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Abstract

We degenerate the finite gap solutions of the KdV equation from the

general formulation given in terms of abelian functions when the gaps

tends to points, to get solutions to the KdV equation given in terms of

Fredholm determinants and wronskians. For this we establish a link be-

tween Riemann theta functions, Fredholm determinants and wronskians.

This gives the bridge between the algebro-geometric approach and the

Darboux dressing method.

1 Introduction

We consider the KdV equation in the following normalization

ut = 6uux − uxxx, (1)

where the subscripts x and t as usual denote partial derivatives.
This equation (1) was introduced for the first time in 1895 by Korteweg and
de Vries [56]. This equation appears in a wide range of physical problems and
describes the propagation of waves with weak dispersion in various nonlinear
media.
A method of resolution was given in 1967 by Gardner et al. [52]. It was proven
that this equation is a complete integrable system by Zakharov and Faddeev in
1971 [76].
Solutions were constructed by Hirota in 1971 by using the bilinear method [53].
Its and Matveev present solutions in terms of Riemann theta functions [54] in
1975. Lax gives in the same year the expressions of periodic and almost periodic
solutions [59]. A lot of works have been realized in the following years. We can
mention for example Airault et al. in 1977 [3], Adler and Moser in 1978 [2],
Ablowitz and Cornille in 1979 [1], Freeman and Nimmo in 1984 [5], Matveev in
1992 [64], Ma in 2004 [60], Kovalyov in 2005 [58] and more recently Ma in 2015
[61].
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In the following, we are interested in the algebro-geometric approach given by
Its and Matveev in 1975. We degenerate the solutions to the KdV equation
given in terms of Riemann theta functions to get solutions in terms of Fredholm
determinants. Then we give a representation in terms of wronskians. This gives
the correspondence between the algebro-geometric approach and the Darboux
dressing method.

2 The KdV equation and its solutions in terms

of theta functions

We consider the Riemann surface Γ of the algebraic curve defined by

ω2 =

2g+1
∏

j=1

(z − Ej),

with Ej 6= Ek, j 6= k. Let D be some divisor D =
∑g

j=1 Pj , Pj ∈ Γ. The
so-called finite gap solution of the KdV equation

ut = 6uux − uxxx (2)

can be expressed in the form [54]

u(x, t) = −2∂2
x [ln θ(xg + tv + l)] + C. (3)

We recall briefly, the notations. In (3), θ is the Riemann function defined by

θ(z) =
∑

k∈Zg

exp{πi(Bk|k) + 2πi(k|z)}, (4)

constructed from the matrix of the B-periods of the surface Γ, and the vectors
g, v, l are defined by

gj = 2icj1, (5)

vj = 8i(
cj1

2

2g+1
∑

k=1

Ek + cj2), (6)

lj = −
g

∑

k=1

∫ Pk

∞

dUj +
j

2
− 1

2

g
∑

k=1

Bkj , (7)

C =

2g+1
∑

k=1

Ek − 2

g
∑

k=1

∫

ak

zdUk, (8)

the coefficients cjk being relating with abelian differential dUj by

dUj =

∑g
k=1 cjkz

g−k

√

∏2g+1
k=1 (z − Ek)

dz, (9)
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and coefficients cjk can be obtained by solving the system of linear equations
∫

ak

dUj = δjk, 1 ≤ j ≤ g, 1 ≤ k ≤ g.

3 Degeneracy of solutions

We suppose that Ej are real, Em < Ej if m < j and try to evaluate the limits
of all objects in formula (3) when E2m, E2m+1 tends to −αm, −αm = −κ2

m,
κm > 0, for 1 ≤ m ≤ g, and E1 tends to 0 (these ideas were first presented by
A. Its and V.B. Matveev, exposed for example in [4]).

3.1 Degeneracy of the components of the solution

3.1.1 Limit of P (z) =
∏2g+1

j=1 (z − Ej)

The limit of P (z) =
∏2g+1

j=1 (z−Ej) is evidently equal to P̃ (z) = z
∏g

j=1(z+αj)
2

3.1.2 Limit of dUm =

∑g
k=1 cmkz

g−k

√

∏2g+1
k=1 (z − Ek)

dz

The limit of dUm is equal to ˜dUm =
ϕm(z)√

z
∏g

j=1(z + αj)
dz, where ϕm(z) =

∑g
k=1 c̃mkz

g−k. The normalization condition takes the form in the limit

∫

ak

dUj →
2πiϕj(−αk)

−iκk

∏

m 6=k(−αk + αm)
= δkj , (10)

which proves that the numbers −αm, m 6= k are the zeros of the polynomials
ϕk(z), and so ϕk(z) can be written as ϕk(z) = c̃k1

∏

m 6=k(z + αm). By (10), we
get in the limit

c̃k1 = − κk

2πi
.

