
HAL Id: hal-03327987
https://hal.science/hal-03327987

Submitted on 27 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Generation of Illustrations for Synthetic
Geometry Proofs

Predrag Janičić, Julien Narboux

To cite this version:
Predrag Janičić, Julien Narboux. Automated Generation of Illustrations for Synthetic Geometry
Proofs. Automated Deduction in Geometry, Zoltán Kovács, Sep 2021, Hagenberg, Austria. pp.91-102,
�10.4204/EPTCS.352.9�. �hal-03327987�

https://hal.science/hal-03327987
https://hal.archives-ouvertes.fr

Automated Generation of Illustrations for
Synthetic Geometry Proofs

Predrag Janičić and Julien Narboux
1 Department for Computer Science, Faculty of Mathematics, University of Belgrade,

Studentski trg 16, 11000 Belgrade, Serbia
janicic@matf.bg.ac.rs

ORCID: 0000-0001-8922-4948
2 UMR 7357 CNRS, University of Strasbourg, Pôle API, Bd Sébastien Brant, BP

10413, 67412 Illkirch, France
narboux@unistra.fr

ORCID: 0000-0003-3527-7184

Abstract. We report on a new, simple, modular, and flexible approach
for automated generation of illustrations for (readable) synthetic geom-
etry proofs. The underlying proofs are generated using the Larus au-
tomated prover for coherent logic, and corresponding illustrations are
generated in the GCLC language. Animated illustrations are also sup-
ported.

Keywords. synthetic geometry, automated deduction, proofs, illustration

1 Introduction

In geometry, proofs and sketches are closely related. Humans need sketches to
visualize geometry statements, to reason about geometrical problems, and to un-
derstand geometry proofs more easily. That is why the use of dynamic geometry
software is pervasive in education. However, many famous examples of incorrect
or insufficiently justified steps in geometric reasoning can be attributed to the
improper use of visual intuition based on geometric figures. This goes from un-
justified proof steps in Euclid’s Elements to proofs and statements which rely to
implicit assumptions from the figure in the context of education [21], passing by
incorrect proofs of Euclid’s fifth postulate such as the one by Legendre. Since
their early days, automated deduction systems for geometry have also tried to
use the knowledge given by the figure [13]. Some authors, also studied how illus-
trations, following some rules, can provide proofs. This is called diagrammatic
reasoning. Diagrammatic reasoning systems can be defined rigorously enough
such that they behave as formal systems [19,29].

In this paper, we present our ongoing work on visual illustrations for geometry
proofs. We are not dealing with diagrammatic reasoning, rather we focus on
generation of illustrations for proofs in geometry in the form of sketches similar
to what a human would create. The underlying proofs are readable synthetic

proofs generated by our automated theorem prover Larus for coherent logic [17].
The use of coherent logic is an essential ingredient of our approach. The proofs
in coherent logic are organized in a purely forward reasoning style. Hence, the
fact which has to be proved is not changed during the proof. In logical terms, we
use the fact that coherent logic enjoys a complete deduction system which never
modifies the right hand sides of the sequents. This contributes to the clarity of
the visualization. We illustrate proofs as sketches that get updated by each proof
step. The initial sketch depicts (a model of) the assumptions. Then, new known
facts are introduced along the proofs and depicted dynamically by decorating
the initial sketch.

The generated illustrations are stored in a domain specific, geometry oriented,
language GCLC (developed by the first author) [14,16]. The illustrations can also
be presented as animations, in a step-by-step manner.

2 Related Work

There is a huge number of sources addressing the role of geometric figures in
general, so we focus here only on a closely related work about the visualization
of proofs in geometry which have either been generated automatically (by auto-
mated theorem proving) or machine checked (by interactive theorem proving).

Bertot et al. [4] proposed to embed a dynamic geometry software into PCoq [1,
5] (PCoq is a user interface for the Coq proof assistant [9]). The second author
implemented a prototype dynamic geometry software GeoProof which can ex-
port statements in the syntax of Coq [20]. Gao’s MMP/geometer software, an
automatic geometry theorem prover based on algebraic methods, offered a way
to draw figures corresponding to the statements [12]. Wang proposed generating
figures from a set of geometrical constraints by decomposing the system of poly-
nomials into irreducible representative triangular sets, and finding an adequate
numerical solution from each triangular set [27]. The first author implemented
the GCLC3 software in which geometry configurations are described using a
custom language, conjectures about configurations can be expressed and then
proved automatically by several available automated theorem provers [14, 15].
Pham and Bertot implemented a prototype connecting GeoGebra to PCoq [23].
Botana et al. implemented automated theorem provers based on algebraic meth-
ods within GeoGebra [7].

All the above works are focused on the visualization of statements. Regard-
ing visualization of proofs, Wilson and Fleuriot designed and implemented a
tool for the visualization of proofs as direct acyclic graph with nodes depicted
using geometric figures [28] for the full-angle method [8]. The most significant
contribution related to visualization of geometric proofs is the work of Ye et
al. implemented in JGEX [32]. Ye et al. use the algebraic characterization and
triangulation to generate figures automatically for the statements. JGEX pro-
poses several modes for illustration of proofs: illustration by animated diagrams,
3 http://www.matf.bg.ac.rs/~janicic/gclc

http://www.matf.bg.ac.rs/~janicic/gclc

or animated diagrams + text, and they apply this method to two kinds of proofs:
manually crafted proofs [30], or proofs generated automatically by the full-angle
method or the deductive database method [31].

