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Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation +

We degenerate the finite gap solutions of the KdV equation from the general formulation given in terms of abelian functions when the gaps tends to points, to get solutions to the KdV equation given in terms of Fredholm determinants and wronskians. For this we establish a link between Riemann theta functions, Fredholm determinants and wronskians. This gives the bridge between the algebro-geometric approach and the Darboux dressing method.

Introduction

We consider the KdV equation in the following normalization

u t = 6uu x -u xxx , (1) 
where the subscripts x and t as usual denote partial derivatives. This equation [START_REF] Ablowitz | On solutions of the KdV equation[END_REF] was introduced for the first time in 1895 by Korteweg and de Vries [START_REF] Korteweg | On the change of form of long wawes adwancing in a rectangular canal, and on a new type of long stationary waves[END_REF]. This equation appears in a wide range of physical problems and describes the propagation of waves with weak dispersion in various nonlinear media.

A method of resolution was given in 1967 by Gardner et al. [START_REF] Gardner | Method for solving the Korteweg-de Vries equation[END_REF]. It was proven that this equation is a complete integrable system by Zakharov and Faddeev in 1971 [START_REF] Zakharov | Korteweg-de Vries equation: A completely integrable Hamiltonian system[END_REF]. Solutions were constructed by Hirota in 1971 by using the bilinear method [START_REF] Hirota | Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[END_REF].

Its and Matveev present solutions in terms of Riemann theta functions [START_REF] Its | Hill's operator with finitely many gaps[END_REF] in 1975. Lax gives in the same year the expressions of periodic and almost periodic solutions [START_REF] Lax | Periodic solutions of the KdV equation[END_REF]. A lot of works have been realized in the following years. We can mention for example Airault et al. in 1977 [3], Adler and Moser in 1978 [START_REF] Adler | On a class of polynomials connected with the Kortewegde-Vries equation[END_REF], Ablowitz and Cornille in 1979 [START_REF] Ablowitz | On solutions of the KdV equation[END_REF], Freeman and Nimmo in 1984 [START_REF] Freeman | Nimmo Rational solutions of the KdV equation in wronskian form[END_REF], Matveev in 1992 [START_REF] Matveev | Generalized Wronskian Formula for solutions of the KdV equation[END_REF], Ma in 2004 [START_REF] Ma | Solving the KdV equation by its bilinear form wronskian solutions[END_REF], Kovalyov in 2005 [START_REF] Kovalyov | On a class of solutions of KdV[END_REF] and more recently Ma in 2015 [START_REF] Ma | Lump solutions to the KP equation[END_REF].
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In the following, we are interested in the algebro-geometric approach given by Its and Matveev in 1975. We degenerate the solutions to the KdV equation given in terms of Riemann theta functions to get solutions in terms of Fredholm determinants. Then we give a representation in terms of wronskians. This gives the correspondence between the algebro-geometric approach and the Darboux dressing method.

2 The KdV equation and its solutions in terms of theta functions

We consider the Riemann surface Γ of the algebraic curve defined by

ω 2 = 2g+1 j=1 (z -E j ), with E j = E k , j = k.
Let D be some divisor D = g j=1 P j , P j ∈ Γ. The so-called finite gap solution of the KdV equation

u t = 6uu x -u xxx (2) 
can be expressed in the form [START_REF] Its | Hill's operator with finitely many gaps[END_REF] u

(x, t) = -2∂ 2 x [ln θ(xg + tv + l)] + C. (3) 
We recall briefly, the notations. In (3), θ is the Riemann function defined by

θ(z) = k∈Z g exp{πi(Bk|k) + 2πi(k|z)}, (4) 
constructed from the matrix of the B-periods of the surface Γ, and the vectors g, v, l are defined by

g j = 2ic j1 , (5) 
v j = 8i( c j1 2 2g+1 k=1 E k + c j2 ), (6) 
l j = - g k=1 P k ∞ dU j + j 2 - 1 2 g k=1 B kj , (7) 
C = 2g+1 k=1 E k -2 g k=1 a k zdU k , (8) 
the coefficients c jk being relating with abelian differential dU j by

dU j = g k=1 c jk z g-k 2g+1 k=1 (z -E k ) dz, (9) 
and coefficients c jk can be obtained by solving the system of linear equations

a k dU j = δ jk , 1 ≤ j ≤ g, 1 ≤ k ≤ g.

