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Abstract  
Object: To develop new imaging biomarkers of therapeutic efficacy through the quantification of intratumoral 
microvascular heterogeneity.  

Materials and Methods: The described method was a combination of non-supervised clustering and extraction of 
intratumoral complexity features (ICF): number of non-connected objects, volume fraction. It was applied to a set 
of 3D DCE-MRI Ktrans maps acquired previously on tumor bearing mice prior to and on day 4 of anti-angiogenic 
treatment. Evolutions of ICF were compared to conventional summary statistics (CSS) and to heterogeneity related 
whole tumor texture features (TF) on treated (n=9) and control (n=6) mice. 

Results: Computed optimal number of clusters per tumor was 4. Several intratumoral features extracted from the 
clusters were able to monitor a therapy effect. Whereas no feature significantly changed for the control group, 6 
features significantly changed for the treated group (4 ICF, 2 CSS). Among these, 5 also significantly differentiated 
the two groups. (3 ICF, 2 CSS). TF failed in demonstrating differences within and between the two groups. 

Discussion: ICF are potential imaging biomarkers for anti-angiogenic therapy assessment. The presented 
method is expected to have advantages with respect to texture analysis based methods regarding 
interpretability of results and setup of standardized image analysis protocols. 
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Tumor heterogeneity has been identified as an important factor in need of evaluation for clinical diagnosis, 
prognosis, prediction of treatment efficacy and relapse of the disease. It is well known that tumor heterogeneity 
can be found at different levels: at population level, between patients with the same tumor type not responding 
equally to the treatment, which has triggered personalized therapeutic strategies over the last years; at patient level, 
between different lesions, or between primary tumor and metastasis that may have different characteristics [1]; at 
tumor level, due to the presence of cell sub-populations with different genotypes and phenotypes that may differ 
in sensitivity to treatment [2], as well as due to microvascular heterogeneity [3], this latter aspect being addressed 
in the present article.  

Heterogeneity of tumor microvasculature is promoted by the neoangiogenic process which initializes and 
supports the creation of new blood vessels with abnormal structure and function, possibly leading to local 
tumor-cell hypoxia which in turn supports malignancy [4]. Anti-angiogenic treatments modify blood vessel 
morphology, network, and function, therefore impacting tumor vascular distribution, which is related to treatment 
outcome. In a previous study, our team demonstrated that the evaluation of tumor vasculature with dynamic 
contrast-enhanced ultrasonography (DCE-US) provided a reliable imaging biomarker of anti-angiogenic 
treatments efficacy [5].  

Non-invasive imaging is indeed a technique of choice to evaluate macroscopic aspects of intratumoral 
heterogeneity [6]. It enables monitoring of the entire tumor and may guide or even replace invasive biopsies when 
using validated imaging biomarkers. Today, one of the radiological challenges is to identify and qualify new 
potential biomarkers based on vascular heterogeneity. These new biomarkers would reinforce the reliability of 
those currently used in clinical practice, mainly anatomic, and possibly provide pertinent predictive information 
earlier after therapy onset [7]. 

Two basic approaches are currently used to quantify intratumoral heterogeneity as an imaging biomarker. These 
two approaches consist in the extraction of features, on the one hand, from the whole tumor volume and, on the 
other hand, from various tumor sub-regions.  

When extracted from the whole tumor volume, features describing image heterogeneity can be classified into two 
categories: Ia) The spatial gray-level methods (SGLM), which quantify spatial voxel distribution patterns based 
on intensity values, and Ib) Fractal features and geometry properties, which provide information on the ability of 
a shape to spread and occupy a defined surface or volume and inform on its complexity. For example, as a tool to 
depict microvasculature heterogeneity, category Ia) was used to compute texture features (TF) on dynamic 
contrast-enhanced MRI (DCE-MRI) parametric maps by Thibault et al., who showed these features to be potential 
biomarkers for early prediction in breast cancer [8], and by Alic et al. for monitoring treatment response in limb 
sarcomas [9]. Category Ib) was used by Rose et al. who employed the Rényi fractal-dimensions and geometric 
properties to describe the complexity of DCE-MRI parametric maps. They compared these features with 
conventional summary statistics (CSS) and demonstrated they were providing new additional information to 
discriminate between low and high-grade gliomas [3]. 