3 The Context

Synthetic Proofs in Coherent Logic A formula of first-order logic is said to
be coherent if it has the following form:

A0(x) ∧ . . . ∧An−1(x) ⇒ ∃y(B0(x,y) ∨ . . . ∨ Bm−1(x,y))

where universal closure is assumed, and where 0 ≤ n, 0 ≤ m, x denotes a
sequence of variables x0, x2, . . . , xk−1 (0 ≤ k), Ai (for 0 ≤ i ≤ n−1) denotes
an atomic formula (involving zero or more variables from x), y denotes a
sequence of variables y0, y2, . . . , yl−1 (0 ≤ l), and Bj (for 0 ≤ j ≤ m − 1)
denotes a conjunction of atomic formulae (involving zero or more of the
variables from x and y). If n = 0, then the left hand side of the implication
is assumed to be ⊤ and can be omitted. If m = 0, then the right hand
side of the implication is assumed to be ⊥ and can be omitted. There are
no function symbols with arity greater than zero. Coherent formulae do not
involve negation. A coherent theory is a set of sentences, axiomatised by
coherent formulae, and closed under derivability.4
A number of theories and theorems can be formulated directly and simply in
coherent logic (CL). Several authors independently point to CL (or rules sim-
ilar to those of CL) as suitable for expressing (sometimes – also automating)
significant portions of mathematics [2, 11]. In contrast to resolution-based
theorem proving, in CL the conjecture being proved is kept unchanged and
proved without using refutation, Skolemization and clausal form. Thanks to
this, CL is suitable for producing readable synthetic proofs [6].
Every first-order theory has a coherent conservative extension [10], i.e., any
first-order theory can be translated into CL, possibly with additional pred-
icate symbols. Translation of FOL formulae into CL involves elimination of
negations: negations can be kept in place and new predicates symbols for cor-
responding sub-formula have to be introduced, or negations can be pushed
down to atomic formulae [24]. In the latter case, for every predicate symbol
R (that appears in negated form), a new symbol R is introduced that stands
for ¬R, and the following axioms are introduced ∀x(R(x) ∧ R(x) ⇒ ⊥),
∀x(R(x) ∨R(x)). In order to enable more efficient proving, some advanced
translation techniques are used. Elimination of function symbols, sometimes

4 A coherent formula is also known as a “special coherent implication”, “geometric
formula”, “basic geometric sequent” [10]. A coherent theory is sometimes called a
“geometric theory” [18]. However, a much more widely used notion of “geometric
formula” allows infinitary disjuctions (but only over finitely many variables) [26].
Coherent formulae involve only finitary disjunctions, so coherent logic can be seen
as a special case of geometric logic, or as a first-order fragment of geometric logic.

called anti Skolemization, is also done by introducing additional predicate
symbols [22].
For a set of coherent axioms AX and the statement A0(x)∧ . . .∧An−1(x) ⇒
∃y(B0(x,y)∨. . .∨ Bm−1(x,y)) to be proved, within the suitable, very simple
CL proof system one has to derive ∃y(B0(a,y)∨ . . .∨ Bm−1(a,y)), where a
are fresh constants. Proofs can be built in the manner of forward reasoning,
as illustrated by the following example.

Example 1. Consider the following set of axioms:
ax1: ∀x (p(x) ⇒ r(x) ∨ q(x))
ax2: ∀x (q(x) ⇒ ⊥)
and the following conjecture that can be proved as a CL theorem:
∀x (p(x) ⇒ r(x))

Consider arbitrary a such that: p(a). It should be proved that r(a).

1. r(a) ∨ q(a) (by MP, from p(a) using axiom ax1; instantiation: X 7→ a)
2. Case r(a):

3. Proved by assumption! (by QEDas)
4. Case q(a):

5. ⊥ (by MP, from q(a) using axiom ax2; instantiation: X 7→ a)
6. Contradiction! (by QEDefq)

7. Proved by case split! (by QEDcs, by r(a), q(a))

Larus is an automated theorem prover for coherent logic. It has several un-
derlying proving engines, based on different approaches. Larus is publicly
available and open-source.5

4 Method for Generating Illustrations

The basic idea of the method is simple: if we know how to visually interpret all
proof steps that introduce new objects or facts, then we know how to produce a
complete illustration. Indeed, following the Curry-Howard correspondence which
relates computer programs and proofs (a proof is a program, and the formula
it proves is the type for the program), proofs of existential statements can be
depicted by a function which takes the universally quantified geometric objects of
the statement as input and construct a witness of the conclusion. The illustration
is based on a sequence of such witnesses in one universum. We will focus on an
usual choice – a Cartesian space (hence, for instance, geometry points will map
to Cartesian points). Of course, our illustrations will be just one model for just
one proof branch.

This idea is very well suited to coherent logic as an underlying logical frame-
work (see section 3) and to forward chaining proofs, which also fits well into CL.
5 https://github.com/janicicpredrag/Larus

https://github.com/janicicpredrag/Larus

In CL proofs, new facts are derived using modusponens, so we have to handle
only these rule applications in the proof.

The above idea, obviously, cannot be applied in conjunction with resolution
or saturation based theorem provers for first-order logic, even less in conjunction
with algebraic provers (such as those based on Gröbner bases or Wu’s method),
nor it can be applied on proof traces produced by such provers.