So
dŨk = − κk

2πi
√
z(z + αk)

dz

3.1.3 Limit of vk and gk

By identification of the powers of zg−2 in (11)

ϕ̃k(z) = ˜ck1
∏

l 6=k

(z + αl) =

g
∑

j=1

˜ckjz
g−j , (11)

we get in the limit

c̃k1

g
∑

l=1

αl = c̃k2.
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So we have the limit values of vk and gk :

ṽk =
4iκ3

k

π

and

g̃k =
−iκk

π
.

3.1.4 Limit of Uk(P ) and Bmk

For λ0 = −αm = −κ2
m, I =

∫ 0

λ0
dUk → 1

2
B̃mk. The integral I can be easily

evaluate along the real axis on the upper sheet of surface Γ and we get

I → i

2π
ln

∣

∣

∣

∣

κm + κk

κm − κk

∣

∣

∣

∣

.

So we have the limit values of matrix B :

B̃mk =
i

π
ln

∣

∣

∣

∣

κm + κk

κm − κk

∣

∣

∣

∣

.

Therefore iBkk tends to −∞. As previously, we have

∫ P

∞

dUj → − i

2π
ln

∣

∣

∣

∣

κj −
√
zP

κj +
√
zP

∣

∣

∣

∣

. (12)

3.1.5 Limit of argument of exponential in θ(p)

Let us denote A0 the argument of exponential in θ(p) =
∑

k∈Zg exp{πi(Bk|k)+
2πi(k|p)}.
A0 can be rewritten in the form

A0 = πi

g
∑

j=1

Bjjkj(kj − 1) + 2πi
∑

j>m

Bmjkmkj +

g
∑

j=1

πi(2pj +Bjj)kj . (13)

Using the inequality kj(kj − 1) ≥ 0 for all k ∈ Zg and the fact that iBkk tends

to −∞, we can reduce the limit θ̃ of θ(p) to a finite sum taken over vectors
k ∈ Zg such that each kj must be equal to 0 or 1.
So, if we denote A the argument of θ(xg+ tv+ l), it can be written in the form

A = πi

g
∑

j=1

Bjjkj(kj − 1) + 2πi
∑

j>m

Bmjkmkj +

g
∑

j=1

kj [2πi(gjx+ vjt)

−πi(−j + 2

g
∑

k=1

∫ Pk

∞

dUj +
∑

m 6=j

Bmj)].
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In other words

A = πi

g
∑

j=1

Bjjkj(kj − 1) + 2πi
∑

j>m

Bmjkmkj +

g
∑

j=1

kjQj ,

with
Qj = 2πi(gjx+ vjt) + βj

and

βj = −πi(−j + 2

g
∑

k=1

∫ Pk

∞

dUj +
∑

m 6=j

Bmj).

The quantity βj has a finite limit value β̃j independent from x and t.

3.1.6 Limit of θ(xg + vt+ l)

By means of the inequality kj(kj − 1) ≥ 0 for all k ∈ Zg and the previous

relation iBkk tends to −∞, it turns out that the limit θ̃ of θ(xg+ tv+ l) reduce
to a finite sum taken over vectors k ∈ Zg with the property that each kj must
be equal to 0 or 1.

θ̃ =
∑

k∈Zg, kj=0 or 1

exp{
∑

m>j

2 ln

∣

∣

∣

∣

κm − κj

κm + κj

∣

∣

∣

∣

kmkj+(

g
∑

j=1

2κjx−8κ3
j t+2κjxj+πji+

∑

m 6=j

ln

∣

∣

∣

∣

κm + κj

κm − κj

∣

∣

∣

∣

)kj},

with

xj =
1

2κj

g
∑

k=1

ln

∣

∣

∣

∣

√
zk − iκj√
zk + iκj

∣

∣

∣

∣

.

It can be rewritten as

θ̃ =
∑

J⊂{1,...,g}

∏

j∈J

(−1)j
∏

j∈J k/∈J

∣

∣

∣

∣

κj + κk

κj − κk

∣

∣

∣

∣

exp
∑

j∈J

2(κjx− 4κ3
j t+ κjxj). (14)

3.1.7 Limit of the coefficient C

The coefficient C is defined in (8) by

C =

2g+1
∑

k=1

Ek − 2

g
∑

k=1

∫

ak

zdUk = C1 + C2,

can be evaluated as follows.