Degeneracy of solutions

We suppose that E j are real, E m < E j if m < j and try to evaluate the limits of all objects in formula (3) when E 2m , E 2m+1 tends to -α m , -α m = -κ 2 m , κ m > 0, for 1 ≤ m ≤ g, and E 1 tends to 0 (these ideas were first presented by A. Its and V.B. Matveev, exposed for example in [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF]).

Degeneracy of the components of the solution

3.1.1 Limit of P (z) = 2g+1 j=1 (z -E j )
The limit of

P (z) = 2g+1 j=1 (z -E j ) is evidently equal to P (z) = z g j=1 (z + α j ) 2 3.1.2 Limit of dU m = g k=1 c mk z g-k 2g+1 k=1 (z -E k ) dz The limit of dU m is equal to dU m = ϕ m (z) √ z g j=1 (z + α j )
dz, where ϕ m (z) = g k=1 cmk z g-k . The normalization condition takes the form in the limit

a k dU j → 2πiϕ j (-α k ) -iκ k m =k (-α k + α m ) = δ kj , (10) 
which proves that the numbers -α m , m = k are the zeros of the polynomials ϕ k (z), and so ϕ k (z) can be written as ϕ k (z) = ck1 m =k (z + α m ). By (10), we get in the limit ck1 = -

κ k 2πi . So d Ũk = - κ k 2πi √ z(z + α k ) dz 3.1.3 Limit of v k and g k
By identification of the powers of z g-2 in ( 11)

φk (z) = c k1 l =k (z + α l ) = g j=1 c kj z g-j , (11) 
we get in the limit For

λ 0 = -α m = -κ 2 m , I = 0 λ0 dU k → 1 2
Bmk . The integral I can be easily evaluate along the real axis on the upper sheet of surface Γ and we get

I → i 2π ln κ m + κ k κ m -κ k .
So we have the limit values of matrix B :

Bmk = i π ln κ m + κ k κ m -κ k .
Therefore iB kk tends to -∞. As previously, we have

P ∞ dU j → - i 2π ln κ j - √ z P κ j + √ z P . (12) 

Limit of argument of exponential in θ(p)

Let us denote A 0 the argument of exponential in θ(p) = k∈Z g exp{πi(Bk|k) + 2πi(k|p)}.

A 0 can be rewritten in the form

A 0 = πi g j=1 B jj k j (k j -1) + 2πi j>m B mj k m k j + g j=1 πi(2p j + B jj )k j . ( 13 
)
Using the inequality k j (k j -1) ≥ 0 for all k ∈ Z g and the fact that iB kk tends to -∞, we can reduce the limit θ of θ(p) to a finite sum taken over vectors k ∈ Z g such that each k j must be equal to 0 or 1. So, if we denote A the argument of θ(xg + tv + l), it can be written in the form

A = πi g j=1 B jj k j (k j -1) + 2πi j>m B mj k m k j + g j=1 k j [2πi(g j x + v j t) -πi(-j + 2 g k=1 P k ∞ dU j + m =j B mj )].
In other words

A = πi g j=1 B jj k j (k j -1) + 2πi j>m B mj k m k j + g j=1 k j Q j , with Q j = 2πi(g j x + v j t) + β j and β j = -πi(-j + 2 g k=1 P k ∞ dU j + m =j B mj ).
The quantity β j has a finite limit value βj independent from x and t.

Limit of θ(xg

+ vt + l)
By means of the inequality k j (k j -1) ≥ 0 for all k ∈ Z g and the previous relation iB kk tends to -∞, it turns out that the limit θ of θ(xg + tv + l) reduce to a finite sum taken over vectors k ∈ Z g with the property that each k j must be equal to 0 or 1.

θ = k∈Z g , kj =0 or 1 exp{ m>j 2 ln κ m -κ j κ m + κ j k m k j +( g j=1 2κ j x-8κ 3 j t+2κ j x j +πji+ m =j ln κ m + κ j κ m -κ j )k j }, with x j = 1 2κ j g k=1 ln √ z k -iκ j √ z k + iκ j .
It can be rewritten as θ = J⊂{1,...,g} j∈J (-1) j j∈J k / ∈J κ j + κ k κ jκ k exp j∈J 2(κ j x -4κ 3 j t + κ j x j ). ( 14)

Limit of the coefficient C

The coefficient C is defined in [START_REF] Gaillard | New formulas for the eigenfunctions of the two-particle Calogero-Moser system[END_REF] by

C = 2g+1 k=1 E k -2 g k=1 a k zdU k = C 1 + C 2 ,
can be evaluated as follows.

