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A coupling between integral equations and on-surface radiation

conditions for diffraction problems by non convex scatterers

S.M. ALZAHRANI∗, X. ANTOINE†, C. CHNITI∗

Abstract

The aim of this paper is to introduce a coupling procedure between surface integral equation
formulations and On-Surface Radiation Condition (OSRC) methods for solving two-dimensional
scattering problems for non convex structures. The key point is that the use of the OSRC
introduces a sparse block in the surface operator representation of the wave field while the
integral part leads to an improved accuracy of the OSRC method in the non convex part of
the scattering structure. The procedure is given for both the Dirichlet and Neumann scattering
problems. Some numerical simulations show the improvement induced by the coupling method.

1 Introduction

During the last decades, time-harmonic wave propagation has proved to be central in many engi-
neering and technological key developments, based e.g. on acoustics, electromagnetism or elastic
mechanisms. When one wants to simulate the associated boundary-value problem, one of the dif-
ficulties is related to the fact that the solution which has to be computed is set in an exterior
unbounded domain Ω+ defined as the complementary of a finite scatterer Ω−. Therefore, to use a
standard numerical method, it is necessary to bound the computational domain. One well-known
possibility is to use an absorbing boundary condition [3, 5, 16, 18, 19, 25, 31] or a Perfectly Matched
Layer [7, 8, 10, 11, 15, 32] to bound the domain and then solve the resulting problem by the fi-
nite element method [9, 21, 29]. Another widely used alternative is to rewrite equivalently the
initial exterior PDE problem as an integral equation over the finite surface Γ of the scatterer Ω−

based on the Green’s function [4, 6, 12, 13, 14, 20, 23, 24, 26, 30]. Then, this has the advantage
of reducing from one the dimension of the problem. One of the main drawbacks is that, unlike
the initial problem which involves partial differential operators, the integral equation is defined by
construction as a nonlocal pseudodifferential operator. When a discretization technique is then
applied, as the boundary element method, then the corresponding discrete version of the integral
equation leads to the numerical solution of a highly indefinite complex-valued dense linear system
which is particularly difficult to tackle in the high-frequency regime. Many technical aspects are
then necessary to make it working correctly for some applications, for example to reduce the stor-
age and to accelerate the solution of the linear system [4, 6, 17]. Various numerical methods were
further developed to propose some other ways to solve, at least approximately, the initial scattering
problem. One of them is the On-Surface Radiation Condition (OSRC) method introduced in [22]

∗Department of Mathematics, University College in Al-Qunfudhah, Umm AlQura University, Al-Qunfudhah, Saudi
Arabia (salzahrani@uqu.edu.sa), (cachniti@uqu.edu.sa)
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and further developed by many authors (see e.g. [2]). Without giving too much details now, the
OSRC approach also leads to solve an equation given over the surface of the scatterer, but defined
through local surface partial differential operators. Therefore, after the application of the boundary
element method, the linear system is highly sparse, yielding an efficient way to solve the scattering
problem. The price to pay is that the method can be considered as a numerical asymptotic method,
and therefore can lose some accuracy in some cases, in particular when the scatterer is not convex
and includes some concave parts [2]. The aim of this paper is to contribute to the improvement
of the OSRC method for non convex obstacles by proposing a direct simple coupling between the
OSRC and the surface integral equation method.

The plan of the paper is the following. In Section 2, we introduce the two-dimensional Dirichlet
scattering problem and the basic informations about the integral equation representations and their
numerical approximation. Section 3 presents the notion of OSRC and its numerical discretization
after writing the variational formulation. Section 4 develops the coupling procedure for the Dirichlet
problem. In particular, we explain how to formulate the problem and to improve its convergence
properties if it is used in a Krylov solver, based on operator preconditioning. The coupling is
validated in a simple two-dimensional example. The extension to the Neumann problem is shortly
given in Section 5. Finally, Section 6 is a conclusion.