C2 = −2

g
∑

k=1

∫

ak

zdUk = −2

g
∑

k=1

∫

ak

−κkzdz

2π
√
z(z + αk)

=

g
∑

k=1

κk

π

∫

ak

√
zdz

(z + αk)

=

g
∑

k=1

κk

π
2iπ(−iκk) =

g
∑

k=1

2κ2
k = 2

g
∑

k=1

αk.
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Thus when the gaps tends to points,, the coefficient C tends to C̃ equal to

C̃ = 2

g
∑

k=1

−αk + 2

g
∑

k=1

αk = 0.

3.2 Degenerate solution to the KdV equation

Therefore, we have the following representation of the degenerate solution to
the KdV equation

Theorem 3.1 The fonction u defined by

u(x, t) = −2∂2
x ln





∑

J⊂{1,...,g}

∏

j∈J

(−1)j
∏

j∈J k/∈J

∣

∣

∣

∣

κj + κk

κj − κk

∣

∣

∣

∣

exp





∑

j∈J

2(κjx− 4κ3
j t+ κjxj)







 , (15)

with κj, and xj arbitrary real parameters, is a solution to the KdV equation (1).

4 From theta function to Fredholm determinant

4.1 The link between the degenerate solution and the

Fredholm determinant

In a recent paper, Kirillov and Van Diejen [72] have given formulas in terms
of determinants for zonal spherical functions on hyperboloids. In particular,
they compute det(I +A), where I is the unit matrix and A = (ajk)1≤j,k≤m the
matrix defined as :

ajk =
2ǫjκj

κj + κk
exp(−2κjx)

∏

l 6=j

∣

∣

∣

∣

κl + κj

κl − κj

∣

∣

∣

∣

, (16)

where ǫj ∈ {−1;+1} and κj > 0 for 1 ≤ j ≤ N .
Then det(I +A) has the following form

det(I +A) =
∑

J⊂{1,...,N}

exp



−2x
∑

j∈J

κj





∏

j∈J

ǫj
∏

j∈J k/∈J

∣

∣

∣

∣

κj + κk

κj − κk

∣

∣

∣

∣

. (17)

Using the same strategy, we can compute det(I + A) where A = (ajk)1≤j,k≤m

is the matrix defined as :

ajk =
(−1)j2κj

κj + κk
exp

[

2(κjx− 4κ3
j t+ κjxj)

]

∏

l 6=j

∣

∣

∣

∣

κl + κj

κl − κj

∣

∣

∣

∣

,

xj being an arbitrary parameter.
Then det(I +A) has the following form

det(I +A) =
∑

J⊂{1,...,N}

exp





∑

j∈J

2(κjx− 4κ3
j t+ κjxj)





∏

j∈J

(−1)j
∏

j∈J k/∈J

∣

∣

∣

∣

κj + κk

κj − κk

∣

∣

∣

∣

, (18)
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By the previous section,

θ̃ =
∑

J⊂{1,...,g}

∏

j∈J

(−1)j
∏

j∈J k/∈J

∣

∣

∣

∣

κj + κk

κj − κk

∣

∣

∣

∣

exp





∑

j∈J

(2(κjx− 4κ3
j t+ κjxj)



 . (19)

If we compare the expression (18) to (19), we have clearly the equality with
g = N

θ̃ = det(I +A). (20)

4.2 Solution to the KdV equation in terms of Fredholm

determinant

So we have the following representation of the solutions to the KdV equation

Theorem 4.1 The fonction u defined by

u(x, t) = −2∂2
x ln(det(I +A)), (21)

with A the matrix defined by A = (ajk)1≤j,k≤N

ajk =
(−1)j2κj

κj + κk
exp

[

2(κjx− 4κ3
j t+ κjxj)

]

∏

l 6=j

∣

∣

∣

∣

κl + κj

κl − κj

∣

∣

∣

∣

, (22)

and κj, xj arbitrary real parameters, is a solution to the KdV equation (1).

If we consider the matrix B defined by

bjk = (−1)j exp
[

2(κjx− 4κ3
j t+ κjxj)

]

∏

l 6=k

∣

∣

∣

∣

κl + κj

κl − κk

∣

∣

∣

∣

,

it is easy to verify that det(I + A) = det(I + B), and so we can give another
representation of the solutions to the KdV equation. We get the following
statement :

Theorem 4.2 The fonction u defined by

u(x, t) = −2∂2
x ln(det(I +B)), (23)

with B the matrix defined by B = (bjk)1≤j,k≤m

bjk = (−1)j exp
[

2(κjx− 4κ3
j t+ κjxj)

]

∏

l 6=k

∣

∣

∣

∣

κl + κj

κl − κk

∣

∣

∣

∣

, (24)

and κj, xj arbitrary real parameters, is a solution to the KdV equation (1).
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We can also consider the matrix C defined by

cjk = (−1)j exp
[

2(κjx− 4κ3
j t+ κjxj)

]

∏

l 6=k |κl + κj |
∏

l 6=j |κl − κj |
.