Concerning the sub-regions approach, tumor are subdivided, in a supervised or non-supervised manner, into 
multiple regions of interest (ROI) also called clusters. Features extracted from these clusters can be classified into 
two categories: IIa) CSS features for histogram description and IIb) features describing image organization, like 
the clusters’ voxel count or volume fraction. As examples for category IIa), Pitre-Champagnat et al. matched 
histological measures of the mean vessel density within multiple ROI to the mean area under the curve extracted 
from DCE-US derived parametric maps [10], and Longo et al. evaluated CSS from the pharmacokinetic model 
parameters Ktrans and vp in multiple clusters to assess tumor response to therapy [11]. As an example for category 
IIb), Andersen et al. associated the volume fraction of clusters from Ktrans and ve maps with local tumor control 
[12]. 

Here we present a new method for quantification of tumor microvasculature heterogeneity. This method is a 
combination of the previous approaches and is based on the analysis of tumor sub-regions with a specific focus on 
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the quantification of the spatial organization complexity of these sub-regions, quantified by features we called 
intratumoral complexity features (ICF). Our method was applied to DCE-MRI derived 3D Ktrans parametric maps 
acquired on experimental tumors in mice during longitudinal follow-up with or without anti-angiogenic therapy. 
These parametric maps depict tissue perfusion and capillary permeability, and their heterogeneity is therefore 
related to microvascular heterogeneity. The dataset, considered as a test dataset for our method, had been 
previously acquired during a separate methodological study [13]. More specifically, the aim of the present study 
was threefold: I) to develop a new method for heterogeneity quantification based on ICF providing potential 
imaging biomarkers of therapeutic efficacy, II) to investigate if this method, applied to a set of DCE-MRI 3D Ktrans 
parametric maps, can differentiate the treated from the control group, III) to compare ICF with CSS as well as with 
SGLM based heterogeneity features extracted from the whole tumor.  

2. MATERIALS AND METHODS 
Our method is based on the combination of two successive image processing techniques, clustering and ICF 
extraction, and its schematic overview is given in Fig.1. First (2.1), the clustering process was applied to parametric 
maps to highlight voxel clusters with similar Ktrans values, thus corresponding to tissues with similar perfusion and 
capillary permeability. Second (2.2), features were extracted from each cluster after binarization to quantify its 
complexity and thereby the spatial heterogeneity of corresponding tumor sub-regions. These features were 
independent of the voxels' Ktrans values. The method was retrospectively applied to data originating from a previous 
study [13]. These data correspond to Ktrans parametric maps of manually segmented entire tumor volumes, hereafter 
termed ROI. Main data characteristics and the MRI acquisition technique (described previously [13, 14]) are 
summarized in section 2.3. 

2.1. Image Clustering 

The K-means algorithm [15] was used for the clustering process. K-means randomly selects k voxels as cluster 
centers, then assigns each voxel of the ROI to the cluster with lowest quadratic distance between voxel and cluster 
center values. After assigning all voxels within the ROI to a cluster, each cluster center is redefined as the mean 
value of all voxels belonging to the cluster. The process is repeated until convergence, which is reached when the 
center of each cluster does not change from one iteration to the next. Prior to the clustering process, the number of 
clusters k, which is the hyper-parameter for K-means, was optimized with the procedure mentioned in [12] and 
described in [16]. The optimization compares the mean intra-cluster distance (MICD) and the inter-cluster 
minimum distance (ICMD) after the clustering process. MICD and ICMD respectively decreases and increases 
when increasing the number of clusters. The optimal number of clusters is the one associated to the minimum 
value of the sum of MICD and ICMD normalized to their respective maximum value. This optimization process 
allows to select the number of clusters with the best compromise between a low intra-cluster variance and a large 
inter-cluster distance. It was run 30 times for each number of clusters from k=2 to 8 on every Ktrans map, and the 
final number of clusters was the one with the highest appearance rate among all maps. Finally, each parametric 
map was submitted 30 times to the clustering process, to avoid falling into local minima, and the resulting cluster 
centers were those with the maximum appearance rate among the 30 computations. The clustering process was 
performed in MATLAB (The MathWorks Inc., Natick, MA, USA). 