2 Two-dimensional scattering - integral equation formulations

2.1 The two-dimensional scattering problem

Let us consider Ω− as a scatterer with boundary Γ := Ω−. The homogeneous isotropic exterior do-
main of propagation is denoted by Ω+ = R2\Ω−. For the sake of conciseness in the presentation, we
first assume that the scatterer is acoustically sound-soft (i.e. Dirichlet boundary condition). Never-
theless, the case of a sound-hard scattering problem (Neumann boundary condition) is also treated

shortly in Section 5. We now consider a time-harmonic incident plane wave uinc(x) = eikθ
inc·x (with

x = (x1, x2) ∈ R2) illuminating Ω−, with an incidence direction θinc = (cos(θinc), sin(θinc)) for a
time dependence e−iωt, setting ω as the wave pulsation and k as the wavenumber. The sound-soft
scattering problem of uinc by Ω− leads to the computation of the scattered wavefield u as the
solution to the boundary-value problem [4, 24]

(∆ + k2)u = 0, in Ω+,

u = −uinc, on Γ,

lim
||x||→+∞

||x||1/2(∇u · x

||x||
− iku) = 0.

(1)

We designate by (∆ + k2) the Helmholtz operator, where ∆ = ∂2
x1 + ∂2

x2 is the laplacian. The
gradient operator is ∇ and ||x|| =

√
x · x, where x · y is the scalar product of two vectors x and y

of R2. The last equation of (1) is the well-known Sommerfeld’s radiation condition at infinity that
ensures the uniqueness of the scattered wave field u. Finally, the outwardly directed unit normal
vector to Ω− is n. A schematic representation of the problem is given in Figure 1.

2



Figure 1: Scattering configuration and notations.

2.2 Integral operators for scattering

Let us define G as the two-dimensional free-space Green’s kernel

∀x,y ∈ R2,x 6= y, G(x,y) =
i

4
H

(1)
0 (k‖x− y‖), (2)

where H
(1)
0 is the first-kind Hankel’s function of order zero. Building an integral equation needs

the Helmholtz integral representation formula [14, Theorems 3.1 and 3.3].

Proposition 1. If v is a solution to the Helmholtz equation in an unbounded domain Ω+ which
also satisfies the Sommerfeld radiation condition, then the following relation holds∫

Γ
−G(x,y)∂nv(y) + ∂nyG(x,y)v(y) dΓ(y) =

{
v(x) if x ∈ Ω+,

0 otherwise.
(3)

In addition, let us assume that v− is solution to the Helmholtz equation in a bounded domain Ω−.
One can write∫

Γ
−G(x,y)∂nv

−(y) + ∂nyG(x,y)v−(y) dΓ(y) =

{
0 if x ∈ Ω+,

−v−(x) otherwise.
(4)
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In Proposition 1, all the integrals on Γ must be understood as duality brackets between the
Sobolev space H1/2(Γ) and its dual space H−1/2(Γ). Nevertheless, when the incident wavefield uinc

and the curve Γ are sufficiently regular, the scattered field is smooth, implying that the duality
bracket can be identified to the (non hermitian) inner product in L2(Γ)

〈f, g〉H−1/2,H1/2 =

∫
Γ
fgdΓ.

This identification is systematically used in the presentation.
Let us now introduce the volume single- and double-layer integral operators, respectively de-

noted by L and M , that are defined through

∀x ∈ R2 \ Γ,L : ρ 7−→ L ρ(x) =

∫
Γ
G(x,y)ρ(y) dΓ(y),

∀x ∈ R2 \ Γ,M : λ 7−→ Mλ(x) = −
∫

Γ
∂nyG(x,y)λ(y) dΓ(y).

The wave fields v and v− (see (3) and (4)) can be expressed asv(x) = −L (∂nv|Γ)(x)−M (v|Γ)(x), ∀x ∈ Ω+,

v−(x) = L (∂nv
−|Γ)(x) + M (v−|Γ)(x), ∀x ∈ Ω−.