C 2 = -2 g k=1 a k zdU k = -2 g k=1 a k -κ k zdz 2π √ z(z + α k ) = g k=1 κ k π a k √ zdz (z + α k ) = g k=1 κ k π 2iπ(-iκ k ) = g k=1 2κ 2 k = 2 g k=1 α k .
Thus when the gaps tends to points,, the coefficient C tends to C equal to 

C = 2 g k=1 -α k + 2 g k=1 α k = 0.
(-1) j j∈J k / ∈J κ j + κ k κ j -κ k exp   j∈J 2(κ j x -4κ 3 j t + κ j x j )     , ( 15 
)
with κ j , and x j arbitrary real parameters, is a solution to the KdV equation (1).

4 From theta function to Fredholm determinant

The link between the degenerate solution and the Fredholm determinant

In a recent paper, Kirillov and Van Diejen [START_REF] Van Diejen | Kirillov Determinantal formulas for zonal spherical functions on hyperboloids[END_REF] have given formulas in terms of determinants for zonal spherical functions on hyperboloids. In particular, they compute det(I + A), where I is the unit matrix and A = (a jk ) 1≤j,k≤m the matrix defined as :

a jk = 2ǫ j κ j κ j + κ k exp(-2κ j x) l =j κ l + κ j κ l -κ j , (16) 
where ǫ j ∈ {-1; +1} and κ j > 0 for 1 ≤ j ≤ N . Then det(I + A) has the following form

det(I + A) = J⊂{1,...,N } exp   -2x j∈J κ j   j∈J ǫ j j∈J k / ∈J κ j + κ k κ j -κ k . ( 17 
)
Using the same strategy, we can compute det(I + A) where A = (a jk ) 1≤j,k≤m is the matrix defined as :

a jk = (-1) j 2κ j κ j + κ k exp 2(κ j x -4κ 3 j t + κ j x j ) l =j κ l + κ j κ l -κ j ,
x j being an arbitrary parameter.

Then det(I + A) has the following form

det(I + A) = J⊂{1,...,N } exp   j∈J 2(κ j x -4κ 3 j t + κ j x j )   j∈J (-1) j j∈J k / ∈J κ j + κ k κ j -κ k , (18) 
By the previous section, θ = J⊂{1,...,g} j∈J

(-1) j j∈J k / ∈J κ j + κ k κ j -κ k exp   j∈J (2(κ j x -4κ 3 j t + κ j x j )   . ( 19 
)
If we compare the expression ( 18) to ( 19), we have clearly the equality with

g = N θ = det(I + A). ( 20 
)

Solution to the KdV equation in terms of Fredholm determinant

So we have the following representation of the solutions to the KdV equation Theorem 4.1 The fonction u defined by

u(x, t) = -2∂ 2 x ln(det(I + A)), (21) 
with A the matrix defined by A = (a jk ) 1≤j,k≤N

a jk = (-1) j 2κ j κ j + κ k exp 2(κ j x -4κ 3 j t + κ j x j ) l =j κ l + κ j κ l -κ j , (22) 
and κ j , x j arbitrary real parameters, is a solution to the KdV equation (1).

If we consider the matrix B defined by b jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j )

l =k κ l + κ j κ l -κ k ,
it is easy to verify that det(I + A) = det(I + B), and so we can give another representation of the solutions to the KdV equation. We get the following statement :

Theorem 4.2 The fonction u defined by

u(x, t) = -2∂ 2 x ln(det(I + B)), (23) 
with B the matrix defined by B = (b jk ) 1≤j,k≤m

b jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =k κ l + κ j κ l -κ k , (24) 
and κ j , x j arbitrary real parameters, is a solution to the KdV equation (1).