Rule Applications Let us assume that, within the proof, there is an applica-
tion of the following axiom (with the obvious intended meaning):

∀x, y (point(x) ∧ point(y) ⇒ ∃z between(x, z, y))

It may have attached the following visual interpretation: „for two concrete
Cartesian points a and b, the Cartesian point c such that c is between a and
b can be created as the Cartesian midpoint of ab“.
Assuming that the points a and b, occurring in the proof are associated
Cartesian coordinates (2, 5) and (4, 11), if the above axiom has been ap-
plied to them, then the new witness point will have the associated Cartesian
coordinates (3, 8).
Not only new witnesses can be created, but also some new features can also
be established and then illustrated. In the above example, we would also
draw the segment ab. Furthermore, this approach can be extended to axioms
that do not introduce new objects, but only establish some new facts. For
instance, if the proof establishes that some three points are collinear, then
we will highlight the Cartesian line that contain the three Cartesian points
corresponding to them.

Axioms vs. Theorems The only thing that we need to illustrate a proof is
visual interpretation of all applied axioms and lemmas/theorems within the
proof. The visual interpretation of used theorems can be produced automat-
ically recursively, using the same approach. Ultimately, what we need are
only visual interpretations of all axioms, provided by a human.

Premises and Initial Configuration We explained how the figure is updated
by each modusponens rule application. But how do we start the illustration
in the first place? Recall that we prove theorems of the form: A0(x) ∧ . . . ∧
An−1(x) ⇒ ∃y(B0(x,y) ∨ . . . ∨ Bm−1(x,y)) (and that all axioms used
also have that form). In order to build the initial illustration we need some
constants a such that: A0(a) ∧ . . . ∧ An−1(a) holds. But how can we find
and illustrate such objects? We can do that by using the same approach as
described above, applied to the theorem: ∃x(A0(x) ∧ . . . ∧ An−1(x)).

6 In
6 If, instead of just a model of the premises, we want to generate a construc-

tion procedure for a whole class of initial configurations, we can choose to quan-
tify universally some of the variables, and apply the procedure to the statement:
∀x′∃x′′(A0(x

′,x′′) ∧ . . . ∧An−1(x
′,x′′)). Those variables x′ quantified universally

would then correspond to the free points of the figure. Depending on the choice of
x′, the statement can be a theorem or not, hence, the choice of the set of these free
points should be made by the user.

fact, here we perform a sort of constraint solving using theorem proving. If
we provide to the prover axioms modeling only ruler-and-compass geome-
try, then we can obtain constructive proof of existence corresponding to a
ruler-and-compass construction. But, if we provide more powerful axioms to
the prover, such as the ability of trisecting the angle, then we could also,
in principle, illustrate proofs such as a proof of Morley’s theorem (this is
only an example because Morley’s theorem is currently way out of reach of
our prover). This approach also requires some care: the witness of the exis-
tential should be taken as general as possible (in order to avoid misleading
illustration). This problem can be addressed by adding non-degenerate con-
ditions, for instance, that the points asserted to exist are pairwise distinct
and non-collinear.

Case Splits There can be many case splits in the proof and it would make
no sense to illustrate all proof leaves. Indeed, often some proof branches
are contradictory. Not only that they are less interesting (they typically
correspond to degenerative cases) but they do not have models. Hence, if we
have several proof branches in one proof node, we do the following:

– if all of them end with contradiction, then they all belong to some upper
contradictory proof branch, and we illustrate neither of them;7

– if there are some proof branches that do not end with contradiction, then
we illustrate the longest one of them (as it is likely the most interesting
one).

We could combine the above with other policies. For instance, for all case
splits of the form R(a)∨R(a), we could follow only the negative branch, R(a)
(for instance, three points are non-collinear) as generally they correspond to
non-degenerated cases.

Randomization In order to make illustrations partly unpredictable and more
interesting, some randomization may be added to the visual interpretation of
the axiom. For example, if there is an axiom stating that for any two distinct
points there is a third one between them, then in the visual counterpart,
that third one could be chosen based on a pseudo-random number between
0 and 1.

5 Method Implementation

We implemented the described method within our automated theorem prover for
coherent logic, Larus [17]. Larus’ flexible architecture already had proof export
to LATEX and Coq supported. So, we have implemented just one class more –
the class that exports generated CL proofs (in Larus’ internal representation) to
visual representation. The new code has less than 200 lines of C++.
7 If the premises themselves are contradictory, then we do not provide an illustration.

Actually, in some cases we could also somehow illustrate contradictory branches (as
it is done in some textbooks) – for instance, if it is proved that three points are both
colinear and non-colinear, we could draw a curved line that connect them.

For the target language, i.e., the language of visual representation we chose
the GCL language [16], a rich, special purpose language for mathematical, espe-
cially geometry illustrations.

For each theorem τ (given in the TPTP format, the standard format for
theorem provers [25]), once it has been proved, the prover generates a file that
contains only a function that corresponds to that theorem, and a „main“ file
that includes files with all used axioms/theorems, along with the file for τ . That
„main“ file invokes the function for existence of premises for τ , and then the
function for τ itself. The prover also generates a TPTP formulation of the theo-
rem that corresponds to existence of premises for τ (see Section 4). Given that
theorem was proved, its visual representation can also be obtain automatically.

Animations can be obtained simply by showing visualizations of proof steps
one by one. Or, better still, by showing each step first in some emphasized
manner (or in another color) and then in a regular way.

