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Abstract— Autonomous vehicles have to take cautious de-
cisions when driving in complex urban scenarios. Situation
understanding is a key point towards safe navigation. High
Definition maps supply different types of prior information such
as road network topology, geometric description of the road,
and semantic information including traffic laws. Conjointly
with the perception system, they provide representations of
the static environment and allow to model interactions. For
safety issues, it is crucial to get a reliable understanding of the
vehicle situation to avoid inappropriate decisions. Confidence on
the information supplied to decision-making must be therefore
provided. This paper proposes a spatial occupancy information
representation at lane level with Lane Grid Maps (LGM). Based
on areas of interest for the ego vehicle and sampled in the
along-track direction, perception data is augmented to provide
non-misleading information to the decision-making at a tactical
level. An advantage of this representation is its ability to manage
information integrity thanks to a good spatial sampling choice.
The proposed approach takes into account the uncertainty
of the ego vehicle localization, which has an impact on the
estimated spatial occupancy of the perceived objects. This paper
provides a method to set the proper sampling step in order to
avoid oversampling and subsampling of the LGM for a given
integrity risk level. The approach is evaluated with real data
obtained thanks to several experimental vehicles.

I. INTRODUCTION

A key capability of autonomous vehicles (AV) is to take
the best decision in every situation it encounters. In order to
achieve this task, the decision-making (DM) module in the
architecture of the AV needs to have a good understanding
of the surrounding of the ego vehicle. Operating in urban
areas remains challenging for autonomous driving systems.
Thus, the information provided to the DM module must not
be misleading so that proper decisions can be made. For
example, characterizing a driving space as free when it is
actually occupied may lead to an hazardous decision. Our
work stands between the DM module and its raw input data
provided by the perception and localization modules. Indeed,
as data is provided by sensors, information is extracted by the
perception module but still needs to be understood in order
to take the best decision. This paper aims at providing an
augmented information representation that takes into account
information brought by the perception as well as information
stored in a multi-layer map. The purpose is to get a better
understanding of the situation that is supplied to the DM
module. Such a representation can be generated within our
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Fig. 1: Lane Grid Map representation. Areas Of Interest of the ego vehicle
in blue are sampled. Cells are characterized by different states: Free (green),
Occupied (red), Hidden (gray), out field of view (black). .

so-called world model module which purpose is to enhance
situation understanding.

In several architectures, the DM system can be seen as a
tripartite module [1]. It works under three abstraction levels,
which correspond to different levels of decision. At the
lowest level (operational level), there is the local planning
system that handles local and short term trajectories [2]. At
the intermediate level (tactical level), the maneuver planner
takes decisions on tasks that have to be achieved at a lane
level [3]. Finally, at the most abstracted layer (strategic
level) the global planner plans long-term decisions such as
the itinerary to follow to complete the mission. In order to
plan trajectories at a low level, two types of approaches can
be highlighted. The first one is to use objects lists and to
navigate through the obstacles [4], [5]. In this case there is no
explicit information on the absence of objects, and occlusions
have to be handled [6], [7]. In addition, there is a need to get
spatial information. Another approach is to use occupancy
grids [8] or free space polygons [9] to plan the trajectories.
However there is a limitation if the vehicle operates in a
complex environments with multiple interactions. The use
of maps is necessary to add context, and thus to facilitate
situation understanding [10]. Using maps implies to have
reliable localization of the ego vehicle, in order to project
perception information onto the map. Therefore, the integrity
of the localization needs to be properly considered [11]. At
the intermediate level, the maneuver planner enables to take
into account this context as it is shown in the “environment
model” mentioned in [3].