2.2. Features extraction and selection 

To describe for each cluster the complexity of spatial organization, heterogeneity related ICF were computed. ICF 
were selected based on the definition of spatial heterogeneity of a categorical map by Li and Reynolds, stating that 
heterogeneity can be defined as the complexity of the patches (i.e. objects) composing the categorical map, defined 
by their configuration and composition [17]. Each of the k clusters was converted into a binary image (categorical 
map with two levels) and two ICF were computed to describe its complexity: the number of objects, computed 
with a 6-connected component analysis (corresponding to the voxel’s faces), and the volume fraction of the cluster 
with respect to the volume of the ROI. The number of objects describes the spatial heterogeneity of a given cluster. 
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A high number of objects corresponds to a cluster split into several parts within the ROI, whereas a low number 
of objects indicates that the cluster is spatially gathered, thus representing low spatial heterogeneity. The volume 
fraction defines the contribution of the cluster’s related heterogeneity to the overall degree of tumor heterogeneity. 
Four cases can be distinguished and are summarized in Table. 1. All in all, a total of k clusters × 2 features was 
extracted using a MATLAB algorithm.  

These ICF were compared to TF, i.e. second order statistical features, evaluated over the whole 3D tumor ROI. 
Amongst available features, our attention was focused on those being specifically related to spatial heterogeneity. 
The following 6 TF were extracted from the gray-level co-occurrence matrix (GLCM): Homogeneity, Energy, 
Contrast, Correlation, Entropy, Dissimilarity. LIFEx open access software was used for this analysis, and feature 
extraction process and mathematical definitions are described in more detail in the software documentation 
(http://www.lifex.soft.org , Orsay, France, [18]). Feature extraction was performed with the following 
computational parameter settings: number of gray levels 256, absolute intensity rescaling with a maximum value 
of Ktrans = 0.8 min-1 corresponding to the overall maximum Ktrans value amongst all available parametric maps. 

Moreover, CSS were used to describe the distributions of the Ktrans values both for 3D tumor ROI and within each 
cluster. Mean and median values, as well as the volume, were computed over the 3D tumor ROI and over the 
clusters. Mean and median highlights global differences in perfusion and permeability distribution patterns. The 
whole tumor volume was used as a common biomarker for treatment.  

Finally, correlation between all individual features was assessed. They were considered to be correlated for Pearson 
correlation coefficient ≥ 0.95. In each group of correlated features only one was kept for further analysis. 

