally, the sample was annealed at 550 °C for 15 min to yield amorphous SiO2. The 

squares patterns had a high aspect ratio of ~4 (see Figure 9)27. 

 

 

Resist Feature size of the imprint 

after thermal polymerization 

Heat -

treatment 

conditions 

Oxide feature size after the 

heat-tratement of imprinted 

structures 

Total feature size 

reduction with 

respect to mold 

feature size [%]  Width of 

imprint [nm]  

Feature size 

reduction [%] 

 Width of the 

oxide feature 
[nm] 

Feature 

size 
reduction 

[%] 

WO3 175 30% 450°C for 1h - - - 

SnO2 170 32% 450°C for 1h 165 3% 34% 

B2O3 200 20% 300°C for 3h 150 25% 40% 

In2O3 185 26% 300°C for 1h 130 30% 48% 

V2O5 131 48% 375°C for 1.5h 115 12% 54% 

ZrO2 147 41% 400°C for 1.5h 65 56% 74% 

Nb2O5 176 30% 475°C for 1h 57 68% 77% 

Ta2O5 197 21% 450°C for 1h 58 71% 77% 

HfO2 194 22% 450°C for 1h 55 72% 78% 

GeO2 162 35% 350°C for 1h 53 67% 79% 

Y2O3 165 34% 450°C for 1h 49 70% 80% 

Ga2O3 200 20% 450°C for 1.5h 43 79% 83% 

TiO2 171 32% 450°C for 1h 40 77% 84% 
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Figure 9. Schematic illustration (A-F) of the NIL imprinting process27. Reprinted with permission from 

[Peroz, C.; Chauveau, V.; Barthel, E.; Søndergård, E. Nanoimprint Lithography on Silica Sol-Gels: A 

Simple Route to Sequential Patterning. Adv. Mater. 2009, 21 (5), 555–558. 

https://doi.org/10.1002/adma.200702484], Copyright 2009, JOHN WILEY AND SONS, ADVANCED 

MATERIALS. 

 

3.1.4 Pressure T-NIL from NPs dispersion  

Jiang et al in 2013,51 reported patterning of TiO2 films with the same two steps T-NIL. Firstly, 

TiO2 (Degussa P25) dispersion was prepared by mixing TiO2 nanoparticles with ethyl cellulose in 

anhydrous terpineol and Ethanol. TiO2 NP films were deposited on FTO glass by Blading machine. The 

first T-NIL was accomplished by pressing (70 Kg / 0.3 cm2 active area) a Ni stamp at 70 °C for 10 min 

using a commercial nanoimprinting machine. The second imprint used 110 °C with the pressure of 90 kg/ 

0.3 cm2 active area, for 15 min. After annealing at 500 °C for 30 min the TiO2 square patterns exhibited 270 

nm depth and ~ 900 nm in pitch. The conditions for the second imprint were stronger than the first one to 

overcome the viscosity loss by the consolidation induced at 70 °C for 10 min.   

3.2 Direct thermal NIL 

In 2009, Khan et al.52 demonstrated the possibility to imprint a sol-gel solution of lead zirconate titanate 

(PZT) from a sol-gel solution composed of zirconium n-propoxide, titanium isopropoxide, 2-

methoxyethanol, lead acetate trihydrate, and glacial acetic acid.  After spin-casting a layer of this solution 

on Si wafers, the PDMS mold was applied and dried for 15-30 min at 80 °C. Finally, after demolding and 

annealing treatment at 650 °C for 10 min, line grating of 25 nm height and 380 nm width were obtained. 

The aspect ratio (0.07) of the present features could have been increased if pressure was applied to the mold 

as described in the previous section.  

Kothari et al.30 prepared Indium Tin Oxide (ITO) and TiO2 nanostructures patterns from combinations of 

NPs and corresponding organic/inorganic sol-gel binders, using alternative UV or Thermal NIL. The ITO 

resin was prepared by mixing ITO NP dispersed in n-methyl-2-pyrrolidone (NMP) solvent at 80 °C, and 

ITO sol composed of tin acetate (Sn(CH3CO2)4 and indium nitrate (In(NO3)3·xH2O) dissolved in NMP 

binder. Thin-film composed either of 100 % NP or 80% NP + 20% ITO sol were spin-cast and the PDMS 

mold was then applied. The composite system was cured at 150°C for 30 s for stiffening while the solvent 

was pervaporated through the PDMS by aging at room temperature. The demolded patterns were then 

https://doi.org/10.1002/adma.200702484
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annealed at 500 °C for 1 h. ITO line grating and square patterns were obtained with a relatively low aspect 

ratio and low height shrinkage (see table 5).  