In this work, we propose a lane level information repre-
sentation at tactical level, that handles occlusions and enables
to improve confidence on information. In addition, it reduces
the risk of providing misleading information to the DM
module. An HD map is used to infer the lanes of interest
as presented in [12], and to infer their occupancy through an
along-track sampling as illustrated in figure 1. The sampling



step will be the key stone to handle the integrity of the
generated information. We propose an evaluation method
which combines both spatial information and distance met-
rics. These are our main contributions. Related work is
discussed in Section II. Section III introduces the Lane Grid
Map and its principles. The evaluation method is explained
in section IV and is followed by the integrity bought by this
representation in section IV-B. Finally, results are presented
in section V.

II. RELATED WORK

In our world model representation, as previously intro-
duced in [12], in a similar correspondence with the DM
module, the notion of abstraction levels is early introduced
with [13] and reused for decision-making [1]. There are three
levels. From the lowest to the highest we have respectively
the operational level, the tactical level and the strategic level.
Each level operates in its own representation area from local
with the lowest level to global with the highest.

Information representation used as inputs to these levels
of the decision-making is therefore a key point. First, we
need to dissociate discrete representation like with objects
with spatial representations. In [5] or in [14], objects and
features are used to represent the vehicle surroundings. Maps
also contain at each level of abstraction different informa-
tion: topological, semantic and geometric information as in
[15]. However, unlike objects, spatial information enables
to characterize surfaces and to give information on missing
information. Among this kind of representation we could cite
grids: probabilistic grids [16], evidential grids [17], interval
maps [18] or even more than 2D representations as with [19].
There is also a more compact representation with polygon
approaches as with the parametric free space presented in [9].
All these representations are built thanks to the perception
system.

For decision-making evaluation, the metric often used is
distances based on the situation encountered by the vehicle. It
can be expressed as Time-To-Collision (TTC) or Enhanced-
Time-To-Collision (ETTC) [20] or even Time-To-Entrance
(TTE) [21]. Even more complex evaluation models are used
for safety evaluation such as the Responsibility-Sensitive
Safety (RSS) model [22]. We therefore want to combine the
advantages of both representations, i.e using distances and
spatial occupancy, to supply non-misleading information at
the maneuver level.

In order to manage confidence of information and risk to
provide misleading information, the notion of integrity can be
cited. This criterion has been developed and formalized in the
aviation field. It has been explored for urban environments
as presented in [23]. This notion of integrity has also been
applied for localization systems for instance [11]. Given
an integrity risk, the system should not underestimate the
uncertainty we can have on input values.

In this paper we want to enhance spatial information by
using a low level spatial information representation but also
give a distance metric and confidence over the information
supplied to the decision-making module. We reuse the notion

of integrity to guarantee a functional operating domain for
the AV through the sampling method of the Lane Grid Map.
We show that oversampling can lead to integrity loss.

III. LANE GRID MAP

In a world model system, the three levels of abstraction
provide a hierarchy of levels with several types of informa-
tion representation. Each level has a specific type of task to
achieve. As this paper focuses on the spatial representation
layer, it aims at describing and evaluating a tactical level
representation. This representation shown in figure 1 is called
a Lane Grid Map (LGM). This section aims at describing
our approach on an intermediate level representation that
contains information with a high integrity level for handling
non-misleading situation representation in order to enhance
the DM process. Indeed, in order to be able to get on the
road, an absence of vehicle is not enough. It is also necessary
that the space is free and that this information has a high
confidence value. We show that this representation enables
to handle and guarantee a confidence level of integrity of
the information taking into account localization uncertainty
thanks to a sampling step parameter.

A. Principles

In order to build the LGM, we need to define the areas
that are of interest for the AV. At the strategic level we are
able to construct the Areas Of Interest (AOI) tree of the AV
under the Interaction Graph named representation (right part
of figure 2). Each node of the Interaction Graph is a portion
of the AOI that describes in two ways the most important
part of the vehicle surroundings. These AOI are built by
the primary order lanes and secondary order lanes. Primary
lanes are road lanes that are in direct interaction with the
ego vehicle path. Secondary lanes correspond to lanes that
are in direct interaction with the primary lanes but not in
direct interaction with the ego vehicle path. These primary
and secondary order represent road lanes extracted from
the topological layer of an HD map where the ego vehicle
must focus its attention in order to take best decisions and
should not provide misleading information. These concepts
are detailed in [12].