2.3. Dataset properties 

Investigated data originated from a previous study [13]. Main properties of the dataset and the data acquisition 
protocol are summarized hereafter. Data had been acquired on 15 male swiss nude mice carrying a human 
colorectal tumor xenograft (TC302, Institut Curie, France) subcutaneously implanted at the abdominal level. 
Animals had been treated for 10 days by single oral administration of Sunitinib® (50 mg/kg, n=9) or vehicle only 
solution (n=6). Mice underwent DCE-MRI immediately prior to (day 1) and at day 4 after therapy initiation. DCE-
MRI experiments had been carried out on a 4.7 T small animal MRI system (Bruker, Biospin, Germany) using the 
previously described radial 3D DCE-MRI technique RETIA [14], with a home built quadrature birdcage probe 
(D=35 mm, l=50 mm). Animals had been anesthetized with isoflurane (AErrane®, Baxter, France) and the body 
temperature had been stabilized. For localization purpose, pre-contrast high-resolution images had been acquired 
with the same 3D FOV as for radial DCE-MRI covering the whole tumor (respiratory triggered multi-slice spin 
echo sequence TR~1s, TE = 10.7 ms, matrix = 128 × 128, slice thickness = 0.47 mm, 64 slices). An experimental 
medium molecular weight contrast agent P846 (3.5 kDa, Guerbet, France) had been injected at a dose of 0.089 
mmol/kg (injection rate 600 µL/min, injected volume 200 µL). During DCE-MRI acquisition, 15 3D datasets 
(tumor) and 960 2D datasets (Arterial Input Function (AIF) measured on a single slice positioned on the heart) had 
been acquired continuously and simultaneously including one 3D pre-contrast image (64 2D pre contrast images). 
Main 3D parameters were TE1 = 0.9 ms, ∆TE = 1.11 ms, 10 echoes, matrix = 64×64×64, FOV = 30 mm × 30 mm 
× 30 mm, 64 readout points, 4096 projections, temporal resolution = 2 min. Main 2D parameters were TE1 = 1.9 
ms, ∆TE = 1.11 ms, 10 echoes, matrix = 64×64, FOV = 30 mm × 30 mm, slice thickness = 2 mm, 64 readout 
points, 64 projections, temporal resolution = 2 s, TR = 31 ms. Images had been reconstructed using a C++ standard 
regridding algorithm [14, 19]. Sliding window reconstruction had been performed for 3D data providing a virtual 
temporal resolution of 30 seconds. CA concentrations in voxels (tumor) or AIF-ROI (heart) had been estimated 
from R2* corrected R1(t) using r1 = 15 s-1mM-1. AIF time constants had been measured by fitting a biexponential 
decay to the concentration time-curve. Ktrans values had been computed voxel wise using the Tofts-Kermode 
pharmacokinetic model [20]. The process of reconstructing Ktrans maps produced not-a-number (NaN) voxels. NaN 
voxels were generated when fitting results did not fall in a physical range or in the case of fit failures due to poor 
signal to noise ratio and/or lack of R1 increase [14]. The mean fraction of NaN voxels was 23.8 ± 13.2 %. They 
were excluded from further analysis. The entire tumor ROI were manually segmented on the high-resolution spin 
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echo images and then transferred to the Ktrans maps. Previous CSS analyses highlighted a significant decrease of 
median Ktrans between day 1 and day 4 in the treated group [13]. 

2.4. Statistical Analysis 

Selected features were analyzed individually to characterize their behavior regarding three comparisons: (i) 
evolution within the control group between the examinations at day 1 and day 4; (ii) evolution within the treated 
group between the examinations pre- and post-treatment; (iii) evolution differences between the two groups. For 
(i) and (ii), the feature values pre- (day 1) and post-treatment (day 4) were analyzed using a Wilcoxon paired test. 
For (iii), feature differences were computed between post- and pre-treatment, then analyzed using a Wilcoxon 
unpaired test. Resulting p-values ≤ 0.05 were considered demonstrating statistically significant differences. A 
correction for multiple comparisons was applied to all selected features using the Benjamini-Hochberg procedure. 
The false discovery rate (FDR) was set to 0.05. Analyses were conducted with R software (R Core Team, 2019). 

3. RESULTS 
3.1. Clustering 

The optimization process resulted in an optimal number of k = 4 clusters per parametric map. Table 2 represents 
the normalized sums of normalized MICD and ICMD and shows that 4 clusters were the best compromise between 
low intra-cluster variance and high inter-cluster distance. Clusters were numbered #1 to #4 in ascending order of 
mean Ktrans with mean centroids over the whole dataset of 0.8, 2.2, 4.4 and 9.9 (10-2 min -1). Fig.2 shows the 
clustering result for a single tumor slice. It illustrates how the clusters were used, either as binary images to 
compute ICF, or as masks for selecting sub-populations of voxels and extract CSS.  

3.2. Visual inspection of heterogeneity evolution 

Visual inspection of 2D maps allowed qualitative evaluation of heterogeneity evolution in the images. As 
illustrated in Fig.3 on representative slices, tumor Ktrans heterogeneity evolves over the 4 days follow-up period. 
While heterogeneity appears to decrease in the treated mouse, with an evolution from clusters with intermediate 
(#2 and #3) towards low Ktrans values (#1), this is not the case for the control mouse, for which cluster organization 
complexity increases. Our method intended to quantify these spatial heterogeneity modifications within the 
clusters through ICF extraction. 

