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Abstract

This paper proposes a new way of handling the inconsistency of a knowledge base when answering
to a query about the validity of a formula. The idea is inspired by human behavior in front of
inconsistency, namely, try to never encounter it. For this purpose, we encode a kind of compart-
mentalization of the working memory. More precisely, given a query and a potentially inconsistent
knowledge base, called long term memory, our system only loads in working memory the consis-
tent knowledge which is the most related to the query. We position this system with regard to a
major reference in the field, Brewka’s preferred subtheories, and study its efficiency by providing
complexity and experimental results.

keywords: Inconsistency handling, SAT, Bounded rationality, Preferred subtheories

1 Introduction

How do humans reason in the presence of contradictory information? Some psychologists [17]
answer that they inhibit counter-examples to come to their mind. Translating this phenomena
inside a framework that uses the distinction done by [4] between long-term (LTM) and working
memory (WM) where WM is conceived as the “activated” part of the long-term memory (LTM),
[5] studies how memory activation is produced or inhibited. Findings of [18] corroborate that WM -
resources are used for retrieval and inhibition of stored counter-examples and for avoiding conflicts
with the logical validity of a reasoning problem [18]. Inspired by the way inconsistency seems to
be handled by human beings we propose a model that tries to reason with two datasets: a first
potentially inconsistent one representing the LTM and a second consistent one for representing
the WM .

Handling of inconsistent knowledge bases is a thoroughly studied subject in computer science,
and in particular in the domains of Databases (with Repairs [24], Consistent Query Answering
[15]) and Knowledge Representation and Reasoning (SAT, repairs, revision, argumentation), see
chapters [1, 20]. In general, such an inconsistency is addressed by either repairing directly the
knowledge base, which typically lead to loss of information [19, 8]), or by considering that the
query is entailed if it is in the intersection of all the minimal repairs (or maximal maxi-consistent
subbases). This last approach, while avoiding the loss of information, is hampered by the com-
putational price required to compute all the repairs or subbases. Another family of approaches
for inconsistency handling, called paraconsistent logic, is outside the scope of this paper since
these approaches either rely on extra-information (e.g. possibilistic logic [21]) or are based on
non-classical logical axioms (see the surveys [3, 12]).

∗This is a draft version the paper has been accepted in NMR 2021: 19th International Workshop on Non-
Monotonic Reasoning November 3-5, 2021, Hanoi, Vietnam (VIRTUALLY)
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In this paper, we use ideas from psychology as an inspiration to provide a system able to
handle inconsistent knowledge base without needing to compute all the maximally consistent
subbases. Indeed, the notion of WM allows for the computation of one “repair” in the sense
that only relevant and consistent pieces of information from the knowledge base are activated,
effectively compartmentalizing the inconsistency. The paper will present a way of recursively
selecting which pieces should be activated based on some heuristic, and how it will affect the
reasoning, in complexity and in execution time, notably when the WM is restricted in size to
account for bounded rationality [37].

We are in particular interested in the impact of successive querying in this kind of context
where results might differ due to the way the size-limited subbase is built. In order to experiment
our approach, we will place ourselves in the context of SAT. Indeed, SAT is a deeply studied
domain with powerful solvers (see the competition [25]). On that topic, it should be noted that
within the SAT domain, handling inconsistency can be done thanks to (weighted) MAXSAT [30].
While this is a relevant approach, it needs either the removal cost of each clause, which needs to
be elicited, or to consider that every clause is as relevant to the query as any other. In this work,
we would like to study another, somehow close, way where the selection of clauses is based on
their closeness to a given query.

The paper is organized as follows: we start by recalling inconsistency handling classical ap-
proaches, then we describe the Working Memory approach. In the last section we demonstrate
theoretical results about this approach and study its complexity, then we describe the experi-
ments that were conducted on several benchmarks. We conclude by a discussion about MAXSAT
and about the non-monotonic properties of the inference relation based on the Working Memory
approach.

2 Background on selection-based inconsistency handling

Notations: we consider a propositional logical language L containing formulas denoted by lower
case Greek letters, based on a vocabulary V of variables denoted by Latin lower case letters.
Negation, conjunction, disjunction, material implication, contradiction and classical inference are
denoted respectively by ¬, ∧, ∨, →, ⊥ and `. A CNF formula is a conjunction of clauses, a clause
is a disjunction of literals, a literal is a variable or its negation. Abusing notation, clauses are
assimilated to sets of variables when using the two set operators ∈ and ∩ (for membership and
intersection). Lists of elements are represented with square brackets, and :: is the operator s.t.
e::L is the new list formed by the element e followed by the elements of L.

In this paper we are going to use finite knowledge bases defined as follows:

Definition 1 (Knowledge base). A knowledge base is a finite set of formulas of L , considered as
the conjunction of its elements.