Furthermore, the single- and double-layer integral operators provide some outgoing solutions to the
Helmholtz equation [13].

Proposition 2. For any densities ρ ∈ H−1/2(Γ) and λ ∈ H1/2(Γ), the functions L ρ and Mλ are
some outgoing solutions to the Helmholtz equation in R2 \ Γ.

We now recall the expressions of the trace and normal derivative trace of the volume single-
and double-layer potentials which are commonly called jump relations [13, Theorem 3.1].

Proposition 3. For any x in Γ, the trace and normal derivative traces of the operators L and
M are given by the following relations (the sign +/− indicates that z tends towards x from the
exterior/interior of Γ)

lim
z∈Ω±→x

L ρ(z) = Lρ(x), lim
z∈Ω±→x

Mλ(z) =

(
∓1

2
I +M

)
λ(x),

lim
z∈Ω±→x

∂nzL ρ(z) =

(
∓1

2
I +N

)
ρ(x), lim

z∈Ω±→x
∂nzMλ(z) = Dλ(x),

(5)

where I is the identity operator, and, for x ∈ Γ,

Lρ(x) =

∫
Γ
G(x,y)ρ(y)dΓ(y), Mλ(x) = −

∫
Γ
∂nyG(x,y)λ(y)dΓ(y),

Nρ(x) =

∫
Γ
∂nxG(x,y)ρ(y)dΓ(y) = −M∗ρ(x), Dλ(x) = −∂nx

∫
Γ
∂nyG(x,y)λ(y)dΓ(y).

(6)

All along the paper, the boundary integral operators are denoted by a roman letter (e.g. L)
while the volume integral operators use a calligraphic letter (e.g. L ). The operator M∗ = −N is
the adjoint operator of M , that is

〈g,Mf〉H−1/2,H1/2 = 〈−Ng, f〉H−1/2,H1/2 , ∀(f, g) ∈ H1/2(Γ)×H−1/2(Γ).
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2.3 Direct boundary integral equations for the Dirichlet problem

The aim of this section is to provide without any detail the standard integral equation formulations
for solving the two-dimensional scattering problem with Dirichlet boundary condition that will be
used later. More details can be found in [4, 30] for the derivation and properties of these integral
equations (well-posedness, existence of resonant modes,...).

A first formulation is based on the trace of the single-layer operator

Lρ = −uinc|Γ. (7)

The equation is well-posed and equivalent to the exterior scattering problem (1) as soon as k is
not an irregular interior frequency of the associated Dirichlet boundary-value problem [4, 30]. This
integral equation is called Electric Field Integral Equation (EFIE) in electromagnetism. In the
sequel, this formulation will be denoted by Single-Layer Integral Equation (SLIE). In the case of a
closed boundary Γ, which is the situation in the paper, it can be proved that the spurious internal
modes do not radiate. Therefore, there is no pollution in the far-field computation, which justifies
that the SLIE can be considered as a reference solution. In addition, for an open surface Γ, the
SLIE is the only possible integral equation that can be written.

Another surface integral formulation is given by

(
1

2
I +N)ρ = −∂nuinc|Γ. (8)

It is also well-posed and equivalent to the exterior scattering problem (1) if k is not an interior
Neumann resonance [4, 30]. This formulation is often designated by Magnetic Field Integral Equa-
tion (MFIE). Nevertheless, this integral equation is not recommended in practice since the spurious
modes radiate and introduce some errors when computing the far-field pattern. To avoid the inte-
rior resonance problem, Burton and Miller [4, 12, 30] proposed to rather use a linear combination
between the EFIE and MFIE. If α is a real-valued parameter such that 0 < α < 1 and if η is
a complex parameter with =(η) 6= 0, where =(η) is the imaginary part of η, then one gets the
Combined Field Integral Equation (CFIE) [4, 20, 30] or Burton-Miller Integral Equation (BWIE)[