3.3. Feature extraction and selection 

A total of 29 features were computed from each parametric map: 8 ICF were computed with our method after the 
clustering process; 15 CSS were extracted from the clusters (4 clusters × 3 features) and from the whole tumor 
ROI (3 features); 6 GLCM were extracted from the whole tumor ROI.  

Feature correlations were evaluated to define a limited number of independent features. None of the ICF were 
correlated with each other. Means and medians were correlated for each cluster and for the ROI, therefore, only 
the medians were kept, except the median of cluster #1 which was correlated to the ROI median. Amongst GLCM 
features, contrast and entropy were respectively correlated to dissimilarity and homogeneity and therefore not 
selected.  

As a result, a total of 21 features were kept for further analysis: 8 ICF (number of objects and volume fraction of 
each cluster), 4 GLCM features (homogeneity, energy, correlation, and dissimilarity), and 9 CSS (median and 
volume of each cluster and of the ROI – except median of cluster #1). We checked that these 21 features were not 
correlated with each other.  

3.4. Statistical Analysis 
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Wilcoxon tests were performed individually on the 21 features and results with p-value ≤ 0.1 are summarized in 
Tables 3 to 5. Tables 3 and 4 report mean and standard error values respectively for the control group at day 1 and 
day 4 and for the treated group for pre- and post-treatment examinations. Statistical significance of the difference 
between day 1 and day 4 values as well as the adjusted p-values (q-values) after Benjamini-Hochberg correction 
are also reported. Table 5 reports the delta features (post – pre-treatment) for control and treated group and 
statistical analysis between these groups. In Tables 3 to 5, features that remained significant after correction with 
FDR=0.05, are labelled with “*”. Feature values were similar for the control and the treated group before treatment 
initiation with no significant differences. Also, within the control group, no feature demonstrated significant 
differences between day 1 and day 4 (Table 3).  

Amongst the ICF evaluated at cluster-level, after correction for multiple comparisons, 4 demonstrated significant 
differences between pre- and post-treatment evaluations within the treated group (Table 4): number of objects in 
cluster #3 (p=0.0039) and volume fractions in clusters #1 (p=0.0039), #2 (p=0.0039), #3 (p=0.0117). 3 
demonstrated significant differences in their delta-values between the two groups (Table 5): delta-number of 
objects in cluster #3 (p=0.0016), and delta-volume fractions in clusters #1 (p=0.0048), #2 (p=0.0008). Amongst 
the 4 GLCM features, after correction for multiple comparisons none presented significant differences within the 
treated group, neither between both groups. Amongst the 9 CSS, after correction for multiple comparisons, 3 
demonstrated significant differences within the treated group (Table 4): volumes in clusters #2 (p=0.0039), #3 
(p=0.0039) and median in ROI (p=0.0078). 3 demonstrated significant differences between the two groups (Table 
5): delta volumes in clusters #2 (p=0.0004), #3 (p=0.012) and delta volume in ROI (p=0.0028). Features from 
Table 5 that were statistically discriminant after correction between both groups are represented as boxplot in 
Fig.4. 

 

 

4. DISCUSSION 
In oncology, a growing interest for targeted therapies and particularly for anti-angiogenic drugs led to a growing 
number of studies assessing tumor microvasculature and vascular heterogeneity due to the ability of these therapies 
to normalize and reorganize microvascular structure. Nonetheless, in clinical practice, tumors are still assessed 
using morphological criteria without considering the modification of heterogeneity patterns which may arise 
earlier during anti-angiogenic treatments. Some studies tried to exploit tumor heterogeneity using texture analysis 
to assess therapeutic response [21–23], but none of these approaches succeeded yet to reach use in clinical practice, 
mainly because of a lack of standardization and guidelines [24]. 