Generated illustrations, stored as readable GCLC files, can be further mod-
ified and improved by a human.

We present one example in detail in the next section, and give two more
examples in Appendix.

6 Example: Euclid’s Elements, Book I, Proposition 11
As a main example, we use Proposition 11 from Euclid’s Elements, Book I. Its
original form reads as follows: „To draw a straight line at right angles to a given
straight line from a given point on it.“ The statement represented in first-order
logic, following the formalization of first book of Euclid’s Elements as proposed
by Beeson et al. [3], is the following:

∀A,B,C BetS ACB ⇒ ∃X Per ACX
(BetS ACB means that C is strictly between A and B, Per ACX means that
ACX is a right angle with the vertex C). The TPTP file with all needed axioms
and lemmas8 (listed as axioms as well) is as follows:

fof(lemma_betweennotequal,axiom, (! [A,B,C] : ((betS(A,B,C)) => (((B != C) & (A != B) & (A != C)))))).
fof(lemma_extension,axiom, (! [A,B,P,Q] : (? [X] : (((A != B) & (P != Q)) => ((betS(A,B,X) & cong(B,X,P,Q))))))).
fof(proposition_01,axiom, (! [A,B] : (? [X] : (((A != B)) => ((equilateral(A,B,X) & triangle(A,B,X))))))).
fof(defequilateral,axiom, (! [A,B,C] : ((equilateral(A,B,C)) => ((cong(A,B,B,C) & cong(B,C,C,A)))))).
fof(defequilateral2,axiom, (! [A,B,C] : ((cong(A,B,B,C) & cong(B,C,C,A)) => ((equilateral(A,B,C)))))).
fof(lemma_doublereverse,axiom, (! [A,B,C,D] : ((cong(A,B,C,D)) => ((cong(D,C,B,A) & cong(B,A,D,C)))))).
fof(lemma_congruenceflip,axiom, (! [A,B,C,D] : ((cong(A,B,C,D)) => ((cong(B,A,D,C) & cong(B,A,C,D) & cong(A,B,D,C)))))).
fof(defcollinear,axiom, (! [A,B,C] : ((col(A,B,C)) =>

(((A = B)) | ((A = C)) | ((B = C)) | (betS(B,A,C)) | (betS(A,B,C)) | (betS(A,C,B)))))).
fof(defcollinear2a,axiom, (! [A,B,C] : (((A = B)) => ((col(A,B,C)))))).
fof(defcollinear2b,axiom, (! [A,B,C] : (((A = C)) => ((col(A,B,C)))))).
fof(defcollinear2c,axiom, (! [A,B,C] : (((B = C)) => ((col(A,B,C)))))).
fof(defcollinear2d,axiom, (! [A,B,C] : ((betS(B,A,C)) => ((col(A,B,C)))))).
fof(defcollinear2e,axiom, (! [A,B,C] : ((betS(A,B,C)) => ((col(A,B,C)))))).
fof(defcollinear2f,axiom, (! [A,B,C] : ((betS(A,C,B)) => ((col(A,B,C)))))).
fof(lemma_collinearorder,axiom, (! [A,B,C] : ((col(A,B,C)) =>

((col(B,A,C) & col(B,C,A) & col(C,A,B) & col(A,C,B) & col(C,B,A)))))).
fof(deftriangle,axiom, (! [A,B,C] : ((triangle(A,B,C)) => ((~ (col(A,B,C))))))).
fof(deftriangle2,axiom, (! [A,B,C] : ((~ (col(A,B,C))) => ((triangle(A,B,C)))))).
fof(defrightangle,axiom, (! [A,B,C] : (? [X] : ((per(A,B,C)) =>

((betS(A,B,X) & cong(A,B,X,B) & cong(A,C,X,C) & (B != C))))))).
fof(defrightangle2,axiom, (! [A,B,C,X] : ((betS(A,B,X) & cong(A,B,X,B) & cong(A,C,X,C) & (B != C)) => ((per(A,B,C)))))).
fof(proposition_11,conjecture,(! [A,B,C] : (? [X] : ((betS(A,C,B)) => ((per(A,C,X))))))).

8 The proof checked by Coq can be found here: https://github.com/GeoCoq/GeoCoq/
blob/master/Elements/OriginalProofs/proposition_11.v

https://github.com/GeoCoq/GeoCoq/blob/master/Elements/OriginalProofs/proposition_11.v
https://github.com/GeoCoq/GeoCoq/blob/master/Elements/OriginalProofs/proposition_11.v

The proposition was proved automatically by the Larus prover, giving the
following proof in LATEX9:

Theorem 1. proposition_11 : ∀A ∀B ∀C (betS(A,C,B) ⇒
∃X (per(A,C,X)))

Proof:
Consider arbitrary a, b, c such that: betS(a, c, b). It should be proved that
∃X per(a, c,X).