(1− α)(
1

2
I +N) + αηL

]
ρ = −(1− α)∂nu

inc|Γ − αηuinc|Γ. (9)

This integral equation is well-posed for any wavenumber k but can only be applied to closed surfaces.
An important point is that all these integral equations are based on the single-layer represen-

tation
∀x ∈ Ω+, u(x) = L ρ(x), (10)

where the unknown surface field ρ is the physical quantity defined by the jump (set as the difference
between the interior and exterior traces)

ρ = [∂nu]Γ := −∂nu+
|Γ + ∂nu

−
|Γ = −(∂nu|Γ + ∂nu

inc
|Γ ). (11)

To compute the far-field pattern, let us recall that we have: u = L ρ+ Mλ, where ρ and λ are two
unknown densities. In the polar coordinates system (r, θ), the use of asymptotic expansions when
r → +∞ leads to the following relation [14]

∀θ ∈ [0, 2π], u(r, θ) =
eikr

r1/2
[aL (θ) + aM (θ)] +O

(
1

r3/2

)
,
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where aL and aM are the radiated far-fields for the single- and double-layer potentials, respectively,
defined for any angle θ of [0, 2π] by

aL (θ) =
1

8
√
kπ
eiπ/4

∫
Γ
e−ikθ·yρ(y)dΓ(y),

aM (θ) =
1

8
√
kπ
eiπ/4

∫
Γ
− ik

‖y‖
θ · ye−ikθ·yλ(y)dΓ(y),

with θ := (cos(θ), sin(θ)). In addition, the Sonar Cross Section (SCS) (in dB) is such that

∀θ ∈ [0, 2π], σ(θ) = 10 log10(2π |aL (θ) + aM (θ)|2). (12)

When using the single-layer representation (10), only aL is needed while aM is set to zero. In the
paper, we will focus on the SLIE.

2.4 Numerical approximation

To numerically solve equation (7) (or (9)), we first introduce a polygonal interpolating surface Γh
which approximates Γ. The triangularization of Γh is built by using nK segments Kj . Therefore, we
have Γh = ∪nK

j=1Kj . The notation P` designates the space of complex-valued polynomials of order
`. In (7) (or (9)), no derivative operator is applied to the unknown ρ. However, as seen below,
the OSRC method, and the integral equation technique for the Neumann problems introduce some
tangential derivatives that apply to the surface fields. For this reason, we propose to use the linear
Boundary Element Method (BEM) all along the paper, where the conformal finite element space
Vh of P1 piecewise continuous functions is defined by

Vh :=
{
φ′h ∈ C0(Γh);φ′Kj

:= φ′h|Kj
∈ P1, ∀j = 1, ..., nK

}
.

For the Dirichlet problem, a P0 (constant per segment) BEM could also be applied. For the
numerical approximation, we use the weak form of the integral equation (7). For the SLIE, this
leads to

∀q ∈ L2(Γ),

∫
Γ

∫
Γ
G(x,y)ρ(y)q(x)dΓ(y)dΓ(x) = −

∫
Γ
uinc|Γ(x)q(x)dΓ(x). (13)

Then, by using the interpolating surface Γh and the linear approximations of both ρ and q in Vh,
the discrete form of (13) yields the linear system

Lρ = −Muinc, (14)

where L is the complex-valued matrix associated with the single-layer operator and M is the surface
mass matrix. If nP is the number of points of the curve Γh, then all the matrices are elements of
the spaceMnP (C) of complex-valued matrices of size nP ×nP . Indeed, assuming that Γ is a closed
boundary, then the number of degrees of freedom of the linear boundary element method, i.e. the
number of points nP := dim(Vh), is equal to the number of segments: nP = nK . In addition,
the unknown complex-valued nodal vector ρ and the nodal incident vector uinc are in CnP . For
computing the coefficients of L, some semi-analytical quadrature formula are used to integrate the
kernel singularity. If one rather uses the BWIE (9), the discrete form leads to

[(1− α)(
1

2
M + N) + αηV)]ρ = −(1− α)M∂nu

inc − αηMuinc, (15)
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where ∂nu
inc is the nodal complex-valued vector related to the normal trace of the incident field.