In this study, we developed a new method for assessing intratumoral heterogeneity, and we described a first 
application to the longitudinal follow-up of microvascular heterogeneity on an experimental tumor model. The 
method associates a clustering process and the extraction of features, we called ICF, to identify and quantify 
different levels of complexity of intratumoral heterogeneity. The development of this method was guided by the 
following strategy: First, processed images should be parametric maps. This allows to directly interpret 
heterogeneity of the parametric maps in terms of physiological heterogeneity. Second, a non-supervised clustering 
process was applied to these parametric maps. This procedure allows to subdivide the tumor into several functional 
sub-regions characterized by the measured physiological parameter levels. It has indeed been suggested that, in 
some clinical scenarios, measurements performed in tumor sub-regions may provide more useful biomarkers than 
measurements averaged over the whole tumor [25]. Third, the features used to quantify heterogeneity should 
provide a more intuitive spatial representation (qualitatively cross-checkable by visual inspection of 2D images) 
than second order statistical analysis approaches in texture analysis. 

According to this strategy, the method was applied to a set of 3D DCE-MRI Ktrans parametric maps, previously 
acquired in mice during a longitudinal study. Heterogeneity related features extracted from DCE-MRI parametric 
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maps are of interest, as they should monitor treatment effects by assessing microvasculature modifications. 
Information from these features is expected to be particularly useful in the absence of morphological changes. In 
this study, heterogeneity was assessed by ICF. They were compared to GLCM features describing heterogeneity 
over the whole tumor ROI and to classical non-spatial CSS features. 

The ability of ICF, GLCM, and CSS features to monitor therapeutic efficacy was evaluated by the following 
comparisons: i) day 1 vs day 4 within the control group, ii) pre- (day 1) vs post-treatment (day 4) within the treated 
group, and iii) evolution differences for the control vs the treated group. It was checked that all features had similar 
values in the treated and control groups at day 1 confirming similar initial status of both groups. 

Statistical analysis showed that several intratumoral features extracted from the clusters were able to monitor a 
therapy effect. Whereas no feature significantly changed for the control group (comparison (i)), 6 features 
significantly changed for the treated group (4 ICF, 2 CSS - comparison (ii)). Among these, 5 also significantly 
differentiated the two groups. (3 ICF, 2 CSS – comparison (iii)). 

On the contrary, heterogeneity related GLCM features extracted from the whole tumor ROI didn't change 
significantly for either comparison. Therefore, the presented method seems to be more sensitive than classical 
texture analysis for monitoring therapy effects under our experimental conditions. 

Median Ktrans measured over the whole tumor ROI decreased for the treated group (comparison (ii)), as previously 
described [13]. This result is compatible with feature evolution at the cluster level: an increase of the volume 
fraction in cluster #1, representing the lowest Ktrans values, associated to a decrease of the volume fractions in 
clusters #2 and #3, representing intermediate Ktrans values. These findings indicate a shift of tumor 
microvasculature characteristics to lower perfusion and capillary permeability, as may be expected under anti-
angiogenic therapy. 

It has to be noted that, even though the tumor volume tends to decrease for the treated group at day 4 of treatment, 
this change is not significant in our study. Whole tumor volume is generally used as a reference biomarker in 
oncology. However, in clinical practice during anti-angiogenic treatment, morphological evaluation of tumors 
based on the RECIST criterion has been shown to significantly underestimate tumor response to treatment [26]. 
For example, some studies showed that no tumor size modification was observed during the course of treatment 
for respectively 50 to 75% of patients [27, 28]. This is mainly because vascular modifications often occur before 
any size reduction of the tumor. Our preclinical results are in line with these clinical findings. 

As mentioned above, concerning heterogeneity description, in our study only ICF were demonstrating significant 
differences for comparisons (ii) and (iii) after BH correction. More precisely, 2 GLCM features with p < 0.05 
(Energy, comparison (ii); Correlation, comparison (iii)) were discarded after BH correction. In our study BH 
correction was applied with FDR = 0.05 in order to discard false positives in the case of multi-testing. Nevertheless, 
the use of a correction for multi-testing is still a topic of discussion as some authors advise not to use any correction 
when a study is exploratory with unplanned comparisons being considered as potential ones for further 
investigation [29]. Further studies will be necessary to compare (or to combine) ICF and GLCM features as 
potential imaging biomarkers related to tumor microvascular heterogeneity. 