1. Let w be such that betS(a, c, w) ∧ cong(c, w, a, c) (by MP, from betS(a, c, b),
betS(a, c, b) using axiom lemma_extension; instantiation: A 7→ a, B 7→ c, P 7→ a, Q 7→ c)

2. Let w1 be such that equilateral(a,w,w1)∧ triangle(a,w,w1) (by MP, from
betS(a, c, w) ∧ cong(c, w, a, c) using axiom proposition_01; instantiation: A 7→ a, B 7→ w)

3. w1 = c ∨ w1 ̸= c (by MP, using axiom eq_excluded_middle; instantiation: A 7→ w1,
B 7→ c)
4. Case w1 = c:

5. col(a,w,w1) (by MP, from betS(a, c, w) ∧ cong(c, w, a, c), w1 = c using axiom
colEqSub2; instantiation: A 7→ a, B 7→ w, C 7→ c, X 7→ w1)

6. ⊥ (by MP, from col(a,w,w1), equilateral(a,w,w1)∧triangle(a,w,w1) using axiom
nnncolNegElim; instantiation: A 7→ a, B 7→ w, C 7→ w1)

7. Contradiction! (by QEDefq)
8. Case w1 ̸= c:

9. per(a, c, w1) (by MP, from betS(a, c, w) ∧ cong(c, w, a, c), betS(a, c, w) ∧

cong(c, w, a, c), equilateral(a,w,w1) ∧ triangle(a,w,w1), w1 6= c using axiom de-
frightangle2; instantiation: A 7→ a, B 7→ c, C 7→ w1, X 7→ w)

10. Proved by assumption! (by QEDas)
11. Proved by case split! (by QEDcs, by w1 = c, w1 6= c)

Note that Larus’ proofs omits applications of „simple axioms“, axioms that
are universal implications from one atomic formula to another. The above proof
explicitly uses only the following lemmas (not counting those implied by equality
axioms and those introducing ⊥): lemma_extension, proposition_01, defrightan-
gle2. Hence, we need visual interpretation of these. In order to obtain them, we
can run the prover or provide the visual interpretation ourselves. For instance,
the visual counterpart for the famous Euclid’s proposition 1 (on existence of a
equilateral triangle on a given segment), can be like the following:

9 This LATEX proof presentation is still very verbatim and it provides much more
information than a traditional proof; for future work we are planning to produce a
more natural output.

procedure proposition_01 { A B X } {
circle c1 A B
drawcircle c1
circle c2 B A
drawcircle c2
intersec2 X2 X c1 c2
cmark X

}

In this visual interpretation, the point X is obtained (in the Cartesian model)
as an intersection of two circles – one with the center A with B on it, and one
the center B with A on it (the command cmark X annotates the point X by
a small circle). Of course, one could have chosen the other intersection of two
circles. Again, instead of providing this visual interpretation, we could run the
prover on proposition_01 and could get another function, expressed in terms of
axioms (or, possibly, some other lemmas).

The prover also generates the conjecture:

fof(proposition_11, axiom, (? [A,B,C] : (betS(A,C,B))))

which establishes existence of objects such that the premises of the main conjec-
ture holds. This conjecture can be again proved or can be illustrated by hand,
as here (within the file proposition_11_exists.gcl):

procedure proposition_11_exists { a b c } {
point a 8 2
point b 22 7
towards c a b 0.7
cmark_t a
cmark_t b
cmark_t c

}

The main conjecture is described by the following function, generated auto-
matically by the prover (within the file proposition_11.gcl):

procedure proposition_11 { a b c w } {
call lemma_extension { a c a c w }
mark_t w
call proposition_01 { a w w1 }
mark_t w1
% --- Illustration for branch 2
call defrightangle2 { a c w1 w }

}

One point (w) is introduced by the application of lemma_extension, and another
(w1) by the application of proposition_01. As we can see, the illustration follows

the second, non-contradictory branch of the proof. The final proof step does
not introduce new objects, but only establishes a property ac ⊥ cw1 (which is
stressed by drawing a small square at the vertex of the angle).

Finally, the main file, that will be processed by GCLC, is generated auto-
matically and looks like the following:

% ----- Proof illustration -----
include proposition_11.gcl
include proposition_11_exists.gcl
include lemma_extension.gcl
include proposition_01.gcl
include defrightangle2.gcl
%-----------------------------
call proposition_11_exists { a b c }
call proposition_11 { a b c w }

After the „include“ section with all needed files/functions, there is a call to
the function which illustrates the objects such that the premises hold. After
that, with the concrete points a, b, c (provided by the previous function), the
main function is invoked. The illustration can be modified such that it provides
animation (within GCLC graphical environment, but it can be also exported as
a sequence of images). A visual counterpart of each step is shown first in red,
then in black and it remains like that. This is implemented using layers, as in
the following addition to the main GCLC file, which ensures that all levels from
i (i = 1, 2, 3, . . .) are hidden (in our example, there are 6 layers):

animation_frames 7 1
point A0 0 0
point A1 1 0 7 0
distance dA A0 A1
hide_layers_from dA

Processing the above GCLC file gives the animation, i.e., the illustration that
gets extended in several steps, as shown in Figure 2. Within GCLC environment,
each step is shown first in red, then in black colour. (Figures can be exported to
different formats, e.g. TikZ.)

7 Conclusions and Perspectives

We presented a new approach for automated generation of illustrations of proofs
of geometry theorems. The approach is simple, as it is a small extension to our
prover for coherent logic, Larus. The approach is modular, as all illustrations
rely only on visual interpretations of axioms used. The approach is flexible, as
one can provide by hand different visual counterparts of the axioms, but also of
particular lemmas used within other proofs. The illustrations are generated in

a

bc
a

bc
ww

a

bc
ww

w1w1

a

bc
ww

w1w1

Fig. 1. Four steps in illustration of the proposition 11

the form of the GCL language and they can also be viewed as animations, where
proof steps are shown step-by-step.