Finally, we have
ρ = −(∂nu + ∂nu

inc). (16)

3 Loss of accuracy of the OSRC method for non convex scatterers

3.1 First and second-order OSRCs

The On-Surface Radiation Condition (OSRC) method was introduced in the middle of the eight-
ies by Kriegsmann, Taflove and Umashankar [22]. At that time, the main idea was to develop
an approximate but efficient and low memory numerical solution for scattering problems, most
particularly in the high-frequency regime. Starting from local approximations of the Dirichlet-
to-Neumann (DtN) operator, they were able to propose the computation of the scattered field
by two-dimensional simple obstacles. Since then, the OSRC method has received much attention
from many researchers and many improvements and extensions have been proposed (see e.g. [2]).
For the sake of conciseness, we restrict our presentation to the so-called first- and second-order
Bayliss-Turkel-like radiation conditions [1].

The first-order OSRC (that we denote by OSRC1) is given by

∂nu
1 + (−ik +

κ

2
)u1 = 0, on Γ. (17)

In the above equation, (u1, ∂nu
1) is the OSRC Cauchy data that approximate the exact Cauchy

data (u, ∂nu) on Γ. Here, let us remark that (u1, ∂nu
1) must be understood as a notation since

the OSRC is an approximate DtN map, which means that we do not a priori know if ∂nu
1 is the

normal derivative trace of a function u1. The function κ := κ(s) is the curvature at a point s of
the surface, where s is the curvilinear abscissa counterclockwise directed along Γ. Equation (17)
can be seen as a simple impedance boundary condition for the exterior domain Ω+. Various ways
of deriving (17) are available in the literature. Let us mention for example [3] were formal and
rigorous approaches are developed.

The first-order OSRC (17) can be improved, leading to the so-called symmetrical second-order
Bayliss-Turkel condition (denoted by OSRC2 in the sequel)

∂nu
2 + (−ik +

κ

2
− κ2

8(κ− ik)
)u2 − ∂s(

1

2(κ− ik)
∂s)u

2 = 0, on Γ. (18)

In (18), the curvilinear derivative operator is written ∂su = ∇u · τ , where τ is the tangent vector
to Γ (n · τ = 0). In the same spirit, an Engquist-Majda-like OSRC can be derived [2, 3]. However,
some numerical simulations in various papers show that the boundary condition (18) provides a
higher accuracy. Therefore, in the present paper, we restrict our study to (18).

3.2 Numerical approximation

To solve (18), we introduce the weak formulation∫
Γ
∂nu

2vdΓ +

∫
Γ
(−ik +

κ

2
− κ2

8(κ− ik)
)u2vdΓ +

∫
Γ

1

2(κ− ik)
∂su

2∂svdΓ = 0, on Γ, (19)

7



for some suitable test-functions v in H1(Γ). The pair of approximate Cauchy data (u2, ∂nu
2) is

discretized in the finite element space Vh×Vh. When the BEM is introduced, then the discretization
of (19) can be rewritten at the matrix level as

M∂nu
2 + (Mβ + Sα)u2 = 0, (20)

where the functions α and β are defined for OSRC2 by

α =
1

2(κ− ik)
, β = −ik +

κ

2
− κ2

8(κ− ik)
.

The matrices Sα and Mβ are respectively the (sparse) nP × nP generalized stiffness and mass
matrices associated with the functions α and β. In addition, the vectors u2 and ∂nu

2 are complex-
valued vector fields of CnK . Finally, the second-order OSRC method requires the following stable
approximation scheme for the curvature [1]: let K = (a1a2a3) be a triangle whose vertices aj ,
j = 1, 2, 3, are points on Γh, then, the curvature at the vertex a2 can be approximated by

κ(a2) =
4× area(K)

a1a2a3
,

where aj , for j = 1, ..., 3, are the lengths of the edges of K ordered with respect to the increasing
size. This formula is directly applied on the triangles associated with the surface mesh and built
on two adjacent segments.