 

 

 

Table 5. Line Height (LH) and Shrinkage in Feature Height during Imprinting and Heat Treatment Steps 

for Fabrication of ITO Gratings Using of Different Proportions of ITO NPs and ITO Sol−Gel Precursor 30. 

Reprinted with permission from [Kothari, R.; Beaulieu, M. R.; Hendricks, N. R.; Li, S.; Watkins, J. J. Direct 

Patterning of Robust One-Dimensional, Two-Dimensional, and Three-Dimensional Crystalline Metal Oxide 

Nanostructures Using Imprint Lithography and Nanoparticle Dispersion Inks. Chem. Mater. 2017, 29 (9), 

3908–3918. https://doi.org/10.1021/acs.chemmater.6b05398], Copyright 2017, ACS-CHEMISTRY OF 

MATERIALS. 

 
 LH of a master 

mold  

LH/ shrinkage-I (for as-imprinted 

sample)  

LH/ shrinkage-HT (for 500 °C 

heat-treated sample)  

100 NP ITO 480 nm 380 nm/21% 365 nm/4% 

80 NP/20 sol 

ITO  

480 nm 385 nm/20% 355 nm/8% 

 

The same study was conducted on TiO2 systems using 15 wt% TiO2 NP dispersion in NMP and methanol, 

and titanium diisopropoxide bis-(acetylacetonate) and TPA (CH3)2CHO]2 Ti(C5H7O2)2, in isopropanol. The 

imprinting curing was conducted at 120 °C for 15 s, and the final thermal treatment occurs at 500 °C for 1 

h. The obtained line gratings are shown in Figure 10 and the corresponding relative shrinkage is given in 

Table 6. As already observed with Silica systems in the previous part, the latter studies on ITO and TiO2 

confirmed the advantage of using NP sources to reduce shrinkage.  

 

 

Figure 10. Cross-section SEM images of patterned TiO2 gratings imprinted with inks having different ratios 

of TiO2 NPs and sol of TiO2. (a-c) As-imprinted gratings: (a) 100 NP, (b) 80 NP/20 sol, and (c) 100 sol 

(d−f) Gratings upon calcination at 500 °C for 3 h: (d) 100 NP, (e) 80 NP/20 sol, and (f) 100 sol. (g) 100 NP 

grating pattern upon calcination at 750 °C for 3 h30. Reprinted with permission from [Kothari, R.; Beaulieu, 

M. R.; Hendricks, N. R.; Li, S.; Watkins, J. J. Direct Patterning of Robust One-Dimensional, Two-

Dimensional, and Three-Dimensional Crystalline Metal Oxide Nanostructures Using Imprint Lithography 

and Nanoparticle Dispersion Inks. Chem. Mater. 2017, 29 (9), 3908–3918. 

https://doi.org/10.1021/acs.chemmater.6b05398], Copyright 2017, ACS-CHEMISTRY OF MATERIALS. 

 

https://doi.org/10.1021/acs.chemmater.6b05398
https://doi.org/10.1021/acs.chemmater.6b05398
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Table 6. Line Height (LH) and Shrinkage in Feature Height during Imprinting and Heat Treatment Steps 

for Fabrication of TiO2 Gratings composed of different proportions of TiO2 NPs and TiO2 sol solution30. 

[Reprinted with permission from [Kothari, R.; Beaulieu, M. R.; Hendricks, N. R.; Li, S.; Watkins, J. J. 

Direct Patterning of Robust One-Dimensional, Two-Dimensional, and Three-Dimensional Crystalline 

Metal Oxide Nanostructures Using Imprint Lithography and Nanoparticle Dispersion Inks. Chem. Mater. 

2017, 29 (9), 3908–3918. https://doi.org/10.1021/acs.chemmater.6b05398], Copyright 2017, ACS-

CHEMISTRY OF MATERIALS. 