When Larus finds a proof, it can generate the corresponding Coq proof and
illustration. In the future, this work could be extended to deal with coherent
logic proofs which are not necessarily obtained automatically by Larus, but con-
structed interactively within Coq.

We also plan to improve the translation of the proof to text form, to generate
a more natural English text.

References

1. Amerkad, A., Bertot, Y., Pottier, L., Rideau, L.: Mathematics and Proof Presen-
tation in Pcoq. In: Workshop Proof Transformation and Presentation and Proof
Complexities in connection with IJCAR 2001. Siena (Jun 2001)

2. Avigad, J., Dean, E., Mumma, J.: A Formal System for Euclid’s Elements. The
Review of Symbolic Logic 2, 700–768 (2009)

3. Beeson, M., Narboux, J., Wiedijk, F.: Proof-checking Euclid. Annals of Mathe-
matics and Artificial Intelligence 85(2-4), 213–257 (2019), publisher: Springer

4. Bertot, Y., Guilhot, F., Pottier, L.: Visualizing Geometrical Statements with
GeoView. Proceedings of the Workshop, User Interfaces for Theorem Provers 2003
103, 49–65 (2004)

5. Bertot, Y., Thery, L.: A Generic Approach to Building User Interfaces for Theorem
Provers. The Journal of Symbolic Computation 25, 161–194 (1998)

6. Bezem, M., Coquand, T.: Automating Coherent Logic. In: Sutcliffe, G., Voronkov,
A. (eds.) 12th International Conference on Logic for Programming, Artificial In-
telligence, and Reasoning — LPAR 2005. Lecture Notes in Computer Science, vol.
3835, pp. 246–260. Springer-Verlag (2005)

7. Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T.,
Weitzhofer, S.: Automated Theorem Proving in GeoGebra: Current Achievements.
Journal of Automated Reasoning 55(1), 39–59 (2015), http://dx.doi.org/10.
1007/s10817-015-9326-4

8. Chou, S.C., Gao, X.S., Zhang, J.: Automated Generation of Readable Proofs with
Geometric Invariants, II. Theorem Proving With Full-Angles. Journal of Auto-
mated Reasoning 17(13), 349–370 (1996)

9. Coq development team, The: The Coq proof assistant reference manual, Version
8.3. LogiCal Project (2010), http://coq.inria.fr

http://dx.doi.org/10.1007/s10817-015-9326-4
http://dx.doi.org/10.1007/s10817-015-9326-4
http://coq.inria.fr

10. Dyckhoff, R., Negri, S.: Geometrization of first-order logic. The Bulletin of Sym-
bolic Logic 21, 123–163 (2015), https://doi.org/10.1017/bsl.2015.7

11. Ganesalingam, M., Gowers, W.T.: A fully automatic problem solver with human-
style output. CoRR abs/1309.4501 (2013)

12. Gao, X.S., Lin, Q.: MMP/Geometer - A Software Package for Automated Geomet-
ric Reasoning. In: Proceedings of Automated Deduction in Geometry (ADG02).
Lecture Notes in Computer Science, vol. 2930, pp. 44–66. Springer-Verlag (2004)

13. Gelernter, H., Hansen, J.R., Loveland, D.: Empirical explorations of the geometry
theorem machine. In: Papers presented at the May 3-5, 1960, western joint IRE-
AIEE-ACM computer conference. pp. 143–149. IRE-AIEE-ACM ’60 (Western),
ACM, San Francisco, California (1960), http://doi.acm.org/10.1145/1460361.
1460381

14. Janičić, P.: GCLC — A Tool for Constructive Euclidean Geometry and More Than
That. In: Iglesias, A., Takayama, N. (eds.) Mathematical Software - ICMS 2006,
Lecture Notes in Computer Science, vol. 4151, pp. 58–73. Springer (2006)

15. Janičić, P.: GCLC 9.0/WinGCLC 2009 (2009), manual for the GCLC Dynamic
Geometry Software

16. Janičić, P.: Geometry Constructions Language. Journal of Automated Reasoning
44(1-2), 3–24 (2010)

17. Janičić, P., Narboux, J.: Theorem Proving as Constraint Solving with Coherent
Logic (2021), submitted

18. MacLane, S., Moerdijk, I.: Sheaves in geometry and logic: a first introduction to
topos theory. Springer-Verlag (1992)

19. Miller, N.: A diagrammatic formal system for Euclidean geometry. Ph.D. thesis,
Cornell University (May 2001)

20. Narboux, J.: A Graphical User Interface for Formal Proofs in Geometry. Journal
of Automated Reasoning 39(2), 161–180 (2007)

21. Narboux, J., Durand-Guerrier, V.: Combining pencil/paper proofs and formal
proofs, a challenge for Artificial Intelligence and mathematics education. In: Math-
ematics Education in the Age of Artificial Intelligence: How Intelligence can serve
mathematical human learning. Springer (2021), in press

22. Nivelle, H.d., Meng, J.: Geometric Resolution: A Proof Procedure Based on Finite
Model Search. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning, Third
International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings. Lecture Notes in Computer Science, vol. 4130, pp. 303–317.
Springer (2006), https://doi.org/10.1007/11814771_28

23. Pham, T.M., Bertot, Y.: A Combination of a Dynamic Geometry Software With
a Proof Assistant for Interactive Formal Proofs. Electron. Notes Theor. Comput.
Sci. 285, 43–55 (Sep 2012), http://dx.doi.org/10.1016/j.entcs.2012.06.005