We can also consider the matrix C defined by

c jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =k |κ l + κ j | l =j |κ l -κ j | .
It is easy to check that det(I + A) = det(I + C), and so we can give a third representation of the solutions to the KdV equation :

Theorem 4.3
The fonction u defined by

u(x, t) = -2∂ 2 x ln(det(I + C)), (25) 
with C the matrix defined by C = (c jk ) 1≤j,k≤m

c jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =k |κ l + κ j | l =j |κ l -κ j | , (26) 
and κ j , x j arbitrary real parameters, is a solution to the KdV equation (1).

Another possibility is to choose the matrix D defined by

d jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =j κ l + κ k κ l -κ j .
It is also easy to check that det(I + A) = det(I + D), and so we can give another representation of the solutions to the KdV equation : 

with C the matrix defined by D = (d jk ) 1≤j,k≤m d jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j )

l =j κ l + κ k κ l -κ j , (28) 
and κ j , x j arbitrary real parameters, is a solution to the KdV equation [START_REF] Ablowitz | On solutions of the KdV equation[END_REF].

It remains to find the link between this Fredholm determinant and a certain wronskian.

5 From Fredholm determinants to wronskians

Link between Fredholm determinants and wronskians

In this section, we consider the following functions

φ j (x) = sinh(κ j x -4κ 3 j t + κ j x j ), (29) 
where κ j are real numbers such that κ 1 ≤ . . . ≤ κ N , and x j an arbitrary constant independent of x.

We use the following notations : θ j = (κ j x -4κ 3 j t + κ j x j ). W = W (φ j , . . . , φ N ) is the classical Wronskian W = det[(∂ j-1

x φ i ) i, j∈ [1,...,N ] ]. We consider the matrix A = (a jk ) j, k∈[1,...,N ] defined by a jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j )

l =j κ l + κ k κ l -κ j . (30) 
Then we have the following statement Theorem 5.1

det(I + A) = 2 N (-1) N (N +1) 2 exp( N j=1 θ j ) N j=2 j-1 i=1 (κ j -κ i ) W (φ 1 , . . . , φ N ) (31) 

Solutions to the KdV equation in terms of wronskians

From the previous subsection, we can give the following wronskian representation of the solutions to the KdV equation.

Theorem 5.2 The function u defined by

u(x, t) = -2∂ 2 x (ln [W (φ 1 , . . . , φ N )]) , (32) where 
= W (φ 1 , . . . , φ N ) = det[(∂ j-1 x φ i ) i, j∈[1,...,N ]
] is the wronskian of the functions φ defined by φ j (x, t) = sinh(κ j x -4κ 3 j t + κ j x j ), κ j , x j being real numbers, is a solution to the KdV equation [START_REF] Ablowitz | On solutions of the KdV equation[END_REF].

It is relevant to note that we recover the result given by the Darboux dressing [START_REF] Matveev | Generalized Wronskian Formula for solutions of the KdV equation[END_REF]. This realize the connection between the algebro-geometric approach and the Darboux dressing method.

Remark 5.1 The choices of functions φ j are not unique. For example, we can choose : φ j (x) = cosh(κ j x -4κ 3 j t + κ j x j ), or φ j (x) = exp(κ j x -4κ 3 j t + κ j x j ), or φ j (x) = exp(-(κ j x -4κ 3 j t + κ j x j )) or any combinations of these different last functions. We can also choose the following functions : φ j (x) = sin(κ j x + 4κ 3 j t + κ j x j ), or φ j (x) = cos(κ j x + 4κ 3 j t + κ j x j ), or φ j (x) = exp(i(κ j x + 4κ 3 j t + κ j x j )), or φ j (x) = exp(-i(κ j x + 4κ 3 j t + κ j x j )) any combinations of these different last functions.

Conclusion

In this paper, we succeed to construct different types of representations of the solutions to the KdV equation. First, it was essential to express the degenerate θ function into an explicit Fredholm determinant. The second step was to get the transformation of the Fredholm determinant into a wronskian. I have to mention a paper of Whitham [START_REF] Whitham | Comments on Periodic Waves and Solitons[END_REF] in connection with this work, and I would like to thank the referee about this information. The article [START_REF] Whitham | Comments on Periodic Waves and Solitons[END_REF] deals with equations as the KdV equation and the representation of solutions as sum of solitons, and also the relation of these solutions with Riemann theta functions in particular. It can be compared with the solutions given in the present work expressed in terms of Fredholm determinant and wronskians.
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