Since we are solving a scattering problem with given Dirichlet boundary condition, then u2 is
given by −uinc and then

M∂nu
2 = (Mβ + Sαh)uinc. (21)

This means that ∂nu
2 is simply obtained through the solution of a complex-valued sparse linear

system defined by the mass matrix. Once the unknown is obtained then one can compute an
approximation of the jump of the normal derivative trace by the relation

ρ2 = −(∂nu
2 + ∂nu

inc). (22)

Another way of writing this relation is that ρ2 is solution to

Mρ2 = −(Mβ2
+ Sα

2

h )uinc −M∂nu
inc := g2. (23)

The far-field can be directly obtained through expressions (12).
Even if the boundary condition (17) can be a priori applied to any scatterer Ω−, we will see

during the numerical simulations that a serious loss of accuracy is observed when the scatterer
presents some concave parts (see [1] and Figures 1, 2 and 3). Indeed, in the concavity, the presence
of multiply bounced rays cannot be modeled by local differential operators since the nature of this
phenomena is nonlocal. Therefore, the aim of the next sections is to provide a way to directly
couple the OSRC formulation in the convex part of the scatterer to the SLIE restricted to the
concave part to improve the accuracy.
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4 The coupling procedure for non convex scatterers

4.1 Weak coupling procedure and boundary element approximation

Since the OSRC solution is locally inaccurate in the non convex part of the domain, we propose to
build a solution which is computed first by the OSRC method and improved thanks to the integral
equation where the quality of the OSRC approximation deteriorates. To this end, let us assume
that the geometry Γ can be decomposed into two non-overlapping parts Γ := Γ1∪Γ2, with Γ1∩Γ2 =
{a1;a2}. The geometry Γ1 is related to the boundary part of Γ which is convex, the complementary
(where we will use an integral equation) is Γ2 (see Figure 1). The proposed procedure uses 1) a
global computation of an approximate surface density ρ2 through the OSRC on Γ and 2) injects
the restriction of this approximation to Γ1 into the global integral equation formulation on Γ to
obtain an approximate density on Γ2. This way of partitioning the computation allows us to solve
a smaller size boundary element system and can be seen as a ”one shot” computation.

In the following, if A is a global matrix on Γ, we denote by Aj` the extracted matrix related to
the interaction between the part Γj of the boundary and Γ`, j, ` = 1, 2. We then have

A =

(
A11 A12

A21 A22

)
. (24)

In a similar way, the restriction of a nodal complex-valued vector z to the part of the boundary
Γ` is written z`, for ` = 1, 2. Then, we propose the following algorithm for the SLIE formulation:
compute ρ2 := (ρ2

1, ρ̃
2
2) ∈ CnP such that

1) OSRC: extract ρ2
1 = (ρ2)1 ∈ CnP1−2 from the computation of Mρ2 = g2,

2) SLIE: compute ρ̃2
2 ∈ CnP2 as the solution to L22ρ̃

2
2 = −L21ρ

2
1 − (Muinc)2.

(25)

Even if other coupling possibilities are available, this one has the advantage that no modification
of an existing code is required. Let us denote by nKj (respectively nPj) the number of segments
(respectively points) of the boundary Γj , j = 1, 2. Then, we have nK = nK1 + nK2 and nP =
nP1 +nP2−2 (the two junction points a1 and a2 must be counted once). In step 1), we only retain
the values of the OSRC solution that are not considered in the cavity, including the two endpoints
a1 and a2. This first step needs O(nK) operations to solve the sparse complex-valued linear system
(by using an LU factorization or a preconditioned iterative Krylov solver [27]) while the memory
storage is O(nK1). In the second step, the solution to a complex-valued full matrix is necessary. If a
full storage is considered, then the linear system solution needs O(n3