At the tactical level, we use the Interaction Graph nodes
and the geometric information of the HD Map to build a lane
level spatial representation (center part of figure 2). Thus, the
LGM depends on the context in which the AV drives and is
a discrete representation of the AOI made of cells.

B. Spatial sampling process

The cells are contiguous and have a sampling step pa-
rameter. In our case, at the tactical level, the width of cells
corresponds to the road lane width. The polyline of the center
of the road lane is provided by the HD map. We select a
sampling step parameters to split this polyline in several
parts. Each segment is then extrapolated on its both sides
to build single cells. Through this sampling step parameter,
we are able to refine more or less the level of detail of the
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Fig. 2: Spatial information representation at each level of abstraction. The
cells of the LGM are represented by the squared nodes.

information. Bigger are the cells,i.e the less number of cells
we have, the less information we have about the situation.

The LGM aims at augmenting the operational spatial rep-
resentation (left part of figure 2) to provide non-misleading
information. It gives information of spatial occupancy but
also with a notion of along-track distances.

C. Characterization process

Within the true world, the cells of the LGM are either
Free (F ) or Occupied (O). However, in practice, some of
the cells may be hidden because of occlusions and should be
handled carefully. Therefore, in the characterization process
of the cells of the LGM, the Hidden (H) class is considered
explicitly along with F and O. Note that some cells are not
observed not because they are hidden but because they are
out of the field of view of the sensors. These cells will be
ignored during the evaluation process.

The classification of the cells into one of the three afore-
mentioned classes can be done via the use of probabilis-
tic occupancy grids [16] or more robustly with evidential
grids [17]. Another simpler way to achieve this characteriza-
tion is using a free space polygon [9]. This type of approach
has been implemented in this work.

D. Efficiency and scalability advantages

In classical occupancy grids (OG), all the space surround-
ing the vehicle is characterized regardless of their relevance.
On the contrary, the LGM takes into account the situation
in which the AV drives, i.e. in a given road layout, therefore
it only stores information within the relevant lanes (AOI)
provided by the Interaction Graph at the strategic level. As a
consequence, the LGM encodes the information of the space
surrounding the vehicle in a more compact and efficient way.
Each cell of the LGM has two values: the width cw, which
corresponds to a lane level width and a sampling step length
cl. At the opposite, the OG is a spatial sampling over the
entire space given square cells of width sw. Let us consider
an area of 50 m over 50 m (A = 2500m2) that needs to be
encoded in both representations with the same cells size.

The OG has a number of cells COG = A
s2w

and a visibility
distance dOG =

√
A m as the OG covers a 50 m square.

We assume that the vehicle is located in the center of both
representations and let us take the example of a straight road
lane. The LGM has a number of cells CLGM = A

cw×cl and a
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Fig. 3: Correspondence between evaluation parameters and the LGM of both
the observation and the GT.

visibility distance dLGM = A
cw×cl×cl =

A
cw

m. For example:

cw = 1m
cl = sw = 1m ⇒ dLGM = 50× dOG

with CLGM = COG
(1)

The increase of the visibility distance is easily explained
by the fact that cells are located in a focused area for the
autonomous driving. Computationally we could raise the
number of lanes by decreasing the visibility distance that
would be dispatched on each lane.

It should be noticed that the LGM representation is easily
scalable. Indeed, we can vary the sampling step and easily
aggregate cells with low difficulty. On top of that, the
fact that cells fit properly the road layout enables to have
a good fidelity information representation over distances.
Thus, this representation has the advantage to supply a
coupled information. According to the situation encountered,
it supplies occupancy information with distances.