One of the best known approach to cope with inconsistency is the one of Rescher and Manor
[36]: it is based on the computation of the set of maximal consistent subsets of the belief base,
then a formula is accepted as a consequence of the base if it can be classically inferred from every
maximal consistent subset (or MSS for maximum satisfiable subset). This idea has been refined in
the preferred subtheory approach of [10] where the knowledge base is divided into several subsets
according to a given reliability level. We will see in Section 3.2 that our approach actually allows
to dynamically compute this reliability levels with respect to a given query.

Definition 2 (Preferred subtheory [10]). Given a tuple T = (T1, . . . , TN ) of sets of formulas1 of
L , S = S1 ∪ · · · ∪ SN is a preferred subtheory of T iff for all k, (1 < k < N) S1 ∪ · · · ∪ Sk is a
maximal consistent subset of T1 ∪ · · · ∪ Tk.

1Preferred subtheories are originally defined of a first-order language; in this paper, we will restrict this defining
by using a propositional language.
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In the words of Brewka: “in order to obtain a preferred subtheory of T we have to start with
any maximal consistent subset of T1, add as many formulas from T2 as consistently can be added
(in any possible way), and continue this process for T3, . . . , TN”.

Computing preferred subtheories requires some kind of inconsistency checking; in this paper,
we will make use of the notion of minimal unsatisfiable subsets2.

Definition 3 (MUS and MSS [31]). A subset S of clauses of a base B is a minimal unsatisfiable
subset (MUS) if S is inconsistent and for all c ∈ S, S \ {c} is consistent.

A subset S ⊆ B is a maximal satisfiable subset MSS if S is consistent and for all c ∈ B \ S,
S ∪ c is inconsistent.

Example 1. Let us consider the following knowledge base LTM (in CNF form):

LTM =

c1︷ ︸︸ ︷
(a ∨ ¬d)∧

c2︷︸︸︷
¬a ∧

c3︷ ︸︸ ︷
(¬a ∨ b ∨ d)∧

c4︷︸︸︷
¬b ∧

c5︷ ︸︸ ︷
(¬a ∨ c)∧

c6︷︸︸︷
¬c ∧

c7︷︸︸︷
d

There are two MUSes of LTM : {c1, c2, c7} and {c1, c5, c6, c7}. There are four MSSes of
LTM : {c1, c2, c3, c4, c5, c6}, {c1, c3, c4, c5, c7}, {c1, c3, c4, c6, c7} and {c2, c3, c4, c5, c6, c7}.

When the user has information about the formulas that are more important/sure (called “pre-
ferred” in [10]) then the selection can be done among the preferred subtheories (which according to
[10] are maximal consistent subbases of the knowledge base in which the most important formulas
are primarily chosen). Nebel in [33] also proposes to use a syntax based approach that he calls
“epistemic relevance”, which is a complete preorder on all the formulas that are consequences of
the beliefs. This relevance/preference information may come from the confidence given into the
different sources of the belief base, it is then considered as exogeneous extra information about
the beliefs. Another kind of approach takes profit from the syntax of the belief base to discover
the strength of each belief, this meta information is then endogeneous with respect to the belief
base: for instance System Z is able to rank automatically the beliefs based on their specificity [35].

When a user wants to conserve the belief base without forcing consistency, two ways can be
adopted: either reason on ALL the most interesting subbases (for instance, reason on Brewska’s
preferred subtheories [10], providing that rankings on beliefs are available, or simply maximal
consistent subbases when no extra-information is available) or select only ONE preferred consistent
subbase and reason with it [7, 6]. In both cases, the whole initial base is preserved, but the
reasoning process is made on one (or several) of its consistent part(s) (called “repair(s)” in Query
Answering community [24, 15]).

Other, somewhat different, approaches for reasoning under inconsistency exist; for instance,
modifying the beliefs by adding premises in order to specify better the context in which some rules
should not be fired [19, 22], somehow coming back to the old idea of circumscription [32].

3 Working Memory

In this section we are going to present a way to assess a CNF formula called the query, denoted ϕ,
w.r.t. a potentially inconsistent finite CNF knowledge base called LTM (for long term memory).
This is done by checking the consistency of the formula w.r.t. a subset of the LTM called WM
(for working memory).

More precisely, we propose a process that: 1) links the LTM clauses together based on the
number of common literals (Section 3.1), 2) uses these links to build a WM that is relevant for the
query ϕ to assess, where relevance is understood in terms of common variables (Section 3.2) and
3) actually checks the status of the query (or queries, Section 3.3).