K2) elementary operations and
the memory storage is O(n2

K2). Usually, in integral equation solvers, most particularly for high-
frequency scattering, it is preferable to use a subspace Krylov solver [4, 27, 28] in conjunction with a
fast matrix-vector product algorithm like for example the Multilevel Fast Multipole Method (FMM)
[23], high-order solvers [6] or the recent direct Adaptive Cross Approximation (ACA) techniques
[17]. In this case, the memory requirement is O(nK2) for a computational cost O(nK2 log nK2).
In addition, it is well-known that preconditioning is a requirement to get a fast convergence. The
second equation of (25) is defined through the single-layer integral operator. Then, the integral
equation is a first-kind Fredholm equation which is known to be badly conditioned. To improve
this, we propose a preconditioned version of the algorithm (25) based on the Caldèron relations [4]
and well-adapted to fast iterative solvers but without modifying the solution of the initial coupling
procedure. Let D be the discrete version of the normal derivative trace operator D and D22 its
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restriction to Γ2. Then, the preconditioned version of (25) is given by: find ρ2 := (ρ2
1, ρ̃

2
2) ∈ CnP

such that

1) compute ρ2
1 = (ρ2)1 ∈ CnP1−2 solution to Mρ2 = g2,

2) obtain ρ̃2
2 ∈ CnP2 as the solution to D22L22ρ̃

2
2 = −D22L21ρ

2
1 − D22(Muinc)2.

(26)

The second equation of (26) is defined by a second-kind integral equation formulation which has
better clustering properties for the convergence of Krylov subspace solvers. The price to pay is
that each iteration of a Krylov solver requires to apply L22 first and next D22. The preconditioned
Caldèron SLIE coupling procedure (26) is called SLIE-OSRC2. Once ρ̃2 := (ρ2

1, ρ̃
2
2) ∈ CnP has

been computed, all the usual quantities of interest can be obtained like for the SCS given by (12).
The SLIE-OSRC2 formulation may suffer from the existence of interior resonances. Even if the

spurious modes do not radiate for the SLIE, it can be better to have access to a stable formulation.
To this end, the following BWIE-OSRC2 coupling procedure could alternatively be used: compute
ρ̃2 := (ρ2

1, ρ̃
2
2) ∈ CnP such that

1) ρ2
1 = (ρ2)1 ∈ CnP1−2 is solution to Mρ2 = g2,

2) extract ρ̃2
2 ∈ CnP2 from the solution to
[(1− α)(1

2M22 + N22) + αηV22)]ρ̃2
2 = −[(1− α)(1

2M21 + N21) + αηV21)]ρ2
1

−(1− α)(M∂nu
inc)22 − αη(Muinc)22.

(27)

Unlike the SLIE-OSRC2 formulation, the BWIE-OSRC2 approach is defined by a second-kind
Fredholm integral equation and does not really need to be preconditioned when correctly choosing
α and η (see e.g. [4]). An extra computational cost and memory storage is required since the
evaluation of the double-layer potentials N22 and N21 are required.

In the following examples, we will report only the results related to the SLIE-OSRC2 formu-
lation since no resonance were met and we always plot the SCS. In addition, we do not use any
iterative solver for the resulting linear systems because we are considering toys problems for a
proof of concept. However, for three-dimensional problems, where the method directly extends, the
difference between all the formulations may be important in terms of convergence rate. Here, we
rather focus on the accuracy improvement. Further investigations are therefore needed, as well as
improved formulations and implementation of higher order OSRCs.