 
 

 LH of a master mold  LH/ shrinkage-I (for as-

imprinted sample)  

LH/ shrinkage-HT (for 

500 °C heat-treated 

sample)  

100 NP TiO2 480 nm 385 nm/ 20% 360 nm/6% 

80 NP/20 sol TiO2  480 nm 340 nm/ 11% 340 nm/11% 

100 Sol TiO2 480 nm 140 nm/ 48% 140 nm/ 48% 

 

Using a TiO2 nanoparticle dispersion in 1,2-propanediol and methanol, similar imprinting conditions were 

then used by Li et al. in 2018 53 to elaborate 3D TiO2 woodpiles electrodes by applying several cycles of the 

following step: (i) imprinting TiO2, (ii) curing in UV-Ozone, (iii) infiltration and planarization with NOA60, 

(iv) UV-curing of NOA60. After obtaining the desired number of layers, the whole structure was calcined 

at 750°C and was composed of up to 6 layers of pilled rods exhibiting each an aspect ratio of 1. The 3D 

structure enables the development of a high specific surface and high accessibility for efficient charge 

transfer (see Figure 11).   

Figure 11. A) Scheme illustrating the method to elaborate woodpile structured by NIL. B) SEM top view 

and profile images of imprinted structures corresponding to the 6 layers of woodpile structures, prepared by 

NIL53. Reprinted with permission from [Li, W.; Zhou, Y.; Howell, I. R.; Gai, Y.; Naik, A. R.; Li, S.; Carter, 

K. R.; Watkins, J. J. Direct Imprinting of Scalable, High-Performance Woodpile Electrodes for Three-

Dimensional Lithium-Ion Nanobatteries. ACS Appl. Mater. Interfaces 2018, 10 (6), 5447–5454. 

https://doi.org/10.1021/acsami.7b14649], Copyright 2018, ACS- APPLIED MATERIALS AND 

INTERFACES. 

https://doi.org/10.1021/acs.chemmater.6b05398
https://doi.org/10.1021/acsami.7b14649
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The same year, the same authors reported the formation of patterned LMO electrodes from LiMn2O4 

nanoparticle dispersions in a mixture of 4-hydroxybenzoic acid, N-methyl-2-pyrrolidone, and methanol54. 

After spin coating on ITO glass, imprinting with PDMS molds at 70°C, and curing at 400°C after demolding, 

features with dimensions ranging from 400 nm to 2000 nm, and aspect ratio up to 4, were reported.  

3.3 Vapor Pressure Thermal NIL 

An alternative approach to pressing the mold on the resin soft layer to trigger cavity infiltration is to maintain 

the resin as liquid as possible with a volatile compound (the solvent phase) and pump it through the mold. 

In fact, PDMS molds being slightly microporous, a pre-degassing of the latter before the application is 

sufficient to allow this pumping as mentioned in the Generality part. Using a volatile solvent compound as 

a fluidizer requires to be able to prevent total evaporation from the resin by applying a proper vapor pressure 

in the chamber before applying the degassed mold. Dalstein et al.55  used such degassed PDMS molds to 

imprint TiO2 from an extremely simple sol-gel formulation composed of TiCl4, H2O, and Ethanol with a 

respective molar ratio of 1/6/50. After deposition of the sol-gel layer on Si or glass substrates, the degassed 

mold was gently applied on it and maintained at 110 °C for 5 min before demolding. Annealing at 450 °C 

for 5 min ensures the complete densification and crystallization of TiO2
 into anatase. The 100 nm motifs 

had an aspect ratio of ~1 (see Figure 12)55. The deposition of a too thick initial layer led to the presence of 

a 200 nm-thick residual layer. The same authors reproduced this method to elaborate patterned surfaces for 

controlled wetting 56 and 250 nm TiO2 dielectric Mie resonator pillar arrays (aspect ratio 1)57  with a residual 

layer as thin as 10 nm by applying a thinner initial sol-gel layer (see Figure 13). Chen et al.58 reported the 

fabrication of ultrathin GaAs solar cells with a TiO2/Ag nanostructured back mirror using the same 

procedure. The lack of stabilizing and fluidizing organic agents led to less shrinkage than in the previous 

methods involving sol-gel precursors.  
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Figure 12. Soft Lithography approaches for both approaches routes (a) nano-patterned ZIF-8 and (b) ZIF-

8/TiO2. SEM image of nano-patterned (c) ZIF-8 (d) scratched zone exhibiting both ZIF-8 covered and 

uncovered TiO2 Cross-section SEM of nano-patterned ZIF-8 (e) with (f) without residual layer 55.  Reprinted 

with permission from [Dalstein, O.; Ceratti, D. R.; Boissière, C.; Grosso, D.; Cattoni, A.; Faustini, M. 