2Please note that our approach is agnostic on that point and might use different inconsistency checking mecha-
nisms. That being said, while computing MUS is computationally expensive, they need to be computed just once,
which would not potentially be the case with other inconsistency checking methods where the computation would
be needed with each newly considered clauses.
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Algorithm 1: LTM preprocessing(LTM)

Input: LTM in Dimacs CNF format
Output: Var2Cl: dict. of clauses associated with var; maxCom: max nb of common vars in 2 clauses;

AssocCl: dictionary of associated clauses
Var2Cl ← empty dictionary
for each clause c in LTM do for each v in c do Var2Cl(v)←Var2Cl(v) ∪ {c}
maxCom ← 0; AssocCL ← empty dictionary

for each (c1,c2) in LTM2 s.t. c1 ∩ c2 ≥ 1 do
AssocCl(c1) ← (c2,c1 ∩ c2) :: AssocCl(c1)
if maxCom < c1 ∩ c2 then

maxCom ← c1 ∩ c2
return (Var2Cl, maxCom, AssocCl)

Algorithm 2: Query preprocessing(ϕ,LTM)

Input: ϕ: a query in CNF format; LTM: set of formulas in CNF format
Output: QAssocV: dict. of common var of each LTM clause w.r.t. ϕ
QAssocV ← empty dictionary of clauses
for each clause c in LTM do

for each clause i in ϕ do
comV ← i ∩ c // common vars between i and c

if comV 6= ∅ then
QAssocV(c) ← QAssocV(c) ∪ comV

return (QAssocV)

3.1 Preprocessing on LTM

This first step of preprocessing on LTM extracts the information required to build a consistent
and relevant WM . More precisely, it consists in creating a dictionary AssocCl that associates to
each clause c the list of clauses that contains at least one common variable with c together with
the number of common variables:

AssocCl(c) = [(c′, nbV ) | c′ ∈ LTM \ {c},
nbV = |c ∩ c′| s.t.

nbV > 0]

This is done by Algorithm 1 which also computes the maximum number of common variables
maxCom between any pair of clauses and the dictionary V ar2Cl which maps each variable v to
the set V ar2Cl(v) of clauses in which it appears:

V ar2Cl(v) = {c | c ∈ LTM s.t. v ∈ c}

Please note that these association tables do not need to be recomputed for each query (but
they can be updated).

Example 2. In Example 1, V ar2Cl(a) = {c1, c2, c3, c5} and table AssocCl is: AssocCl(c1)
= [(c2, 1), (c3, 2), (c5, 1), (c7, 1)], AssocCl(c2) = [c1, 1), (c3, 1), (c5, 1)], AssocCl(c3) = [(c1, 2),
(c2, 1), (c4, 1), (c5, 1), (c7, 1)], AssocCl(c4) = [(c3, 1)], AssocCl(c5) = [(c1, 1), (c2, 1), (c3, 1),
(c6, 1)], AssocCl(c6) = [(c5, 1)], AssocCl(c7) = [(c1, 1), (c3, 1)] and maxCom = 2.

3.2 Building a consistent WM for assessing ϕ

Given a query ϕ and a LTM, Algorithm 2 builds the dictionary QAssocV that associates to each
clause c of the LTM the set QAssocV (c) of variables that c has in common with ϕ:

QAssocV (c) = c ∩ ϕ
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Algorithm 3: WM download

Input: QAssocV: dict. of vars assoc. with LTM clauses; AssocCl: dict. of associated clauses
in LTM; MUS: set of MUS of LTM; m: capacity size of WM ; maxCom: max common
vars between 2 clauses

Output: new WM
/* Create a max binary heap with clauses associated with their score w.r.t. ϕ */

Queue ← empty maximal binary heap
maxScore ← 0
for each key c in QAssocV do

score(c) ← |QAssocV(c)|
if maxScore < score(c) then maxScore ← score(c)

for each key c in QAssocV do Add(Queue,(c,score(c)/maxScore))
WM ← empty set; InconsSeen ← empty set
/* Best first search algorithm */
while Queue not empty and |WM | < m do

(key,rel) ← Remove(Queue) // Removing the max element of the heap

if key /∈ WM then
if ∃mus ∈ MUS, mus ⊆ WM ∪{key} then // key is inconsistent with WM

InconsSeen← InconsSeen ∪ {key}
else // key is consistent with WM

WM ← WM ∪{key}
keyAdjacents ← AssocCl(key)
for each pair (c, s) in keyAdjacents do

if c /∈ WM and c /∈ InconsSeen then
Add(Queue, (c,rel × s/maxCom))

return (WM)

This dictionary will be used (in Algorithm 3) to start feeding the WM with clauses directly linked
to the query, since as detailed below, the score of a clause is the sum of the number of common
variables, this number is normalized by dividing it by the maximum number obtained for an entry
of the dictionary.

Example 3. Let us consider the following formula containing two clauses: ϕ = (b ∨ ¬c) ∧ d.
QAssocV (c1) = QAssocV (c7) = {d} meaning that c1 (and also c7) has the variable d in common
with ϕ. QAssocV (c3) = {b, d}, QAssocV (c4) = {b}, QAssocV (c5) = QAssocV (c6) = {c}.