4.2 A numerical example - validation of the procedure

As previously said, we use the SLIE-OSRC2 formulation. The model toy problem is the following.
We consider the obstacle Ω− as being composed of the square cylinder centered at the origin and
with side length 2, with an inner square cavity defined by the corners (1/3,−1/3), (1,−1/3), (1, 1/3)
and (1/3, 1/3). The boundary Γ2 is then defined as the internal boundary to the cavity (blue curve
on Figure 1) and Γ1 is the complementary boundary on Γ (red curve on Figure 1). For an incident
plane wave, the reference solution is given by the SLIE (14) discretized by the BEM (with 10 points
per wavelength). The results are clearly improved compared to the pure OSRC approach for wave
numbers k ≤ 15 and this, independently of the angle of attack θinc. As it can be observed on the
first picture of Figure 2 (Case 1, for k = 2), we almost obtain the reference solution by using the
SLIE-OSRC2 approach while a pure OSRC approximation gives a poor accuracy which deteriorates
as k increases. For a higher wave number (Case 2, k = 8), the results are still accurate (see Figure
2). By increasing the frequency, we still have an acceptable solution as seen on the third example
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of Figure 2 (Case 3, k = 14). For both the integral equations and OSRCs, since we consider a mesh
with ten elements per wavelength, the size of the matrix L2,2 is about nK2 = 2.5k, which is more
than four times less than for a pure SLIE solution.

5 The Neumann scattering problem

The Neumann scattering problem, i.e. considering (1) but with the boundary condition: ∂nu =
−∂nuinc on Γ, can be treated similarly with the EFIE [4] based on the normal derivative trace of
the double-layer potential written under its weak form (called DLIE). A hyper-singular kernel must
then be integrated carefully by semi-integration techniques. For the OSRC, the method applies
quite similarly and leads to the solution of a sparse linear system.

In general, the coupling procedure (called DLIE-OSRC2) has proved to be less accurate than for
the Dirichlet problem (i.e. for SLIE-OSRC2). We think that this is due to the fact that the OSRC
approach requires a higher order operator to provide a suitable fast solution during the first step
of the method. We recommend to rather use the square-root OSRC developed in [5]. The resulting
coupling technique will be analyzed in a forthcoming work. For low and moderate wave numbers
(k ≤ 4), we still get quite acceptable results having always in mind the lower computational cost
of the DLIE-OSRC2 method. However, there is a moderate accuracy for wave numbers such that
k ≥ 10 as seen on the two cases reported in Figures 3. Nevertheless, this must be counterbalanced
by the lower cost of the procedure and the possibility to increase the OSRC accuracy in the
convex part. In addition, we always obtain a good prediction of the main lobs where the energy is
mostly radiating. As a general concluding remark, the coupling DLIE-OSRC2 algorithm provides
an interesting alternative to the DLIE. Furthermore, the method is always more accurate than a
classical OSRC approach and gives a possibility of its extension to non-convex obstacles.

6 Conclusion

In this paper, we introduced a simple algorithm coupling the surface integral equation method and
the OSRC technique for solving the scattering problem by nonconvex scatterers. While simple,
the coupling method leads to an improved accuracy compared with the pure OSRC approach
and reduces the computational cost of a direct integral equation formulation. In addition, we
explain how operator preconditioning can be directly included into the formulations. The method
is validated on a simple two-dimensional problem as a proof of concept. In particular, the method
is accurate for the Dirichlet problem, but still needs to be further investigated by using high-
order OSRCs in the case of the Neumann problem. We expect that the formulation can be useful
for three-dimensional high-frequency scattering problems solved iteratively by Krylov solvers with
acceleration algorithms.

Acknowledgments. The authors would like to thank the Deanship of Scientific Research at Umm
Al-Qura University for supporting this work by grant code 18-SCI-1-01-0017.
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Figure 2: Bistatic SCS for the unit square cylinder with cavity and Dirichlet boundary condition:
Case 1: k = 2 and θinc = 135 deg., Case 2: k = 8 and θinc = 160 deg. and Case 3: k = 14 and
θinc = 150 deg.
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Figure 3: Bistatic SCS for the unit square cylinder with cavity and Neumann boundary condition:
Case 1: k = 9 and θinc = 140 deg.; Case 2: k = 13 and θinc = 160 deg.
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