24. Polonsky, A.: Proofs, Types and Lambda Calculus. Ph.D. thesis, University of
Bergen (2011)

25. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

26. Vickers, S.: Geometric Logic in Computer Science. In: Theory and Formal Methods.
pp. 37–54. Workshops in Computing, Springer (1993)

27. Wang, D.: Automated Generation of Diagrams with Maple and Java. In: Joswig,
M., Takayama, N. (eds.) Algebra, Geometry and Software Systems. pp. 277–287.
Springer, Berlin, Heidelberg (2003)

28. Wilson, S., Fleuriot, J.D.: Combining Dynamic Geometry, Automated Geometry
Theorem Proving and Diagrammatic Proofs. In: ETAPS Satellite Workshop on
User Interfaces for Theorem Provers (UITP). Springer, Edinburgh (2005)

https://doi.org/10.1017/bsl.2015.7
http://doi.acm.org/10.1145/1460361.1460381
http://doi.acm.org/10.1145/1460361.1460381
https://doi.org/10.1007/11814771_28
http://dx.doi.org/10.1016/j.entcs.2012.06.005

29. Winterstein, D.: Dr.Doodle: A Diagrammatic Theorem Prover. In: Proceedings of
IJCAR 2004 (2004)

30. Ye, Z., Chou, S.C., Gao, X.S.: Visually Dynamic Presentation of Proofs in Plane
Geometry. Journal of Automated Reasoning 45(3), 243–266 (Dec 2009), http:
//link.springer.com/article/10.1007/s10817-009-9163-4

31. Ye, Z., Chou, S.C., Gao, X.S.: Visually Dynamic Presentation of Proofs in Plane
Geometry, Part 1. J. Autom. Reason. 45(3), 213–241 (Oct 2010), http://dx.doi.
org/10.1007/s10817-009-9162-5

32. Ye, Z., Chou, S.C., Gao, X.S.: An Introduction to Java Geometry Expert. In: Post-
proceedings of Automated Deduction in Geometry (ADG 2008). Lecture Notes in
Computer Science, vol. 6301, pp. 189–195. Springer-Verlag (2011), http://dx.doi.
org/10.1007/978-3-642-21046-4_10

A Example: Varignon’s theorem

In this section, we provide as examples two different proofs of a statement in
Euclidean geometry called Varignon’s theorem.

Theorem 2. th_varignon : ∀A ∀B ∀C ∀D ∀I ∀J ∀K ∀L (¬col(B,D,A) ∧
¬col(B,D,C)∧¬col(A,C,B)∧¬col(A,C,D)∧¬col(I, J,K)∧B ̸= D∧A ̸= C ∧
midpoint(A, I,B)∧midpoint(B, J,C)∧midpoint(C,K,D)∧midpoint(A,L,D) ⇒
pG(I, J,K,L))

First Proof:

Consider arbitrary a, b, c, d, e, f , g, h such that: ¬col(b, d, a), ¬col(b, d, c), ¬col(a, c, b), ¬col(a, c, d),
¬col(e, f, g), b 6= d, a 6= c, midpoint(a, e, b), midpoint(b, f, c), midpoint(c, g, d), midpoint(a, h, d).
It should be proved that pG(e, f, g, h).

1. par(b, d, f, g) (by MP, from ¬col(b, d, c), midpoint(c, g, d), midpoint(b, f, c) using axiom trian-
gle_mid_par_strict; instantiation: A 7→ b, B 7→ d, C 7→ c, P 7→ g, Q 7→ f)
2. par(b, d, e, h) (by MP, from ¬col(b, d, a), midpoint(a, h, d), midpoint(a, e, b) using axiom tri-

angle_mid_par_strict; instantiation: A 7→ b, B 7→ d, C 7→ a, P 7→ h, Q 7→ e)
3. par(a, c, e, f) (by MP, from ¬col(a, c, b), midpoint(b, f, c), midpoint(a, e, b) using axiom trian-

gle_mid_par_strict; instantiation: A 7→ a, B 7→ c, C 7→ b, P 7→ f , Q 7→ e)
4. par(a, c, h, g) (by MP, from ¬col(a, c, d), midpoint(c, g, d), midpoint(a, h, d) using axiom tri-

angle_mid_par_strict; instantiation: A 7→ a, B 7→ c, C 7→ d, P 7→ g, Q 7→ h)
5. par(e, f, g, h) (by MP, from par(a, c, e, f), par(a, c, h, g), ¬col(e, f, g) using axiom lemma_par_-

trans; instantiation: A 7→ e, B 7→ f , C 7→ a, D 7→ c, E 7→ g, F 7→ h)
6. par(f, g, e, h) (by MP, from par(b, d, f, g), par(b, d, e, h), par(e, f, g, h) using axiom lemma_par_-

trans; instantiation: A 7→ f , B 7→ g, C 7→ d, D 7→ b, E 7→ e, F 7→ h)
7. pG(e, f, g, h) (by MP, from par(e, f, g, h), par(e, f, g, h), par(f, g, e, h) using axiom lemma_par2_-

pg; instantiation: A 7→ e, B 7→ f , C 7→ g, D 7→ h)
8. Proved by assumption! (by QEDas)

Second Proof:

Consider arbitrary a, b, c, d, e, f , g, h such that: f 6= h, b 6= d, d 6= b, a 6= c, c 6= a, midpoint(a, e, b),
midpoint(b, f, c), midpoint(c, g, d), midpoint(a, h, d). It should be proved that pG(e, f, g, h).