In order to compare, if we look at OG used in the
literature, these phenomena are two limitations. As cells
are independent from the geometrical layer of the map, the
delimitation of a number of cells to take into account for a
portion of the road would not be easily defined. Distances
over a grid are also not easy to fit as it does not reason in
the coordinate system of the road lane.

IV. PERFORMANCE METRICS

This section presents the evaluation method used to
demonstrate the effectiveness of the Lane Grid Map. This
methodology introduces the integrity criterion. The metrics
presented aim at providing two types of information in a
single representation. At maneuver level for the DM, the
LGM supplies both distances and occupancy for the task to
be fulfilled.

A. Evaluation metrics

1) Ground truth generation: In order to validate the LGM
model and efficiency, we want to compare the character-
ization process using the ground truth position of several
vehicles. Given the precise position of several vehicles on the
road and their dimensions, the occupancy of these vehicles
are approximated as rectangles. All the cells overlapped by
these rectangles are considered as occupied on the ground
truth LGM. Then, the rest of the cells are considered as
being free. The cells of the ground truth LGM are either
Free (F ) or Occupied (O). The top row in figure 3 shows
the characterization of the LGM by the ground truth.

2) Observation generation: At the same time, we apply
the characterization process with the on-board perception
system. Using polygons approach, we have the two types of
information: the convex bounding polygons of the perceived
objects and a free-space polygon. The perception system is



TABLE I: Parameters obtained with the combination of the ground truth
and the observation.

Observation
Ground Truth f o h

F F : f 7→ n1 F : o 7→ n2 F : h 7→ n3
O O : f 7→ n4 O : o 7→ n5 O : h 7→ n6

described in section V. The bottom row in figure 3 shows
the characterization by the ego vehicle of the cells of the
LGM into one of the three states: F , O and H .

Over the ego vehicle trajectory, we record at each time step
t ∈ [0, T ] the LGM(t). At each time step we have the LGM
characterized by the AV perception and also by the ground
truth of the objects. Combining the different configurations,
for each cell of the LGM, there are six possible indicators
Ni obtained from the combination of both characterization
as defined in table I. The correspondence is shown as an
example on the indicator row of figure 3. As a cell depicts
the occupancy of a fixed step distance, we can express these
results not only in terms of cells but also in terms of distance
and more precisely with a percentage. All the cells ck of each
LGM are associated with a distance nkj ∈ {n1, . . . , n6}. The
indicators can be written as follows:

Ni =
∑

t∈[0,T ]

∑
ck∈LGM(t)

δij ∗ nkj with δij =
{
1 if i = j
0 if i 6= j

(2)

Two indicators are particularly relevant for the integrity
analysis. N2 corresponds to miss-classified free cells con-
sidered as occupied. It is an overcautious indicator. N4 is
the most important indicator as it corresponds to the miss-
classified occupied cells considered as free. It is a highly
miss-leading indicator that should be as low as possible.
Indeed, if we give information of free space around the
vehicle whereas it is occupied it can leads to a hazardous
decision-making. At the opposite, if occupied information is
given instead of a free one, it remains a cautious situation
for the DM. In section V we analyze the rates of these two
indicators. The False Negative Rate (FNR) is the rate of
N4 over all occupied cells whereas the False Positive Rate
(FPR) is the rate of N2 over all free cells.

FNR = N4

N4+N5+N6
, FPR = N2

N1+N2+N3
(3)

B. Integrity with localization and perception uncertainties

For autonomous navigation tasks, the spatial occupancy
characterization must not provide misleading information.
The goal is to provide information with a high level of
confidence with the notion of integrity. For a given integrity
risk level, the characterization error represented by the FNR
must be below the set risk level. We will show that the main
contribution brought by the LGM is its ability to keep the
integrity of the information thanks to its capacity to control
the FNR via the sampling step which has an impact on the
overall LGM characterization performance.