It is easy to check that det(I + A) = det(I + C), and so we can give a third
representation of the solutions to the KdV equation :

Theorem 4.3 The fonction u defined by

u(x, t) = −2∂2
x ln(det(I + C)), (25)

with C the matrix defined by C = (cjk)1≤j,k≤m

cjk = (−1)j exp
[

2(κjx− 4κ3
j t+ κjxj)

]

∏

l 6=k |κl + κj |
∏

l 6=j |κl − κj |
, (26)

and κj, xj arbitrary real parameters, is a solution to the KdV equation (1).

Another possibility is to choose the matrix D defined by

djk = (−1)j exp
[

2(κjx− 4κ3
j t+ κjxj)

]

∏

l 6=j

∣

∣

∣

∣

κl + κk

κl − κj

∣

∣

∣

∣

.

It is also easy to check that det(I+A) = det(I+D), and so we can give another
representation of the solutions to the KdV equation :

Theorem 4.4 The fonction u defined by

u(x, t) = −2∂2
x ln(det(I +D)), (27)

with C the matrix defined by D = (djk)1≤j,k≤m

djk = (−1)j exp
[

2(κjx− 4κ3
j t+ κjxj)

]

∏

l 6=j

∣

∣

∣

∣

κl + κk

κl − κj

∣

∣

∣

∣

, (28)

and κj, xj arbitrary real parameters, is a solution to the KdV equation (1).

It remains to find the link between this Fredholm determinant and a certain
wronskian.

5 From Fredholm determinants to wronskians

5.1 Link between Fredholm determinants and wronskians

In this section, we consider the following functions

φj(x) = sinh(κjx− 4κ3
j t+ κjxj), (29)
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where κj are real numbers such that κ1 ≤ . . . ≤ κN , and xj an arbitrary constant
independent of x.
We use the following notations :
θj = (κjx− 4κ3

j t+ κjxj).

W = W (φj , . . . , φN ) is the classical Wronskian W = det[(∂j−1
x φi)i, j∈[1,...,N ]].

We consider the matrix A = (ajk)j, k∈[1,...,N ] defined by

ajk = (−1)j exp
[

2(κjx− 4κ3
j t+ κjxj)

]

∏

l 6=j

∣

∣

∣

∣

κl + κk

κl − κj

∣

∣

∣

∣

. (30)

Then we have the following statement

Theorem 5.1

det(I +A) =
2N (−1)

N(N+1)
2 exp(

∑N
j=1 θj)

∏N
j=2

∏j−1
i=1 (κj − κi)

W (φ1, . . . , φN ) (31)

5.2 Solutions to the KdV equation in terms of wronskians

From the previous subsection, we can give the following wronskian representa-
tion of the solutions to the KdV equation.

Theorem 5.2 The function u defined by

u(x, t) = −2∂2
x (ln [W (φ1, . . . , φN )]) , (32)

where = W (φ1, . . . , φN ) = det[(∂j−1
x φi)i, j∈[1,...,N ]] is the wronskian of the func-

tions φ defined by φj(x, t) = sinh(κjx−4κ3
j t+κjxj), κj, xj being real numbers,

is a solution to the KdV equation (1).

It is relevant to note that we recover the result given by the Darboux dressing
[64].
This realize the connection between the algebro-geometric approach and the
Darboux dressing method.

Remark 5.1 The choices of functions φj are not unique. For example, we can

choose :

φj(x) = cosh(κjx − 4κ3
j t + κjxj), or φj(x) = exp(κjx − 4κ3

j t + κjxj), or

φj(x) = exp(−(κjx − 4κ3
j t + κjxj)) or any combinations of these different last

functions.

We can also choose the following functions :

φj(x) = sin(κjx+ 4κ3
j t+ κjxj), or φj(x) = cos(κjx+ 4κ3

j t+ κjxj), or φj(x) =

exp(i(κjx+ 4κ3
j t+ κjxj)), or φj(x) = exp(−i(κjx+ 4κ3

j t+ κjxj)) or any com-

binations of these different last functions.
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6 Conclusion

In this paper, we succeed to construct different types of representations of the
solutions to the KdV equation. First, it was essential to express the degenerate
θ function into an explicit Fredholm determinant. The second step was to get
the transformation of the Fredholm determinant into a wronskian.
I have to mention a paper of Whitham [74] in connection with this work, and
I would like to thank the referee about this information. The article [74] deals
with equations as the KdV equation and the representation of solutions as sum
of solitons, and also the relation of these solutions with Riemann theta functions
in particular. It can be compared with the solutions given in the present work
expressed in terms of Fredholm determinant and wronskians.
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