1. Let w be such that midpoint(a,w, c) (by MP, from a 6= c using axiom lemma_midpoint_existence;
instantiation: A 7→ a, B 7→ c)
2. Let w1 be such that midpoint(d, w1, b) (by MP, from d 6= b using axiom lemma_midpoint_existence;

instantiation: A 7→ d, B 7→ b)
3. cong(a,w, g, h) (by MP, from c 6= a, midpoint(a,w, c), midpoint(c, g, d), midpoint(a, h, d)

using axiom lemma_triangle_mid_par_cong_1; instantiation: A 7→ d, B 7→ a, C 7→ c, P 7→ w, Q
7→ g, R 7→ h)

http://link.springer.com/article/10.1007/s10817-009-9163-4
http://link.springer.com/article/10.1007/s10817-009-9163-4
http://dx.doi.org/10.1007/s10817-009-9162-5
http://dx.doi.org/10.1007/s10817-009-9162-5
http://dx.doi.org/10.1007/978-3-642-21046-4_10
http://dx.doi.org/10.1007/978-3-642-21046-4_10

a
b

c

d

e

f

g

h

a
b

c

d

e

f

g

h
www1w1

Fig. 2. Illustrations for two proofs of Varignon’s theorem

4. cong(a,w, f, e) (by MP, from c 6= a, midpoint(a,w, c), midpoint(b, f, c), midpoint(a, e, b) using
axiom lemma_triangle_mid_par_cong_1; instantiation: A 7→ b, B 7→ a, C 7→ c, P 7→ w, Q 7→ f ,
R 7→ e)
5. tP (c, a, h, g) (by MP, from a 6= c, midpoint(a,w, c), midpoint(a, h, d), midpoint(c, g, d) using

axiom lemma_triangle_mid_par_cong_1; instantiation: A 7→ d, B 7→ c, C 7→ a, P 7→ w, Q 7→ h,
R 7→ g)
6. tP (b, d, h, e) (by MP, from d 6= b, midpoint(d, w1, b), midpoint(a, h, d), midpoint(a, e, b) using

axiom lemma_triangle_mid_par_cong_1; instantiation: A 7→ a, B 7→ b, C 7→ d, P 7→ w1, Q 7→ h,
R 7→ e)
7. cong(b, w1, h, e) (by MP, from d 6= b, midpoint(d, w1, b), midpoint(a, h, d), midpoint(a, e, b)

using axiom lemma_triangle_mid_par_cong_1; instantiation: A 7→ a, B 7→ b, C 7→ d, P 7→ w1, Q
7→ h, R 7→ e)
8. cong(h, e, h, e) (by MP, from cong(b, w1, h, e), cong(b, w1, h, e) using axiom lemma_congruence-

transitive; instantiation: A 7→ h, B 7→ e, C 7→ b, D 7→ w1, E 7→ h, F 7→ e)
9. cong(g, h, e, f) (by MP, from cong(a,w, g, h), cong(a,w, f, e) using axiom lemma_congruence-

transitive; instantiation: A 7→ g, B 7→ h, C 7→ w, D 7→ a, E 7→ e, F 7→ f)
10. cong(b, w1, g, f) (by MP, from d 6= b, midpoint(d, w1, b), midpoint(c, g, d), midpoint(b, f, c)
using axiom lemma_triangle_mid_par_cong_1; instantiation: A 7→ c, B 7→ b, C 7→ d, P 7→ w1, Q
7→ g, R 7→ f)
11. cong(f, g, e, h) (by MP, from cong(b, w1, g, f), cong(b, w1, h, e) using axiom lemma_congruence-
transitive; instantiation: A 7→ f , B 7→ g, C 7→ b, D 7→ w1, E 7→ e, F 7→ h)
12. tP (b, d, g, f) (by MP, from d 6= b, midpoint(d, w1, b), midpoint(c, g, d), midpoint(b, f, c) using
axiom lemma_triangle_mid_par_cong_1; instantiation: A 7→ c, B 7→ b, C 7→ d, P 7→ w1, Q 7→ g,
R 7→ f)
13. tP (a, c, f, e) (by MP, from c 6= a, midpoint(a,w, c), midpoint(b, f, c), midpoint(a, e, b) using
axiom lemma_triangle_mid_par_cong_1; instantiation: A 7→ b, B 7→ a, C 7→ c, P 7→ w, Q 7→ f ,
R 7→ e)
14. tP (g, h, f, e) (by MP, from tP (c, a, h, g), tP (a, c, f, e) using axiom lemma_tP_trans; instanti-
ation: A 7→ g, B 7→ h, C 7→ a, D 7→ c, E 7→ f , F 7→ e)
15. tP (f, g, e, h) (by MP, from tP (b, d, g, f), tP (b, d, h, e) using axiom lemma_tP_trans; instanti-
ation: A 7→ f , B 7→ g, C 7→ b, D 7→ d, E 7→ e, F 7→ h)
16. pG(e, f, g, h) (by MP, from f 6= h, cong(g, h, e, f), cong(f, g, e, h), tP (f, g, e, h), tP (g, h, f, e)
using axiom lemma_par_par_cong_cong_parallelogram; instantiation: A 7→ e, B 7→ f , C 7→ g, D
7→ h)
17. Proved by assumption! (by QEDas)

	Automated Generation of Illustrations for Synthetic Geometry Proofs