In addition to that, we need to evaluate the integrity
with the impact of the localization errors. As HD maps

Free Occupied Hidden
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Fig. 4: Aggregation and standardization of the LGM from initial step to
another.

are used to create the LGM in a global frame coordinates,
perceived information in the AV local frame is transformed
into the global frame thanks to the localization position.
As a consequence, when the uncertainty of the localization
is taken into account, the characterization process has to
provide, whatever the situation is, a confidence level of the
information stored. In order to evaluate the robustness of
our model, we added some Gaussian noises with different
standard deviations on the pose of our ground truth. Thus,
we can study the impact of the localization uncertainty on
our system.

At first, we consider that there is a noise on the localization
but we do not model it in the perception outputs. We want to
show that despite uncertainties, we are still able to manage
the characterization process through the sampling step.

Usually localization estimation also quantifies its uncer-
tainty, typically with a covariance matrix. This uncertainty
can be propagated to the polygons by enlarging them. As
localization errors on the AV position are introduced, the
uncertainty is propagated on the object hulls when they
are transformed from the local coordinates of the car to
the world coordinates. We want to show that if we take
a maximum allowed threshold of error for the misleading
indicator, i.e. N4 value, we are able to remain under this
threshold thanks to the cells sampling step value. Thus,
despite the uncertainty of the perception and the localization,
we are able to guarantee a functional domain for the vehicle.

In order to vary the sampling step, we applied a method-
ology to replay the scenario for each step (figure 4). To
proceed, we took the results for a minimum step (step 1
of figure 4), which is typically used for the ground truth,
and combined them to increase the step. For instance, with
a sampling step of 0.2 m we combined information of two
cells of 0.1 m by applying an aggregation rule that gives
an identical result as if we had run the process in real time
(step i of figure 4). The aggregation rule is the same as in
table II. Then, to be able to compare the ground truth with
the initial step, the aggregated cells are split back to the
standard minimal sampling step of the LGM used for the
ground truth as shown in figure 4.

V. EXPERIMENTS

A. Setup

In order to validate our method, we analyze experiments
carried out with three vehicles in real road conditions. The
experiments were conducted with two experimental Renault
ZOE vehicles and one Renault Master of the Heudiasyc
laboratory. An HD map previously constructed in the city
of Compiègne has been used to lead the experiments.



Fig. 5: Lane Grid Map displayed in RViz with three vehicles. The ego
vehicle (blue) is following the two other ones (gray and white). Each cell
is characterized as one of the following states: free (green), occupied (red),
hidden (white). The free space polygon is shown in purple and objects
polygons in green.The global path is displayed at the bottom right.

A NovAtel SPAN-CPT IMU with post-processed GNSS
PPK corrections was used to have a centimeter-level accurate
localization of each vehicle. A Velodyne VLP32-C LiDAR
was used for the environment perception only in the ego ve-
hicle. This sensor has a 360◦ field of view with a theoretical
range of 100 meters and runs at 10 hz. It enables to build
several types of spatial occupancy representation.

1) Occupancy Grid (OG): With this representation, there
are in the literature two methods to encode the space state:
probabilistic grids [16] or evidential grids [8]. As illustrated
in figure 2, the intersection between each cell of the LGM
and the OG is computed such that one cell of the LGM
encompasses N cells of the OG. When merging two cells
information, the O state is more conservative than the H
state which is more cautious than the F state. Therefore, we
consider the following aggregation rule, table II, when char-
acterizing cells of the LGM. The resulting cell is occupied
if at least one cell is occupied and is free only if both cells
are free. In other cases, the resulting cell is hidden.