Evolution of ICF can be relatively easily interpreted in terms of microvascular properties. Indeed, for comparison 
(ii) within the treated group, observed ICF evolutions can be considered indicative of Ktrans map homogenization: 
Volume fraction for cluster #1, which had the smallest and also constant number of objects amongst clusters #1 to 
#3, increased by 37%, and the number of objects in cluster #3 was reduced by 43 %. Volume fraction of cluster 
#2, the most heterogeneous one, decreased by 38% (100-100*22.5/35.9) with a stable number of objects. Thus, by 
considering clusters #1 and #3, a total of 76.1% of the analyzed tumor volume can be considered more homogenous 
in terms of perfusion and capillary permeability with lower Ktrans at day 4 post-treatment, which, again, may be 
expected under anti-angiogenic therapy. 
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Furthermore, it is noteworthy that, for the control group, while no ICF demonstrated a significant evolution 
between day 1 and day 4, numbers of objects in all clusters tended to increase with volume fractions staying nearly 
identical. This observation is compatible with an overall increase of microvascular heterogeneity, which may be 
expected in growing tumors with neo-angiogenic activity. 

Results also indicated that none of the significant features were found within the cluster #4 with highest Ktrans 

values, which may be considered to be "hotspots". This is in contrast with previous studies which focused on such 
"hotspots" considering they were bearing more information than values averaged over the whole tumor. For 
example, a greater range of Ktrans changes was identified by Hayes et al. in these "hotspots" when compared to the 
tumor ROI [30]. The difference with respect to our results may be explained by the definition of the "hotspots". 
While they were defined as the 75th percentile of the tumor histogram by Hayes et al., our non-supervised clustering 
approach resulted in "hotspot" clusters with few voxels and volume fractions around only 2%. 

From a technical point of view, the main characteristics and advantages of the presented approach appear to be the 
following: 

Our approach quantifies heterogeneity by the description of tumor sub-regions complexity, related, in our study, 
to Ktrans map heterogeneity. This is in contrast with previous studies who assessed either the complexity of the 
tumor as a whole [3], or only the histogram distribution in tumor sub-regions without considering spatial 
distribution patterns [11]. 

Moreover, a potential specific advantage comes from the use of ICF extracted from binary images. As they do not 
depend on absolute voxel values after the non-supervised clustering process, they should be less sensitive to 
acquisition related variations or bias in parameter quantitation (e.g. due to poor AIF quality or pre-contrast T1 
mapping in the case of DCE-MRI). This should be of advantage for the setup of multicentric studies where 
measurement results need to be independent of the MRI scanner and protocol. Furthermore, in this context, it is 
noteworthy that the only user defined computational parameter for the proposed method is the "connectivity" 
parameter set during computation of object numbers within the clusters. We checked, that, when varying 
connectivity from 6 (all voxel faces), as used in the study, to 18 (6 faces and 12 edges), results still discriminated 
both groups of mice with the same significant features. However, this was no longer the case for the maximal 3D 
connectivity of 26 (6 faces, 12 edges and 8 vertices). Indeed, in this latter case, all voxels are merged into few 
objects thus no longer capturing image heterogeneity. Consequently, this connectivity should be avoided using our 
method. 

On the contrary, in the case of texture analysis, TF depend on several user-defined computational parameters and 
settings: number of bins for discretization, size of bins, absolute (user defined min, max values) or relative (ROI 
defined min, max values) intensity rescaling. These computational parameters and settings may also be handled 
differently by different software, making standardization a more complicated task [31]. 

Consequently, when analyzing data acquired with different MRI systems and protocols, our approach may be 
expected to be more robust in comparison to texture analysis. This aspect will be addressed in future studies. 