Nanoimprinted, Submicrometric, MOF-Based 2D Photonic Structures: Toward Easy Selective Vapors 

Sensing by a Smartphone Camera. Adv. Funct. Mater. 2016, 26 (1), 81–90], Copyright 2016, JOHN WILEY 

AND SONS, ADVANCED FUNCTIONAL MATERIALS. 

 

 

https://doi.org/10.1002/adfm.201503016.-
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Figure 13. SEM image of a) master, b) replicated TiO2 , c) cross-section nanopatterns TiO2 indication the 

thin residual layer 57. Reprinted with permission from [Bottein, T.; Wood, T.; David, T.; Claude, J. B.; Favre, 

L.; Berbézier, I.; Ronda, A.; Abbarchi, M.; Grosso, D. “Black” Titania Coatings Composed of Sol-Gel 

Imprinted Mie Resonators Arrays. Adv. Funct. Mater. 2017, 27 (2), 1604924. 

https://doi.org/10.1002/adfm.201604924], Copyright 2017,  JOHN WILEY AND SONS, ADVANCED 

FUNCTIONAL MATERIALS. 

 

The imprinting was performed in a clean room, where temperature and humidity were kept constant. 

Imprinting outside the cleanroom was accompanied by a loss of reproducibility attributed to changes in the 

atmospheric humidity. A full study of the influence of humidity on replication quality was then performed 

with various metal oxides from metal chlorine, water-ethanol solutions by Bottein et al.59. 
 

He demonstrated that the faithfulness of the replication of sol-gel systems (TiO2, mesoporous SiO2, Methyl-

SiO2, Al2O3, Y-ZrO2) can be optimized by simply adjusting relative humidity within specific spam during 

the NIL process, which depends on the external temperature. Initial sol-gel solutions were respectively 

composed of 1 TiCl4: 40 EtOH : 7 H2O ; 1 TEOS : 40 EtOH : 10 H2O : 0.01 HCl : 0.01 CTAB ; 0.5 TEOS 

: 0.5 MTEOS : 40 EtOH : 10 H2O : 0.01 HCl ; Al(OiPr)3 : 29 EtOH : 4.8 H2O : 1.4 HCl : 4 : and 0.94 Zr(Cl)4 

: 0.06 Y(NO3)3, 2 H2O : 41 EtOH : 12 H2O (molar ratios). Straight after deposition by dip-coating, the sol-

gel layers were imprinted with a degassed PDMS mold at 22 °C in different relative humidity ranging from 

20 to 85%, before undergoing consolidation for 5 min at 120 °C and final annealing at 450 °C for 10 min 

after demolding. Figure 13 shows that for the TiO2 system, a too low humidity led to no, or low aspect-ratio, 

replicas, while at too high humidity a dramatic loss of homogeneity is obtained. The best replication 

(homogeneous and high aspect ratio) was achieved with ~ 60% RH at 22 °C for TiO2. Others systems did 

not show the same dependency and a systematic investigation of the quantity of water up-taken into the as-

prepared sol-gel initial layers with respect to RH was undertaken by environmental ellipsometry (see Figure 

14). The deduction was that even if the optimal RH is different for each metal oxide system, optimal water 

content of 30% volume in the films is common to all the cases, which is related to the difference in 

hygroscopic property of the as-prepared films. Furthermore, in absence of a stabilizer, the sol-gel tends to 

spontaneously cross-link with time, which needs to be taken into account59. 

https://doi.org/10.1002/adfm.201604924
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Figure 14.  (a) Water uptake of various as-prepared xerogels with respect to relative humidity measured by 

in situ time-resolved Ellipsometry. (b) Optical microscopy dark-field images of TiO2 replicas imprinted at 

45%, 50%, 70% and 80% RH, replicated59. Reprinted with permission from [Bottein, T.; Dalstein, O.; 

Putero, M.; Cattoni, A.; Faustini, M.; Abbarchi, M.; Grosso, D. Environment-Controlled Sol–Gel Soft-NIL 