We propose a best-first-search algorithm (Algorithm 3) for filling the Working Memory with
the clauses related to a query ϕ. Technically, the idea is to select the “closest” clauses w.r.t. to
ϕ, with the closeness notion defined inductively as follows: first the clauses that have a maximum
number of common variables with ϕ are inserted in a maximal binary heap3 with a percentage
of relevance to the query (the number of common variables normalized with the maximal score
maxScore, the biggest number of associated clauses). A clause c with highest relevance is then
taken out of the heap and added to the WM (if not inconsistent); its closest clauses (according
to AssocCl) c′ are added to the heap with a percentage of relevance to the query equal to the
relevance of c multiplied by its degree of relevance with c′ (number of common variables with c′

divided by maxCom the maximum of common variables between two clauses in LTM). Using
percentage and normalized score ensures that the “farther” from the query a clause is, the lower
its relevance to the query will be.

More fundamentally, Algorithm 3 presents a way to compute a relevance score which plays
a similar role as Brewka’s reliability level, with the significant difference of being dynamically
computed. Indeed, first, the set of clauses with the highest relevance to the query, i.e. with the
highest number of common variables, is selected to form the first stratum of the knowledge base
LTM1; from this stratum is extracted a set of maximally consistent clauses WM1. A new relevance
score is then computed for the remaining clauses of the LTM based on their relevance with the

3A maximal binary heap is represented by a tabular where the root is at index 1, the left child of any node i is
at index 2i and the right child is at index 2i + 1.
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clauses in WM1, essentially computing a transitive relevance to the query, and forming LTM2. This
process continues recursively until no new stratum can be formed, either because the maximal size
of the WM has been reached or because there is no relevant clause anymore.

More formally, the selection of the relevant clauses requires the notion of consistent sets of
clauses that are maximal for inclusion with the condition that they have a size under a given
bound s, defined as follows:

Definition 4 (Max-consistent for inclusion under s). S is a max-consistent subset of K for
inclusion under s ∈ N (S mcis K) iff S ⊆ K and S is consistent and |S| ≤ s and there is no S′

consistent s.t. S′ ⊆ K and |S′| ≤ s, S′ ⊃ S.

Algorithm 3 recursively collects clauses that are less and less (transitively) relevant to the
query, yielding a consistent set WM , more formally defined as follows:

Definition 5 (Working memory w.r.t. a query). Given a knowledge base LTM and a formula
ϕ (called the query), a working memory WM(LTM,ϕ,m) associated with LTM and ϕ given a
maximum size m of the working memory is recursively defined as follows:

score1(c) = |
⋃
c′∈ϕ(c′ ∩ c) |, c ∈ LTM

LTM1 = argmax c ∈ LTM
and score1(c) 6= 0

score1(c)

WM1 mcim LTM1

Given WM1, . . . ,WMk, and LTM1, . . . , LTMk and m(k) = m−
∑k
i=1 |Wi|:

• If m(k) > 0 and WMk 6= ∅ then

scorek+1(c) = max
c′∈WMk

(|c′ ∩ c| × scorek(c′)/maxCom)

where maxCom = maxc,c′∈LTM |c ∩ c′|.

LTMk+1 = argmaxc ∈ LTM \ (LTM1 · · ·LTMk)
and scorek+1(c) 6= 0

scorek+1(c)

WMk+1 mcim(k) LTMk+1

• Else WM(LTM,ϕ,m) =
⋃k
j=1WMj

As it can be seen in Definitions 4 and 5 with the notion of max-consistent subset for inclusion
under s (mcis), consistency must be maintained when building the WM . In Algorithm 3, we use
MUS to ensure consistency, more precisely, each time a new clause is added to the WM we check
whether a MUS is not a subset of the WM . The MUS of the LTM are precomputed offline thanks
to a standard algorithm (we have chosen to use the system CAMUS [31]). Note that another
technique would be to use an incremental SAT solver like GlucoseInc [2], or even just check for
consistency each time a new clause is added to the WM . The comparison, in terms of complexity
and computation time, of these different consistency handling techniques is left for future work.

Example 4. Let us consider that we want to build a WM of size m = 5 extracted from the LTM
of Example 1 for the query ϕ = (b ∨ ¬c) ∧ d. The scores of the clauses indexed in QAssocV are:
score(c1) = score(c4) = score(c5) = score(c6) = score(c7) = 1 and score(c3) = 2 (maxScore),
yielding to an initial Queue consisting in the maximal binary heap [(c3, 1); (c1, 0.5); (c4, 0.5);
(c5, 0.5); (c6, 0.5); (c7, 0.5)]. Algorithm 3 starts building a WM by removing the maximal element
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(the clause that is the most related to the query) of the heap, namely c3, and adding it to WM .
After this step, WM = {c3} and Queue = [(c7, 0.5); (c1, 0.5); (c4, 0.5); (c5, 0.5); (c6, 0.5)]4.