In conclusion, in this preclinical feasibility study, we presented a new method for image heterogeneity 
analysis, and we showed that, when applied to DCE-MRI derived Ktrans parametric maps, this method may 
provide potential imaging biomarkers for anti-angiogenic therapy assessment in agreement with the 
consensus on Imaging Biomarkers [7]. The method is expected to have advantages with respect to texture 
analysis based methods regarding interpretability of results and setup of standardized image analysis 
protocols. Further studies applying this method to different parametric maps across multiple imaging modalities 
will be needed to evaluate its usefulness in a clinical setting for treatment monitoring or, more generally, tissue 
characterization. 
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 Number of Objects 

Low High 

Vo
lu

m
e 

F r
ac

tio
n 

Low 

Voxels are gathered in one or a few areas and 
thus are homogeneous both by their value 
and their spatial organization. With a small 
volume fraction, their 
contribution to global tumor 
homogeneity is small 

Example: 10 objects, 10% volume 
fraction 

Voxel cluster is shattered through the tumor 
but does not occupy an important fraction of the 
tumor thus its impact on global tumor 
heterogeneity is small 

Example: 1000 objects, 10 % volume 
fraction 

High 

Voxels are gathered in one or a few areas and 
thus are homogeneous both by their value 
and their spatial organization. With a large 
volume fraction, their contribution to global 
tumor homogeneity is 
important 

Example: 10 objects, 60% volume 
fraction 

Voxel cluster is shattered through the tumor 
and its important occupation of the tumor volume 
leads to an important contribution to global 
tumor heterogeneity 

 

Example: 1000 objects, 60% volume 
fraction 

Table 1: Interpretation of Intratumoral Complexity Features (ICF) combinations to describe tumor 
heterogeneity along with illustration by corresponding simulated image examples (single cluster) 

 

 

 

 

Table 2: Sum of normalized [0, 1] MICD and ICMD for each number of clusters using K-means algorithm. 
In bold, the optimal number of clusters 

Number of clusters 2 3 4 5 6 7 8 

      MICD + ICMD 1.00 0.81 0.73 0.76 0.81 0.89 1.00 
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Table 3: Features mean and standard-error values for the control group at day 1 and day 4 and p-values 
of Wilcoxon paired tests comparing the two measurements. P-values greater than 0.1 and q-values for 
non-significant features are not reported 
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Table 4: Features mean and standard-error values for the treated group pre-treatment (day 1) and post-
treatment (day 4) and p-values of Wilcoxon paired tests comparing the two measurements. P-values 
greater than 0.1 are not reported. Q-values are reported for features that remained significant after 
Benjamini-Hochberg correction and these features are labeled with “*” 
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Table 5: Delta-features (post-treatment minus pre-treatment) mean and standard-error values for the 
control and the treated group and p-values of Wilcoxon unpaired tests between control and treated 
groups. P-values greater than 0.1 are not reported. Q-values are reported for features that remained 
significant after Benjamini-Hochberg correction and these features are labeled with “*” 
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Fig. 1: Schematic overview of the method proposed in this study to investigate intratumoral heterogeneity 
from parametric maps. The method is a combination of clustering and extraction of complexity features 
(ICF). This method was compared to heterogeneity features from the gray-level co-occurrence matrix 
(GLCM) and to conventional summary statistics (CSS) 
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Fig. 2: Single slice illustrating the cluster extraction and masking process – Top row: Ktrans map and 
resulting cluster map; Bottom row: The four clusters in ascending order of mean Ktrans values, isolated 
and superimposed on the Ktrans map 

Fig. 3: Single slices illustrating Ktrans maps (top row) and cluster maps (bottom row) evolution between day 
1 and day 4 for one treated and for one control mouse. Centroids’ positions for the cluster maps are 
indicated on colorbars 
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Figure 4: Individual boxplots for features that significantly differentiated control and treated mice. Features 
are represented by their difference values (delta) between post-treatment (day 4) and pre-treatment (day 
1). ICF = Intratumoral Complexity Feature, CSS = Conventional Summary Statistics 