2) Polygons: Instead of a grid, an approach based on
polygons can be used. One can compare it for instance
to a parametric free space [9]. The free space polygon
Fp considers that the space inside is free (illustrated with
a purple contour in figure 5). The occupancy of objects
are given under a list of polygons Op considered as being
occupied. Thus, we can compute the intersection between
each cell Celli of the LGM and the different polygons. The
results of these intersections provide the state S(·) of the
cells:

if (Op ∩ Celli) 6= ∅ then S(Celli) = O ;
else if (Fp ∩ Celli) = Celli then S(Celli) = F ; (4)

else S(Celli) = H

In our approach, the polygon method has been imple-
mented for its practicality. A simple geometric ground fitting
based on Principal Component Analysis algorithm and a
clustering algorithm was used to measure the free space and

TABLE II: Aggregation rule of two OG cells. The information is condensed
in the LGM cell.

Celli+1

Celli F O H
F F O H
O O O O
H H O H

Fig. 6: Cumulative percentages of the six Ni indicators

object surrounding the ego vehicle [24]. A clustering has
been used to extract objects clusters. Finally, the geometric
layer of the HD map has been used to filter only objects on
the road (figure 5).

The ego-vehicle and paths of interest are extracted re-
cursively from the HD map as they can be pre-processed
thanks to the topological layer. The AOI are represented by
polygons using the center line with its width. The Robot
Operating System (ROS) middle-ware was used for the
implementation and the Boost Geometry library for the
geometric operations between areas of interest and polygons.

A single dataset with sensors raw data has been recorded
on an open road along a trajectory of 1.5 km in an urban
area. The ego vehicle was following the two others all along
the trajectory. That is why, during this scenario, only the
clusters corresponding to the two perceived vehicles were
used to compute the results.

When replaying data in real time, the LGM has been
evaluated over 50 m in front of the ego vehicle as the two
others were driving just in front of it (figure 5) and generated
at a rate of 10hz. Firstly, the LGM has been recorded when
replaying the dataset with a minimum sampling step of 0.1
m. In a second time, data were replayed in real time in
order to simulate the same scenario but applying a Gaussian
noise on the AV pose. It permits to add an error on the
position with the same sensors and perception setup. We
report six replays with standard deviation varying from 0
to 0.5 m. For each replay, there are two scenarios. The first
one, without uncertainty propagation, the clusters size does
not take into account the noise applied on the localization.
The second one, with uncertainty propagation, a convex hull
of each polygon object is augmented taking into account the
localization uncertainty. We have used the method presented
in [25]. Each vertex of the polygon of an object generates
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Fig. 7: FNR and FPR of the LGM without uncertainty propagation on the
polygons of the detected vehicles. Random errors with different standard
deviations are added to the localization estimates. The x-axis corresponds
to the spatial sampling of the LGM.

several other vertices with a transformation that takes three
times the standard deviation on the pose in each direction.
Given all the resulting points, a new object convex hull is
obtained and used in the characterization process.

In addition to that, given the fact that for each scenario we
added simulations with a variation of the sampling step from
0.1 m to 5 m with a step of 0.1 m, it gives the equivalent of
6 × 2 × 50 = 600 simulations to study the influence of the
sampling step, the noise and the uncertainty propagation on
the perception polygons.

Figure 6 depicts values that are computed at the end of one
scenario, replayed in real time and for a sampling step ps ∈
[0.1, 5] m. It shows the cumulative sum of each indicator Ni

for several sampling steps of the LGM cells.

B. Results

Figure 7 depicts results obtained by the replay of data
without propagating the uncertainty on the polygons of the
detected vehicles. On the left of the figure, the FNR of the
misleading occupation is plotted in function of the sampling
step of the LGM. On the right, the FPR of the over cautious
occupation is also plotted in function of the sampling step.
Each curve shows the evolution of the rate value depending
on the standard deviation of the noise added on the pose.