Processing for Optimized Titania, Alumina, Silica and Yttria-Zirconia Imprinting at Sub-Micron 

Dimensions. Nanoscale 2018, 10 (3), 1420–1431. https://doi.org/10.1039/C7NR07491C], Copyright 2018, 

ROYAL SOCIETY OF CHEMISTRY. 
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The latter method was then exploited by Naffouti et al.60 and Checcucci et al.61 in 2019 to prepare high 

aspect ratio pillar arrays as optical metamaterials, and by Modaresialam et al.62 in 2020 to imprint broad-

band, wide-angle, robust anti-reflection coatings on 10 cm wafers (see Figure 15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  A) Picture of a 10 cm diameter wafer coated with the nanoimprinted methylated silica SiO2 

(B,D) Scanning electron microscopy (SEM) image (C) Scheme illustrating the topography of the nipple-

dimple surface62. Reprinted with permission from [Bochet-Modaresialam, M.; Claude, J.-B.; Grosso, D.; 

Abbarchi, M. Methylated Silica Surfaces Having Tapered Nipple-Dimple Nanopillar Morphologies as 

Robust Broad-Angle and Broadband Antireflection Coatings. ACS Appl. Nano Mater. 2020, 3 (6), 5231–

5239. https://doi.org/10.1021/acsanm.0c00646], Copyright 2020, ACS- APPLIED NANOMATERIALS. 

4 Direct printing  

Printing by soft-NIL without UV and thermal-induced cross-linking cannot be performed with any systems. 

Sol-gel silica is however well adapted as its condensation rate is relatively slow when in solution but can 

become extremely fast upon evaporation of the solvent owing to a spatial gathering of the silica moieties. 

Therefore, one needs to make sure that the sol-gel initial layer is soft enough for the impregnation in the 

mold and cross-link after infiltration whatever the time needed to maintain the structure when demolding. 

In 2011, A. Polman’s group63 used simple silica sol-gel formulations composed of methyl-tri-methoxy-

silane, tetra-methoxy-ortho-silicate, formic acid, water, and propanol as a solvent, that they deposited and 

imprinted directly with PDMS stamps. Demolding was possible after 20 min without heat to yield 400 nm 

square arrays after further annealing at 200 °C (shrinkage 18%). The presence of a methyl group on the 

silica precursor is crucial to slow down the condensation and enable infiltration. In 2017, Shin et al.64 

https://doi.org/10.1021/acsanm.0c00646
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prepared piezoelectric nano-generators via  Imprinting Sol-Gel Fe doped BaTiO3 nano-pillars. In this work, 

the sol-gel solution was synthesized using barium hydroxide Ba (OH)2·8H2O, titanium butoxide and iron 

nitrate FeNO3·9H2O as starting materials. The molar ratio between materials was Ba:Ti:Fe = 1:0.98:0.02. 

The BaTiO3 sol-gel layer was then poured on the pre-cleaned ITO surface, followed by covering with a 

PDMS mold with a nanohole array. After aging, the PDMS stamp was removed, leaving fragile hexagonal 

pillars that needed final curing under UV (80 mW/cm2, ~365 nm) for 2.5 min. Then features with a diameter 

of ∼120 nm, the pitch of 400 nm, and height of ∼400 nm were obtained.  

 

5 Applications 

 

Thanks to its versatility in framing different materials in a wide range of 3D structures size and shape on 

arbitrary substrates (e.g. glass, semiconductor, metal, plastic), NIL has been efficiently exploited for a 

plethora of applications, ranging from light management, electronics, and biology. Here we briefly review 

some of the major contributions of NIL in photonic-crystals, solar cells, anti-reflection coatings and biology.  

5.1 Photonic Crystals  

Photonic crystals (PhCs) are periodic structures, typically made of high permittivity materials, widely 

employed for light management. They can be used to enhance light absorption (e.g atop a silicon based 

photovoltaic device) or light extraction from a bulk material (e.g. atop of a LED), integrated circuits (e.g. 

guiding light on a photonic chip for information processing), confine light in small volumes (e.g. for lasing), 

beam steering (e.g. for light coupling in an optical fiber). NIL is a powerful tool for texturing a material 

modifying its properties for light manipulation.  This approach has been successfully exploited in this field 

being a high throughput and low-cost technique.  