The clauses associated to c3 are already stored in AssocCl(c3) = {(c1, 2), (c2, 1), (c4, 1), (c5, 1),
(c7, 1)}, each of them is added to the Queue with a weight equal to the value of c3 (which equals
1) times their weight divided by maxCom (which equals 2), yielding the new Queue: [(c1, 1);
(c1, 0.5); (c7, 0.5); (c5, 0.5); (c6, 0.5); (c4, 0.5); (c2, 0.5); (c4, 0.5); (c5, 0.5); (c7, 0.5)]. Note that the
queue may contain several occurrences of the same element. Then c1 is removed from Queue and
added to the WM , afterwards c4 then c7 and c5. Finally when c2 is at the top of the heap, it cannot
be added since inconsistent with WM idem for c6. At the end WM = {c1, c3, c4, c5, c7} (which is
actually a max consistent subset of B, it is not necessarily the case that a whole MSS is obtained).
Note that due to equalities other WM are obtainable (more precisely, every subset of size 5 of any
MSS except the subsets of {c2, c3, c4, c5, c6, c7} (since c1 should be present due to its high number
of common variables with the query).

3.3 WM loading with overflow for new queries

Once a WM has been built, it is possible to evaluate the query. In particular, we will say that a
query ϕ is accepted when WM ∪ {ϕ} 6|= ⊥. Note that we used Sat4J [29] to check satisfiability,
but any other SAT solver could be used.

Example 5. Given WM={c1, c3, c4, c5, c7} with
ϕ = (b ∨ ¬c) ∧ d, we get WM ∪ {ϕ} |= ⊥.

When a new query ϕ′ arrives, the previously loaded clauses might be irrelevant, i.e. there might
be no association between the query and clauses in the WM (AssocCl ∩ QAssocV = ∅), which
prompts for the loading of other clauses. Then two cases might arise according to the room left in
the current WM (where room = m−|WM |, i.e. capacity size of the WM minus current occupation)
and to the number of clauses needed to answer query ϕ′ (needed = |WM(LTM,ϕ′,m)|):

• either the WM still has room to store the newly needed clauses: needed ≤ room, in that
case the process is the same as before,

• or the WM lacks room: needed > room then a set of old clauses (of size needed− room) is
discarded from the WM .

4 Characterization about efficiency in time and accuracy

In this section, we will study some properties of the inference relation induced by our framework
and assess it experimentally.

4.1 Theoretical results

Before getting into the details of the inference relation, we need to define the notion of cluster.

Definition 6 (Clusters). Given a set of clauses LTM , a cluster of the LTM is a set of clauses
composing a connected component of the graph whose vertices are the clauses and the edges are
relating two clauses with at least one common variable; clusters(LTM) is the set of clusters of
LTM .

Now, we are in the position to define the inference relation with regards to the WM .

Definition 7 (LTM inference). Given a LTM and a capacity size m of the WM ,

α |∼m
LTMβ is defined by WM(LTM,α,m) ` α→ β

4Removing the max element of a heap replaces it with the last leave of the tree and percolate it down to its
right place, here c7 go to the top and stays there.
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where WM(LTM,α,m) is a working memory in the sense of Definition 5 and ` is classical logic
inference.

The following proposition establishes that detecting inconsistency of the LTM with the query
ϕ by selecting a consistent subbase with no limit of size is the same as doing it with a size equal
to the size of the maximal cluster of the LTM . The proposition holds when the query ϕ is related
to only one cluster of the LTM , in other words when ϕ concerns only one domain of knowledge
(i.e., associated to only one vocabulary).

Proposition 1. Let mc = maxC∈clusters(LTM) |C|, if mc ≤ m (where m is the capacity of the
WM), and α ∈ L s.t. there is only one cluster C ∈ clusters(LTM) where for all clause i in α,
for all cluster C ′ in clusters(LTM) \ C and for all clause c ∈ C ′, i ∩ c = ∅:

α |∼∞LTMβ if and only if α |∼mc
LTMβ

Proof. Due to Definition 7, the proof is based on the definition of WM(LTM,α,m) which returns
a consistent sub-base WM such that by construction all its clauses belong to the same cluster of
the LTM (since in WM1 the clauses have at least one common variables with α, then WM2 is a set
of clauses that have at least one common variables with WM1 and so on). Moreover m being big
enough to contain any cluster of the LTM , downloading is limited to at most mc formulas, hence
WM(LTM,α,∞) = WM(LTM,α,mc). �

The following propositions guarantees that the rejection of a query by using Working Memory
is in accordance with the result that could be obtained by selecting a maximal consistent subbase
of the LTM .

Proposition 2. For all m > 0, if α |∼m
LTMβ then there is a maximal consistent subbase B of the

LTM s.t. B ` α→ β

Proof. By construction, for any m, WM(LTM,ϕ,m) is a consistent subbase, thus there is maxi-
consistent subbase of the LTM that contains it. Hence the result due to the monotonicity of `.
�

In the following, we compute the worst case time complexity denoted Tmax associated to the
processing of k consecutive queries, where processing a query means to check its consistency w.r.t.
the current WM . The complexity of this processing is expressed w.r.t. the number of variables
n and the number of clauses in the LTM denoted mL, the capacity of WM in clauses is denoted
m and the number of queries k of mq clauses. When the process is done on the LTM only, the
complexity is denoted Tmax(LTM(n,mL, k,mq)) while the one of the process done with a WM
given the LTM is denoted Tmax(WM(n,mL,m, k,mq)).