Figure 7a shows a decreasing level of the FNR when the
sampling step raises. Indeed, the cells classified as occupied
get bigger and, therefore, they cover a larger space that
encompasses nearby cells that were incorrectly classified
as free because of the localization error. As the standard
deviation of the noise increases, the FNR decreases but at
a higher level. This shows that it is possible to decrease
the FNR under a given integrity risk by increasing the
sampling step. For example, if we set a maximum integrity
risk of 0.35% for the FNR, the integrity requirement can
be reached by setting the sampling step to the value depicted
by the red dots in figure 7. To compute these red dots,

(a) (b)

Fig. 8: FNR and FPR of the LGM with uncertainty propagation on objects
hulls as described in section IV-B.

the different curves are interpolated in a logarithmic scale
(dashed curves) and intersected with the required integrity
risk. For a localization noise with a standard deviation of
0.5 m, we need a sampling step of around 3.5 m while for
a standard deviation smaller than 0.2, a sampling step lower
than 1 m is enough. The disadvantage of subsampling is that
navigation quantities (such as distances to other vehicles,
for example) may be too discrete to properly perform the
current task. In other words, this graph shows that if we
are not able to model the localization uncertainty, a correct
sampling allows to keep the information safe as defined by
the functional domain. For a given integrity risk, higher the
uncertainty, higher the sampling step. The question can also
be addressed the other way around: oversampling the LGM
brings more misleading information since the curves increase
as we get closer to zero.

On figure 7b, one can observe that the noise does not
have influence on the FPR. As the aggregation rule is
conservative on the occupied state, the FPR increases as
the size of each occupied cell gets bigger. The superposition
of each curve can be explained by the fact that, observing
an occupied polygon, whatever the noise is, the size of the
occupied polygon is not modified which does not change the
impact on the cells.

Figure 8a shows the same curves as the previous figure
with the difference that the uncertainty is now propagated
onto the polygons which are enlarged. As a consequence,
they cover a bigger space to ensure covering the correct
occupied state. All the curves have the same shape with
a much lower FNR. When the uncertainty is properly
handled, we are therefore able to keep integrity at a given
level for a shorter sampling step.

As it can be observed on figure 8b, the consequence of
making the polygons bigger is a higher variation on the
FPR depending on the standard deviation of the noise. It is
explained by the fact that the perception system is much more
conservative as occupied area gets bigger as localization
uncertainty increases. When the noise model is estimated



and propagated, subsampling leads to a loss of efficiency
as the FPR grows rapidly for no variation of the FNR.
When uncertainty is taken into account and propagated to
the polygons, it is possible to decrease the FNR while the
FPR increases with the noise.

For a given integrity risk, with uncertainty propagation, it
is therefore possible to lower the sampling step compared to
no propagation. It brings us closer to a finer representation.
If localization uncertainty is not well defined, in order to
keep a target integrity at 0.35% for the FNR, the sampling
step parameter should be equal or below 3.6 m. However, if
uncertainty is well bounded, the sampling step parameter can
be lowered to 1m. Thus, we are able to refine information
stored by the LGM. As a consequence, if the localization un-
certainty is well defined, a lower sampling step is suitable in
order not to supply misleading information. A low integrity
risk level can be chosen. However, if the estimation error is
not well bounded, we need to use a higher sampling step to
keep the same integrity risk level.

VI. CONCLUSION

In this paper, an intermediate lane level information rep-
resentation has been deepened with Lane Grid Maps. This
representation aims at providing spatial information at a
lane level to the maneuver planner of a decision-making
module. We have demonstrated the capability of such a
representation to help providing non-misleading information
given an integrity risk. A LGM provides a spatial information
representation in the road lane frame. This grid is sampled
and each cell supplies spatial state information among: free,
occupied or hidden. Based on its sampling step parameters,
a confidence value of the information has been evaluated
and compared to the ground truth of vehicles with real
experiments. We demonstrated the need to find a proper
sampling step for keeping information integrity under a given
target. Indeed, oversampling can lead to increase misleading
information, in addition to requesting heavier calculations to
be done in real time. A proper sampling step is thus necessary
depending on uncertainty management. The methodology we
have presented in this article allows to answer this question.

In future work, situation predictions based on this repre-
sentation will also be explored.
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