At the beginning of the 21st century, PhCs based on organic-inorganic material with a high refractive index 

(n~1.63 at 633 nm) were developed with a novel NIL approach65. These periodic nanostructures were 

prepared by patterning a thin film of methacryl silica–titania hybrimer via UV NIL. Later on, another type 

of hybrid nanoparticles/polymer resist composite was proposed39. A mixture of TiO2 nanoparticles and 

photoresist was directly patterned into large areas 3D PhCs via UV-assisted NIL. Figure 16a) illustrates the 

SEM images of PhCs. The 3D PhC exhibited a photonic bandgap at about 840 nm (maximum reflectance 

~72% at 840 nm, figure 16b).  
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Figure 16.  (a) Top-down SEM image of a four-layer 3D photonic structure and (b) UV−vis−NIR specular 

reflectance measurement at 35° with respect to the surface normal of a six-layer 3D photonic crystal39. 

Reprinted with permission from [Beaulieu, M. R.; Hendricks, N. R.; Watkins, J. J. Large-Area Printing of 

Optical Gratings and 3D Photonic Crystals Using Solution-Processable Nanoparticle/Polymer Composites. 

ACS Photonics 2014, 1 (9), 799–805. https://doi.org/10.1021/ph500078f.] ,Copyright 2014, ACS -

PHOTONIC.  

Moreover, the observed full stop-band in all directions indicates the fabrication of a true 3D PhC.  Feedback 

control for alignment could be in principle used to improve the quality of these structures. This approach 

has the potential to scale up the technique to larger areas and higher throughputs at low cost by using roll-

to-roll fabrication. 

5.2 Solar cells 

Photonic structures such as photonic crystals and transparent electrodes find their applications in 

optoelectronic devices. As an example, we report here some cases relevant to photovoltaic cells. Being a 

scalable fabrication process, NIL can be in principle extended to large surfaces and fits thus the needs for 

large solar panels with integrated micro and nano-patterns.   

Later on Polman’s group reported the fabrication of different types of solar cells configuration by using NIL 

techniques63,66–68. In 2011, Ferry et al.63 designed and fabricated periodic and random nano-scatter arrays 

for solar cells. The patterns were coated by Ag and then, ZnO:Al , ,n-i-p a-Si:H, ITO. The cells consisted of 

Ag, coating the different nanopatterned silica sol gel of ZnO:Al, n-i-p a-Si:H and ITO. The 400 nm pitch 

pattern and the random pattern showed an efficiency of about 9.5%.  

The high conductivity of metals has stimulated interest in metal nanowire (NW) networks and meshes as 

alternatives to ITO. These geometries can be designed to provide improved optoelectronic performance 

relative to ITO, achieving concurrent improvements in both optical transparency and electrical conductivity. 

Van de Groep et al.69 reported silver nanowires (Ag NWs) as transparent conducting electrodes (TCE). They 

used P3HT-PCBM organic solar cells as a model system. The performance parameters for Ag NWs cells 

were measured and compared with ITO-based reference cells. The efficiency of ITO reference of 3.45% is 

higher than for the NWs ~2.7%. However, the measured external quantum efficiency (EQE) show an 

enhancement for 700 < λ < 900 nm and 650 < λ < 800 nm with 500 nm in comparison with ITO69. 
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Photocurrent and photoelectrical enhancement in solar cells developed rapidly by using dielectric materials. 

Extensive research has been done on light trapping in Si thin-film and organic solar cells. However, only a 

limited number of research groups have worked on light management in CIGSe cells, Light trapping in 

ultrathin CIGSe cells is challenging because of the required stability of the light-trapping geometry during 

the high-temperature growth process. Van Lare et al.67 reported a new ultra-thin Cu (In, Ga)Se2 (CIGSe) 

solar cells by nanoscale dielectric light scattering (SiO2, TiO2)67.  

Zinc oxide (ZnO) is currently one of the key functional materials in advanced optoelectronic and photonic 

applications, including photovoltaics, thanks to its high transparency across the solar spectrum and its 

excellent electrical properties. The external quantum efficiency (EQE) of ZnO-based NIL patterns with 

PDMS and PEN molds were measured 45. These measurements showed the lower cell response on the replica 

stamped with PDMS than with cells replica with PEN stamp 43,44. 