As recalled in [34] there is a sequence of papers that have provided algorithms for CNF SAT
with 2n−o(n).poly(m) runtime, where n is the number of variables and m is the number of clauses
and poly(m) is a polynomial function of m. The current best [11] is a deterministic algorithm that

runs in 2n(1− 1
O(log(m/n))

)poly(m) time, as shown by [16]. Applying these results in our context,
the following remark shows the worst case computational complexity of checking k queries of mq

clauses in the LTM (please note that the expression is simpler when we assume that the number
of queries and their size is negligible in front of the size of the LTM).

Remark 1. If k.mq � m then Tmax(LTM(n,mL, k,mq)) ∈ Θ(k × poly(mL) × 2nα(n,mL)) where
α(n,mL) = 1− 1

O(log(mL/n)) .

This is due to the fact that Tmax(LTM(n,mL, k,mq)) =
∑k
i=1(Tmax(SAT (n,mL + i.mq))).

Due to Algorithms 1, 2 and 3, assessing k queries of mq clauses via the WM has the following
worst case computational complexity.

Proposition 3. If mq � m then Tmax(WM(n,mL,m, k,mq)) ∈ Θ(n.m2
L+k.mL.m

2 +k.poly(m)×
2n.α(n,m))
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Function QRandGener(LTM,maxV ,maxCl)

Require: RandNum(M): returns number in interval [1,M ] and Sample(S,n): returns n random elements

from S and Vars(S): returns the variables of clauses set S

Input: LTM: set of formulas in CNF format; maxV : maximum size of a query clause; maxCl:
maximum number of clauses in query

Output: ϕ: query in CNF
counterCl ← 0; ϕ ← empty list of clauses
for counterCl in [1,RandNum(maxCl)] do

clause← empty list of literals
vars← Sample(Vars(LTM),RandNum(maxV ))
for each v in vars do

newLit← RandChoice({v, v}); clause← newLit :: clause
ϕ← clause :: ϕ

return (ϕ)

Proof. Tmax(WM(n,mL,m, k,mq)) =

Tmax(LTMprep(n,mL)) + k ×


Tmax(Qprep(n,mL,mq))+
Tmax(WMdl(n,mL,m,mq))+
m× (Tmax(pop+ push))
+Tmax(SAT (n,m+mq))


where push and pop are the operations that respectively add and delete an element from a fifo

(here they are used to delete and add clauses to the WM since in the worse case m clauses have to
replace all the clauses that were in the WM before, these operations can be implemented in Θ(1)),
LTMprep, Qprep, WMdl are the respective abbreviations for the Algorithms LTM preprocessing
(Algo 1), Query preprocessing (Algo 2) and WM download (Algo 3).
Moreover Tmax(LTMprep(n,mL)) ∈ Θ(n.m2

L), since it computes the AssocCl dictionnary of the
mL clauses. Tmax(Qprep(n,mL,mq)) ∈ Θ(mL.mq.n) considering that the intersection of two
clauses is done in linear time of the number of variables (the clause literals being ordered) and
this intersection being done between all the mL clauses of the LTM and all the mq clauses of the
query. Tmax(WMdl(n,mL,m,mq)) ∈ Θ(mq.mL + m.(m + m.mL + m log(m))) (since the while is
done at worst m times and runs one membership test (in Θ(m)), one inclusion test to the MUS
list (in Θ(m.mL) assuming that the clauses in the MUSes are ordered), one Remove and at worst
m Adds to a heap of capacity size m which are both in Θ(logm)). After simplification, we get
Tmax(WMdl(n, mL, m, mq) ∈ Θ(m2.mL). Wrapping it up yields Tmax(WM(n,mL,m, k,mq)) ∈
Θ(n.m2

L + k(mL.mq.n+m2.mL + poly(m+mq)× 2n))), we finally obtain the result. �

Hence if we ignore the first preprocessing of the LTM , comparing Rem. 1 and Prop. 3 leads
to a theoretical gain in time in the worst case provided that m � mL, i.e., when the size of the
WM is small w.r.t. the size of the LTM. This is confirmed by the following empirical results.

4.2 Empirical results

In order to assess the empirical interest of our approach, we implemented5 the approach and placed
ourselves in the situations where the base is receiving several consecutive queries. These queries
are randomly generated from the clauses in the base (see Function QRandGener). Intuitively,
the function creates a random number of clauses (bounded by a parameter maxCl) that are
populated by a random number of variables (bounded by a parameter maxV ) that appear in
some clauses of the base (or a specific cluster); each of these variables is then randomly set
positive or negative. Please note that it is possible to generate queries on a specific cluster of the
base by replacing Vars(LTM) line 5 by Vars(Cluster); clusters are computed by transitive closure
of the neighborhood relation between clauses (where neighbor means to have common variables,
see Definition 6).

5Using Python 3.9.2, Sat4J 2.3.5 and CAMUS 1.0.7.
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Query type Filename WM MaxiCons
(Tbuild, Tsat)

WM LTMSize
(Tbuild, Tsat)

WM
MaxCluster
(Tbuild,Tsat)

WM
AverageCluster
(Tbuild,Tsat)

q11

adi60 (1st) (1299.02,17.8) (3.3,6.1) 100% (2.43,6.1) 100% (2.32,6.1)

adi60 (5th) (2.03,14.3) (1.72,5.8) 100% (1.16,5.9) 100% (1.22,5.8)

mdi20 (1st) (1299.02,17.8) (7.84,7.2) 100% (8.68,7.1) 100% (8.25,7.3)

mdi20 (5th) (1.51,17.5) (1.32,7.2) 97% (1.36,7.1) 97% (1.41,7.1)

uma6 (1st) (1181.35,16.4) (4.02,6.6) 100% (5.03,6.6) 100% (3.03,6.5)

uma6 (5th) (1.29,14.9) (1.08,6.5) 100% (1.33,6.4) 97% (1.51,6.3)

q33
on same
cluster

adi60 (1st) (1034.53,15.8) (3.54,6.0) 100% (2.85,6.0) 100% (2.53,6.0)

adi60 (5th) (2.72,15.5) (1.6,5.8) 98% (1.36,5.9) 98% (1.25,5.9)

mdi20 (1st) (1304.62,18.2) (8.08,7.2) 100% (7.86,7.3) 100% (8.44,7.2)

mdi20 (5th) (2.17,17.3) (1.4,7.0) 99% (1.32,7.1) 99% (1.58,7.2)

uma6 (1st) (1166.63,16.6) (6.14,6.7) 100% (5.15,6.6) 99% (2.81,6.5)

uma6 (5th) (2.37,16.1) (1.31,6.2) 100% (1.25,6.2) 92% (1.58,6.3)

q33

on different
clusters

adi60 (1st) (1025.18,15.3) (14.36,7.2) 83% (3.02,6.6) 83% (2.89,6.5)

adi60 (5th) (2.53,14.9) (5.74,9.4) 85% (3.1,6.6) 85% (2.73,6.6)

mdi20 (1st) (1285.47,18.1) (57.22,9.1) 89% (6.19,7.6) 89% (6.79,7.5)

mdi20 (5th) (2.1,17.5) (13.74,11.8) 89% (5.56,7.8) 89% (5.86,7.6)

uma6 (1st) (1174.62,16.9) (36.65,8.6) 90% (7.02,7.4) 86% (4.66,7.0)

uma6 (5th) (2.22,16.5) (9.15,11.5) 92% (5.68,7.6) 94% (4.17,7.0)

Table 1: Agreement ratio between differently sized WM for 100 runs. Percentages in the cells
correspond respectively to agreement ratio between the WM LTMSize and, respectively, WM
MaxCluster and WM AverageCluster. Tbuild and Tsat represent respectively the time (in ms)
to build the WM and to execute the sat solver.

In order to assess our approach, we observed its results under different maximal sizes for the
WM. As a baseline, a WM representing the most relevant maxi-consistent subbase is computed
(WM MaxiCons); this WM is created by associating the query with all the clauses from the base
(assigning 0 in case no variables are shared) and by using the regular WM download algorithm.
We then run the experiment with WM having respectively the size of the LTM (WM LTMSize),
the size of the cluster of clauses of maximum size (WM MaxCluster) and the size of the average
size of all the clusters of clauses (WM AverageCluster).

Table 1 summarizes the results for different bases built on two Dimacs files coming from the
SAT benchmark Blocks World6: mdi and ami are respectively Medium.cnf cut off after 150 lines
and Anomaly.cnf cut off after 50 lines, both of them made inconsistent by negating their first
clause; mdiX and amiX are the files obtained by repeating the mdi and ami X times (literals are
renamed to avoid redundancy); uma is the union of mdi2 and ami4. Hence, adi60, mdi20 and
um6 are all composed of 3000 clauses.

The notation qXY indicates that the generated query has a maximum number of clauses of X
and a maximum number of variables per clause of Y . (1st) and (5th) indicates respectively that
the row corresponds to the first or the last queries of five successive queries.

Based on the results on the table, we can make the following remarks. Bases that have several
connected components benefit from the approach when the query concerns a limited amount of
these components, since the solver will be executed on a much smaller base which will reduce the
execution time while maintaining accuracy. We argue however that it is fair to assume that a
general base will have a tendency to cluster its formulas, where each cluster represents some sort
of “context” or “domain”.

Iterative querying on the same cluster allows to reduce of lot of the overhead caused by the
approach since the WM does not need to be recomputed. On the other hand, iterative querying on
the whole base forces the re-computation of the WM quite often, which implies longer execution
times. In that case, the accuracy may decrease since the working memory may be overwhelmed

6https://www.cs.ubc.ca/∼hoos/SATLIB/Benchmarks/SAT/PLANNING/BlocksWorld/descr.html
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by the number of subjects that must be covered at the same time; it is interesting to note that
this behavior is somewhat reminiscent of human behavior, for instance when a person, by mixing
different subjects and domains, makes it impossible to apprehend the full extent of her statement.