Jiang et al.51 reported the 3D patterning of TiO2 /Ag films in plasmonic dye-sensitized solar cells (DSSCs). 

The photovoltaic properties of the DSSCs were studied in different configurations: pure TiO2 film, planar 

TiO2/Ag film and 3D patterned TiO2/Ag film (Figure 17 a). The generated conversion efficiency was 4.59%, 

5.35% and 5.69%, respectively51. Ultrathin GaAs solar cells with TiO2/Ag nanostructured back mirror 

achieved an efficiency of 25% accompanied by a strong enhancement of EQE in the 600-900 nm wavelength 

range (see Figure 17 b)58.  
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5.3 LEDs  

Since ZnO has the excellent optical and electrical properties, it can be used for transparent electrodes in UV 

light emitting diodes and laser diodes. In 2012 Jo et al.35 reported the fabrication of ZnO nano particles/resin 

composite patterned by UV-NIL. The optimization of the refractive index was made by adjusting the NP 

concentration.  

5.4 Sensors 

In 2016, Dalstein et al.55  ZIF-8 MOF-based 2D photonic structures were prepared either by direct T-NIL 

of ZIF-8 or by its deposition on a TiO2 line array prepared by T-NIL. The TiO2/MOF patterned surfaces 

have been used as diffraction gratings, enabling easy detection of organic solvent vapors by a simple smart-

phone’s camera. The sensing approach is based on the variation of the optical properties of MOF patterns, 

induced by the selective adsorption of the organic solvent. The comparison of the optical responses reveals 

that both configurations exhibited similar sensitivity (see Figure 18)55. 

 

 

Figure 18. a) Isopropyl alcohol uptake measured by luminance difference; b) illustration of the phenomena 

taking place during adsorption; c) photographs of the ZIF-8/TiO2 hetero-structure55. Reprinted with 

permission from [Dalstein, O.; Ceratti, D. R.; Boissière, C.; Grosso, D.; Cattoni, A.; Faustini, M. 

Nanoimprinted, Submicrometric, MOF-Based 2D Photonic Structures: Toward Easy Selective Vapors 

Figure 17. a) Fabrication process for ultrathin GaAs solar cells with a nanostructured back mirror. b) J–V 

characteristics58 . Reprinted with permission from [Chen, H.-L.; Cattoni, A.; De Lépinau, R.; Walker, A. W.; 

Höhn, O.; Lackner, D.; Siefer, G.; Faustini, M.; Vandamme, N.; Goffard, J.; Behaghel, B.; Dupuis, C.; Bardou, 

N.; Dimroth, F.; Collin, S. A 19.9%-Efficient Ultrathin Solar Cell Based on a 205-Nm-Thick GaAs Absorber 

and a Silver Nanostructured Back Mirror. Nat. Energy 2019, 4 (9), 761–767. https://doi.org/10.1038/s41560-

019-0434-y], Copyright 2019, SPRINGER NATURE-NATURE ENERGY. 

 

 

https://doi.org/10.1038/s41560-019-0434-y
https://doi.org/10.1038/s41560-019-0434-y


 

 
29 

 

Sensing by a Smartphone Camera. Adv. Funct. Mater. 2016, 26 (1), 81–90. 

https://doi.org/10.1002/adfm.201503016.], Copyright 2016, JOHN WILEY AND SONS, ADVANCED 

FUNCTIONAL MATERIALS. 

5.5 Antireflection coatings 

Efficient antireflection coatings (ARCs) have been extensively studied and are nowadays well established 

in industrial applications over large scales (e.g., for photovoltaic, optoelectronic devices, laser windows, 

and much more). ARC-based multilayered thin films, refractive index gradient, and surface texturing with 

micro/nanostructures have been optimized with many different methods70. 

Van de Greop et al. in 201563 reported the replicated silica Nano cylinders by conformal contact NIL. The 

obtained patterns have an effective-index of about 1.20, reducing the double-sided reflection from a glass 

slide from 7.35% to 0.57% (with a minimum reflectance <0.05% at 590 nm).  A nanoimprinted AR coating 

was applied to Si photovoltaic cells encapsulated in glass. Photovoltaic modules showed a 3.8% relative 

increase in short-circuit current, corresponding to a 2.8% relative increase in power output.  

In 2020, Modaresialam et al.62 developed the double face printed large-band, broad-angle Antireflection 

coating on glass by Vapor Pressure Thermal NIL. The hexagonal arrays of nipple-dimple moth eyes 

nanopillars have an effective refractive index of about 1.2. Total transmission for double-face nanoimprint 

wafers reached 96−97% enhancing the transmission of the bare glass of about 90%.  

5.6  Electrodes for batteries 

Recently, the elaboration of the 3D micro-and nano batteries holds great potential in industry to meet the 

demands of high-power and high energy densities. Until now, several techniques have been reported to 

elaborate 3D architectures batteries such as thin film deposition on conductive 3D scaffolds, soft templating, 

direct ink writing, and layer-by-layer (LBL) deposition71–74. Today, the compatibility of NIL with the current 

micro/ nanofabrication process makes technology and high throughput efficient and low cost. 3D micro-

batteries, made by direct imprinting using crystalline LiMn2O4 (LMO) nanoparticle-based inks exhibited a 

power density of about  855.5 μ Wcm−2 μm−1, comparable to some of the best micro-supercapacitors54. 

Furthermore, NIL-prepared multi-stacked TiO2 woodpile nanobatteries yield specific capacities as high as 

250.9 mAh g−1 with good mechanical strength and stable conductivity performance even over an extended 

voltage span. As the number of stacked layers increases (see Figure 19), the electrode’s areal capacity 

exhibits a proportional enhancement of potential as (3 to 20 µAh cm-2  for 1 to 6 stacks, respectively)53.  
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Figure 19. a) AFM height profile of the single-layer imprint. b-f) SEM top view and profile images of 

imprinted structures corresponding to 1-6 layer(s) woodpile structures53. Reprinted with permission from 

[Li, W.; Zhou, Y.; Howell, I. R.; Gai, Y.; Naik, A. R.; Li, S.; Carter, K. R.; Watkins, J. J. Direct Imprinting 

of Scalable, High-Performance Woodpile Electrodes for Three-Dimensional Lithium-Ion Nano batteries. 

ACS Appl. Mater. Interfaces 2018, 10 (6), 5447–5454. https://doi.org/10.1021/acsami.7b14649.], Copyright 

2018, ACS- APPLIED MATERIALS & INTERFACES.  

6 Conclusion  

 

Optimizing replication in hard inorganic materials by soft-NIL has thus many advantages compared to 

conventional lithography methods, that lays in its compatibility with a plethora of inorganic material 

compositions. Such versatility and high throughput characteristics make it ideal for scale-up and production 

on large surfaces.  

Whatever the chosen method of processing, optimizing replications in inorganic material by soft-NIL is a 

question of adapting the chemistry of the initial solution “resin” and the processing conditions. UV-NIL has 

been the preferred method for a long time, however, it requires complex chemistry, involving expensive and 

often toxic photoinitiators. More recently, thermal NIL coupled with pressure or vapor pressure control has 

been developed, allowing the use of simpler chemistry. For pure inorganic systems, when the final materials 

need to be organic-free, a final thermal treatment is very often necessary, not only to decompose the organic 

residues (binders, fluidizers, photo-initiators) but also to mechanically consolidate the edifice by viscous or 

diffuse sintering. Compromises must be found since this final treatment is accompanied by a more or less 

pronounced volume shrinkage. Two routes have been explored yet. The first one uses “small” (molecular) 

dissolved precursors, whereas the second one uses “large” building blocks (nanoparticles) from dispersion. 

Combinations of the two methods have been explored as composite precursors since they both originate 

from the same compatible sol-gel chemistry. On one hand, it has been proven that the higher is the 

concentration of dense nanoparticles, the lower is the shrinkage thanks to highly condensed buildings block. 

On the other hand, using nanoparticles induces the presence of high surface roughness and residual porosity 

that may be issued for some applications, but can also be beneficial for others. For instance, on the one hand 

when the features to reproduce are small, one would prefer using molecular precursors to obtain dense and 

smooth features. In these cases, one has to adjust the mold feature dimensions to take into account the 

https://doi.org/10.1021/acsami.7b14649
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relatively high shrinkage. On the other hand, if porosity is required to facilitate high mass transport of charge 

transfer, approaches involving nanoparticles, with or without sacrificial binders, are well appropriated.   
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