Finally, as expected, let us note that the choice of a suitable WM capacity is a matter of
compromise between time and correctness: a bigger size will give more correct results but will
take more time to compute whereas a smaller size may be less correct but faster. That being
said, as Table 1 shows, selecting a size equal to the average of the clusters demonstrates noticeable
decrease in time while maintaining good results.

5 Conclusion

In this paper, we presented an approach to handle inconsistency in a knowledge base by using a
notion of associations between clauses based on common variables. These associations are used
to extract one consistent subbase. We showed that this approach has interesting results both in
terms of complexity and execution time.

It should be noted that our approach, by eliciting only one subbase, may give results that
are different from some classical approaches that consider all the consistent subbases. Moreover,
depending on the history of the knowledge base, i.e. the sequence of queries that happened
beforehand, different consistent subbases can be chosen. In addition, we can remark that our
approach behaves in a different way than MAXSAT (which also selects only one subbase). This
can be observed in the following small example:

Example 6. Let us consider a KB LTM ′ in CNF form:

LTM ′ =

c1︷ ︸︸ ︷
(a ∨ b ∨ c)∧

c2︷ ︸︸ ︷
¬a ∨ ¬d∧

c3︷ ︸︸ ︷
(a ∨ ¬c ∨ ¬d)∧

c4︷ ︸︸ ︷
¬b ∨ c∧

c5︷ ︸︸ ︷
(¬d ∨ ¬e)∧

c6︷ ︸︸ ︷
a ∨ e∧

c7︷︸︸︷
c ∨ e∧

c8︷ ︸︸ ︷
(¬c ∨ d)∧

c9︷ ︸︸ ︷
(¬a ∨ c)∧

c10︷︸︸︷
(¬e)

Let ϕ = (c ∨ d) ∧ (¬b). In order to minimize the number of deleted clauses, MAXSAT would
find a solution by removing only the clause c8, and ϕ would be accepted. On the contrary, our
approach would create the WM by selecting all the clauses but c9 and c10 and reject the query. In
that example, it seems more desirable to exclude c9 and c10 since they are less related to the query
than c8.

This first preliminary study opens several research avenues:
Finer WM building : extending the relevance between clauses by being able to compare them

semantically instead of just counting their common variables (see e.g. [9] where associated formulas
are built on the results of a serious game) could overcome the drawbacks related to the syntax
dependency of the non-monotonic inference relation |∼ ϕ

LTM . It is important to note that, with the
current syntactic definition of relevance, different sets of clauses may be relevant to two equivalent
clauses (e.g. by disjunctively adding superfluous literals): for instance, consider the clauses c and
a∨¬a∨c. On that note, the reader can check that |∼m

LTM satisfies some classical properties of non-
monotonic inference relations of [26] like reflexivity (α |∼m

LTMα) and right weakening (if ` α→ β
and γ |∼ m

LTMα then γ |∼ m
LTMβ). However, left logical equivalence, cut or cautious monotony7

are not guaranteed since two equivalent formulas may imply different WM downloading. Other,
more semantical, definitions of relevance between clauses may allow for the satisfaction of more
non-monotonic properties, for instance the semantical dependence built on the notion of forgetting
[28].

7The reader can refer to [27] for a well-organized overview of the main classical non-monotonic inference relations
and their properties (in French) or to [13, 14] for its English counterparts.
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WM & LTM updating : an interesting study would focus on the evolution of the knowledge
with the arrival of different queries, i.e. under which conditions the formula of the query might
be accepted and stored in the WM . Moreover, considering a capacity limited WM implies that
some WM clauses might be discarded to make room for others clauses when a query is irrelevant
to the current WM . These currently unnecessary clauses might still be relevant for later incoming
queries and purely losing them might be detrimental in the long run. One perspective is hence to
study in detail which clauses should be unloaded from WM and stored in the LTM and, in order
to avoid too much redundancy, how those clauses could be compacted in the LTM . Updating the
LTM prompts then the computation of a new association table to account for the new pieces of
information, which may be done efficiently by using the old AssocCl together with QAssocV. In
this context, an incremental algorithm has to be created in order to update the MUSes associated
to the updated LTM.

Different inconsistency handling : Our approach handles inconsistency based on the idea that
inconsistent pieces of information lead to concealing some other formulas, meaning that depend-
ing on the context some knowledge will be ignored. Introducing uncertainty on the formula,
for instance with penalty logic [23], would ensure that every piece of information is taken into
consideration, albeit with different “strength”.
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[18] Wim De Neys, Walter Schaeken, and Géry d’Ydewalle. Working memory and everyday condi-
tional reasoning: Retrieval and inhibition of stored counterexamples. Thinking & Reasoning,
11(4):349–381, 2005.

[19] Dragan Doder and Srdjan Vesic. How to decrease and resolve inconsistency of a knowledge
base?. In ICAART (2), pages 27–37, 2015.
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